Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Manam (Papua New Guinea) Few ash plumes during November-December 2022

Krakatau (Indonesia) Strombolian activity and ash plumes during November 2022-April 2023

Stromboli (Italy) Strombolian explosions and lava flows continue during January-April 2023

Nishinoshima (Japan) Small ash plumes and fumarolic activity during November 2022 through April 2023

Karangetang (Indonesia) Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Ahyi (United States) Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023



Manam (Papua New Guinea) — July 2023 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Few ash plumes during November-December 2022

Manam is a 10-km-wide island that consists of two active summit craters: the Main summit crater and the South summit crater and is located 13 km off the northern coast of mainland Papua New Guinea. Frequent mild-to-moderate eruptions have been recorded since 1616. The current eruption period began during June 2014 and has more recently been characterized by intermittent ash plumes and thermal activity (BGVN 47:11). This report updates activity that occurred from November 2022 through May 2023 based on information from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Ash plumes were reported during November and December 2022 by the Darwin VAAC. On 7 November an ash plume rose to 2.1 km altitude and drifted NE based on satellite images and weather models. On 14 November an ash plume rose to 2.1 km altitude and drifted W based on RVO webcam images. On 20 November ash plumes rose to 1.8 km altitude and drifted NW. On 26 December an ash plume rose to 3 km altitude and drifted S and SSE.

Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which exceeded at least two Dobson Units (DU) and drifted in different directions (figure 93). Occasional low-to-moderate power thermal anomalies were recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system; less than five anomalies were recorded each month during November 2022 through May 2023 (figure 94). Two thermal hotspots were detected by the MODVOLC thermal alerts system on 10 December 2022. On clear weather days, thermal activity was also captured in infrared satellite imagery in both the Main and South summit craters, accompanied by gas-and-steam emissions (figure 95).

Figure (see Caption) Figure 93. Distinct sulfur dioxide plumes were captured, rising from Manam based on data from the TROPOMI instrument on the Sentinel-5P satellite on 16 November 2022 (top left), 6 December 2022 (top right), 14 January 2023 (bottom left), and 23 March 2023 (bottom right). Plumes generally drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 94. Occasional low-to-moderate power thermal anomalies were detected at Manam during November 2022 through May 2023, as shown in this MIROVA graph (Log Radiative Power). Only three anomalies were detected during late November, one in early December, two during January 2023, one in late March, four during April, and one during late May. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite images show a consistent thermal anomaly (bright yellow-orange) in both the Main (the northern crater) and South summit craters on 10 November 2022 (top left), 15 December 2022 (top right), 3 February 2023 (bottom left), and 24 April 2023 (bottom right). Gas-and-steam emissions occasionally accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — July 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Strombolian activity and ash plumes during November 2022-April 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023 based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Activity was relatively low during November and December 2022. Daily white gas-and-steam plumes rose 25-100 m above the summit and drifted in different directions. Gray ash plumes rose 200 m above the summit and drifted NE at 1047 and at 2343 on 11 November. On 14 November at 0933 ash plumes rose 300 m above the summit and drifted E. An ash plume was reported at 0935 on 15 December that rose 100 m above the summit and drifted NE. An eruptive event at 1031 later that day generated an ash plume that rose 700 m above the summit and drifted NE. A gray ash plume at 1910 rose 100 m above the summit and drifted E. Incandescent material was ejected above the vent based on an image taken at 1936.

During January 2023 daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions. Gray-to-brown ash plumes were reported at 1638 on 3 January, at 1410 and 1509 on 4 January, and at 0013 on 5 January that rose 100-750 m above the summit and drifted NE and E; the gray-to-black ash plume at 1509 on 4 January rose as high as 3 km above the summit and drifted E. Gray ash plumes were recorded at 1754, 2241, and 2325 on 11 January and at 0046 on 12 January and rose 200-300 m above the summit and drifted NE. Toward the end of January, PVMBG reported that activity had intensified; Strombolian activity was visible in webcam images taken at 0041, 0043, and 0450 on 23 January. Multiple gray ash plumes throughout the day rose 200-500 m above the summit and drifted E and SE (figure 135). Webcam images showed progressively intensifying Strombolian activity at 1919, 1958, and 2113 on 24 January; a gray ash plume at 1957 rose 300 m above the summit and drifted E (figure 135). Eruptive events at 0231 and 2256 on 25 January and at 0003 on 26 January ejected incandescent material from the vent, based on webcam images. Gray ash plumes observed during 26-27 January rose 300-500 m above the summit and drifted NE, E, and SE.

