Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Aira (Japan) Intermittent explosions continue during July through December 2020

Nishinoshima (Japan) Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Nyiragongo (DR Congo) Strong thermal anomalies and gas emission from lava lake through November 2020

Kerinci (Indonesia) Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Whakaari/White Island (New Zealand) Gas-and-steam emissions with some re-suspended ash in November 2020

Suwanosejima (Japan) Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Karangetang (Indonesia) Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Nevado del Ruiz (Colombia) Dome growth and ash emissions continue during July-December 2020

Ibu (Indonesia) Persistent daily ash emissions and thermal anomalies, July-December 2020

Copahue (Chile-Argentina) New eruption in June-October 2020 with crater incandescence, ash plumes, and local ashfall

Etna (Italy) Strombolian explosions and ash plumes persist from multiple craters during August-November 2020

Masaya (Nicaragua) Lava lake continues accompanied by gas-and-steam emissions during June-November 2020



Aira (Japan) — January 2021 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Intermittent explosions continue during July through December 2020

Sakurajima is the active volcano within the Aira Caldera in Kyushu, Japan. With several craters historically active, the current activity is concentrated in the Minamidake summit crater. Activity usually consists of small explosions producing ashfall and ballistic ejecta, with occasional pyroclastic flows and lahars. The current eruption has been ongoing since 25 March 2017, but activity has been frequent over the past few hundred years. This bulletin summarizes activity that occurred during July through December 2020 and is largely based on reports by the Japan Meteorological Agency (JMA) and satellite data. The Alert Level remains at 3 on a 5-level scale. There was no activity at the Showa crater in 2020.

The number of recorded explosive and ash eruptions for 2020 at the Minamidake crater were 221 and 432, respectively (228 and 393 the previous year). Activity declined in July and remained low through the end of December. There was ash reported on 79 days of the year, most frequently in January, and only 26 of those days during August-December (table 24 and figure 104). The largest ash plumes during this time reached 5 km at 0538 on 9 August, 3 km at 1959 on 17 December, and 3.5 km at 1614 on 29 December. The decline in events was reflected in thermal data, with a decline in energy detected during June through October (figure 105). Recorded SO2 was generally high in the first half of the year then began to decrease from April to around 1,000 tons/day until around late May. Emissions increased after August and were extremely high in October. There were no notable changes in the geothermal areas around the craters.

Table 24. Number of monthly total eruptions, explosive eruptions, days of ashfall, and ashfall amounts from Sakurajima's Minamidake crater at Aira during 2020. Note that smaller events that did not reach the threshold of explosions or eruptions also occurred. Ashfall was measured at Kagoshima Local Meteorological Observatory; ash weights are rounded down to the nearest 0.5 g/m2 and zero values indicate that less than this amount was recorded. Data courtesy of JMA.

MonthExplosive EruptionsAsh EruptionsDays of AshfallAshfall Amount (g/m2)
Jan 2020 65 104 12 75
Feb 2020 67 129 14 21
Mar 2020 10 26 8 3
Apr 2020 14 51 2 0
May 2020 24 51 8 19
Jun 2020 16 28 9 71
Jul 2020 0 0 0 0
Aug 2020 1 1 1 0
Sep 2020 0 7 4 2
Oct 2020 0 2 6 2
Nov 2020 6 8 11 5
Dec 2020 18 25 4 14
Total 2020 221 432 79 212
Figure (see Caption) Figure 104. The total calculated observed ash erupted from Aira's Sakurajima volcano. Top: Annual values from January 1980 to November 2020. Bottom: the monthly values during January 2009 through November 2020. Courtesy of JMA (January 2021 Sakurajima monthly report).
Figure (see Caption) Figure 105. Thermal data detected at Aira's Sakurajima volcano during February through December 2020 by the MIROVA thermal detection system that uses MODIS satellite middle infrared data. There was a decline in activity during June-September, with energy emitted in November-December remaining lower than earlier in the year. Courtesy of MIROVA.

During July "very small" explosions were observed on the 1st, 2nd, and 8th, with the last explosion producing a plume up to 600 m above the crater. These events didn't generate enough of an ash plume to be counted as either a quiet or explosive eruption, leaving no eruptions reported during July. No incandescence was observed at the crater since 3 June. Field surveys on 2, 13, and 21 July detected 600 to 1,300 tons of SO2 per day.

An explosion occurred at 0538 on 9 August, producing an ash plume to 5 km above the crater, dispersing NE (figure 106). This was the largest explosion observed through the Sakurajima surveillance camera since 8 November 2019. Ashfall was reported in Kagoshima City, Aira City, Kirishima City, Yusui Town, and parts of Miyazaki and Kumamoto Prefectures. Ashfall measured to be 300 g/m2 in Shirahama on Sakurajima island (figure 106). No ballistic ejecta were observed due to clouds at the summit, but very small explosions were occasionally observed afterwards.

Figure (see Caption) Figure 106. An explosion at Aira's Sakurajima volcano at 0538 on 9 August 2020 (top, taken from the Ushine surveillance camera in Kagoshima) produced ashfall in Shirahama on Sakurajima (bottom). The plume contains a white steam-rich portion on the left, and a darker relatively ash-rich portion on the right. Images courtesy of JMA (Sakurajima August 2020 monthly report).

A small lake or pond in the eastern Minamidake crater was first observed in PlanetScope satellite imagery on 1 August (through light cloud cover) and intermittently observed when the summit was clear through to the 22nd (figure 107). The summit is obscured by cloud cover in many images before this date. An observation flight on 14 August confirmed weak gas emission from the inner southern wall of the Showa crater, and a 200-m-high gas plume rose from the Minamidake crater, dispersing SE (figure 108). Thermal imaging showed elevated temperatures within the crater. SO2 measurements were conducted during field surveys on the 3rd, 13th, 24th and 31st, with amounts similar to July at 600 to 1,400 tons per day.

Figure (see Caption) Figure 107. A crater lake is visible in the eastern part of the Minamidake summit crater at Aira's Sakurajima volcano on 5, 18, and 22 August 2020. Four-band PlanetScope satellite images courtesy of Planet Labs.
Figure (see Caption) Figure 108. Gas emissions from the Minamidake and Showa craters at Sakurajima in the Aira caldera on 14 August 2020. Photos taken from the from Kagoshima Prefecture disaster prevention helicopter at 1510-1513. Courtesy of JMA (Sakurajima August monthly report).

Activity continued at Minamidake crater throughout September with seven observed eruptions sending plumes up to 1.7 km above the crater, and additional smaller events (figure 109). An ash plume reached 1 km at 0810 on the 15th. Ashfall was reported on four days through the month with a total of 2 g/m2 measured. Incandescence was observed in nighttime surveillance cameras from the 9-10th for the first time since 2 June, then continued through the month. There was an increase in detected SO2, with measurements on the 11th and 25th ranging from 1,300 to 2,000 tons per day.

Figure (see Caption) Figure 109. Examples of activity at Aira's Sakurajima volcano on 4, 10, and 14 September 2020. The images show an ash plume reaching 1.7 km above the crater (top left), a gas-and-steam plume (bottom left), and incandescence at night visible in a gas-and steam plume (right). Images courtesy of JMA (September 2020 Sakurajima monthly report).

During October two eruptions and occasional smaller events occurred at the Minamidake crater and there were six days where ashfall occurred at the Kagoshima Local Meteorology Observatory (including remobilized ash). An ash plume rose to 1.7 km above the crater at 1635 on the 3rd and 1 km on the 30th. Incandescence was observed at night through the month (figure 110). Gas surveys on the 20th, 21st, 23rd, and 26th recorded 2,200-6,600 tons of SO2 per day, which are high to very high levels and a large increase compared to previous months. An observation flight on the 13th confirmed lava in the bottom of the Minamidake crater (figure 111). Gas emissions were rising to 300 m above the Minamidake crater, but no emissions were observed at the Showa crater (figure 112).

Figure (see Caption) Figure 110. Gas emissions and incandescence seen above the Sakurajima Minamidake crater at Aira on 10 and 23 October 2020. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 111. Lava was observed on the floor of the Minamidake summit crater at Aira's Sakurajima volcano on 13 October 2020, indicated by the yellow dashed line. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 112. An observation flight on 13 October 2020 noted gas emissions up to 300 m above the Minamidake crater at Sakurajima, but no emissions from the Showa crater. Courtesy of JMA (Sakurajima October 2020 monthly report).

Eight ash eruptions and six explosive eruptions occurred during November as well as additional very small events. At 1551 on the 3rd an ash plume reached 1.8 km above the crater and an event at 1335 on the 10th produced large ballistic ejecta out to 600-900 m from the crater (figure 113). Ashfall was reported on 11 days this month (including remobilized ash). Incandescence was observed at night and elevated temperatures in the Minamidake crater were detected by satellites (figure 114). Detected SO2 was lower this month, with amounts ranging between 1,300 and 2,200 on the 9th, 18th and 24th.

Figure (see Caption) Figure 113. Ash plumes at Aira's Sakurajima volcano rise from the Minamidake crater in November 2020. Left: an ash plume rose to 1.8 km above the crater at 1551 on the 3rd and drifted SE. on 3 (left) and 10 (right) November 2020. Right: An explosion at 1335 on the 10th produced an ash plume to 1.6 km above the crater and ballistic ejecta out to 600-900 m, with one projectile indicated by the red arrow. Courtesy of JMA (Sakurajima November 2020 monthly report).
Figure (see Caption) Figure 114. An ash plume drifts SE from the Minamidake crater at Aira's Sakurajima volcano on 8 November 2020. This thermal image also shows elevated temperatures in the crater. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During December there were 25 ash eruptions and 18 explosive eruptions recorded, with large ballistic ejecta reaching 1.3-1.7 km from the crater (figure 115). An explosion on the 2nd sent an ash plume up to 1 km above the crater and ballistic ejecta out to 1-1.3 km, and an event at 0404 on the 12th produced incandescent ballistic ejecta reached out to 1.3-1.7 km from the crater. At 1959 on 17 December an explosion generated an ash plume up to 3 km above the crater and ejecta out to 1.3-1.7 km. A photograph that day showed an ash plume with volcanic lightning and incandescent ejecta impacting around the crater (figure 116). On the 18th an ash plume reached 1.8 km and ejecta impacted out to 1-1.3 km. An event at 1614 on the 29th produced an ash plume reaching 3.5 km above the crater. Elevated temperatures within the Minamidake crater and plumes were observed intermittently in satellite data through the month (figure 117). This month there were four days where ashfall was recorded with a total of 14 g/m2. Incandescence continued to be observed at night through the month. High levels of gas emission continued, with field surveys on 2nd, 7th, 16th and 21st recording values ranging from 1,500 to 2,900 tons per day at the Observatory located 11 km SW.

Figure (see Caption) Figure 115. Explosions at Aira's Sakurajima volcano from the Minamidake summit crater in December 2020. Top: An explosion recorded at 0404 on the 12th produced incandescent ballistic ejecta out to 1.3-1.7 km from the crater, with an example indicated in the red circle. Bottom: An explosion at 1614 on the 29th produced an ash plume up to 3.5 km above the crater, and ballistic ejecta out to 1.3-1.7 km. Courtesy of JMA (top, from Sakurajima December 2020 monthly report) and Volcano Time Lapse (bottom).
Figure (see Caption) Figure 116. An explosion from Sakurajima's Minamidake crater at Aira produced an ash plume with volcanic lightning on 17 December 2020. Photograph taken from Tarumizu city, courtesy of Kyodo/via Reuters.
Figure (see Caption) Figure 117. Activity at Aira's Sakurajima volcano during December 2020. Top: Sentinel-2 thermal satellite image showing a diffuse gas-and-steam plume dispersing to the SE with elevated temperatures within the Minamidake summit crater on the 22nd. PlanetScope satellite image showing an ash plume dispersing between the N and E on the 26th. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground. PlanetScope satellite image courtesy of Planet Labs.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Kyodo/via REUTERS, "Photos of the Week" (URL: https://www.reuters.com/news/picture/photos-of-the-week-idUSRTX8HYLR); Volcano Time-Lapse, YouTube (URL: https://www.youtube.com/watch?v=jTgd152oGVo).


Nishinoshima (Japan) — February 2021 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted for two years followed by two brief eruptions in 2017 and 2018. The next eruption, from early December 2019 through August 2020, included ash plumes, incandescent ejecta, and lava flows; it produced a large pyroclastic cone with a wide summit crater and extensive lava flows that significantly enlarged the island. This report covers the end of the eruption and cooling during September 2020-January 2021. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular observation overflights.

Ash emissions were last reported on 27 August 2020. The very high levels of thermal energy from numerous lava flows, ash, and incandescent tephra that peaked during early July decreased significantly during August and September. Continued cooling of the fresh lava and the summit crater lasted into early January 2021 (figure 107). Monthly overflights and observations by scientists confirmed areas of steam emissions at the summit and on the flanks and discolored water around the island, but no eruptive activity.

Figure (see Caption) Figure 107. High levels of thermal activity at Nishinoshima during June and July 2020 resulted from extensive lava flows and explosions of incandescent tephra. Although the last ash emission was reported on 27 August 2020, cooling of new material lasted into early January 2021. The MIROVA log radiative power graph of thermal activity covers the year ending on 3 February 2021. Courtesy of MIROVA.

Thermal activity declined significantly at Nishinoshima during August 2020 (BGVN 45:09). Only two days had two MODVOLC alerts (11 and 30), and four other days (18, 20, 21, 29) had single alerts. During JCG overflights on 19 and 23 August there were no ash emissions or lava flows observed, although steam plumes rose over 2 km above the summit crater during both visits. The last ash emission was reported by the Tokyo VAAC on 27 August 2020. No eruptive activity was observed by JMA during an overflight on 5 September, but steam plumes were rising from the summit crater (figure 108). No significant changes were observed in the shape of the pyroclastic cone or the coastline. Yellowish brown discolored water appeared around the western half of the island, and high temperature was still measured on the inner wall of the crater. Faint traces of SO2 plumes were present in satellite images in early September; the last plume identified was on 18 September. Six days with single MODVOLC alerts were recorded during 3-19 September, and the final thermal alert appeared on 1 October 2020.

Figure (see Caption) Figure 108. No eruptive activity was observed during a JMA overflight of Nishinoshima on 5 September 2020, but steam rose from numerous places within the enlarged summit crater (inset). Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, September 2020).

Steam plumes and high temperatures were noted at the summit crater on 28 October, and brown discolored water was present around the S coast of the island (figure 109), but there were no other signs of volcanic activity. Observations from the sea conducted on 2 November 2020 by researchers aboard the Maritime Meteorological Observatory marine weather observation ship "Ryofu Maru" confirmed there was no ongoing eruptive activity. In addition to steam plumes at the summit, they also noted steam rising from multiple cracks on the cooling surface of the lava flow area on the N side of the pyroclastic cone (figure 110). Only steam plumes from inside the summit crater were observed during an overflight on 24 November.

Figure (see Caption) Figure 109. On a JCG overflight above Nishinoshima on 28 October 2020 there were no signs of eruptive activity; steam plumes were present in the summit crater and brown discolored water was visible around the S coast of the island. Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, October 2020).
Figure (see Caption) Figure 110. Observations of Nishinoshima by staff aboard the Maritime Meteorological Observatory ship "Ryofu Maru" on 2 November 2020 showed a steam plume rising from the lava flow area on the N side of the pyroclastic cone (arrow) and minor steam above the cone. Courtesy of JMA (Monthly report of activity at Nishinoshima, November 2020).

JMA reduced the warning area around the crater on 18 December 2020 from 2.5 to 1.5 km due to decreased activity. On 7 December a steam plume rose from the inner wall of the summit crater and thermal imaging indicated the area was still hot. Brown discolored water was observed on the SE and SW coasts. Researchers aboard a ship from the Earthquake Research Institute at the University of Tokyo and the Marine Research and Development Organization reported continued steam plumes in the summit crater, around the lava flows on the N flank, and along the S coast during 15-29 December (figure 111). Steam plumes and elevated temperatures were still measured inside the summit crater during an overflight by the Japan Coast Guard on 25 January 2021, and discolored water persisted on the SE and SW coasts; there was no evidence of eruptive activity.

Figure (see Caption) Figure 111. Observations of Nishinoshima from the sea by researchers from the Earthquake Research Institute (University of Tokyo) and the Marine Research and Development Organization, which took place from 15-29 December 2020, showed fumarolic acitivity not only inside the summit crater, but also in the lava flow area on the N side of the pyroclastic cone (left, 20 December) and in places along the southern coast (right, 23 December). (Monthly report of activity at Nishinoshima, December 2020).

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); Volcano Research Center (VRC-ERI), Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyiragongo (DR Congo) — December 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Strong thermal anomalies and gas emission from lava lake through November 2020

Nyiragongo is a stratovolcano in the DR Congo with a deep summit crater containing a lava lake and a small active cone. During June 2018-May 2020, the volcano exhibited strong thermal signals primarily due to the lava lake, along with incandescence, seismicity, and gas-and-steam plumes (BGVN 44:05, 44:12, 45:06). The volcano is monitored by the Observatoire Volcanologique de Goma (OVG). This report summarizes activity during June-November 2020, based on satellite data.

Infrared MODIS satellite data showed almost daily strong thermal activity during June-November 2020 from MIROVA (Middle InfraRed Observation of Volcanic Activity), consistent with a large lava lake. Numerous hotspots were also identified every month by MODVOLC. Although clouds frequently obscured the view from space, a clear Sentinel-2 image in early June showed a gas-and-steam plume as well as a strong thermal anomaly (figure 76).

Figure (see Caption) Figure 76. Sentinel-2 satellite imagery of Nyiragongo on 1 June 2020. A gas-and-steam is visible in the natural color image (bands 4, 3, 2) rising from a pit in the center of the crater (left), while the false color image (bands 12, 11, 4) reveals a strong thermal signal from a lava lake (right). Courtesy of Sentinel Hub Playground.

During the first half of June 2020, OVG reported that SO2 levels had decreased compared to levels in May (7,000 tons/day); during the second half of June the SO2 flux began to increase again. High levels of sulfur dioxide were recorded almost every day in the region above or near the volcano by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite (figure 77). According to OVG, SO2 flux ranged from 819-5,819 tons/day during June. The number of days with a high SO2 flux decreased somewhat in July and August, with high levels recorded during about half of the days. The volume of SO2 emissions slightly increased in early July, based on data from the DOAS station in Rusayo, measuring 6,787 tons/day on 8 July (the highest value reported during this reporting period), and then declined to 509 tons/day by 20 July. The SO2 flux continued to gradually decline, with high values of 5,153 tons/day in August and 4,468 tons/day in September. The number of days with high SO2 decreased further in September and October but returned to about half of the days in November.

Figure (see Caption) Figure 77. TROPOMI image of SO2 plume on 27 June 2020 in the Nyiragongo-Nyamulagira area. The plume drifted SSE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During 12-13 July a multidisciplinary team of OVG scientists visited the volcano to take measurements of the crater using a TCRM1102 Plus2 laser. They noted that the crater had expanded by 47.3 mm in the SW area, due to the rise in the lava lake level since early 2020. The OVG team took photos of the small cone in the lava lake that has been active since 2014, recently characterized by white gas-and-steam emissions (figure 78). OVG noted that the active lava lake had subsided roughly 20 m (figure78).