Figure (see Caption) Figure 135. Webcam images of a strong, gray ash plume (left) and Strombolian activity (right) captured at Krakatau at 0802 on 23 January 2023 (left) and at 2116 on 24 January 2023 (right). Courtesy of PVMBG and MAGMA Indonesia.

Low levels of activity were reported during February and March. Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in different directions. The Darwin VAAC reported that continuous ash emissions rose to 1.5-1.8 km altitude and drifted W and NW during 1240-1300 on 10 March, based on satellite images, weather models, and PVMBG webcams. White-and-gray ash plumes rose 500 m and 300 m above the summit and drifted SW at 1446 and 1846 on 18 March, respectively. An eruptive event was recorded at 2143, though it was not visible due to darkness. Multiple ash plumes were reported during 27-29 March that rose as high as 2.5 km above the summit and drifted NE, W, and SW (figure 136). Webcam images captured incandescent ejecta above the vent at 0415 and around the summit area at 2003 on 28 March and at 0047 above the vent on 29 March.

Figure (see Caption) Figure 136. Webcam image of a strong ash plume rising above Krakatau at 1522 on 28 March 2023. Courtesy of PVMBG and MAGMA Indonesia.

Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions during April and May. White-and-gray and black plumes rose 50-300 m above the summit on 2 and 9 April. On 11 May at 1241 a gray ash plume rose 1-3 km above the summit and drifted SW. On 12 May at 0920 a gray ash plume rose 2.5 km above the summit and drifted SW and at 2320 an ash plume rose 1.5 km above the summit and drifted SW. An accompanying webcam image showed incandescent ejecta. On 13 May at 0710 a gray ash plume rose 2 km above the summit and drifted SW (figure 137).

Figure (see Caption) Figure 137. Webcam image of an ash plume rising 2 km above the summit of Krakatau at 0715 on 13 May 2023. Courtesy of PVMBG and MAGMA Indonesia.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during November 2022 through April 2023 (figure 138). Some of this thermal activity was also visible in infrared satellite imagery at the crater, accompanied by gas-and-steam and ash plumes that drifted in different directions (figure 139).

Figure (see Caption) Figure 138. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during November 2022 through April 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 139. A thermal anomaly (bright yellow-orange) was visible at Krakatau in infrared (bands B12, B11, B4) satellite images on clear weather days during November 2022 through May 2023. Occasional gas-and-steam and ash plumes accompanied the thermal activity, which drifted in different directions. Images were captured on 25 November 2022 (top left), 15 December 2022 (top right), 27 January 2023 (bottom left), and 12 May 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Stromboli (Italy) — July 2023 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions and lava flows continue during January-April 2023

Stromboli, located in Italy, has exhibited nearly constant lava fountains for the past 2,000 years; recorded eruptions date back to 350 BCE. Eruptive activity occurs at the summit from multiple vents, which include a north crater area (N area) and a central-southern crater (CS area) on a terrace known as the ‘terrazza craterica’ at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Activity typically consists of Strombolian explosions, incandescent ejecta, lava flows, and pyroclastic flows. Thermal and visual monitoring cameras are located on the nearby Pizzo Sopra La Fossa, above the terrazza craterica, and at multiple flank locations. The current eruption period has been ongoing since 1934 and recent activity has consisted of frequent Strombolian explosions and lava flows (BGVN 48:02). This report updates activity during January through April 2023 primarily characterized by Strombolian explosions and lava flows based on reports from Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Frequent explosive activity continued throughout the reporting period, generally in the low-to-medium range, based on the number of hourly explosions in the summit crater (figure 253, table 16). Intermittent thermal activity was recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 254). According to data collected by the MODVOLC thermal algorithm, a total of 9 thermal alerts were detected: one on 2 January 2023, one on 1 February, five on 24 March, and two on 26 March. The stronger pulses of thermal activity likely reflected lava flow events. Infrared satellite imagery captured relatively strong thermal hotspots at the two active summit craters on clear weather days, showing an especially strong event on 8 March (figure 255).