Figure (see Caption) Figure 78. Photos (color corrected) of the crater at Nyiragongo showing the small active cone generating gas-and-steam emissions (left) and the active lava lake also characterized by white gas-and-steam emissions on 12 July 2020 (right). Courtesy of OVG (Rapport OVG Juillet 2020).

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Kerinci (Indonesia) — December 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Kerinci, located in Sumatra, Indonesia, has had numerous explosive eruptions since 1838, with more recent activity characterized by gas-and-steam and ash plumes. The current eruptive episode began in April 2018 and has recently consisted of intermittent brown ash emissions and white gas-and-steam emissions (BGVN 45:07); similar activity continued from June through November 2020. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity has been characterized by dominantly white and brown gas-and-steam emissions and occasional ash plumes, according to PVMBG. Near daily gas-and-steam emissions were observed rising 50-6,400 m above the crater throughout the reporting period: beginning in late July and continuing intermittently though November. Sentinel-2 satellite imagery showed frequent brown emissions rising above the summit crater at varying intensities and drifting in different directions from July to November (figure 21).

Figure (see Caption) Figure 21. Sentinel-2 satellite imagery of brown emissions at Kerinci from July through November 2020 drifting in multiple directions. On 27 July (top left) the brown emissions drifted SW. On 31 August (top right) the brown emissions drifted W. On 2 September (bottom left) slightly weaker brown emissions drifting W. On 4 November (bottom right) weak brown emissions mostly remained within the crater, some of which drifted E. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

During June through July the only activity reported by PVMBG consisted of white gas-and-steam emissions and brown emissions. On 4 June white gas-and-steam emissions rose to a maximum height of 6.4 km above the crater. White-and-brown emissions rose to a maximum height of 700 m above the crater on 2 June and 28 July.

Continuous white-and-brown gas-and-steam emissions were reported in August that rose 50-1,000 m above the crater. The number of ash plumes reported during this month increased compared to the previous months. In a Volcano Observatory Notice for Aviation (VONA) issued on 7 August at 1024, PVMBG reported an ash plume that rose 600 m above the crater and drifted E, SE, and NE. In addition, the Darwin VAAC released two notices that described continuous minor ash emissions rising to 4.3 km altitude and drifting E and NE. On 9 August an ash plume rose 600 m above the crater and drifted ENE at 1140. An ash plume was observed rising to a maximum of 1 km above the crater, drifting E, SE, and NE on 12 August at 1602, according to a PVMBG VONA and Darwin VAAC advisory. The following day, brown emissions rose to a maximum of 1 km above the crater and were accompanied by a 600-m-high ash plume that drifted ENE at 1225. Ground observers on 15 August reported an eruption column that rose to 4.6 km altitude; PVMBG described brown ash emissions up to 800 m above the crater drifting NW at 0731 (figure 22). During 20-21 August pilots reported an ash plume rising 150-770 m above the crater drifting NE and SW, respectively.

Figure (see Caption) Figure 22. Webcam image of an ash plume rising above Kerinci on 15 August 2020. Courtesy of MAGMA Indonesia.

Activity in September had decreased slightly compared to the previous month, characterized by only white-and-brown gas-and-steam emissions that rose 50-300 m above the crater; solely brown emissions were observed on 30 September and rose 50-100 m above the crater. This low level of activity persisted into October, with white gas-and-steam emissions to 50-200 m above the crater and brown emissions rising 50-300 m above the crater. On 16 October PVMBG released a VONA at 0340 that reported an ash plume rising 687 m above the crater and drifting NE. On 17 October white, brown, and black ash plumes that rose 100-800 m above the crater drifted NE according to both PVMBG and a Darwin VAAC advisory (figure 23). During 18-19 October white, brown, and black ash emissions rose up to 400 m above the crater and drifted NE and E.

Figure (see Caption) Figure 23. Webcam image of a brown ash emission from Kerinci on 17 October 2020. Courtesy of MAGMA Indonesia.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Whakaari/White Island (New Zealand) — December 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Gas-and-steam emissions with some re-suspended ash in November 2020

Whakaari/White Island, located in the Bay of Plenty 50 km offshore of North Island, has been New Zealand’s most active volcano since 1976. Activity has been previously characterized by phreatic activity, explosions, and ash emissions (BGVN 42:05). The most recent eruption occurred on 9 December 2019, which consisted of an explosion that generated an ash plume and pyroclastic surge that affected the entire crater area, resulting in 21 fatalities and many injuries (BGVN 45:02). This report updates information from February through November 2020, which includes dominantly gas-and-steam emissions along with elevated surface temperatures, using reports from the New Zealand GeoNet Project, the Wellington Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity at Whakaari/White Island has declined and has been dominated by white gas-and-steam emissions during the reporting period; no explosive eruptive activity has been detected since 9 December 2019. During February through 22 June, the Volcanic Activity Level (VAL) remained at a 2 (moderate to heightened volcanic unrest) and the Aviation Color Code was Yellow. GeoNet reported that satellite data showed some subsidence along the W wall of the Main Crater and near the 1914 landslide scarp, though the rate had reduced compared to previous months. Thermal infrared data indicated that the fumarolic gases and five lobes of lava that were first observed in early January 2020 in the Main Crater were 550-570°C on 4 February and 660°C on 19 February. A small pond of water had begun to form in the vent area and exhibited small-scale gas-and-steam-driven water jetting, similar to the activity during September-December 2019. Gas data showed a steady decline in SO2 and CO2 levels, though overall they were still slightly elevated.

Similar activity was reported in March and April; the temperatures of the fumaroles and lava in the Main Crater were 746°C on 10 March, the highest recorded temperature to date. SO2 and CO2 gas emissions remained elevated, though had overall decreased since December 2019. Small-scale water jetting continued to be observed in the vent area. During April, public reports mentioned heightened gas-and-steam activity, but no eruptions were detected. A GeoNet report issued on 16 April stated that high temperatures were apparent in the vent area at night.

Whakaari remained at an elevated state of unrest during May, consisting of dominantly gas-and-steam emissions. Monitoring flights noted that SO2 and CO2 emissions had increased briefly during 20-27 May. On 20 May, the lava lobes remained hot, with temperatures around 500°C; a nighttime glow from the gas emissions surrounding the lava was visible in webcam images. Tremor levels remained low with occasional slightly elevated episodes, which included some shallow-source volcanic earthquakes. Satellite-based measurements recorded several centimeters of subsidence in the ground around the active vent area since December 2019. During a gas observation flight on 28 May there was a short-lived gas pulse, accompanied by an increase in SO2 and CO2 emissions, and minor inflation in the vent area (figure 96).

Figure (see Caption) Figure 96. Photo of a strong gas-and-steam plume rising above Whakaari/White Island on 28 May 2020. Courtesy of GeoNet.

An observation flight made on 3 June reported a decline in gas flux compared to the measurements made on 28 May. Thermal infrared images taken during the flight showed that the lava lobes were still hot, at 450°C, and continued to generate incandescence that was visible at night in webcams. On 16 June the VAL was lowered to 1 (minor volcanic unrest) and on 22 June the Aviation Color Code had decreased to Green.

Minor volcanic unrest continued in July; the level of volcanic tremors has remained generally low, with the exception of two short bursts of moderate volcanic tremors in at the beginning of the month. Temperatures in the active vents remained high (540°C) and volcanic gases persisted at moderate rate, similar to those measured since May, according to an observation flight made during the week of 30 July. Subsidence continued to be observed in the active vent area, as well as along the main crater wall, S and W of the active vents. Recent rainfall has created small ponds of water on the crater floor, though they did not infiltrate the vent areas.

Gas-and-steam emissions persisted during August through October at relatively high rates (figures 97 and 98). A short episode of moderate volcanic tremor was detected in early August, but otherwise seismicity remained low. Updated temperatures of the active vent area were 440°C on 15 September, which had decreased 100°C since July. Rain continued to collect at the crater floor, forming a small lake; minor areas of gas-and-steam emissions can be seen in this lake. Ongoing subsidence was observed on the Main Crater wall and S and W of the 2019 active vents.

Figure (see Caption) Figure 97. Photo of an observation flight over Whakaari/White Island on 8 September 2020 showing white gas-and-steam emissions from the vent area. Photo courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 98. Image of Whakaari/White Island from Whakatane in the North Island of New Zealand showing a white gas-and-steam plume on 26 October 2020. Courtesy of GeoNet.

Activity during November was primarily characterized by persistent, moderate-to-large gas-and-steam plumes that drifted downwind for several kilometers but did not reach the mainland. The SO2 flux was 618 tons/day and the CO2 flux was 2,390 tons/day. New observations on 11 November noted some occasional ash deposits on the webcams in conjunction with mainland reports of a darker than usual plume (figure 99). Satellite images provided by MetService, courtesy of the Japan Meteorological Agency, confirmed the ash emission, but later images showed little to no apparent ash; GNS confirmed that no eruptive activity had occurred. Initial analyses indicated that the ash originated from loose material around the vent was being entrained into the gas-and-steam plumes. Observations from an overflight on 12 November showed that there was no substantial change in the location and size of the active vents; rainfall continued to collect on the floor of the 1978/90 Crater, reforming the shallow lake. A small sequence of earthquakes was detected close to the volcano with several episodes of slightly increased volcanic tremors.

During 12-14 November the Wellington VAAC issued multiple advisories noting gas, steam, and ash plumes that rose to 1.5-1.8 km altitude and drifted E and SE, based on satellite data, reports from pilots, and reports from GeoNet. As a result, the VAL was increased to 2 and the Aviation Color Code was raised to Yellow. Scientists on another observation flight on 16 November reported that small amounts of ash continued to be present in gas-and-steam emissions, though laboratory analyses showed that this ash was resuspended material and not from new eruptive or magmatic activity. The SO2 and CO2 flux remained above background levels but were slightly lower than the previous week’s measurements: 710 tons/day and 1,937 tons/day. Seismicity was similar to the previous week, characterized by a sequence of small earthquakes, a larger than normal volcanic earthquake located near the volcano, and ongoing low-level volcanic tremors. During 16-17 November plumes with resuspended ash were observed rising to 460 m altitude, drifting E and NE, according to a VAAC advisory (figure 99). During 20-24 November gas-and-steam emissions that contained a minor amount of resuspended ash rose to 1.2 km altitude and drifted in multiple directions, based on webcam and satellite images and information from GeoNet.

Figure (see Caption) Figure 99. Left: Photo of a gas observation flight over Whakaari/White Island on 11 November 2020 showing some dark particles in the gas-and-steam plumes, which were deposited on some webcams. Photo has been color corrected and straightened. Courtesy of GeoNet. Right: Photo showing gas, steam, and ash emissions rising above the 2019 Main Crater area on 16 November 2020. Courtesy of GNS Science (17 November 2020 report).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of eleven low-power thermal anomalies during January to late March 2020; a single weak thermal anomaly was detected in early July (figure 100). The elevated surface temperatures during February-May 2020 were detected in Sentinel-2 thermal satellite images in the Main Crater area, occasionally accompanied by gas-and-steam emissions (figure 101). Persistent white gas-and-steam emissions rising above the Main Crater area were observed in satellite imagery on clear weather days and drifting in multiple directions (figure 102). The small lake that had formed due to rainfall was also visible to the E of the active vents.

Figure (see Caption) Figure 100. Low-power, infrequent thermal activity at Whakaari/White Island was detected during January through late March 2020, as reflected in the MIROVA data (Log Radiative Power). A single thermal anomaly was shown in early July. Courtesy of MIROVA.
Figure (see Caption) Figure 101. Sentinel-2 thermal satellite images in the Main Crater area of Whakaari/White Island show residual elevated temperatures from the December 2019 eruption, accompanied by gas-and-steam emissions and drifting in different directions during February-May 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 102. Sentinel-2 images showing persistent white gas-and-steam plumes rising from Main Crater area of Whakaari/White Island during March-November 2020 and drifting in multiple directions. A small pond of water (light blue-green) is visible in the vent area to the E of the plumes. On 11 November (bottom right), the color of the plume is gray and contains a small amount of ash. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brad Scott, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: https://twitter.com/Eruptn).


Suwanosejima (Japan) — January 2021 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ashfall. Continuous activity since October 2004 has included intermittent explosions which generate ash plumes that rise hundreds of meters above the summit to altitudes between 1 and 3 km. Incandescence is often observed at night and ejecta periodically reaches over a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. Ongoing activity for the second half of 2020, which includes significantly increased activity in December, is covered in this report with information provided by the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

A steady increase in activity was reported during July-December 2020. The number of explosions recorded increased each month from only six during July to 460 during December. The energy of the explosions increased as well; ejecta was reported 600 m from the crater during August, but a large bomb reached 1.3 km from the crater at the end of December. After an increased period of explosions late in December, JMA raised the Alert Level from 2 to 3 on a 5-level scale. The MIROVA graph of thermal activity indicated intermittent anomalies from July through December 2020, with a pulse of activity in the second half of December (figure 48).

Figure (see Caption) Figure 48. MIROVA thermal activity for Suwanosejima for the period from 3 February through December 2020 shows pulses of activity in February and April, with intermittent anomalies until another period of frequent stronger activity in December. Courtesy of MIROVA.

Six explosions were recorded during July 2020, compared with only one during June. According to JMA, the tallest plume rose 2,000 m above the crater rim. Incandescent ejecta was occasionally observed at night. The Tokyo VAAC reported a number of ash plumes that rose to 1.2-2.7 km altitude and drifted NW and W during the second half of the month (figure 49). Activity increased during August 2020 when thirteen explosions were reported. The Tokyo VAAC reported a few ash plumes during 1-6 August that rose to 1.8-2.4 km altitude and drifted NW; a larger pulse of activity during 18-22 August produced plumes that rose to altitudes ranging from 1.8 to over 2.7 km. Ashfall was reported on 19 and 20 August in the village located 4 km SSW of the crater; incandescence was visible at the summit and ash plumes drifted SW in satellite imagery on 19 August (figure 50). A MODVOLC thermal alert was issued on 19 August. On 21 August a large bomb was ejected 600 m from the Otake crater in an explosion early in the day; later that afternoon, an ash plume rose to more than 2,000 m above the crater rim. During 19-22 August, SO2 emissions were recorded each day by the TROPOMI instrument on the Sentinel-5P satellite (figure 51).

Figure (see Caption) Figure 49. An ash emission at Suwanosejima rose to 2.7 km altitude and drifted NW on 27 July 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, July 2020).
Figure (see Caption) Figure 50. Ash drifted SW from the summit crater of Suwanosejima on 19 August 2020 and a bright thermal anomaly was present at the summit. Residents of the village 4 km SW reported ashfall that day and the next. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. A period of increased activity at Suwanosejima during 19-22 August 2020 produced SO2 emissions that were measured by the TROPOMI instrument on the Sentinel-5P satellite. Nishinoshima, was also producing significant SO2 at the same time. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Thirteen explosions were recorded during September 2020, with the highest ash plumes reaching 2,000 m above the crater rim, and bombs falling 400 m from the crater. Ashfall was recorded on 20 September in the community located 4 km SSW. The Tokyo VAAC reported intermittent ash plumes during the month that rose to 1.2-2.1 km altitude and drifted in several directions. Incandescence was frequently observed at night (figure 52). Explosive activity increased during October with 22 explosions recorded. Ash plumes rose over 2,000 m above the crater rim, and bombs reached 700 m from the crater. Steam plumes rose 2,300 m above the crater rim. Ashfall and loud noises were confirmed several times between 2 and 14 October in the nearby village. A MODVOLC thermal alert was issued on 6 October. The Tokyo VAAC reported multiple ash plumes throughout the month; they usually rose to 1.5-2.1 km altitude and drifted in many directions. The plume on 28 October rose to over 2.7 km altitude and was stationary.

Figure (see Caption) Figure 52. Incandescence at night and ash emissions were observed multiple times at Suwanosejima during September and October 2020 including on 21 and 26 September (top) and 29 October 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, September and October 2020).

Frequent explosions occurred during November 2020, with a sharp increase in the number of explosions to 105 events compared with October. Ash plumes rose to 1,800 m above the crater rim and bombs were ejected 700 m. Occasional ashfall and loud noises were reported from the nearby community throughout the month. Scientists measured no specific changes to the surface temperature around the volcano during an overflight early on 5 November compared with the previous year. At 0818 on 5 November a small ash explosion at the summit crater was photographed by the crew during an observation flight (figure 53). On 12 and 13 November, incandescent ejecta fell 600 m from the crater and ash emissions rose 1,500 m above the crater rim (figure 54).

Figure (see Caption) Figure 53. A minor explosion produced a small ash plume at Suwanosejima during an overflight by JMA on the morning of 5 November 2020. The thermal activity was concentrated at the base of the explosion (inset). Image taken from off the E coast. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).
Figure (see Caption) Figure 54. On 12 and 13 November 2020 incandescent ejecta from Suwanosejima reached 600 m from the crater (top) and ash emissions rose 1,500 m above the crater rim (bottom). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).

During December 2020 there were 460 explosions reported, a significant increase from the previous months. Ash plumes reached 1,800 m above the summit. Three MODVOLC thermal alerts were issued on 25 December and two were issued the next day. The number of explosions increased substantially at the Otake crater between 21 and 29 December, and early on 28 December a large bomb was ejected to 1.3 km SE of the crater (figure 55). A second explosion a few hours later ejected another bomb 1.1 km SE. An overflight later that day confirmed the explosion, and ash emissions were still visible (figure 56), although cloudy weather prevented views of the crater. Ashfall was noted and loud sounds heard in the nearby village. A summary graph of observations throughout 2020 indicated that activity was high from January through May, quieter during June, and then increased again from July through the end of the year (figure 57).

Figure (see Caption) Figure 55. Early on 28 December 2020 a large explosion at Suwanosejima sent a volcanic bomb 1.3 km SE from the summit (bright spot on left flank in large photo). Thermal imaging taken the same day showed the heat at the eruption site and multiple fragments of warm ejecta scattered around the crater area (inset). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 56. Ash emissions were still visible midday on 28 December 2020 at Suwanosejima during a helicopter overflight by the 10th Regional Coast Guard. Image taken from the SW flank of the volcano. Two large explosions earlier in the day had sent ejecta more than a kilometer from the crater. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 57. Activity summary for Suwanosejima for January-December 2020 when 764 explosions were recorded. Black bars represent the height of steam, gas, or ash plumes in meters above the crater rim, gray volcano icons represent explosions, usually accompanied by an ash plume, red icons represent large explosions with ash plumes, orange diamonds indicate incandescence observed in webcams. Courtesy of JMA (Suwanosejima volcanic activity annual report, 2020).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Karangetang (Indonesia) — December 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Karangetang (also known as Api Siau) is located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia and consists of two active summit craters: a N crater (Kawah Dua) and a S crater (Kawah Utama, also referred to as the “Main Crater”). More than 50 eruptions have been observed since 1675. The current eruption began in November 2018 and has recently been characterized by frequent incandescent block avalanches, thermal anomalies in the crater, and gas-and-steam plumes (BGVN 45:06). This report covers activity from June through November 2020, which includes dominantly crater anomalies, few ash plumes, and gas-and-steam emissions. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and various satellite data.