Figure (see Caption) Figure 253. Explosive activity persisted at Stromboli during January through April 2023, with low to medium numbers of daily explosions at the summit crater. The average number of daily explosions (y-axis) during January through April (x-axis) are broken out by area and as a total, with red for the N area, blue for the CS area, and black for the combined total. The data are smoothed as daily (thin lines) and weekly (thick lines) averages. The black squares along the top represent days with no observations due to poor visibility (Visib. Scarsa). The right axis indicates the qualitative activity levels from low (basso) to highest (altissimo) with the green highlighted band indicating the most common level. Courtesy of INGV (Report 17/2023, Stromboli, Bollettino Settimanale, 18/04/2023 - 24/04/2023).

Table 16. Summary of type, frequency, and intensity of explosive activity at Stromboli by month during January-April 2023; information from webcam observations. Courtesy of INGV weekly reports.

Month Explosive Activity
Jan 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 4 vents in the N area and 1-2 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-12 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Feb 2023 Typical Strombolian activity with spattering in the N crater area. Explosions were reported from 2-3 vents in the N area and 1-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-14 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Mar 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 2-3 vents in the N area and 2-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-18 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Apr 2023 Typical Strombolian activity. Explosions were reported from 2 vents in the N area and 2-3 vents in the CS area. The average hourly frequency of explosions was low-to-high (1-16 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in both the N and CS crater areas.
Figure (see Caption) Figure 254. Intermittent thermal activity at Stromboli was detected during January through April 2023 and varied in strength, as shown in this MIROVA graph (Log Radiative Power). A pulse of activity was captured during late March. Courtesy of MIROVA.
Figure (see Caption) Figure 255. Infrared (bands B12, B11, B4) satellite images showing persistent thermal anomalies at both summit crater on 1 February 2023 (top left), 23 March 2023 (top right), 8 March 2023 (bottom left), and 27 April 2023. A particularly strong thermal anomaly was visible on 8 March. Courtesy of Copernicus Browser.

Activity during January-February 2023. Strombolian explosions were reported in the N crater area, as well as lava effusion. Explosive activity in the N crater area ejected coarse material (bombs and lapilli). Intense spattering was observed in both the N1 and N2 craters. In the CS crater area, explosions generally ejected fine material (ash), sometimes to heights greater than 250 m. The intensity of the explosions was characterized as low-to-medium in the N crater and medium-to-high in the CS crater. After intense spattering activity from the N crater area, a lava overflow began at 2136 on 2 January that flowed part way down the Sciara del Fuoco, possibly moving down the drainage that formed in October, out of view from webcams. The flow remained active for a couple of hours before stopping and beginning to cool. A second lava flow was reported at 0224 on 4 January that similarly remained active for a few hours before stopping and cooling. Intense spattering was observed on 11 and 13 January from the N1 crater. After intense spattering activity at the N2 crater at 1052 on 17 January another lava flow started to flow into the upper part of the Sciara del Fuoco (figure 256), dividing into two: one that traveled in the direction of the drainage formed in October, and the other one moving parallel to the point of emission. By the afternoon, the rate of the flow began to decrease, and at 1900 it started to cool. A lava flow was reported at 1519 on 24 January following intense spattering in the N2 area, which began to flow into the upper part of the Sciara del Fuoco. By the morning of 25 January, the lava flow had begun to cool. During 27 January the frequency of eruption in the CS crater area increased to 6-7 events/hour compared to the typical 1-7 events/hour; the following two days showed a decrease in frequency to less than 1 event/hour. Starting at 1007 on 30 January a high-energy explosive sequence was produced by vents in the CS crater area. The sequence began with an initial energetic pulse that lasted 45 seconds, ejecting predominantly coarse products 300 m above the crater that fell in an ESE direction. Subsequent and less intense explosions ejected material 100 m above the crater. The total duration of this event lasted approximately two minutes. During 31 January through 6, 13, and 24 February spattering activity was particularly intense for short periods in the N2 crater.

Figure (see Caption) Figure 256. Webcam images of the lava flow development at Stromboli during 17 January 2023 taken by the SCT infrared camera. The lava flow appears light yellow-green in the infrared images. Courtesy of INGV (Report 04/2023, Stromboli, Bollettino Settimanale, 16/01/2023 - 22/01/2023).

An explosive sequence was reported on 16 February that was characterized by a major explosion in the CS crater area (figure 257). The sequence began at 1817 near the S2 crater that ejected material radially. A few seconds later, lava fountains were observed in the central part of the crater. Three explosions of medium intensity (material was ejected less than 150 m high) were recorded at the S2 crater. The first part of this sequence lasted approximately one minute, according to INGV, and material rose 300 m above the crater and then was deposited along the Sciara del Fuoco. The second phase began at 1818 at the S1 crater; it lasted seven seconds and material was ejected 150 m above the crater. Another event 20 seconds later lasted 12 seconds, also ejecting material 150 m above the crater. The sequence ended with at least three explosions of mostly fine material from the S1 crater. The total duration of this sequence was about two minutes.

Figure (see Caption) Figure 257. Webcam images of the explosive sequence at Stromboli on 16 February 2023 taken by the SCT and SCV infrared and visible cameras. The lava appears light yellow-green in the infrared images. Courtesy of INGV (Report 08/2023, Stromboli, Bollettino Settimanale, 13/02/2023 - 19/02/2023).

Short, intense spattering activity was noted above the N1 crater on 27 and 28 February. A lava overflow was first reported at 0657 from the N2 crater on 27 February that flowed into the October 2022 drainage. By 1900 the flow had stopped. A second lava overflow also in the N crater area occurred at 2149, which overlapped the first flow and then stopped by 0150 on 28 February. Material detached from both the lava overflows rolled down the Sciara del Fuoco, some of which was visible in webcam images.

Activity during March-April 2023. Strombolian activity continued with spattering activity and lava overflows in the N crater area during March. Explosive activity at the N crater area varied from low (less than 80 m high) to medium (less than 150 m high) and ejected coarse material, such as bombs and lapilli. Spattering was observed above the N1 crater, while explosive activity at the CS crater area varied from medium to high (greater than 150 m high) and ejected coarse material. Intense spattering activity was observed for short periods on 6 March above the N1 crater. At approximately 0610 a lava overflow was reported around the N2 crater on 8 March, which then flowed into the October 2022 drainage. By 1700 the flow started to cool. A second overflow began at 1712 on 9 March and overlapped the previous flow. It had stopped by 2100. Material from both flows was deposited along the Sciara del Fuoco, though much of the activity was not visible in webcam images. On 11 March a lava overflow was observed at 0215 that overlapped the two previous flows in the October 2022 drainage. By late afternoon on 12 March, it had stopped.

During a field excursion on 16 March, scientists noted that a vent in the central crater area was degassing. Another vent showed occasional Strombolian activity that emitted ash and lapilli. During 1200-1430 low-to-medium intense activity was reported; the N1 crater emitted ash emissions and the N2 crater emitted both ash and coarse material. Some explosions also occurred in the CS crater area that ejected coarse material. The C crater in the CS crater area occasionally showed gas jetting and low intensity explosions on 17 and 22 March; no activity was observed at the S1 crater. Intense, longer periods of spattering were reported in the N1 crater on 19, 24, and 25 March. Around 2242 on 23 March a lava overflow began from the N1 crater that, after about an hour, began moving down the October 2022 drainage and flow along the Sciara del Fuoco (figure 258). Between 0200 and 0400 on 26 March the flow rate increased, which generated avalanches of material from collapses at the advancing flow front. By early afternoon, the flow began to cool. On 25 March at 1548 an explosive sequence began from one of the vents at S2 in the CS crater area (figure 258). Fine ash mixed with coarse material was ejected 300 m above the crater rim and drifted SSE. Some modest explosions around Vent C were detected at 1549 on 25 March, which included an explosion at 1551 that ejected coarse material. The entire explosive sequence lasted approximately three minutes.