Activity decreased significantly after mid-January 2020 and has been characterized by dominantly gas-and-steam emissions and occasional ash plumes, according to PVMBG. Daily gas-and-steam emissions were observed rising 25-600 m above the Main Crater (S crater) during the reporting period and intermittent emissions rising 25-300 m above Kawah Dua (N crater).

The only activity reported by PVMBG in June, August, and October was daily gas-and-steam emissions above the Main Crater and Kawah Dua (figure 47). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power thermal anomalies during June through late July, which includes a slight increase in power during late July (figure 48). During 14-15 July strong rumbling from Kawah Dua was accompanied by white-gray emissions that rose 150-200 m above the crater. Crater incandescence was observed up to 10 m above the crater. According to webcam imagery from MAGMA Indonesia, intermittent incandescence was observed at night from both craters through 25 July. In a Volcano Observatory Notice for Aviation (VONA) issued on 5 September, PVMBG reported an ash plume that rose 800 m above the crater.

Figure (see Caption) Figure 47. Webcam image of gas-and-steam plumes rising above the two summit craters at Karangetang on 16 June 2020. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 48. Intermittent low-power thermal anomalies at Karangetang were reported during June through July 2020 with a slight increase in power in late July, according to the MIROVA graph (Log Radiative Power). No thermal activity was detected during August to late October; in mid-November a short episode of increased activity occurred. Courtesy of MIROVA.

Thermal activity increased briefly during mid-November when hot material was reported extending 500-1,000 m NW of the Main Crater, accompanied by gas-and-steam emissions rising 200 m above the crater. Corresponding detection of MODIS thermal anomalies was seen in MIROVA graphs (see figure 48), and the MODVOLC system showed alerts on 13 and 15 November. On 16 November blue emissions were observed above the Main Crater drifting W. Sentinel-2 thermal images showed elevated temperatures in both summit craters throughout the reporting period, accompanied by gas-and-steam emissions and movement of hot material on the NW flank on 19 November (figure 49). White gas-and-steam emissions rose to a maximum height of 300 m above Kawah Dua on 22 November and 600 m above the Main Crater on 28 November.

Figure (see Caption) Figure 49. Persistent thermal anomalies (bright yellow-orange) at Karangetang were detected in both summit craters using Sentinel-2 thermal satellite imagery during June through November 2020. Gas-and-steam emissions were also occasionally detected in both craters as seen on 17 June (top left) and 20 September (bottom left) 2020. On 19 November (bottom right) the Main Crater (S) showed a hot thermal signature extending NW. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — January 2021 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Dome growth and ash emissions continue during July-December 2020

Colombia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, including documented observations since 1570. Ruiz remained quiet for 20 years after the deadly September 1985-July 1991 eruption until a period of explosive activity from February 2012 into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a slowly growing lava dome inside the Arenas crater in August 2015. Additional information has caused a revision to earlier reporting that eruptive activity ended in May 2017 and began again that December (BGVN 44:12); activity appears to have continued throughout 2017 with intermittent ash emissions and thermal evidence of dome growth. Periods of increased thermal activity alternated with periods of increased explosive activity during 2018-2019 and into 2020; SO2 emissions persisted at significant levels. The lava dome has continued to grow through 2020. This report covers ongoing activity from July-December 2020 using information from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued throughout July-December 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 6.7 km altitude on 7 December. SGC interpreted repeated episodes of “drumbeat seismicity” as an indication of continued dome growth throughout the period. Satellite thermal anomalies also suggested that dome growth continued. The MIROVA graph of thermal activity suggests that the dome was quiet in July and early August, but small pulses of thermal energy were recorded every few weeks for the remainder of 2020 (figure 115). Plots of the cumulative number and magnitude of seismic events at Nevado del Ruiz between January 2010 and November 2020 show a stable trend with periodic sharp increases in activity or magnitude throughout that time. SGC has adjusted the warning levels over time according to changes in the slope of the curves (figure 116).

Figure (see Caption) Figure 115. Thermal energy shown in the MIROVA graph of log radiative power at Nevado del Ruiz from 3 February 2020 through the end of the year indicates that higher levels of thermal energy lasted through April 2020; a quieter period from late May-early August was followed by low-level persistent anomalies through the end of the year. Courtesy of MIROVA.
Figure (see Caption) Figure 116. Changes in seismic frequency and energy at Nevado del Ruiz have been monitored by SGC for many years. Left: the cumulative number of daily VT, LP-VLP, TR, and HB seismic events, recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest number of seismic events; the number and type of event is shown under the date. Right: The cumulative VT and HB seismic energy recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest energy; the local magnitude of the event is shown below the date. SGC has adjusted the warning levels over time (bar across the bottom of each graph) according to changes in the slope of the curves. Courtesy of SGC (INFORME TÉCNICO – OPERATIVO DE LA ACTIVIDAD VOLCÁNICA, SEGMENTO VOLCÁNICO NORTE DE COLOMBIA – NOVIEMBRE DE 2020).

Activity during July-December 2020. Seismic energy increased during July compared to June 2020 with events localized around the Arenas crater. The depth of the seismicity varied from 0.3-7.8 km. Some of these signals were associated with small emissions of gas and ash, which were confirmed through webcams and by reports from officials of the Los Nevados National Natural Park (NNNP). The Washington VAAC reported a possible ash emission on 8 July that rose to 6.1 km altitude and drifted NW. On 21 July a webcam image showed an ash emission that rose to the same altitude and drifted W; it was seen in satellite imagery possibly extending 35 km from the summit but was difficult to confirm due to weather clouds. Short- to moderate-duration (less than 40 minutes) episodes of drumbeat seismicity were recorded on 5, 13, 17, and 21 July. SCG interprets this type of seismic activity as related to the growth of the Arenas crater lava dome. Primarily WNW drifting plumes of steam and SO2 were observed in the webcams daily. The gas was occasionally incandescent at night. The tallest plume of gas and ash reached 1,000 m above the crater rim on 30 July and was associated with a low-energy tremor pulse; it produced ashfall in parts of Manizales and nearby communities (figure 117).

Figure (see Caption) Figure 117. Images captured by a traditional camera (top) and a thermal camera (bottom) at Nevado del Ruiz showed a small ash emission in the early morning of 30 July 2020. Ashfall was reported in Manizales. The cameras are located 3.7 km W of the Arenas crater. Courtesy of SGC (Emisión de ceniza Volcan Nevado del Ruiz Julio 30 de 2020).

Seismicity increased in August 2020 with respect to July. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC received a report from the Bogota MWO of an ash emission on 1 August that rose to 6.1 km altitude and drifted NW; it was not visible in satellite imagery. Various episodes of short duration drumbeat seismicity were recorded during the month. The tallest steam and gas plume reached 1,800 m above the rim on 31 August. Despite the fact that in August the meteorological conditions made it difficult to monitor the surface activity of the volcano, three ash emissions were confirmed by SGC.

Seismicity decreased during September 2020 with respect to August. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel and the Washington VAAC. The Washington VAAC reported an ash emission on 16 September that rose to 6.1 km altitude and drifted NW. A minor ash emission on 20 September drifted W from the summit at 5.8 km altitude. A possible emission on 23 September drifted NW at 6.1 km altitude for a brief period before dissipating. Two emissions were reported drifting WNW of the summit on 26 September at 5.8 and 5.5 km altitude. Continuous volcanic tremors were registered throughout September, with the higher energy activity during the second half of the month. One episode of drumbeat seismicity on 15 September lasted for 38 minutes and consisted of 25 very low energy earthquakes. Steam and gas plumes reached 1,800 m above the crater rim during 17-28 September (figure 118). Five emissions of ash were confirmed by the webcams and park officials during the month, in spite of difficult meteorological conditions; three of them occurred between 15 and 20 September.

Figure (see Caption) Figure 118. A dense plume of steam rose from Nevado del Ruiz in the morning of 17 September 2020. Courtesy of Gonzalo.

Seismicity increased during October with respect to September. A few of the LP and tremor seismic events were associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC issued advisories of possible ash emissions on 2, 6, 9, 11, 15, 17, 18, and 21 October. The plumes rose to 5.6-6.4 km altitude and drifted primarily W and NW. Steam plumes were visible most days of the month (figure 119). Only a few were visible in satellite data, but most were visible in the webcams. Several episodes of drumbeat seismicity were recorded on 13, 22-25, and 27 October, which were characterized by being of short duration and consisting of very low energy earthquakes. The tallest plume during the month rose about 2 km above the crater rim on 18 October. Ash emissions were recorded eight times during the month by SGC.

Figure (see Caption) Figure 119. A steam plume mixed with possible ash drifted SE from Nevado del Ruiz on 7 October 2020. Courtesy of vlucho666.

During November 2020, the number of seismic events decreased relative to October, but the amount of energy released increased. Some of the seismicity was associated with small emissions of gas and ash, confirmed by webcams around the volcano. The Washington VAAC reported ash emissions on 22 and 30 November; the 22 November event was faintly visible in satellite images and was also associated with an LP seismic event. They rose to 5.8-6.1 km altitude and drifted W. Various episodes of drumbeat seismicity registered during November were short- to moderate-duration, very low energy, and consisted of seismicity associated with rock fracturing (VT). Multiple steam plumes were visible from communities tens of kilometers away (figure 120).

Figure (see Caption) Figure 120. Multiple dense steam plumes were photographed from communities around Nevado del Ruiz during November 2020, including on 18 (top) and 20 (bottom) November. Top image courtesy of Jose Fdo Cuartas, bottom image courtesy of Efigas Oficial.

Seismic activity increased in December 2020 relative to November. It was characterized by continuous volcanic tremor, tremor pulses, long-period (LP) and very long-period (VLP) earthquakes. Some of these signals were associated with gas and ash emissions, one confirmed through the webcams. The Washington VAAC reported ash emissions on 5 and 7 December. The first rose to 5.8 km altitude and drifted NW. The second rose to 6.7 km altitude and drifted W. A single discrete cloud was observed 35 km W of the summit; it dissipated within six hours. Drumbeat seismic activity increased as well in December; the episode on 3 December was the most significant. Steam and gas emissions continued throughout the month; a plume of gas and ash reached 1,700 m above the summit on 20 December, and drifted NW.

Sentinel-2 satellite data showed at least one thermal anomaly inside the Arenas crater each month during August-December 2020, corroborating the seismic evidence that the dome continued to grow throughout the period (figure 121). Sulfur dioxide emissions were persistent, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite (figure 122).

Figure (see Caption) Figure 121. Thermal anomalies at Nevado del Ruiz were recorded at least once each month during August-December 2020 suggesting continued growth of the dome within the Arenas crater at the summit. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 122. Sulfur dioxide emissions were persistent at Nevado del Ruiz during August-December 2020, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite. Ecuador’s Sangay had even larger SO2 emissions throughout the period. Dates are at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Additional reports of activity during 2017. Activity appears to have continued during June-December 2017. Ash emissions were reported by the Bogota Meteorological Weather Office (MWO) on 13 May, and by SGC on 28 May. During June, some of the recorded seismic events were associated with minor emissions of ash; these were confirmed by webcams and by field reports from both the staff of SGC and the Los Nevados National Natural Park (PNNN). Ash emissions were confirmed in webcams by park officials on 3, 16, and 17 June. Gas emissions from the Arenas crater during July 2017 averaged 426 m above the crater rim, generally lower than during June. The emissions were mostly steam with small amounts of SO2. Emissions were similar during August, with most steam and gas plumes drifting NW. No ash emissions were reported during July or August.

SGC reported steam and gas plumes during September that rose as high as 1,650 m above the crater rim and drifted NW. On 21 September the Washington VAAC received a report of an ash plume that rose to 6.4 km altitude and drifted NNW, although it was not visible in satellite imagery. Another ash emission rising to 6.7 km altitude was reported on 7 October; weather clouds prevented satellite observation. An episode of drumbeat seismicity was recorded on 9 October, the first since April 2017. While SGC did not explicitly mention ash emissions during October, several of the webcam images included in their report show plumes described as containing ash and gas (figure 123).

Figure (see Caption) Figure 123. Plumes of steam, gas, and ash rose from Arenas crater at Nevado del Ruiz most days during October 2017. Photographs were captured by the webcams installed in the Azufrado Canyon and Cerro Gualí areas. Courtesy of SGC (INFORME DE ACTIVIDAD VOLCANICA SEGMENTO NORTE DE COLOMBIA, OCTUBRE DE 2017).

The Washington VAAC received a report from the Bogota MWO of an ash emission that rose to 6.1 km altitude and drifted NE on 8 November 2017. A faint plume was visible in satellite imagery extending 15 km NE from the summit. SGC reported that plumes rose as high as 2,150 m above the rim of Arenas crater during November. The plumes were mostly steam, with minor amounts of SO2. A diffuse plume of ash was photographed in a webcam on 24 November. SGC did not report any ash emissions during December 2017, but the Washington VAAC reported “a thin veil of volcanic ash and gases” visible in satellite imagery and webcams on 18 December that dissipated within a few hours. In addition to the multiple reports of ash emissions between May and December 2017, Sentinel-2 thermal satellite imagery recorded at least one image each month during June-December showing a thermal anomaly at the summit consistent with the slowly growing dome first reported in August 2015 (figure 124).

Figure (see Caption) Figure 124. Thermal anomalies from the growing dome inside Arenas crater at the summit of Nevado del Ruiz appeared at least once each month from June-December 2017. A strong anomaly was slightly obscured by clouds on 3 June (top left). On 2 August, a steam plume obscured most of the crater, but a small thermal anomaly is visible in its SE quadrant (top right). Strong anomalies on 30 November and 20 December (bottom) have a ring-like form suggestive of a growing dome. Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Gonzalo (URL: https://twitter.com/chaloc22/status/1306581929651843076); Jose Fdo Cuartas (URL: https://twitter.com/JoseFCuartas/status/1329212975434096640); Vlucho666 (URL: https://twitter.com/vlucho666/status/1313791959954268161); Efigas Oficial (URL: https://twitter.com/efigas_oficial/status/1329780287920873472).


Ibu (Indonesia) — January 2021 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Persistent daily ash emissions and thermal anomalies, July-December 2020

Mount Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. After a two-day eruption in 1911, Ibu was quiet until 1998-1999 when explosions produced ash emissions, a lava flow and dome growth began inside the summit crater. Although possible dome growth occurred in 2001 and 2004, little activity was reported until ash emissions began in April 2008. These were followed by thermal anomalies beginning the next month; ash emissions and dome growth have continued for 12 years and the dome now fills the summit crater (BGVN 45:07). Activity continued throughout 2020, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and small lava flows. This report updates activity through December 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite instruments.

Activity throughout July-December 2020 was very consistent and similar to activity reported earlier in the year. Tens of daily explosions produced white and gray ash emissions that rose 200-800 m above the summit (figure 25). Occasional larger explosions were reported in VONAs and VAAC notices. The MIROVA graph of log radiative power for the period shows consistent thermal anomalies the entire time (figure 26). Satellite imagery from Sentinel-2 identified thermal anomalies inside the summit crater every month, usually a larger central one and a smaller one to the NW, suggesting continued dome growth and lava flow activity (figure 27).

Figure (see Caption) Figure 25. Between 60 and 90 explosions occurred most days at Ibu during 1 July-31 December 2020. White and gray plumes rose 200-800 m above the summit crater every day. Data courtesy of PVMBG daily reports.
Figure (see Caption) Figure 26. The MIROVA graph of Log Radiative Power at Ibu from 3 February through December 2020 indicated a constant ongoing heat source from the summit of the crater. Courtesy of MIROVA.
Figure (see Caption) Figure 27. Thermal anomalies persisted at the summit of Ibu throughout July-December 2020. One central anomaly was usual accompanied by a smaller one slightly NW of the central spot. Atmospheric penetration rendering (bands 12, 11a, and 8), courtesy of Sentinel Hub Playground.

The Darwin VAAC observed multiple minor ash emissions in satellite imagery drifting W on 6 July 2020 at 1.8 km altitude. A series of discrete puffs of ash were observed on 15 July also at 1.8 km altitude drifting W. Ongoing minor emissions were discernible on visible and RGB imagery at 2.1 km altitude drifting W on 20 July. On 30 July ash plumes rose to 1.8 km altitude drifted NW and a hotspot was present at the summit. A single MODVOLC alert was issued on 8 July. Single MODVOLC alerts were also issued on 11, 18, and 27 August 2020. PVMBG issued a VONA on 5 August, reporting an ash cloud that rose to 1.8 km altitude and drifted N (figure 28). The Darwin VAAC reported an ash emission later that day that rose to 4.3 km altitude and drifted NW for several hours before dissipating. Multiple discrete emissions were identified in satellite imagery drifting N at 2.1 km altitude on 11 August; they dissipated quickly. During 22-25 August intermittent ash emissions rose to 1.5-1.8 km altitude and drifted NW and W. Minor continuous emissions were again reported on 28 August.

Figure (see Caption) Figure 28. Ash plumes rose from the summit of Ibu many days during July and August 2020, including on 8 July (top) and 5 August (bottom). Courtesy of PVMBG.

Many ash emissions during September and October 2020 were not accompanied by VONAs or VAAC advisories (figure 29). PVMBG issued a VONA on 20 September for an ash emission that rose to 1.5 km altitude and drifted N. Continuous discrete ash emissions over several days drifted SW to NW during 25-29 September at 1.8-2.1 km altitude, as reported in multiple VONAs and VAAC advisories. Single MODVOLC alerts were issued on 26 and 30 September. The Darwin VAAC issued an ash advisory on 8 October for intermittent ash emissions rising to 2.1 km altitude and drifting NW. A single MODVOLC alert was issued the next day. On 20 October ash emissions again rose to 2.1 km altitude and drifted NE.

Figure (see Caption) Figure 29. Ash emissions at Ibu were photographed in webcams on 6 September (left) and 12 October (right) 2020. Courtesy of PVMBG.

The Darwin VAAC reported intermittent ash emissions to 1.8 km altitude during 3-5, 12-13, 18-19, and 22 November 2020 that drifted SSW for several hours before dissipating. PVMBG also issued a VONA for an ash cloud on 27 November that rose to 2.1 km altitude and drifted W. They reported faint rumbling at the PGA Ibu station on 10 November and loud rumbling on 16 and 18 November. During December, minor ash emissions rose to 1.8-2.1 km altitude and drifted E on 4 and 6 December, SW on 11 December, and SE on 12-13 December. PVMBG issued a VONA on 19 December for a white to gray ash cloud drifting N at 1.7 km altitude. Single MODVOLC alerts were issued on 10, 13, and 22 December. Numerous ash emissions were captured by the webcams (figure 30).

Figure (see Caption) Figure 30. Ash emissions at Ibu were recorded in webcams on 17 November (top) and 5 December (bottom) 2020. Courtesy of PVMBG.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Copahue (Chile-Argentina) — December 2020 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


New eruption in June-October 2020 with crater incandescence, ash plumes, and local ashfall

Copahue is an elongated composite cone located along the Chile-Argentina border. The E summit crater consists of an acidic 300-m-wide crater lake which is characterized by intense fumarolic activity. Previous activity consisted of continuous gas-and-ash emissions during early November 2019, accompanied by nighttime incandescence, minor SO2 plumes, and the reappearance of the lake in the El Agrio crater during early December 2019 (BGVN 45:03). This report, covering March-November 2020, describes an eruption with gas-and-ash plumes from mid-June through late October, accompanied by thermal anomalies visible in satellite imagery and small SO2 plumes. Primary information for this report comes from the Servicio Nacional de Geología y Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS), the Buenos Aires Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during March-May 2020 was relatively low and consisted primarily of seismicity, sulfur dioxide emissions, and occasional white gas-and-steam emissions rising 300-900 m above the El Agrio crater. On 20 March a series of volcano-tectonic seismic events were detected SSW of the volcano; satellite images showed a decrease in the size of the crater lake. SO2 emissions had daily averages of 487-636 tons, with the highest value reaching 1,884 tons/day on 16 May. During April slight subsidence was reported in the crater, occurring at a maximum rate of 0.3 cm/month.

Activity during most of June and July consisted of occasional white gas-and-steam emissions rising 350-500 m above the El Agrio crater and SO2 emissions averaging 592-1,950 tons/day; a high value of 1,897 tons/day was reported on 13 June. However, on 16 June a period of increased seismicity was accompanied by crater incandescence and gas emissions containing some ash. SO2 plumes increased slightly in July with values of 2,100 and 1,713 tons/day on 2 and 4 July, respectively. Another ash plume was observed by local residents on 16 July, accompanied by elevated seismicity and SO2 emissions of 4,684 tons/day. On 20 July residents of La Araucanía described an odor that indicated hydrogen sulfide gas emissions. A photo on 23 July showed an ash plume rising above the crater (figure 55).

Figure (see Caption) Figure 55. Photo of a gas-and-ash plume rising from Copahue on 23 July 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Beginning in early August, and continuing through September 2020, the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system identified a small cluster of thermal anomalies in the summit area (figure 56). Thermal anomalies during this time were also captured in Sentinel-2 thermal satellite imagery, showing a persistent hotspot of varying strength in the summit crater (figure 57). This thermal activity was accompanied by small sulfur dioxide plumes identified by the TROPOMI instrument on the Sentinel-5P satellite, which exceeded two Dobson Units (DU). Distinct SO2 emissions greater than two DUs were detected on 6, 11, 21, 22, and 29 August, 1 and 6 September, and 4 and 15 October (figure 58).

Figure (see Caption) Figure 56. A small cluster of thermal anomalies were detected in the summit area of Copahue (red dots) during early August through September 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.
Figure (see Caption) Figure 57. Sentinel-2 thermal satellite imagery showed a thermal anomaly (bright yellow-orange) at Copahue during August-October 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 58. Small SO2 plumes were recorded at Copahue during August-October 2020. Top row: 11 August and 1 September 2020. Bottom row: 6 September and 15 October 2020. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

During August, approximately 133 explosive events were detected, in addition to the gas-and-steam and SO2 emissions (figure 59). On 3 August pulses of ash emissions were reported by SERNAGEOMIN, which resulted in a 2.2-km-long tephra deposit estimated to have a volume of 1 km3. Gray gas-and-ash emissions were observed on 6 August, followed by a thermal anomaly detected in satellite imagery beginning on 8 August. Sulfur dioxide emissions were elevated compared to previous months, measuring an average of 2,641 tons/day with high values of 4,498 tons/day on 12 August that increased to 4,627 tons/day by 27 August. During 16-31 August webcams recorded gas-and-ash plumes rising as high as 1.7 km altitude and were sometimes accompanied by nighttime crater incandescence. Plumes drifted in multiple directions as far as 4.3 km N, 9 km NE, 8 km E, 4 km SE, 4 km SW, 9 km W, and 4.4 km NW.

Figure (see Caption) Figure 59. Photo of a white gas-and-steam plume rising from Copahue on 12 August 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Elevated activity continued into September with 2-10 explosive events detected during the month; during 1-15 September webcams recorded gas-and-ash plumes rising to 1.1 km altitude, drifting 6-15 km SW and SE, which were sometimes accompanied by nighttime crater incandescence (figure 60). On 7 September a Buenos Aires VAAC advisory reported an ash plume rising to 3.7 km altitude drifting SE. On 11 September a webcam showed a weak gas emission, possibly containing some ash. Three episodes of gas-and-steam plumes were reported, rising 100-1,040 m above the crater, sometimes accompanied by incandescence. SO2 emissions were in the 1,499-1,714 tons/day range, with a high value of 4,522 tons/day on 28 September. SERNAGEOMIN reported repetitive explosions in the acid lake area alongside fumarolic activity, ejecting some material 1.7 km N, 1.2 km SE, and 4 km E of the crater.

Figure (see Caption) Figure 60. Photos of gas-and-steam plumes rising from Copahue on 6 September (top) and 28 September (bottom) 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Persistent activity in October consisted of gas-and-steam plumes, ash emissions, and SO2 emissions. The gas-and-steam plumes rose 1.4 km above the crater, occasionally accompanied by nighttime incandescence. On 5 October the SO2 emissions were at a high value of 3,824 tons/day. During 12-15 October ash emissions resulted in a wide distribution of ashfall that reached 6.8 km NE, 7 km SE, and 6.7 km SW (figure 61). A pilot reported an ash plume rose to 3.7 km altitude drifting SE, according to a VAAC advisory, though the plume was not visible in satellite data. Sentinel-2 satellite imagery recorded strong gas-and-ash plumes during August-October, drifting generally S and E, which resulted in ash deposits on the nearby flanks (figure 62). Continued emissions had covered all of the flanks with ash by late October.

Figure (see Caption) Figure 61. Photos of a gas-and-ash plume rising from Copahue on 13 October (top) and 15 October (bottom) 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.
Figure (see Caption) Figure 62. Sentinel-2 images showing ash gas-and-ash plumes rising from Copahue during August-October 2020, resulting in some ashfall in the nearby areas. The ash plume on 31 August (top left) is drifting S with ashfall observed on the N and S flanks. The ash plume on 7 September (top right) is drifting SE with ashfall on the E and S flanks. The ash plume on 27 September (bottom left) is drifting E and N with ashfall on the NE flanks. The ash plume on 20 October (bottom right) is drifting S with ashfall on all the flanks due to continued activity. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Similar activity during November decreased, primarily characterized by gas-and-steam plumes and SO2 emissions. White gas-and-steam emissions, possibly with some ash content, were observed with a webcam on 9 and 12 November, accompanied by low but continuous seismicity. During 11-12 November SO2 emissions were at a high value of 904 tons/day. A white gas-and-steam plume was observed on 15 November rising 760 m above the crater; typical degassing rose 200-300 m above the crater, according to SERNAGEOMIN. The daily average of SO2 emissions ranged 366-582 tons.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Valentina Sepulveda, Hotel Caviahue, Caviahue, Argentina (URL: https://twitter.com/valecaviahue, Twitter: @valecaviahue).


Etna (Italy) — December 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash plumes persist from multiple craters during August-November 2020

Etna, on the island of Sicily, Italy, and has had documented eruptions dating back 3,500 years. Its most recent eruptive period began in September 2013 and has continued through November 2020, characterized by frequent Strombolian explosions, effusive activity, and ash plumes. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This report from August through November 2020 updates activity consisting of frequent Strombolian explosions, ash plumes, summit crater incandescence, degassing, and some ashfall based on information primarily from weekly reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during August-November 2020. Intra-crater Strombolian explosions that varied in frequency and intensity throughout the reporting period, and the accompanying ash emissions that rose to a maximum altitude of 4.5 km, primarily originated from the Northeast Crater (NEC), the New Southeast Crater (NSEC), and intermittently from the Voragine Crater (VOR). Degassing of variable intensity typically occurred at the VOR and the Bocca Nuova (BN) Crater. At night, occasional summit crater incandescence was visible in webcam images, accompanied by explosions and gas-and-ash emissions. On 14 August strong Strombolian explosions produced an ash plume that rose to 4.5 km altitude and drifted SE, resulting in ashfall between Pedara, Trecastagni, and Viagrande. INGV reported that the central pit crater at the bottom of BN continued to widen, and on 9 September scientists observed that a new pit crater had formed NW of the central depression and was widening due to crater wall collapses. During late October to 1 November, INGV reported that small lava flows originated from scoria cones in the NEC and were visible from the edge of the crater but did not spill over.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity of varying strength throughout the reporting period (figure 308). In late October, the frequency of the thermal anomalies increased, and continued through November. According to the MODVOLC thermal algorithm, a total of 31 alerts were detected in the summit craters during August through November; thermal anomalies were reported for five days in August, four days in September, four days in October, and eight days in November. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in multiple directions (figure 309).

Figure (see Caption) Figure 308. Strong and frequent thermal activity at Etna was detected during August through November 2020, as reflected in the MIROVA data (Log Radiative Power). Beginning in late October, the frequency of the thermal anomalies increased compared to the previous months. Courtesy of MIROVA.
Figure (see Caption) Figure 309. Distinct SO2 plumes from Etna were detected on multiple days during August to November 2020 due to frequent Strombolian explosions, including 29 August (top left), 8 September (top right), 1 October (bottom left), and 11 November (bottom right) 2020. SO2 plumes were observed drifting in multiple directions. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during August-September 2020. During August, INGV reported intra-crater Strombolian explosions in the NEC, VOR, and NSEC (including the cono della sella) craters, which produced discontinuous ash emissions rising above each crater (figure 310). Gas-and-steam emissions were the dominant activity in the BN crater. INGV noted that the central pit crater on the floor of BN had been gradually widening since April. On 2 August a slight increase in explosivity resulted in minor ashfall in Trecastagni and Acicastello. Explosive activity occasionally ejected material above the crater rim up to several tens of meters. On the morning of 7 August incandescent Strombolian activity was visible in the NSEC (figure 311). During the evening of 10-11 August surveillance cameras showed the explosions ejecting incandescent material on the surrounding flanks. On 14 August intense Strombolian activity in the saddle cone of the NSEC produced an ash plume that rose to 4-4.5 km altitude and drifted SE, resulting in ashfall between Pedara, Trecastagni, and Viagrande. By the evening activity had sharply declined, according to a VONA (Volcano Observatory Notice for Aviation) report, though sporadic ash emissions continued. A new series of ash emissions associated with explosions of varying intensity began on 15 August in the NSEC. A resulting ash plume rose to 4-4.5 km altitude and drifted ESE. On 17 August gas-and-steam emissions were seen rising above the VOR crater, accompanied by persistent Strombolian explosions. Between the afternoon and early morning of 20-21 August surveillance cameras showed an increased intensity and frequency of ash emissions above the NSEC and NEC that rose to 4-4.5 km altitude and drifted SSE. INGV-OE scientists reported minor ashfall in Trecastagni, Viagrande, and Catania. During 24-30 August ground observers reported that the intra-crater explosions in the NEC originated from two explosive vents; the BN crater exhibited gas-and-steam emissions from the central pit crater, which continued to widen. During 25-26 August explosive activity increased at the NSEC with ash emissions rising to 4.5 km and drifting SSE, which resulted in modest ashfall in Catania, Viagrande, and Trecastagni; by morning, the volume of ash emissions had decreased, though explosions persisted. During 28-29 August discontinuous and modest ash emissions originating from the NSEC rose 4.5 km altitude drifting E and ENE but did not result in ashfall. Emissions had stopped by 1747 on 29 August, though intense gas-and-steam emissions continued, occasionally accompanied by mild explosive activity (figure 312).

Figure (see Caption) Figure 310. An ash plume accompanied Strombolian explosions at Etna on 3 August (top left) and 4 August (top right) and as seen from the Montagnola (EMOV) thermal camera in the NSEC. Continuous Strombolian activity and summit crater incandescence was observed on 7 August (bottom left); an ash plume was visible in the Monte Cagliato surveillance camera during the day on 9 August (bottom right). Courtesy of INGV (Report 33/2020, ETNA, Bollettino Settimanale, 03/08/2020 – 09/08/2020, data emissione 11/08/2020).
Figure (see Caption) Figure 311. Strombolian explosions and summit crater incandescence was observed at Etna’s New Southeast Crater (NSEC “cono della sella”) during the early morning of 7 August 2020 seen from Tremestieri Etneo. Photo by Boris Behncke, INGV.
Figure (see Caption) Figure 312. Photo of the S edge of the Bocca Nuova Crater at Etna on 29 August 2020 showing degassing in the pit crater. The main scoria cone within the Voragine Crater is visible in the background. Courtesy of INGV (Report 36/2020, ETNA, Bollettino Settimanale, 24/08/2020 – 30/08/2020, data emissione 01/09/2020).

Strombolian activity of varying intensity continued in the NSEC and NEC during September, producing sporadic ash emissions (figure 313). The BN and VOR craters were characterized by gas-and-steam emissions. Explosions in the NSEC ejected coarse pyroclastic material above the crater rim several tens of meters, some of which were deposited on the S flank, and accompanied by sporadic ash emissions; these explosions continued to widen the depression in the saddle cone of the NSEC. Intermittent nighttime crater incandescence was observed in the NSEC. Sporadic and weak ash emissions were observed in the VOR. On 9 September INGV scientists reported intense degassing from the center pit crater in the BN. To the NW of this center depression, a new pit crater had formed and began to widen due to the collapse of the crater walls (figure 314). On 26 September explosions in the NSEC produced an ash plume that rose to 4 km altitude and drifted E, though no ashfall was reported.

Figure (see Caption) Figure 313. Webcam image showing explosions in the New Southeast Crater and resulting ash emissions on 1 September 2020. Courtesy of INGV (Report 37/2020, ETNA, Bollettino Settimanale, 31/08/2020 – 06/09/2020, data emissione 08/09/2020).
Figure (see Caption) Figure 314. Photos of the bottom of the W edge of the Bocca Nuova Crater at Etna on 9 September 2020. Gas-and-steam emissions are visible rising above the pit crater in the background. In the foreground a new pit crater had formed to the NW of the central pit crater (yellow dotted line). Photo was taken from the S edge of the BN crater. Courtesy of INGV (Report 38/2020, ETNA, Bollettino Settimanale, 07/09/2020 – 13/09/2020, data emissione 15/09/2020).

Activity during October-November 2020. Similar variable Strombolian activity continued into October in the NSEC (cono della sella) and NEC; isolated and weak ash emissions were visible in the VOR crater and gas-and-steam emissions continued in both the VOR and BN craters. On 1 October an increase in explosive activity in the NSEC occurred around 0800, which produced an ash plume rising to 4.5 km altitude, drifting E. Ash emissions on 3 October were mostly confined to the summit crater, but some drifted toward the Valle del Bove. On 7 October Strombolian explosions in the NSEC generated an ash plume that rose to 4.5 km altitude drifting E and ESE. INGV personnel reported ashfall as a result in the Citelli Refuge. On 9 October drone observations showed at least three active scoria cones on the floor of the NEC with diameters of 30-40 m and heights of 10 m; a fourth vent was later reported in November (figure 315). INGV reported that activity characterized by Strombolian explosions and spatter was fed by these vents, accompanied by intense intra-crater fumarolic activity.

Figure (see Caption) Figure 315. Map of the summit craters of Etna showing the active vents and the area of cooled lava flows (light green) updated on 9 October 2020. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. The hatch marks indicate the crater rims: BN = Bocca Nuova; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 44/2020, ETNA, Bollettino Settimanale, 19/10/2020 – 25/10/2020, data emissione 27/10/2020).

During 12-18 October surveillance cameras captured incandescence in the NEC and pyroclastic material seen during more intense explosions. During the week of 19-25 October several thermal anomalies were detected on the NEC and BN crater floor. Particularly at night, thermal and surveillance cameras observed incandescent ejecta rising above the NSEC (figure 316). On 23 October a helicopter overflight along the W side of Etna showed continued explosions at the NSEC, which produced both ash emissions and incandescent shreds of lava. An associated ash plume rose to 4.5 km altitude and drifted SSE. Sporadic ash emissions were also observed in the BN crater (figure 316). During 26 October to 1 November occasional Strombolian activity resumed in the VOR which ejected material over the crater rim. The BN crater activity was characterized by small intra-crater collapses and consequent ash emissions. In the NEC, similar explosive activity persisted with the addition of small lava flows from the scoria cones, which were visible from the crater edge, though activity remained confined to the crater.

Figure (see Caption) Figure 316. Photos showing Strombolian activity at the New Southeast Crater at Etna on 25 October 2020 (top left); ash emissions were observed during 22 October 2020 (top right). Ash emissions rose above the Bocca Nuova Crater on 22 October (bottom left) and weak ash emissions were seen above the Voragine Crater on 22 October (bottom right). Courtesy of INGV (Report 44/2020, ETNA, Bollettino Settimanale, 19/10/2020 – 25/10/2020, data emissione 27/10/2020).

Activity in November continued with variable Strombolian explosions accompanied by discontinuous ash emissions from the NSEC, NEC, and BN. During more intense explosions, ejecta reached several tens of meters above the crater, sometimes falling just outside the crater rim. Intensive degassing in the BN crater revealed occasional reddish ash in the new W pit crater that formed in September. The central pit crater was primarily characterized by intense gas-and-steam emissions and intra-crater wall collapses. Four vents were observed on the bottom of the NEC during 2-8 November, though only three of them produced Strombolian explosions, the fourth was quiet. On 5 November Strombolian explosions in BN originated from the W pit crater; coarser material was ejected above the pit crater rim. By 12 November Strombolian activity had decreased, explosions in the BN had deposited material on the S flank. Out of the three active NEC scoria cones, only one was continuously exploding, the second had discontinuous explosions, and the third was primarily emitting gas-and-steam. On 15 November faint ash emissions from the E side of the NSEC were observed (figure 317). On 20 November sporadic explosive activity continued from the NSEC and BN, the former of which occasionally ejected material above the crater rim (figure 318).

Figure (see Caption) Figure 317. Webcam images of the New Southeast Crater at Etna on 14 (left) and 15 (right) November 2020 showing Strombolian activity in the cono della sella (left) and the E vent shown by the black arrow (right). Images were taken by the Montagnola webcam. Courtesy of INGV (Report 47/2020, ETNA, Bollettino Settimanale, 09/11/2020 – 15/11/2020, data emissione 17/11/2020).
Figure (see Caption) Figure 318. Drone image of the New Southeast Crater at Etna on 21 November 2020 showing an ash plume rising above the inner crater rim (black line). Fallout is visible within the crater rim (small red circles). Courtesy of INGV (Report 48/2020, ETNA, Bollettino Settimanale, 16/11/2020 – 21/11/2020, data emissione 24/11/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris).


Masaya (Nicaragua) — December 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake continues accompanied by gas-and-steam emissions during June-November 2020

Masaya, located in Nicaragua, includes the Nindirí, San Pedro, and San Juan craters, as well as the currently active Santiago crater. The Santiago crater has contained an active lava lake since December 2015 (BGVN 41:08), and often produces gas-and-steam emissions. Similar activity is described in this report which updates information from June through November 2020 using reports from the Instituto Nicareguense de Estudios Territoriales (INETER) and various satellite data.