Figure (see Caption) Figure 258. Webcam images of the lava overflow in the N1 crater area of Stromboli on 23 March 2023 taken by the SCT infrared camera. The lava appears light yellow-green in the infrared images. The start of the explosive sequence was also captured on 25 March 2023 accompanied by an eruption plume (e) captured by the SCT and SPT infrared webcams. Courtesy of INGV (Report 13/2023, Stromboli, Bollettino Settimanale, 20/03/2023 - 26/03/2023).

During April explosions persisted in both the N and CS crater areas. Fine material was ejected less than 80 m above the N crater rim until 6 April, followed by ejection of coarser material. Fine material was also ejected less than 80 m above the CS crater rim. The C and S2 crater did not show significant eruptive activity. On 7 April an explosive sequence was detected in the CS crater area at 1203 (figure 259). The first explosion lasted approximately 18 seconds and ejected material 400 m above the crater rim, depositing pyroclastic material in the upper part of the Sciara del Fuoco. At 1204 a second, less intense explosion lasted approximately four seconds and deposited pyroclastic products outside the crater area and near Pizzo Sopra La Fossa. A third explosion at 1205 was mainly composed of ash that rose about 150 m above the crater and lasted roughly 20 seconds. A fourth explosion occurred at 1205 about 28 seconds after the third explosion and ejected a mixture of coarse and fine material about 200 m above the crater; the explosion lasted roughly seven seconds. Overall, the entire explosive sequence lasted about two minutes and 20 seconds. After the explosive sequence on 7 April, explosions in both the N and CS crater areas ejected material as high as 150 m above the crater.

Figure (see Caption) Figure 259. Webcam images of the explosive sequence at Stromboli during 1203-1205 (local time) on 7 April 2023 taken by the SCT infrared camera. Strong eruption plumes are visible, accompanied by deposits on the nearby flanks. Courtesy of INGV (Report 15/2023, Stromboli, Bollettino Settimanale, 03/04/2023 - 09/04/2023).

On 21 April research scientists from INGV made field observations in the summit area of Stromboli, and some lapilli samples were collected. In the N crater area near the N1 crater, a small cone was observed with at least two active vents, one of which was characterized by Strombolian explosions. The other vent produced explosions that ejected ash and chunks of cooled lava. At the N2 crater at least one vent was active and frequently emitted ash. In the CS crater area, a small cone contained 2-3 degassing vents and a smaller, possible fissure area also showed signs of degassing close to the Pizzo Sopra La Fossa. In the S part of the crater, three vents were active: a small hornito was characterized by modest and rare explosions, a vent that intermittently produced weak Strombolian explosions, and a vent at the end of the terrace that produced frequent ash emissions. Near the S1 crater there was a hornito that generally emitted weak gas-and-steam emissions, sometimes associated with “gas rings”. On 22 April another field inspection was carried out that reported two large sliding surfaces on the Sciara del Fuoco that showed where blocks frequently descended toward the sea. A thermal anomaly was detected at 0150 on 29 April.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — July 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Small ash plumes and fumarolic activity during November 2022 through April 2023

Nishinoshima is a small island located about 1,000 km S of Tokyo in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. Eruptions date back to 1973; the most recent eruption period began in October 2022 and was characterized by ash plumes and fumarolic activity (BGVN 47:12). This report describes ash plumes and fumarolic activity during November 2022 through April 2023 based on monthly reports from the Japan Meteorological Agency (JMA) monthly reports and satellite data.

The most recent eruptive activity prior to the reporting internal occurred on 12 October 2022, when an ash plume rose 3.5 km above the crater rim. An aerial observation conducted by the Japan Coast Guard (JCG) on 25 November reported that white fumaroles rose approximately 200 m above the central crater of a pyroclastic cone (figure 119), and multiple plumes were observed on the ESE flank of the cone. Discolored water ranging from reddish-brown to brown and yellowish-green were visible around the perimeter of the island (figure 119). No significant activity was reported in December.