Volcanism at Masaya has been relatively quiet and primarily characterized by an active lava lake and gas-and-steam emissions. From January to November 2020 there were 8,551 seismic events recorded. A majority of these events were described as low-frequency earthquakes, though a few were classified as volcano-tectonic. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed few low-power thermal anomalies during June through November (figure 87). A small cluster of low-power thermal activity was detected in July and consisted of seven thermal anomalies out of a total of thirteen thermal anomalies recorded during the reporting period. Thermal activity was also observed in Sentinel-2 satellite imagery, which showed a constant thermal anomaly in the Santiago crater at the lava lake during July through October, occasionally accompanied by a gas-and-steam plume (figure 88). Small and intermittent sulfur dioxide emissions appeared in satellite data during each month of the reporting period, excluding July, some of which exceeded two Dobson Units (DU) (figure 89). On 6 July, 11 and 13 August, 7 September, during October, and 9 and 13 November, INETER scientists took SO2 measurements by making several transects using a mobile DOAS spectrometer that sampled for gases downwind of the volcano. Average values during these months were 1,202 tons/day (t/d), 1,383 t/d, 2,089 t/d, 950 t/d, and 819 t/d, respectively, with the highest average reported in September.

Figure (see Caption) Figure 87. Few thermal anomalies were detected at Masaya between June and November 2020 with a small cluster of thermal activity in July. A total of thirteen low-power thermal anomalies were shown on the MIROVA graph (Log Radiative Power) during the reporting period. Courtesy of MIROVA.
Figure (see Caption) Figure 88. Sentinel-2 thermal satellite imagery showed the active lava lake at the summit crater of Masaya during July through October 2020, occasionally accompanied by gas-and-steam emissions, as seen on 27 July (top left) and 30 September (bottom left). Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Intermittent sulfur dioxide emissions were captured from Masaya during June through November 2020 by the TROPOMI instrument on the Sentinel-5P satellite. These images show SO2 emissions reaching up to 2 Dobson Units (DU). Top left: 9 June 2020. Top right: 23 August 2020. Bottom left: 7 September 2020. Bottom right: 15 November 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During June and July persistent gas-and-steam emissions were reported rising above the open lava lake in the Santiago crater (figure 90). On 20 June INETER scientists measured the gases on the S side, inside the Nindirí crater (SW side), and La Cruz (NW side). A perceptible gas-and-steam plume was noted rising above the Nindirí crater and drifting W. Crater wall collapses were observed on the E wall of the Santiago crater; the lava lake remained, but the level of the lake had decreased compared to previous months. During July, thermal measurements were taken of the fumaroles and near the lava lake using a FLIR SC620 thermal camera. INETER reported that the temperature measured 576°C, which had significantly increased from 163°C noted in the previous month.

Figure (see Caption) Figure 90. Images of the lava lake at Masaya during June 2020, accompanied by gas-and-steam emissions (left) and a gas-and-steam plume rising above the Santiago crater (right). Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Junio, 2020).

Small crater wall collapses were detected on the NW and E wall of the Santiago crater, accompanied by abundant gas-and-steam emissions during August (figure 91). On 7 August thermal measurements were taken of the fumaroles and near the lava lake, which showed another temperature increase to 771°C. Continuous collapse of the crater walls began to excavate depressions in the crater floor and along the walls. Similar activity was observed in September with abundant gas-and-steam emissions in the Santiago crater, as well as collapses of the E wall (figure 91). Temperature measurements taken during this month had decreased slightly compared to August, to 688°C.

Figure (see Caption) Figure 91. Photos of the Santiago crater at Masaya during August (left) and September (right) 2020 showing a) an internal collapse on the N wall of the crater floor; b) an internal collapse on the S wall of the crater floor, forming a depression; c) newly excavated crater floor due to wall collapses; and d) an internal collapse on the S wall. In September a significant amount of gas-and-steam emissions originating from the N side of the crater were observed compared to the previous months. Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Agosto and Septiembre, 2020).

Activity in October and November remained consistent with continued wall collapses in the Santiago crater, particularly on the S and E wall, due to fractures in the rocks and erosion, accompanied by gas-and-steam emissions. INETER reported that the level of the lava lake had decreased due to continuous internal wall collapses, which had caused some obstruction in the lava lake and allowed for material to accumulate within the crater. On 9 October thermal measurements were taken of the fumaroles and near the lava lake using a FLIR SC620 thermal camera (figure 92). The temperature had increased again compared to September, to 823°C. By 26 November, the temperature had decreased slightly to 800°C, though activity remained similar.

Figure (see Caption) Figure 92. Thermal measurements of the active lava lake and fumaroles taken in the Santiago crater at Masaya on 1 October 2020 with a FLIR SC620 thermal camera. Temperatures reached up to 823°C. Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Octubre, 2020).

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 21, Number 05 (May 1996)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosive activity continues, decreased activity in May

Akademia Nauk (Russia)

Eruptions continue through April; more details of early January activity

Arenal (Costa Rica)

Tremor duration unusually large in April (434 hours), but normal in May (325 hours)

Asosan (Japan)

Crater glow

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Virginia, Germany, and Cuba

Azumayama (Japan)

Small-amplitude volcanic tremor

Fukutoku-Oka-no-Ba (Japan)

Discolored seawater

Hokkaido-Komagatake (Japan)

Steaming activity continues

Irazu (Costa Rica)

No tilt in April-May but tens of local earthquakes

Iwatesan (Japan)

Small-amplitude volcanic tremor

Karymsky (Russia)

Eruptions continue through April; more details of early January activity

Kilauea (United States)

Surface flows, ocean entries, and bench collapses; summit inflation episode

Kuchinoerabujima (Japan)

Number of volcanic earthquakes increases

Kujusan (Japan)

Seismic activity increases, but there is no ashfall

Langila (Papua New Guinea)

Intermittent Vulcanian explosions produce ash-and-vapor clouds

Manam (Papua New Guinea)

Low level activity persists

Poas (Costa Rica)

N crater lake at 10-year high; water temperature increases; phreatic explosion on 8 April

Rabaul (Papua New Guinea)

Strong Strombolian eruption followed by less intense and more varied activity

Rincon de la Vieja (Costa Rica)

Seven minor seismic events

Ruapehu (New Zealand)

Eruption on 17 June sends ash several kilometers above the summit

Ruiz, Nevado del (Colombia)

Earthquake swarms during July-September 1995 and January-April 1996

Soufriere Hills (United Kingdom)

Dome growth and evacuation continue in May

Stromboli (Italy)

Continued high levels of activity through mid-June; two larger explosions

Tokachidake (Japan)

Seismic activity increases

Toya (Japan)

Seismic activity increases

Ulawun (Papua New Guinea)

Low to moderate emission of steam continues

Unzendake (Japan)

Partial dome collapse triggers a pyroclastic flow



Aira (Japan) — May 1996 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive activity continues, decreased activity in May

During April, Miniami-dake crater produced 14 eruptions, including five that were explosive. Seismic station B, 2.3 km NW of Miniami-dake crater, recorded 364 earthquakes and 120 tremors. On 28 April an ash plume rose 3,500 m above the summit crater. This was the highest ash plume observed during the month. A monthly ashfall total of 8 g/m2 of ashfall was measured at the Kagoshima Local Meteorological Observatory (KMO), 10 km W from the crater.

During May, Minami-dake crater produced one explosive eruption. Station B recorded 64 earthquakes and three tremors. The highest ash plume of May rose 3,500 m above the summit crater. The ashfall total at KMO was 6 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Akademia Nauk (Russia) — May 1996 Citation iconCite this Report

Akademia Nauk

Russia

53.98°N, 159.45°E; summit elev. 1180 m

All times are local (unless otherwise noted)


Eruptions continue through April; more details of early January activity

Eruptions began on 2 January from the summit of Karymsky and from the lake (Karymsky Lake) within the Akademia Nauk caldera (figure 1), previously considered to be extinct (BGVN 21:01-21:03). Eruptive activity at [Karymsky] continued through the end of April.

Figure (see Caption) Figure 1. Schematic map showing some features of the SW part of the Karymsky Volcanic Center. Karymsky Lake lies within the Akademia Nauk Caldera. Courtesy of the Institute of Volcanology.

Precursory seismicity. Large tectonic earthquakes in the Kronotsky Gulf have historically been among the precursors to eruptions from Karymsky and Maly Semiachik volcanoes. At 1926 on 31 December 1995, a M 5.6 earthquake occurred in the Kronotsky Gulf (50-60 km NE) at a depth of ~60 km. Earthquake swarms are common beneath the large (50 x 35 km) Karymsky Volcanic Center, but an unusually large swarm started on the evening of 1 January with hypocenters to depths of 80 km (figure 2). These followed a M 5.2 foreshock, and at 2157 a shallow M 6.9 earthquake took place centered ~25 km S of Karymsky; this was the largest earthquake recorded beneath the Kamchatkan volcanoes during the past 50 years. Scientists from the Institute of Volcanology and the Kamchatkan Experimental-Methodical Seismological Department of Geophysical Survey, Russian Academy of Sciences, flew to the epicentral zone of the continuing earthquake swarm and observed the onset of the eruption.

Figure (see Caption) Figure 2. Map and cross-sections of epicenters from the earthquake swarm at Karymsky Volcanic Center that began on 1 January 1996. Cross-section A-B (below map) trends approximately NW-SE, and cross-section C-D (left of map) trends approximately NE-SW. Courtesy of the Institute of Volcanology.

Early eruptions at Karymsky volcano. On the afternoon of 2 January the eruption began on Karymsky's upper SW flank 50 m below the old summit crater and from the Akademia Nauk caldera lake, ~6 km S (figure 3). Ash and gas clouds from the summit vent fed a plume rising to 1 km above the crater; the ash-flow rate was estimated to be several cubic meters per second. The eruption cloud extended E towards the ocean and ashfall was visible 40-50 km away.

Figure (see Caption) Figure 3. Simultaneous eruptions of Karymsky (right) and Akademia Nauk (left) volcanoes, 2 January 1996. Distance between the summit vent of Karymsky and subaqueous vents in the Akademia Nauk caldera lake is 6 km. The Karymsky cone is 700 m high. Courtesy of the Institute of Volcanology.

On the evening on 3 January another crater formed on Karymsky; it looked like a 30-m-diameter amphitheater open to the SW. Sub-vertical Vulcanian explosions occurred from this crater to an altitude of 1 km. Over the next few days, explosions sent gas-and-ash emissions 300-1,100 m high almost every minute.

During the first three days of the eruption, ~500-800 x 103 tons of solid materials, including ash, lapilli, cinder, and bombs, were ejected at Karymsky. During the next 2-3.5 months ~3-4 x 103 tons of andesite-dacite tephra (SiO2 61%) and a small amount of bombs were ejected. An area with a radius of 15-20 km was covered by an ash layer several millimeters thick. The layer's thickness increased along the ashfall axis, reaching 20-30 mm at 4-5 km from the source.

Early eruptions at Akademia Nauk caldera lake. Violent subaqueous explosions on 2 January took place several times every hour in the N part of the 5-km-wide Akademia Nauk caldera lake (figure 4). Explosion clouds rose to 8 km altitude, but most of the tephra fell back into the lake. Ash from Karymsky Lake covered Akademia Nauk volcano and its surroundings. The head of the Karymsky River had its valley and adjacent flood-lands inundated by high water and mud flows.

Figure (see Caption) Figure 4. One of the powerful subaqueous explosions from the N part of Karymsky Lake (Akademia Nauk Caldera), 2 January 1996. The base of the growing cloud is ~1 km wide. Courtesy of the Institute of Volcanology.

Although the Akademia Nauk caldera lake had been ice-covered during the winter, after the January explosions water temperature reached 25°C, pH decreased from 7.5 to 3.1-3.2, and mineralization increased from 0.1 g/l to 0.9 g/l. Thermal water compositionally similar to those of the Karymsky springs started to discharge at a new shoal in the N part of the lake. According to preliminary estimates, ~0.015 km3 of material was supplied to the lake during the eruption.

After the lake water had cleared, a subaqueous deposit around the main explosion vent (with a diameter of 1 km) was observed. The N part of the deposit, ~1 km2, was exposed at the surface, forming an arched spit with the adjoining peninsula (figure 5). According to preliminary estimates, ~5-10 x 106 m3 of tephra including sand and rounded fragments of various sizes, and many bombs, formed the deposit there. Their composition ranged from basaltic andesite to andesite-dacite. The volume of deposits on the bottom of the lake is much greater.

Figure (see Caption) Figure 5. View of Karymsky Lake showing the new 1-km-wide peninsula formed by subaqueous explosion deposits on 2 January 1996. The main vents are to the left of the beach arc. Courtesy of the Institute of Volcanology.

Activity through April. During the ensuing days in January, the eruption style at Karymsky dropped to 5-6 explosions reaching 500-900 m high every hour. More vigorous single explosions were exceptional. On 13-14 January, a block-lava flow from the flank crater traveled 400 m, was 50-70 m wide, and averaged 6-10 m thick. In late January the interval between explosions started to increase from 30 minutes to 2-3 hours.

In February only several explosions were observed each day (figure 6). In late February the number of explosions increased to 5-6/hour, but their intensity decreased. In March the number of explosions decreased but their intensity increased. In April the number of explosions increased. For example, on 23 April they took place every 5 minutes. Two additional lava flows were emitted from the flank crater in April.

A dense geodetic network developed since 1972 at the Karymsky Volcanic Center has been measured repeatedly. During the past 20 years, a horizontal extension of Akademia Nauk caldera was observed that may have indicated filling of a magma chamber under the volcano. Measurements made in February and March revealed an extension of 232 cm along the 3.5-km base and subsidence of 70 cm near the area of subaqueous explosions in the caldera lake.

Figure (see Caption) Figure 6. Typical Vulcanian and Strombolian activity at Karymsky, January-April 1996. Courtesy of the Institute of Volcanology.

Karymsky Volcanic Center. Karymsky and Akademia Nauk are part of the 50 x 35 km Karymsky Volcanic Center (sometimes referred to as the Zhupanovsky volcano-tectonic depression). Located in the Eastern Kamchatka volcanic belt, 30 km from the Kronotsky Gulf and Pacific Ocean, this center contains 21 volcanic edifices, six calderas, and two historically active stratovolcanoes, Karymsky and Maly Semiachik.

The 5-km-diameter Karymsky Caldera formed 7,800 years ago and the Karymsky cone has been growing in the center of the caldera for 5,300 years, ejecting andesitic and dacitic materials. Historical reports on Karymsky's eruptions have been available since 1771. During that period of time, more than 20 prolonged eruptions were separated by quiet periods as long as 10 years. The most recent previous eruption continued from 1970 to 1982.

Akademia Nauk caldera, which was named by the famous Russian volcanologist Vladimir Vlodavetz in 1939, is located immediately to the S in the SW part of the Karymsky Volcanic Center. Its activity began about 50,000 years ago. The N part of the caldera is occupied by Karymsky Lake (4 km wide, 12.5 km2 in area, and 80 m deep). The Akademia Nauk chloride-sodium springs, with 1.3 g/l mineralization and temperatures >250°C in the interior part of the hydrothermal system, discharge along the lake's S shore.

Geologic Background. The scenic lake-filled Akademia Nauk caldera is one of three volcanoes constructed within the mid-Pleistocene, 15-km-wide Polovinka caldera. Beliankin stratovolcano, in the SW part of Polovinka caldera, is eroded, but has been active in postglacial time (Sviatlovsky, 1959). Two nested calderas, 5 x 4 km Odnoboky and 3 x 5 km Akademia Nauk (also known as Karymsky Lake or Academii Nauk), were formed during the late Pleistocene, the latter about 30,000 years ago. Eruptive products varied from initial basaltic-andesite lava flows to late-stage rhyodacitic lava domes. Two maars, Akademia Nauk and Karymsky, subsequently formed at the southern and northern margins of the caldera lake, respectively. The northern maar, Karymsky, erupted about 6500 radiocarbon years ago and formed a small bay. The first historical eruption from Akademia Nauk did not take place until January 2, 1996, when a brief, day-long explosive eruption of unusual basaltic and rhyolitic composition occurred from vents beneath the NNW part of the caldera lake near Karymsky maar.

Information Contacts: S.A. Fedotov, V.A. Budhikov, G.A. Karpov, M.A. Maguskin, Ya.D. Muravyev, V.A. Saltykov, and R.A. Shuvalov, Institute of Volcanology, Russian Academy of Sciences, Petropavlovsk-Kamchatsky, 683006, Russia.


Arenal (Costa Rica) — May 1996 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Tremor duration unusually large in April (434 hours), but normal in May (325 hours)

Fluctuations in the intensity and frequency of explosive activity were reported by OVSICORI-UNA. Activity during April increased above that of the previous several months but diminished during May. The April increase was accompanied by a corresponding rise in the amount of pyroclastic material produced; columns ascended over 1 km above Crater C in April and somewhat lower in May; these were commonly blown towards the NW, W, and SW. Ashfall measured at the ICE station 1.8 km W of the vent was higher during March-May than earlier in the year (table 14).

Table 14. Ash collected 1.8 km W of Arenal's active vent. Courtesy of Gerardo Soto, ICE.

Collection Interval Avg daily ashfall (grams/m2) Ash % 300+µ Ash % less than 300µ
22 Dec-06 Mar 1996 33 50 50
06 Mar-15 Apr 1996 43 50 50
15 Apr-16 May 1996 48 56 44

During April and May, bombs and blocks fell to 1,200 m elevation. New pyroclastic-flow deposits were noted in April. Early April pyroclastic deposits descended the SW flank (to 1,000 m elevation) and those of late April descended the NW flank (to 1,250 m elevation). Light ash fell towards the N and NE in May.

Lava flows emitted in the previous month divided into two arms that both trended about NW. A new, NE-trending flow began during April and by the end of the month its front reached 1,200 m elevation. Sporadic avalanches fell off this front and sometimes reached into forested land. During May, continued descent of the flows to as low as 750 m elevation led to avalanches off their fronts producing small fires in the woods. Accumulating tephra and lava have caused Crater C's floor to rise an average of 5.4 m/year since 1987.

OVSICORI-UNA reported a progressive seismic buildup during April; over the course of the month the number of local earthquakes increased 4- to 6-fold peaking on the 27th. Station VACR (2.7 km NE of the Crater C) registered rather typical numbers of earthquakes for both April and May: 798 and 828 events, respectively. Many of these earthquakes were associated with Strombolian eruptions that took place on 20-28 April.

The number of hours of tremor during April, 434, was the highest measured in more than two years. While there occurred a progressive buildup in the number of earthquakes during April (ending on the 27th), tremor during the same interval fluctuated strongly, with daily totals between about 6 and 23 hours. May tremor totalled 325 hours. Results for monthly earthquakes and tremor obtained by ICE are smaller but also show relative increases (table 15).

Table 15. Average seismicity at Arenal, as recorded in Fortuna station, 3.5 km E of active vent. Courtesy of ICE.

Month Earthquakes/day Daily tremor (hours)
Jan 1996 44 4.25
Feb 1996 -- --
Mar 1996 47 5.61
Apr 1996 63 7.83

Deformation studies carried out during April and May indicated no significant changes in that time interval. By the end of April 1996 the distance network had indicated a contraction of 22.4 ppm/year during the last two years.

OVSICORI-UNA and a team of seven visiting scientists reported that on 1-9 March Arenal's summit was almost continuously visible due to abnormally clear weather. Two gas plumes were observed, the largest being associated with the continuing Strombolian activity. This plume had extremely variable output and was often ash laden. The smaller plume, which was emitted at a more-or-less constant rate (even during the Strombolian explosions), carried no ash. The separate plumes were thought to signify the existence of two or more summit vents.

The Strombolian activity remained vigorous and variable, with large bombs being regularly thrown over the crater rim, making access to points on the edifice above 1000 m extremely hazardous. The ash column sometimes collapsed, resulting in pyroclastic surges, some of which were witnessed. Ash fallout from the plume was observed to vary from a wet, fine powder to dry particles up to 0.5 mm in diameter. Ash occasionally fell on the lower western flanks of the volcano.

The two lava flows referred to above were active when observed by visiting scientists. One flow was more vigorous; it issued from a steeply leveed channel aligned westwards from the summit for 200 m before diverging northwestwards.

A survey of lava flows erupted during 1995 showed that the westward flow had halted at 750 m and was composed of Arenal's typical basaltic andesite. The visiting scientists saw one anomalously hot area at 850 m elevation on the N levee that was distinguished by escaping steam. The levee on the flow's opposite side had completely collapsed. The flow was beginning to be vegetated by moss and ferns. The westward flow, which halted at 850 m in November 1995, contained vesiculated lava as well as the usual basaltic andesite mixed with blocks of ash. Flow thickness at the front of the surveyed flow that lies to the NW was around 100 m.

SO2 fluxes were also measured by COSPEC as a follow-up to measurements made at the same time last year. Six days of flux data during 29 February-8 March were collected, the result of more than 40 measurements. Daily averages were 110, 194, 111, 130, 259, and 171 metric tons/day (t/d); the mean for the period was 163 ± 53 t/d (1 sigma). The flux appeared to be small and variable, though less so than at the same time last year (BGVN 20:04). The highest SO2 flux was associated with mild explosive eruptions. Also evident in the fluxes in some instances were both a strong post-eruption decrease and a possible gradual pre-eruption increase.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: Erick Fernández, Elicer Duarte, Vilma Barboza, Rodolfo Van der Laat, and Enrique Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Hazel Rymer and Mark Davies, Dept. of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; John Stix, Dora Knez, Glyn Williams-Jones, and Alexandre Beaulieu, Dept. de Geologie, Universite de Montreal, Montreal, Quebec, H3C 3J7, Canada; Nicki Stevens, Dept. of Geography, University of Reading, Reading RG2 2AB, United Kingdom; Gerardo J. Soto, Oficina de Sismología y Vulcanología, Departamento de Geología, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Asosan (Japan) — May 1996 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Crater glow

Red glow has been observed over part of the S wall of Naka-dake Crater 1 since 27 April. The floor of this crater was still covered with water in May. Aso, a 24-km wide caldera, produced pyroclastic-flow deposits during the Pleistocene that cover much of Kyushu. Naka-dake, one of the 15 intra-caldera cones of Aso's caldera, has erupted more than 165 times since 553 AD.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Atmospheric Effects (1995-2001) (Unknown) — May 1996 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Virginia, Germany, and Cuba

Lidar data from Virginia, USA, again revealed the presence of a volcanic aerosol layer centered at about 22 km altitude in April and May 1996 (table 6), somewhat higher than the 18-19 km measured during August-December 1995 (Bulletin v. 20, no. 10, and table 6). Over Germany, the aerosol layer was concentrated around 15-20 km altitude during January-April 1996, consistent with measurements made during late 1995 (Bulletin v. 21, no. 2). Backscattering ratios continued to show a decreasing trend at Hampton, and remained stable at Garmisch-Partenkirchen. Data from Cuba during January-April 1996 were highly variable, but still comparable to late-1995 data (Bulletin v. 21, no. 2). The base of the aerosol layer was consistently around 15-17.5 km (dropping to 12.7-13.3 km in April), but the layer peak ranged from 18.1 up to 27.1 km. Backscattering ratios were also variable, with seven measurements showing the expected slow decrease to the 1.11-1.17 range, but with the other six being anomalously high in the 1.35-1.51 range.

Table 6. Lidar data from Virginia, Cuba, and Germany showing altitudes of aerosol layers; some layers have multiple peaks. Backscattering ratios from Virginia are for the ruby wavelength of 0.69 µm; those from Germany and Cuba are for the Nd-YAG wavelength of 0.53 µm, with equivalent ruby values in parentheses for data from Germany. The integrated value shows total backscatter, expressed in steradians-1, integrated over 300-m intervals from 16-33 km for Cuba and from the tropopause to 30 km at Hampton and Garmisch-Partenkirchen. Courtesy of Mary Osborn, Horst Jäger, and Rene Estevan.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Hampton, Virginia (37.1°N, 76.3°W)
04 Dec 1995 13-25 (18.7) 1.22 1.05 x 10-4
25 Apr 1996 15-26 (22.4) 1.14 0.61 x 10-4
21 May 1996 15-28 (22.4) 1.18 0.64 x 10-4
31 May 1996 16-26 (22.0) 1.13 0.32 x 10-4
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
04 Jan 1996 10-32 (19.1) 1.15 (1.30) --
11 Jan 1996 09-31 (19.2) 1.14 (1.28) --
17 Jan 1996 10-30 (16.4) 1.13 (1.25) --
31 Jan 1996 10-28 (19.8) 1.12 (1.23) --
06 Feb 1996 09-28 (15.7) 1.11 (1.21) --
23 Feb 1996 10-27 (14.7) 1.13 (1.25) --
27 Feb 1996 10-27 (18.2) 1.10 (1.20) --
05 Mar 1996 09-31 (17.9) 1.13 (1.25) --
05 Mar 1996 PSC peak at 19.8 -- --
07 Mar 1996 09-28 (17.9) 1.14 (1.27) --
14 Mar 1996 10-31 (15.8) 1.15 (1.29) --
23 Mar 1996 12-28 (18.0) 1.13 (1.25) --
15 Apr 1996 10-27 (17.2) 1.12 (1.24) --
Camaguey, Cuba (21.2°N, 77.5°W)
19 Jan 1996 14.8 (19.9) 1.17 0.55 x 10-4
24 Jan 1996 15.1 (21.7) 1.08 0.12 x 10-4
29 Jan 1996 15.1 (18.7) 1.58 4.90 x 10-4
04 Feb 1996 15.4 (23.5) 1.35 1.40 x 10-4
09 Feb 1996 17.2 (27.1) 1.11 0.26 x 10-4
15 Feb 1996 17.5 (22.3) 1.51 1.00 x 10-4
15 Feb 1996 17.5 (23.8) 1.48 --
24 Feb 1996 17.2 (25.6) 1.11 0.27 x 10-4
02 Mar 1996 16.9 (23.8) 1.16 0.13 x 10-4
18 Mar 1996 15.1 (18.1) 1.17 0.66 x 10-4
31 Mar 1996 15.7 (21.4) 1.16 0.69 x 10-4
05 Apr 1996 12.7 (23.8) 1.36 3.20 x 10-4
12 Apr 1996 13.3 (19.4) 1.27 0.66 x 10-4

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Mary Osborn, NASA Langley Research Center (LaRC), Hampton VA 23665, USA; Horst Jäger, Fraunhofer -- Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany; Rene Estevan and Juan Carlos Antuña, Centro Meteorologico de Camagüey, Apartado 134, Camagüey 70100, Cuba [J.C.A is presently at Univ. Maryland, Dept. of Meteorology, College Park, MD 20742 USA];


Azumayama (Japan) — May 1996 Citation iconCite this Report

Azumayama

Japan

37.735°N, 140.244°E; summit elev. 1949 m

All times are local (unless otherwise noted)


Small-amplitude volcanic tremor

Small-amplitude volcanic tremors were detected on 26 April and 26 May. The last eruption occurred in December 1977. Earthquakes began in September 1977, followed by mud and sand spattering and ejection of small blocks in October, and active fuming in November. The small eruption on 7 December 1977 sent ash 500-1,000 m above the crater and produced minor ashfall. Similar ash ejections occurred through January 1978 (SEAN 03:01 and 03:02).

Geologic Background. The Azumayama volcanic group consists of a cluster of stratovolcanoes, shield volcanoes, lava domes, and pyroclastic cones. The andesitic and basaltic complex was constructed in two E-W rows above a relatively high basement of Tertiary sedimentary rocks and granodiorites west of Fukushima city. Volcanic activity has migrated to the east, with the Higashi-Azuma volcano group being the youngest. The symmetrical Azuma-Kofuji crater and a nearby fumarolic area on the flank of Issaikyo volcano are popular tourist destinations. The Azumayama complex contains several crater lakes, including Goshikinuma and Okenuma. Historical eruptions, mostly small phreatic explosions, have been restricted to Issaikyo volcano at the northern end of the Higashiyama group.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Fukutoku-Oka-no-Ba (Japan) — May 1996 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Discolored seawater

During the first half of May, aviators of the Maritime Safety Agency and the Maritime Self-Defense Force reported discoloration of seawater at Fukutoku-Okanoba. Similar discoloration has been observed since November 1995 (BGVN 20:11/12, 21:01, 21:03, and 21:04). An overflight on 23 May indicated no discolored seawater.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Hokkaido-Komagatake (Japan) — May 1996 Citation iconCite this Report

Hokkaido-Komagatake

Japan

42.063°N, 140.677°E; summit elev. 1131 m

All times are local (unless otherwise noted)


Steaming activity continues

Activity has declined since the eruptive events of March when two vents opened on and near the S side of Showa 4-nen (1929) crater, and a line of vents extending ~200 m N-S formed on the S part of the crater floor. The height of the gas plume remained at 100-200 m. A volcanic earthquake occurred on 15 May. No volcanic tremor was observed.

Komaga-take sits 30 km N of Hakodate City (population 320,000). The andesitic stratovolcano has a 2-km-wide horseshoe-shaped caldera open to the E. The volcano has generated large pyroclastic eruptions, including major historical eruptions in 1640, 1856, and 1929. In the 1640 eruption, debris from a partial summit collapse entered the sea resulting in a tsunami that killed 700 people. Although the 1929 eruption was one of the largest 20th century eruptions in Japan, it may not have had clear geophysical precursors.

Geologic Background. Much of the truncated Hokkaido-Komagatake andesitic volcano on the Oshima Peninsula of southern Hokkaido is Pleistocene in age. The sharp-topped summit lies at the western side of a large breached crater that formed as a result of edifice collapse in 1640 CE. Hummocky debris avalanche material occurs at the base of the volcano on three sides. Two late-Pleistocene and two Holocene Plinian eruptions occurred prior to the first historical eruption in 1640, which began a period of more frequent explosive activity. The 1640 eruption, one of the largest in Japan during historical time, deposited ash as far away as central Honshu and produced a debris avalanche that reached the sea. The resulting tsunami caused 700 fatalities. Three Plinian eruptions have occurred since 1640; in 1694, 1856, and 1929.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Irazu (Costa Rica) — May 1996 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


No tilt in April-May but tens of local earthquakes

During May the lake's water was yellow in color and its surface dropped by 40 cm with respect to March 1996. Irazú's seismic station (IRZ2), located 5 km SW of the active crater, registered 55 and 26 events during April and May respectively; all were only detected locally. For the interval April through May dry-tilt measurements failed to show significant changes.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: Erick Fernández, Elicer Duarte, Vilma Barboza, Rodolfo Van der Laat, and Enrique Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Gerardo J. Soto, Oficina de Sismología y Vulcanología, Departamento de Geología, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Iwatesan (Japan) — May 1996 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Small-amplitude volcanic tremor

Small-amplitude volcanic tremor was detected on 12 May. Tremor was last reported on 4 March (BGVN 21:03), and previously in January and October 1995.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Karymsky (Russia) — May 1996 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Eruptions continue through April; more details of early January activity

Eruptions began on 2 January from the summit of Karymsky and from the lake (Karymsky Lake) within the Akademia Nauk caldera (figure 2), previously considered to be extinct (BGVN 21:01-21:03). Eruptive activity at [Karymsky] continued through the end of April.

Figure (see Caption) Figure 2. Schematic map showing some features of the SW part of the Karymsky Volcanic Center. Karymsky Lake lies within the Akademia Nauk Caldera. Courtesy of the Institute of Volcanology.

Precursory seismicity. Large tectonic earthquakes in the Kronotsky Gulf have historically been among the precursors to eruptions from Karymsky and Maly Semiachik volcanoes. At 1926 on 31 December 1995, a M 5.6 earthquake occurred in the Kronotsky Gulf (50-60 km NE) at a depth of ~60 km. Earthquake swarms are common beneath the large (50 x 35 km) Karymsky Volcanic Center, but an unusually large swarm started on the evening of 1 January with hypocenters to depths of 80 km (figure 3). These followed a M 5.2 foreshock, and at 2157 a shallow M 6.9 earthquake took place centered ~25 km S of Karymsky; this was the largest earthquake recorded beneath the Kamchatkan volcanoes during the past 50 years. Scientists from the Institute of Volcanology and the Kamchatkan Experimental-Methodical Seismological Department of Geophysical Survey, Russian Academy of Sciences, flew to the epicentral zone of the continuing earthquake swarm and observed the onset of the eruption.

Figure (see Caption) Figure 3. Map and cross-sections of epicenters from the earthquake swarm at Karymsky Volcanic Center that began on 1 January 1996. Cross-section A-B (below map) trends approximately NW-SE, and cross-section C-D (left of map) trends approximately NE-SW. Courtesy of the Institute of Volcanology.

Early eruptions at Karymsky volcano. On the afternoon of 2 January the eruption began on Karymsky's upper SW flank 50 m below the old summit crater and from the Akademia Nauk caldera lake, ~6 km S (figure 4). Ash and gas clouds from the summit vent fed a plume (figure 5) rising to 1 km above the crater; the ash-flow rate was estimated to be several cubic meters per second. The eruption cloud extended E towards the ocean and ashfall was visible 40-50 km away.

Figure (see Caption) Figure 4. Simultaneous eruptions of Karymsky (right) and Akademia Nauk (left) volcanoes, 2 January 1996. Distance between the summit vent of Karymsky and subaqueous vents in the Akademia Nauk caldera lake is 6 km. The Karymsky cone is 700 m high. Courtesy of the Institute of Volcanology.
Figure (see Caption) Figure 5. Continuous gas-and-ash emission from the new vent on the upper flank of Karymsky, 2 January 1996. Courtesy of the Institute of Volcanology.

On the evening on 3 January another crater formed on Karymsky; it looked like a 30-m-diameter amphitheater open to the SW. Sub-vertical Vulcanian explosions occurred from this crater to an altitude of 1 km. Over the next few days, explosions sent gas-and-ash emissions 300-1,100 m high almost every minute.

During the first three days of the eruption, ~500-800 x 103 tons of solid materials, including ash, lapilli, cinder, and bombs, were ejected at Karymsky. During the next 2-3.5 months ~3-4 x 103 tons of andesite-dacite tephra (SiO2 61%) and a small amount of bombs were ejected. An area with a radius of 15-20 km was covered by an ash layer several millimeters thick. The layer's thickness increased along the ashfall axis, reaching 20-30 mm at 4-5 km from the source.

Early eruptions at Akademia Nauk caldera lake. Violent subaqueous explosions on 2 January took place several times every hour in the N part of the 5-km-wide Akademia Nauk caldera lake (figure 6). Explosion clouds rose to 8 km altitude, but most of the tephra fell back into the lake. Ash from Karymsky Lake covered Akademia Nauk volcano and its surroundings. The head of the Karymsky River had its valley and adjacent flood-lands inundated by high water and mud flows.

Figure (see Caption) Figure 6. One of the powerful subaqueous explosions from the N part of Karymsky Lake (Akademia Nauk Caldera), 2 January 1996. The base of the growing cloud is ~1 km wide. Courtesy of the Institute of Volcanology.

Although the Akademia Nauk caldera lake had been ice-covered during the winter, after the January explosions water temperature reached 25°C, pH decreased from 7.5 to 3.1-3.2, and mineralization increased from 0.1 g/l to 0.9 g/l. Thermal water compositionally similar to those of the Karymsky springs started to discharge at a new shoal in the N part of the lake. According to preliminary estimates, ~0.015 km3 of material was supplied to the lake during the eruption.

After the lake water had cleared, a subaqueous deposit around the main explosion vent (with a diameter of 1 km) was observed. The N part of the deposit, ~1 km2, was exposed at the surface, forming an arched spit with the adjoining peninsula (figure 7). According to preliminary estimates, ~5-10 x 106 m3 of tephra including sand and rounded fragments of various sizes, and many bombs, formed the deposit there. Their composition ranged from basaltic andesite to andesite-dacite. The volume of deposits on the bottom of the lake is much greater.

Figure (see Caption) Figure 7. View of Karymsky Lake showing the new 1-km-wide peninsula formed by subaqueous explosion deposits on 2 January 1996. The main vents are to the left of the beach arc. Courtesy of the Institute of Volcanology.

Activity through April. During the ensuing days in January, the eruption style at Karymsky dropped to 5-6 explosions reaching 500-900 m high every hour. More vigorous single explosions were exceptional. On 13-14 January, a block-lava flow from the flank crater traveled 400 m, was 50-70 m wide, and averaged 6-10 m thick. In late January the interval between explosions started to increase from 30 minutes to 2-3 hours.

In February only several explosions were observed each day (figure 8). In late February the number of explosions increased to 5-6/hour, but their intensity decreased. In March the number of explosions decreased but their intensity increased. In April the number of explosions increased. For example, on 23 April they took place every 5 minutes. Two additional lava flows were emitted from the flank crater in April.

A dense geodetic network developed since 1972 at the Karymsky Volcanic Center has been measured repeatedly. During the past 20 years, a horizontal extension of Akademia Nauk caldera was observed that may have indicated filling of a magma chamber under the volcano. Measurements made in February and March revealed an extension of 232 cm along the 3.5-km base and subsidence of 70 cm near the area of subaqueous explosions in the caldera lake.

Figure (see Caption) Figure 8. Typical Vulcanian and Strombolian activity at Karymsky, January-April 1996. Courtesy of the Institute of Volcanology.

Karymsky Volcanic Center. Karymsky and Akademia Nauk are part of the 50 x 35 km Karymsky Volcanic Center (sometimes referred to as the Zhupanovsky volcano-tectonic depression). Located in the Eastern Kamchatka volcanic belt, 30 km from the Kronotsky Gulf and Pacific Ocean, this center contains 21 volcanic edifices, six calderas, and two historically active stratovolcanoes, Karymsky and Maly Semiachik.

The 5-km-diameter Karymsky Caldera formed 7,800 years ago and the Karymsky cone has been growing in the center of the caldera for 5,300 years, ejecting andesitic and dacitic materials. Historical reports on Karymsky's eruptions have been available since 1771. During that period of time, more than 20 prolonged eruptions were separated by quiet periods as long as 10 years. The most recent previous eruption continued from 1970 to 1982.