Figure (see Caption) Figure 119. Aerial photo of gas-and-steam plumes rising 200 m above Nishinoshima on 25 November 2022. Reddish brown to brown and yellowish-green discolored water was visible around the perimeter of the island. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, November 2022).

During an overflight conducted by JCG on 25 January 2023 intermittent activity and small, blackish-gray plumes rose 900 m above the central part of the crater were observed (figure 120). The fumarolic zone of the E flank and base of the cone had expanded and emissions had intensified. Dark brown discolored water was visible around the perimeter of the island.

Figure (see Caption) Figure 120. Aerial photo of a black-gray ash plume rising approximately 900 m above the crater rim of Nishinoshima on 25 January 2023. White fumaroles were visible on the E slope of the pyroclastic cone. Dense brown to brown discolored water was observed surrounding the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, January, 2023).

No significant activity was reported during February through March. Ash plumes at 1050 and 1420 on 11 April rose 1.9 km above the crater rim and drifted NW and N. These were the first ash plumes observed since 12 October 2022. On 14 April JCG carried out an overflight and reported that no further eruptive activity was visible, although white gas-and-steam plumes were visible from the central crater and rose 900 m high (figure 121). Brownish and yellow-green discolored water surrounded the island.

Figure (see Caption) Figure 121. Aerial photo of white gas-and-steam plumes rising 900 m above Nishinoshima on 14 April 2023. Brown and yellow-green discolored water is visible around the perimeter of the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, April, 2023).

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during November 2022 through April 2023 (figure 123). A cluster of six to eight anomalies were detected during November while a smaller number were detected during the following months: two to three during December, one during mid-January 2023, one during February, five during March, and two during April. Thermal activity was also reflected in infrared satellite data at the summit crater, accompanied by occasional gas-and-steam plumes (figure 124).

Figure (see Caption) Figure 123. Intermittent low-to-moderate thermal anomalies were detected at Nishinoshima during November 2022 through April 2023, according to this MIROVA graph (Log Radiative Power). A cluster of anomalies occurred throughout November, while fewer anomalies were detected during the following months. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Infrared (bands B12, B11, B4) satellite images show a small thermal anomaly at the summit crater of Nishinoshima on 9 January 2023 (left) and 8 February 2023 (right). Gas-and-steam plumes accompanied this activity and extended S and SE, respectively. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — July 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in late November 2018 and has more recently consisted of weak thermal activity and gas-and-steam emissions (BGVN 48:01). This report updates activity characterized by lava flows, incandescent avalanches, and ash plumes during January through June 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Activity during January was relatively low and mainly consisted of white gas-and-steam emissions that rose 25-150 m above Main Crater (S crater) and drifted in different directions. Incandescence was visible from the lava dome in Kawah Dua (the N crater). Weather conditions often prevented clear views of the summit. On 18 January the number of seismic signals that indicated avalanches of material began to increase. In addition, there were a total of 71 earthquakes detected during the month.

Activity continued to increase during the first week of February. Material from Main Crater traveled as far as 800 m down the Batuawang (S) and Batang (W) drainages and as far as 1 km W down the Beha (W) drainage on 4 February. On 6 February 43 earthquake events were recorded, and on 7 February, 62 events were recorded. White gas-and-steam emissions rose 25-250 m above both summit craters throughout the month. PVMBG reported an eruption began during the evening of 8 February around 1700. Photos showed incandescent material at Main Crater. Incandescent material had also descended the flank in at least two unconfirmed directions as far as 2 km from Main Crater, accompanied by ash plumes (figure 60). As a result, PVMBG increased the Volcano Alert Level (VAL) to 3 (the second highest level on a 1-4 scale).

Figure (see Caption) Figure 60. Photos of the eruption at Karangetang on 8 February 2023 that consisted of incandescent material descending the flanks (top left), ash plumes (top right and bottom left), and summit crater incandescence (bottom right). Courtesy of IDN Times.

Occasional nighttime webcam images showed three main incandescent lava flows of differing lengths traveling down the S, SW, and W flanks (figure 61). Incandescent rocks were visible on the upper flanks, possibly from ejected or collapsed material from the crater, and incandescence was the most intense at the summit. Based on analyses of satellite imagery and weather models, the Darwin VAAC reported that daily ash plumes during 16-20 February rose to 2.1-3 km altitude and drifted NNE, E, and SE. BNPB reported on 16 February that as many as 77 people were evacuated and relocated to the East Siau Museum. A webcam image taken at 2156 on 17 February possibly showed incandescent material descending the SE flank. Ash plumes rose to 2.1 km altitude and drifted SE during 22-23 February, according to the Darwin VAAC.

Figure (see Caption) Figure 61. Webcam image of summit incandescence and lava flows descending the S, SW, and W flanks of Karangetang on 13 February 2023. Courtesy of MAGMA Indonesia.

Incandescent avalanches of material and summit incandescence at Main Crater continued during March. White gas-and-steam emissions during March generally rose 25-150 m above the summit crater; on 31 March gas-and-steam emissions rose 200-400 m high. An ash plume rose to 2.4 km altitude and drifted S at 1710 on 9 March and a large thermal anomaly was visible in images taken at 0550 and 0930 on 10 March. Incandescent material was visible at the summit and on the flanks based on webcam images taken at 0007 and 2345 on 16 March, at 1828 on 17 March, at 1940 on 18 March, at 2311 on 19 March, and at 2351 on 20 March. Incandescence was most intense on 18 and 20 March and webcam images showed possible Strombolian explosions (figure 62). An ash plume rose to 2.4 km altitude and drifted SW on 18 March, accompanied by a thermal anomaly.

Figure (see Caption) Figure 62. Webcam image of intense summit incandescence and incandescent avalanches descending the flanks of Karangetang on 18 March 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.

Summit crater incandescence at Main Crater and on the flanks persisted during April. Incandescent material at the S crater and on the flanks was reported at 0016 on 1 April. The lava flows had stopped by 1 April according to PVMBG, although incandescence was still visible up to 10 m high. Seismic signals indicating effusion decreased and by 6 April they were no longer detected. Incandescence was visible from both summit craters. On 26 April the VAL was lowered to 2 (the second lowest level on a 1-4 scale). White gas-and-steam emissions rose 25-200 m above the summit crater.

During May white gas-and-steam emissions generally rose 50-250 m above the summit, though it was often cloudy, which prevented clear views; on 21 May gas-and-steam emissions rose 50-400 m high. Nighttime N summit crater incandescence rose 10-25 m above the lava dome, and less intense incandescence was noted above Main Crater, which reached about 10 m above the dome. Sounds of falling rocks at Main Crater were heard on 15 May and the seismic network recorded 32 rockfall events in the crater on 17 May. Avalanches traveled as far as 1.5 km down the SW and S flanks, accompanied by rumbling sounds on 18 May. Incandescent material descending the flanks was captured in a webcam image at 2025 on 19 May (figure 63) and on 29 May; summit crater incandescence was observed in webcam images at 2332 on 26 May and at 2304 on 29 May. On 19 May the VAL was again raised to 3.

Figure (see Caption) Figure 63. Webcam image showing incandescent material descending the flanks of Karangetang on 19 May 2023. Courtesy of MAGMA Indonesia.

Occasional Main Crater incandescence was reported during June, as well as incandescent material on the flanks. White gas-and-steam emissions rose 10-200 m above the summit crater. Ash plumes rose to 2.1 km altitude and drifted SE and E during 2-4 June, according to the Darwin VAAC. Material on the flanks of Main Crater were observed at 2225 on 7 June, at 2051 on 9 June, at 0007 on 17 June, and at 0440 on 18 June. Webcam images taken on 21, 25, and 27 June showed incandescence at Main Crater and from material on the flanks.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during mid-February through March and mid-May through June, which represented incandescent avalanches and lava flows (figure 64). During April through mid-May the power of the anomalies decreased but frequent anomalies were still detected. Brief gaps in activity occurred during late March through early April and during mid-June. Infrared satellite images showed strong lava flows mainly affecting the SW and S flanks, accompanied by gas-and-steam emissions (figure 65). According to data