Akademia Nauk caldera, which was named by the famous Russian volcanologist Vladimir Vlodavetz in 1939, is located immediately to the S in the SW part of the Karymsky Volcanic Center. Its activity began about 50,000 years ago. The N part of the caldera is occupied by Karymsky Lake (4 km wide, 12.5 km2 in area, and 80 m deep). The Akademia Nauk chloride-sodium springs, with 1.3 g/l mineralization and temperatures >250°C in the interior part of the hydrothermal system, discharge along the lake's S shore.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: S.A. Fedotov, V.A. Budhikov, G.A. Karpov, M.A. Maguskin, Ya.D. Muravyev, V.A. Saltykov, and R.A. Shuvalov, Institute of Volcanology, Russian Academy of Sciences, Petropavlovsk-Kamchatsky, 683006, Russia.


Kilauea (United States) — May 1996 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Surface flows, ocean entries, and bench collapses; summit inflation episode

Surface flows were limited to the area below 180 m elevation in late March and early April (figure 100). Through the end of March, the Kamokuna ocean entry exhibited frequent explosive activity. On 6 April the volume of lava entering the ocean diminished as breakouts from the tube increased. By the 8th, the entry was producing a moderate-sized plume, and many small pahoehoe flows were active on the coastal plain. Most of the activity during 9-22 April took place below 165 m elevation, near the base of Pulama Pali. The surface flows on the coastal flats below Paliuli entered the ocean, forming three new entries in addition to the long-lived Kamokuna entry. On 9 April, surface flows entered the sea at the E end of the 1994 Lae'apuki bench (figure 100). Another flow entered the sea in the Kamoamoa area on 15 April, about halfway between the E Lae'apuki and Kamokuna entries. On the 22nd, a small lobe of the flow feeding the E Lae'apuki entry branched off to the W and produced a small new entry. The Pu`u `O`o pond was ~80 m deep as of 18 April and had divided into two active areas separated by a 30-m-wide segment of stationary crust.

Figure (see Caption) Figure 100. Map of recent lava flows from Kilauea's east rift zone, April 1996. Contours are in meters and the contour interval is approximately 150 m. Courtesy of the USGS Hawaiian Volcano Observatory.

The three active ocean entries were mostly nonexplosive from 23 April to 6 May. On the night of 28 April a large collapse of the Kamokuna bench removed a piece roughly 100 m wide by 400 m long. Surface flow activity was concentrated on the coastal plain. A moderate size "rockfall" registered on 2 May at local seismic stations, suggesting a possible collapse near Pu`u `O`o.

Surface flows during 7-20 May were diminished compared to those of previous weeks and limited to small, short-lived pahoehoe breakouts on the coastal plain inland of the Lae'apuki ocean entry. Lava continued to enter the ocean at Lae'apuki, Kamoamoa, and Kamokuna, with only 10-20% of the total volume entering at Kamoamoa. A major bench collapse at Kamoamoa on 16 May removed the entire bench, along with a significant piece of older inland terrain, for a total area of 375 x 60 m. Coastal explosions were recorded on 9 and 16 May, possibly related to bench activity. The lava pond inside Pu`u `O`o was visible on 16 May and appeared unchanged at a level of 80-90 m below the rim.

On the afternoon of 11 May, two short bursts of rapid summit inflation during a three-hour period were accompanied by shallow seismic tremor up to 6x background level. They were followed by four hours of deflation. This event did not noticeably affect the location or volume of lava flows on the east rift zone.

Through 29 May the eruption continued with three active ocean entries and small pahoehoe breakouts on the coastal plain from the lava tube supplying the Kamoamoa entry. A large pahoehoe sheet flow was observed at 180 m elevation on 29 May. On 29-30 May the eruption gradually shut down over 18 hours. By the morning of 30 May, the ocean entries had died and the 13th pause of Episode 53 had begun. During the pause, the level of the lava pond in Pu`u `O`o cone fluctuated by as much as 30 m, rising to a high point of 58 m below the rim on 3 June. Lava also appeared on the floor of the Great Pit in the outer wall of the cone. This pause in the eruption lasted until 4 June.

Seismicity. Eruption tremor continued with amplitudes averaging ~2-3x background level from 26 March through 3 June. There were three episodes of weak, deep tremor from a SW source on 31 March, 2 April, and 5 April. A fourth tremor of moderate size from the same source occurred on 7 April. Daily counts of shallow, long-period summit events were moderate to low with a maximum of 119 on 27 March. Microearthquake counts then remained generally low beneath the summit and rift zones through 20 May. Shallow, long-period microearthquake counts increased during 21-22 May and again from 30 May to 3 June. A flurry of shallow earthquakes at the uppermost end of the Upper east rift zone began on 30 May. High counts persisted and peaked on 3 June, with >200 events for the day. The number of short-period events was low beneath the summit from 21 May to 3 June.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA.


Kuchinoerabujima (Japan) — May 1996 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Number of volcanic earthquakes increases

According to reports of Sakura-jima Volcanological Observatory, Kyoto University, 86 earthquakes occurred around Shin-dake in May. Seismicity has been increasing since January 1996.

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Kujusan (Japan) — May 1996 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Seismic activity increases, but there is no ashfall

The increased seismicity that began in late March and early April (BGVN 21:02 and 21:03) continued during May. The total number of earthquakes in May was 423, of which 283 occurred on the 14th. No volcanic tremor was observed. The plume height remained at 100-400 m for most of the month, but rose to 600 m on 14 May. There were no ashfalls.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Langila (Papua New Guinea) — May 1996 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Intermittent Vulcanian explosions produce ash-and-vapor clouds

Crater 2 activity continued in May as in past months (BGVN 21:04) with intermittent Vulcanian explosions producing thin-to-thick white-to-gray/brown ash-and-vapor clouds. These clouds rose several hundred meters above the rim before being blown to the N, NW, and SE and producing fine ashfalls. Occasional explosions were heard. Glows of variable intensity were seen on most nights during the first three weeks. Weak projections of incandescent lava fragments were observed on 12 and 14 May. A daily range of 10-50 explosion earthquakes was recorded at the seismic station until it became non-operational on 24 May. Crater 3 remained quiet apart from a single emission of very thin white/gray vapor on 7 May.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: D. Lolok and C. McKee, RVO.


Manam (Papua New Guinea) — May 1996 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Low level activity persists

Low-level activity persisted during May as in previous months (BGVN 21:04). Both summit craters emitted white vapor in variable quantity. Blue vapor from South Crater was seen on 28 and 29 May, and weak roaring noises were heard on the evening of 6 May. Between 1 and 5 May the daily occurrence of low-frequency earthquakes ranged from 440 to 690 events/day. This value increased up to 800-1,690 events/day during 6-30 May. On the 31st the seismicity dropped to the early May level.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: D. Lolok and C. McKee, RVO.


Poas (Costa Rica) — May 1996 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


N crater lake at 10-year high; water temperature increases; phreatic explosion on 8 April

When observed by visiting scientists on 11-13 March, the lake in the active N crater was at its highest level since 1986, with a depth estimated at 50 m. The lake's color was pale green, its measured temperature, 32°C, and pH, 1.5.

The scientists noted three areas of fumarolic activity in the active crater with the strongest concentrated on the 1953-55 cone immediately S of the lake. Most of this activity was located on the NW side of the cone near lake level; in this area, high-pressure degassing exited from an E-W oriented fracture ~10 m above the lake's surface. These fumaroles have appeared since the beginning of 1996. Low-pressure fumaroles were also observed on the eastern top of the dome, with gas exiting through small cracks and crevices. Maximum temperatures were 93°C, suggesting that these were boiling-point fumaroles.

A second set of at least five individual fumaroles above the lake's W edge within the inner crater began appearing at the end of 1995, with the most recent one, which displayed the highest gas pressure, forming in March 1996. A third set of fumaroles had been observed since April 1995 in the crater's S area where the trail begins ascending to the Mirador; these had low pressure. Temperatures did not exceed 93°C, again indicating boiling-point fumaroles.

Microgravity measurements made in the crater area showed a continuation in the trend of increased gravity on the N crater floor and a new pattern of decreased gravity (~100 µgal in two years) on the S crater floor.

When visited by OVSCICORI-UNA scientists during April and May the surface of the light-gray crater lake had risen 0.4 and 96 cm, respectively, compared to March. The lake's temperature recently increased: in April it was 36°C and in May, 42°C (compared to 26°C in February and 30°C in March). As is typical, fumaroles clustered near the pyroclastic cone. Their temperatures measured 94°C during April and May; however, the most vigorously degassing zones were inaccessible. Some of these degassing zones continued to make loud noises and their condensed gases formed plumes that rose to 500 m above the crater floor. On the SE, S, and SW walls, maximum fumarole temperatures ranged between 91 and 94°C.

In addition to suspended sulfur and constant bubbling seen in the lake, small landslide deposits were noted leading into the lake from the crater walls. Park guards reported that when the wind blew to the S, visitors suffered from coughs and irritated eyes and skin. New fumaroles appeared along the E crater wall, coincident with high-frequency earthquakes and increased steam output at the pyroclastic cone.

Except for signals associated with a small phreatic eruption, seismic station POA2 registered relative quiet during April: 651 total earthquakes, 24 mid-frequency earthquakes, 17 high-frequency earthquakes, and four hours of tremor. During May POA2 registered 1,243 earthquakes, 29 mid-frequency earthquakes, 21 high-frequency earthquakes, and six hours of tremor. Some of the latter signals during May were correlated with increased fumarolic activity and the appearance of new fumaroles in the active crater.

On the morning of 8 April a low-frequency signal lasting for 223 seconds coincided with an eruption. Fieldwork on 12 April disclosed that the eruption had thrown blocks S to SW of the dome. The blocks had dimensions of up to 35 x 45 cm; in an area N of the lake, the diameter of some blocks reached 80 cm. The N, W, and SW walls of the lake were coated with light gray material ejected from the lake floor. Much of the same material fell back into the lake. Insubstantial deformation was seen during April and May.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Erick Fernández, Elicer Duarte, Vilma Barboza, Rodolfo Van der Laat, and Enrique Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Hazel Rymer and Mark Davies, Dept. of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; John Stix, Dora Knez, Glyn Williams-Jones, and Alexandre Beaulieu, Dept. de Geologie, Universite de Montreal, Montreal, Quebec, H3C 3J7, Canada; Nicki Stevens, Dept. of Geography, University of Reading, Reading RG2 2AB, United Kingdom.


Rabaul (Papua New Guinea) — May 1996 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Strong Strombolian eruption followed by less intense and more varied activity

On 11 May a Strombolian eruption took place at Tavurvur. Until early in May weak to moderate explosions occurred every few minutes and generated pale to dark-gray ash-and-vapor clouds that rose ~ 400-1,000 m before drifting 15-20 km downwind (mostly SE, S, and SW). Large incandescent ejecta were observed at night and roaring noises were heard from as much as 15 km away (BGVN 21:04).

Visible eruptive activity began to change mid-afternoon on 9 May. Vapor emissions reached ~1,500 m and seismicity increased to a peak around 2200, when a series of strong explosions started. By about 0800 on 10 May, the emissions were sub-continuous and explosions sent ash clouds ~2-2.5 km above the vent. The activity declined through the afternoon. Later that day the emission column was ~1.2-1.5 km high, with occasional explosion clouds rising 1.9 km. Shortly before midnight, explosions were occurring at intervals of ~5 minutes.

A moderate increase in activity began at midnight on 11 May. By 0245 it changed to Strombolian mode as explosions were occurring every 30 seconds, with increasing frequency and strength. Large bolts of lightning flashed through the growing eruption column. Slabs of lava ~10-15 m in diameter were ejected hundreds of meters above the vent, and meter-sized blocks were landing on the shore ~1 km from the vent. By 0300 the explosions and the lightning were almost continuous. The eruption column was a constant stream of incandescent lava fragments rising at least 400 m. There was a spontaneous evacuation of some people from nearby Matupit Island. Strong air-shock waves from the explosions were felt within a few kilometers from the summit. Irregular and continuous tremors were recorded, but observers noted that the shaking was due to the blasts and not to earthquakes.

Seismicity peaked at 0315. Within minutes the activity declined, the streaming of ejecta stopped, and the time between explosions increased to 30 seconds. By 0400 the activity had returned to the level observed on 10 May. At 0438 the first of a series of strong explosions, at irregular intervals of 10-40 seconds, sent incandescent ballistic blocks 1.5 km from Tavurvur. The last explosion, at 0728, generated and ash cloud that rose ~2.3 km.

During the following day a few large explosions occurred, but their frequency and strength were declining. The emissions were commonly white and blue vapors with occasional ash. By the end of 12 May the explosions stopped and seismicity consisted of irregular tremor. This type of activity persisted for 2-3 days, until 15 May when explosive activity resumed.

Several phases of intensified activity took place during the following weeks, but these were considerably less intense than that of 10-11 May. Seismicity remained weaker than during the previous five months (figure 26).

Figure (see Caption) Figure 26. Seismicity at Rabaul for the period December 1995-May 1996 with detail over the days of peak activity in May. Courtesy of RVO.

A new electronic tiltmeter was installed on 30 April at Matupit Island, ~2.5 km WSW of Tavurvur. It initially measured moderate WNW downward tilt. This continued until 3 May when the pattern reversed and ESE downward tilt began. On 8 May, after accumulating ~10 µrad of rotation, the tilting pattern again changed and the instrument recorded WNW downward tilt. The WNW downward tilt that started on 8 May was probably related to the 9 May activity. The WNW downward tilt continued until 20 May, with rotation reaching up to 16 µrad. From 20 to 30 May the downward tilt returned to ESE and gradually decreased to zero.

The available COSPEC measurements showed a decline in SO2 emission rate from the range of ~500-900 metric tons/day (t/d) at the beginning of May to background values of a few hundred tons per day during 8-15 May. At the end of the month the emission rate increased to ~800 t/d. Although the 8-15 May data failed to portray any flux increases associated with the 10-11 May eruption, later, on 18 and 26 May, peaks in SO2 emissions correlated with some less dramatic periods of enhanced eruptive activity.

A total of 3,993 explosion earthquakes was recorded during May. Episodes of volcanic tremor numbered 106; more than 90% of these tremors took place during the 10-11 May eruption. Four high-frequency earthquakes were recorded during the month. Two of these were within the zone of defined by 1994 caldera seismicity.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: D. Lolok and C. McKee, Rabaul Volcano Observatory (RVO), P.O. Box 385, Rabaul, Papua New Guinea.


Rincon de la Vieja (Costa Rica) — May 1996 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Seven minor seismic events

During May seismic station RIN3 registered a total of seven events: two of high frequency and five of low frequency.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Erick Fernández, Elicer Duarte, Vilma Barboza, Rodolfo Van der Laat, and Enrique Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Ruapehu (New Zealand) — May 1996 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Eruption on 17 June sends ash several kilometers above the summit

Between approximately 1430 on 15 June and 0100 on 16 June, volcanic tremor reached the highest levels recorded during the previous six months. There were no reports of volcanic activity accompanying this tremor episode; however, poor weather conditions prevented observations after the start of the tremor. At about 0600 on 17 June the level of volcanic tremor started to increase again. The first of several eruption plumes was seen around 0650; larger pulses were observed at 0710 and 0825. The plumes rose several kilometers, carrying voluminous amounts of coarse ash. Large blocks rising to heights of 400-500 m fell as far as 600-700 m from the vent. The second pulse was accompanied by a small lahar down the [E]-flank Whangaehu River valley (see map in BGVN 21:04). Ashfall was recorded as far N as Turangi, 32 km away, due to the prevailing southerly wind. The Alert Level was raised to 3, indicating a significant local eruption in progress (see BGVN 20:09).

Volcanic tremor continued to increase until about 1100 when it plateaued at levels similar to those during the 11-12 October 1995 eruptions. By about 1330 the level of tremor was starting to decline, and the style of activity changed to discrete explosive events. Around 1500 the volcano started to erupt every 10-15 minutes, sending ash-laden plumes to several kilometers height (figure 23). During an overflight around the same time, observers confirmed a small lahar down the Whangaehu catchment but no evidence for pyroclastic flows out of the summit crater basin. Light ashfalls occurred over much of the zone extending N from the volcano to the Bay of Plenty between the coastal towns of Tauranga and Whakatane. A significant Strombolian eruption during 2100-2200 on 17 June was characterized by loud detonations and sprays of glowing rocks ejected above the crater, and was accompanied by strong seismicity. Through to about 0300 several discrete eruption earthquakes were recorded, but the size and rate decreased through the morning of 18 June.

Figure (see Caption) Figure 23. Satellite image of the Ruapehu eruption plume, 1512 on 17 June 1996. The ash cloud is rising to about 20 km altitude in clear weather over North Island, New Zealand. The image was created from NOAA-14 data by combining the visible, near infrared, and one thermal infrared wavelength band. Courtesy of Manaaki Whenua Landcare Research.

Observations made on overflights the morning of 18 June confirmed that the new lake was destroyed and the crater floor was dry. The active vent was in the S part of the crater floor, on which thick deposits of bombs and lapilli had accumulated. The bombs and blocks ejected during the night traveled farther than those erupted on 17 June, to ~1.5 km from the vent. Dome Shelter remained intact, as did the seismic signal from the shelter. On 18 June the active vent was producing weakly ash-charged plumes 1,000-2,000 m above the summit, which were blown downwind, forming a low-level haze at 1,500-3,000 m altitude.

Low-frequency volcanic tremor remained elevated, suggesting that molten material continued to move into the base of the volcano. This eruption was continuing at press time in late June, and had caused significant closures of airspace around the Auckland airport and all of North Island. Additional details will be reported next month.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake (Te Wai a-moe), is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3,000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: B.J. Scott, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand; Manaaki Whenua Landcare Research Ltd., P.O. Box 38491, Wellington, New Zealand (URL: https://www.landcareresearch.co.nz/).


Nevado del Ruiz (Colombia) — May 1996 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Earthquake swarms during July-September 1995 and January-April 1996

Almost two years of low-level seismicity ended in mid-March 1994 with the occurrence of a high-frequency earthquake swarm followed by long-period events and an explosion on 23 April (BGVN 19:05). Activity returned to low levels through the rest of 1994.

A mid-sized landslide in January 1995 descended the upper reach of the Lagunillas River but caused no significant damage. It was primarily caused by ground and ice-cap instability, not volcanism. Seismicity in July and August 1995 was stronger than in April 1994. Swarms of long-period events reached a maximum count of 1,050 events on 26 July with more than 6.3 x 108 ergs of energy released. Some of the events were related to explosions heard by scientists doing fieldwork some kilometers away from the Arenas Crater, but ash emission was not confirmed. No significant volcano-tectonic activity was registered. Swarms of long-period events during early September 1995 were similar to those of July-August, but were fewer in number and had less energy. This volcanic related seismicity was located mostly toward the Arenas Crater and the SW part of the volcano at shallow depths.

Seismicity during January-April 1996 remained low, except for the first 10 days of January when there was an increase of long-period screw-type events, with a high of seven on the 5th. Most of these events were located at shallow depths near Arenas Crater and over its W side. Screw-type events have become significant since May 1995. Some volcano-tectonic earthquake swarms also occurred during these four months. Two significant swarms were located toward the S part of the volcano, near the RECI seismic station (figure 47). In both swarms, maximum magnitudes were close to 3. Tremor signals were intermittent; some saturated the stations closest to Arenas Crater, but none were correlated to ash emissions. The electronic tiltmeter 800 m from Arenas Crater (FARA) did not show significant variations. During these four months there were a total of 657 volcano-tectonic earthquakes and 1,308 long-period events recorded by the observatory network. This suggests that processes related to fluids within the volcanic conduits were dominant over fracture-related processes.

Figure (see Caption) Figure 47. Location of telemetered stations and significant seismic events recorded at Ruiz during January-April 1996. Courtesy of INGEOMINAS.

Nevado del Ruiz, located 33 km SE of Manizales, is a broad stratovolcano of andesitic and dacitic lavas and andesitic pyroclastic deposits that cover more than 200 km2. Steep headwalls of massive landslides cut its flanks, and melting of its summit ice cap during historical eruptions resulted in devastating lahars. The last eruption began with moderate phreatic ejections on 11 September 1985. On 13 November 1985 an explosive eruption produced pyroclastic flows and surges that melted part of the summit ice cap. Major mudflows subsequently devastated Armero and other towns on the flanks of the volcano, causing over 23,000 fatalities. Intermittent minor ash emissions with occasional stronger phreato-magmatic eruptions continued until July 1991.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: John Jairo Sánchez A., Fernando Gil Cruz, Alvaro Pablo Acevedo, John Makario Londoño, and Jairo Patiño Cifuentes, INGEOMINAS Observatorio Vulcanológico y Sismológico de Manizales (OVSM), A.A. 1296, Manizales, Caldas, Colombia.


Soufriere Hills (United Kingdom) — May 1996 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Dome growth and evacuation continue in May

During May the dome's growth continued, accompanied by small intermittent pyroclastic flows and minor ashfalls that were mostly thought to be generated by rockfalls. Although activity during the first week of May appeared similar to the final week of April, visibility became poor after 5 May. When visible, the dome's new growth was manifested in rapid increases of summit elevation (on 19 April, 865 m; on 30 April, 896 m; on 2 May, 898 m; on 3 May, 909 m). This was followed by an apparent 2-m decrease (i.e. on 4 May, 907 m). Many rockfalls took place on the dome's NE and E flanks. Throughout early May small ash clouds repeatedly blew W depositing very small amounts of ash in the Upper Gages and Amersham areas.

Activity was characterized as slightly less elevated during the second week of May. However, visual observations on 11 May indicated that a small pyroclastic flow had traveled 300 m E of the base of old Castle Peak dome (into the Upper Tar River Valley passing just S of the path of the 3 April pyroclastic flows). Although this flow had set fire to some trees, no significant changes were observed, and small ash clouds again blew W depositing minor ash in the Upper Gages, Amersham, and Fort Barrington areas.

On 12 May the dome area discharged abnormally large ash clouds associated with at least three pyroclastic flows E of the crater down the Tar River. Relatively large ashfalls also took place in the WNW-NW sector at least as far as the coastal area (Fox's Bay). In some places the ashfall reached a maximum thickness of 3 mm. These ashfalls were reported in parts of southern and central Montserrat (including the settlements of Farrell's, Rileys, Windy Hill, Gages, Lees, St. George's Hill, Fox's Bay, Richmond Hill, Garibaldi Hill, Ile Bay, Old Towne, and Salem). Areas affected also included some settlements in the designated safe zone in the N part of the 13-km-long island (including Cork Hill, Weekes', Olveston, and Barzey's) and small amounts of ash fell in the volcano's E sector (Tar River, Long Ground, and Whites).

The 12 May episode began at about 0630 when near-continuous rockfalls took place on the dome's E flank lasting until about 0720. From 0720 to 0945 the rockfalls became intermittent and small but they still produced ash clouds. A further increase in activity produced pyroclastic flows that were seen in the Tar River Valley at around 0945, 0952, 1105 and 1153. The ones at 0945 and 1105 advanced more than 30 m over the sea; the one at 1153 stopped just short of the sea. Activity declined after about 1220 but small-to-moderate rockfalls continued intermittently.

The 12 May pyroclastic flows did not damage any structures but trees were set ablaze in the Tar River Valley area. Excellent views were obtained of the pyroclastic flows.

On 13 May, light ashfalls blew across the volcano's W and SW sectors. On 15 May small ash clouds again blew W; views then suggested that most of the rockfalls producing the ash came from the NE flank of the dome. In addition, on 15 May moderate amounts of steam escaped from the base of the dome's N side; at other times during the second week of May steam mainly escaped from the SW moat.

Rockfalls were especially abundant on 16 and 22 May. In addition, one on 19 May generated an ash plume that reportedly reached an altitude of about 1.2 km. Another on 20 May was associated with a small pyroclastic flow that traveled ~2 km NE of Chances Peak down the Upper Tar River Valley (as far as Hermitage).

Visibility was generally poor for most of the third week of May allowing only brief views into the crater to establish the dome's main areas of growth on the N and NE flanks. When visibility improved on 20 May, nine days after the previous observation on 11 May, the dome contained several smaller spines and a large broad spine at the top. The large spine rose ~20 m and leaned slightly NE. Observers saw no morphological clues for the source of the 12 May pyroclastic flows, possibly because any topographic signs may have been erased by mass wasting during the intervening week. During brief observations from a helicopter, rockfalls mainly cascaded down the dome's N and NE flanks; fewer came down the vigorously steaming SE flank. Very poor visibility returned on 21 and 22 May.

During the week ending on 29 May, visibility gradually improved allowing remote measurement of 200-250°C dome surface temperatures. Observers on 24 May saw at least three spines on top of the dome (none more than 15 m high) and vigorous steaming from both the NW moat and several areas of the dome. A mudflow that descended the Upper Tar River Valley had apparently formed due to heavy rainfall on the previous night (23-24 May). Also noted was a clear scar on the dome's lower NE flank. About a meter deep and perhaps 5- to 10-m wide, the scar provided a path for ongoing rockfalls.

Observations on 26 May indicated dome growth focused on the dome's E, NE, S, and W parts. Also during the week ending on 29 May, the absence of strong wind allowed the development of near vertical ash plumes, some of which ascended up to 2-km altitude. On 29 May observers saw several small pyroclastic flows that started near the upper dome and flowed E down the Tar River Valley, stopping no farther than the Tar River Soufriere.

Seismicity during May is summarized in table 3. Intense hybrid seismicity took place on 2-3 May; otherwise seismic activity for late April through May was dominated by near-continuous broadband tremor, in some cases lasting up to several days. Tremor duration remained qualitative because it was saved on analog recorders; the gains and filters on these recorders were periodically changed in order to look at other types of seismicity, leaving no consistent record for quantitative analysis. In addition to tremor, rockfall signals were also common.

Table 3. Seismic data from Soufriere Hills, May 1996. Courtesy of MVO.

Date Volcano-tectonic Long-period Hybrid Rockfall Amount of tremor
02 May 1996 0 32 52 46 Intermediate
03 May 1996 1 2 345 50 Intermediate to high
04 May 1996 0 5 11 27 Intermediate
05 May 1996 0 11 1 67 Intermediate to high
06 May 1996 0 2 6 55 Intermediate
07 May 1996 0 7 5 50 Low
08 May 1996 0 21 5 64 Low
09 May 1996 0 21 0 73 Low
10 May 1996 1 16 0 97 Low
11 May 1996 1 4 0 62 Low
12 May 1996 0 6 0 109 Low
13 May 1996 0 15 0 127 None
14 May 1996 0 18 0 147 None
15 May 1996 2 50 67 103 None
16 May 1996 0 2 12 80 Low to intermediate
17 May 1996 0 4 8 33 Low to intermediate
18 May 1996 1 12 2 25 Low
19 May 1996 1 9 13 34 Low to intermediate
20 May 1996 0 7 8 43 Intermediate
21 May 1996 0 4 0 32 Intermediate to high
22 May 1996 0 7 0 60 Intermediate to high
23 May 1996 0 12 0 64 Intermediate to high
24 May 1996 0 19 0 50 Low
25 May 1996 0 17 1 104 Low
26 May 1996 0 12 8 114 Intermediate
27 May 1996 1 13 5 85 Intermediate
28 May 1996 1 13 4 86 Intermediate to high
29 May 1996 0 12 3 83 Low to intermediate
30 May 1996 1 5 0 17 Low to intermediate
31 May 1996 1 14 96 97 Intermediate to high

Some of the deformation measurements made during May were taken on the E and S triangles on 26 May. The line lengths on the southern triangle had shortened by 8 to 9 mm since 21 April, while the eastern triangle had shortened by ~1 cm since 20 May. These data obtained by the EDM technique were consistent with recent GPS measurements conducted by the Alan Smith and colleagues from the University of Puerto Rico.

The bulk of the SO2 flux measurements were made with a car-mounted COSPEC driven under the plume (between Cork Hill and St. Patrick's) at ~20 km/hr (table 4). Wind speeds were measured with a hand-held annemometer before and after each day's runs at Windy Hill (3.4 km N of Chances Peak), the windiest spot accessible by road. Typical SO2 fluxes were in the range of 25-205 metric tons/day (t/d). An exception was the 13 May measurement of 357 t/d.

Table 4. Correlation spectrometer (COSPEC) SO2 flux measurements at Soufriere Hills, 28 April-22 May 1996. Courtesy of MVO.

Date Number of measurements Mean (t/d) Sigma
28 Apr 1996 4 26 5
29 Apr 1996 3 86 10
01 May 1996 5 97 29
02 May 1996 3 177 29
03 May 1996 5 89 11
04 May 1996 5 76 17
05 May 1996 3 54 10
09 May 1996 4 138 11
10 May 1996 5 123 46
11 May 1996 4 96 30
13 May 1996 3 357 119
17 May 1996 5 130 29
18 May 1996 5 129 39
19 May 1996 5 203 54
20 May 1996 4 164 31
21 May 1996 5 205 56
22 May 1996 -- 130 --

Resettlement. Since 3 April shelters have housed 1,381 residents. About another 3,000 people rented or shared accommodations in the homes of friends and relatives. The W. H. Bramble airport remained open. Pre-fabricated buildings were erected and church and school buildings were converted to temporary shelters; in addition, the government prepared an ancillary hospital and a power station in the safe area; it made road repairs, upgraded fuel storage, relocated livestock on farms, and established programs for sport, culture, counselling, and guidance.

As of 24 April no plan for mass off-island evacuation for the island's 10,000 inhabitants had been implemented; instead the British and CARICOM governments favored voluntary evacuation. Some residents could remain on Montserrat at the N end of the island, in the area considered comparatively safe by Wadge and Isaacs (1988) and by scientists at MVO. Participants who go to the U.K. could be eligible for employment, income support, housing, and the enrollment of children in British schools for two years.

Reference. Wadge, G., and Isaacs, M.C., 1988, Mapping the volcanic hazards from Soufriere Hills Volcano, Montserrat, West Indies using an image processor: Journal of the Geological Society of London, v. 145, no. 4, p. 541-551.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/); Alan L. Smith, Univ. Puerto Rico, Dept. of Geology, Mayaguez, PR 00680 USA.


Stromboli (Italy) — May 1996 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continued high levels of activity through mid-June; two larger explosions

Seismicity began slowly increasing in mid-March before a sudden jump in tremor intensity on 15-16 April (BGVN 21:04). Observations made by Marco Fulle confirmed that the elevated seismicity corresponded to increased eruptive activity. During the night of 15-16 April about 100 explosions occurred. Continuous fountains from the N part of vent 1/2 (see sketch in BGVN 21:04) rose 50 m and lasted 1-2 hours. The S part of vent 1/2 produced large explosions to heights of 150-200 m that deposited bombs on the terrace beyond vent 3/2. Activity from vent 3/1 consisted of continuous pulsing of incandescent gas and explosions every 2-3 hours. Vent 3/2 produced simultaneous explosions every 10-30 minutes from two vents. Similar activity and ~50 explosions were seen the night of 20-21 April. Additional observations included glowing ex-hornitos in vent 1/3 with regular steam pulses. Vent 3/2 explosions covered the terrace S of Crater 3 with bombs.

Observations of summit activity made during 21-28 April by Alean, Carniel, and Iacop revealed similar activity consisting of continuous spattering and intermittent explosions from Crater 1 (BGVN 21:04). Seismicity remained at high levels through mid-May (BGVN 21:04).

IIV report of 1 and 6 June explosions. At 2147 on 1 June, local seismic stations maintained by the Istituto Internazionale di Vulcanologia (IIV) recorded a powerful event lasting ~3 minutes. Eyewitnesses at Stromboli village reported a single strong blast followed by the fallout of red bombs on the upper N slope. Incandescent bombs fell on vegetation, causing a fire that was extinguished by Civil Protection aircraft in the late morning of 2 June. More than twenty tourists were visiting the summit at the time of the explosion. Some of them reported light burns caused by hot lapilli fallout and minor injuries made while escaping on the steep slope.

A field survey early on 2 June revealed that the explosion occurred at Crater 1. The chain of hornitos inside Crater 1 was blown out, leaving a large deep depression in the N side of the crater floor. The ejected material completely covered the summit, falling more than 500 m to the S and E, and reaching ~1,000 m on the N sector, where it fell on the vegetation. The deposit was made of black scoriaceous bombs, covered by Pele's hair, reddish blocks, and a small amount of fine material. On the Pizzo area, where people usually stay to observe the activity (250 m SE from the vent), the falling bombs ranged between 10 and 50 cm in size, and they covered the area with a density of 3-4/m2.

Strombolian activity after this event shortly returned to a medium intensity and a normal frequency (3-4 events/hour). In the days after there were several hours without any activity alternating to mild Strombolian activity and after 5 June spattering activity lasting several minutes was occasionally observed.

At 0452 on 6 June another strong seismic event from Crater 1 was smaller than the 1 June event and lasted ~1 minute. The eruption was recorded by the surveillance video camera on the Pizzo Sopra La Fossa, 120 m above the vent and 250 m away; the camera had been restored two days earlier. A few people observed the explosion and reported an ash column to a few hundred meters high and bomb fallout on the Sciara del Fuoco. The video showed a very fast gray-brown jet that ascended at ~30 m/second at the upper limit of the camera view; most of the bomb and block fallout was behind the camera. The ash emission lasted ~2 minutes, but at the end only overpressured steam was emitted.

After the explosion, Strombolian activity continued at Crater 1. During fieldwork that afternoon, activity was characterized by low-intensity explosions with emission of bombs and brown ash, interrupted by sporadic strong explosions that produced a larger amount of bombs followed by an almost continuous spattering for 5-15 minutes. All pyroclastic materials fell close to the craters but during the larger explosion some bombs were thrown a few hundred meters from the vents. The Strombolian activity continued through at least 10 June, showing periods of mild explosions interrupted by strong explosions and short periods of continuous spattering.

Observations on 8-9 and 11-12 June. Marco Fulle made observations from Pizzo sopra la Fossa for six hours on the night of 8-9 June. Vent 1/2 exhibited continuous fountaining 50 m high with larger pulses every 5-10 minutes and ejection of meter-sized lava clots. The vent also produced 35 explosions 100-200 m high, with bombs over the Sciara del Fuoco and the terrace up to Crater 2, and meter-sized lava clots inside Crater 1. Vent 3/1 was inactive, but vent 3/2 produced 20 explosions 50 m high with a lot of ash and bombs ejected inside the crater.

Observations from Pizzo sopra la Fossa were again made for six hours on the night of 11-12 June. Vent 1/2 again produced continuous fountaining and 46 explosions. Vent 3/1 remained inactive. Vent 3/2 generated 37 explosions 100-250 m high with minor ash. Fountaining occurred during the explosions and near-vertical jets of bombs fell S of the crater rim and over vent 3/1.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Mauro Coltelli, CNR Istituto Internazionale di Vulcanologia (IIV), Piazza Roma 2, Catania, Italy (URL: http://www.ingv.it/en/); Marco Fulle, Osservatorio Astronomico, Via Tiepolo 11, I-34131 Trieste, Italy.


Tokachidake (Japan) — May 1996 Citation iconCite this Report

Tokachidake

Japan

43.418°N, 142.686°E; summit elev. 2077 m

All times are local (unless otherwise noted)


Seismic activity increases

High seismicity during 18-22 May included 50 events on the 19th. Neither volcanic tremor nor any geophysical changes were observed. A seismicity increase also occurred in December 1995 (BGVN 20:11/12).

Geologic Background. Tokachidake volcano consists of a group of dominantly andesitic stratovolcanoes and lava domes arranged on a NE-SW line above a plateau of welded Pleistocene tuffs in central Hokkaido. Numerous explosion craters and cinder cones are located on the upper flanks of the small stratovolcanoes, with the youngest Holocene centers located at the NW end of the chain. Frequent historical eruptions, consisting mostly of mild-to-moderate phreatic explosions, have been recorded since the mid-19th century. Two larger eruptions occurred in 1926 and 1962. Partial cone collapse of the western flank during the 1926 eruption produced a disastrous debris avalanche and mudflow.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Toya (Japan) — May 1996 Citation iconCite this Report

Toya

Japan

42.544°N, 140.839°E; summit elev. 733 m

All times are local (unless otherwise noted)


Seismic activity increases

The number of earthquakes gradually increased to 18 during the first half of May.

The latest eruptive activity consisted of major explosions in August 1977 that were followed by rapid cryptodome growth. More explosions took place in November 1977, became more vigorous and frequent the following summer, and ended in October 1978. Dome growth and seismicity continued for several years and ceased abruptly in 1982 (SEAN 08:12).

Geologic Background. Usuzan, one of Hokkaido's most well-known volcanoes, is a small stratovolcano located astride the southern topographic rim of the 110,000-year-old Toya caldera. The center of the 10-km-wide, lake-filled caldera contains Nakajima, a group of forested Pleistocene andesitic lava domes. The summit of the basaltic-to-andesitic edifice of Usu is cut by a somma formed about 20-30,000 years ago when collapse of the volcano produced a debris avalanche that reached the sea. Dacitic domes erupted along two NW-SE-trending lines fill and flank the summit caldera. Three of these domes, O-Usu, Ko-Usu and Showashinzan, along with seven crypto-domes, were erupted during historical time. The 1663 eruption of Usu was one of the largest in Hokkaido during historical time. The war-time growth of Showashinzan from 1943-45 was painstakingly documented by the local postmaster, who created the first detailed record of growth of a lava dome.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Ulawun (Papua New Guinea) — May 1996 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Low to moderate emission of steam continues

The low-level activity of previous months persisted through April and May. White vapor continued to be released in small to moderate volumes, but the rate decreased in May. Seismic activity remained at low levels. The seismograph became non-operational on 23 May.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: D. Lolok and C. McKee, RVO.


Unzendake (Japan) — May 1996 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Partial dome collapse triggers a pyroclastic flow

On 1 May a pyroclastic flow was triggered by the partial collapse of an unstable lava dome. Dome collapse causing pyroclastic flows was a common occurrence during the 1990-1995 eruption. Pyroclastic flows began again in February, and tremor was recorded in March. The large Unzen volcanic complex covers much of the Shimabara Peninsula E of Nagasaki. Mayu-yama lava dome was the source of a devastating 1792 avalanche and tsunami.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports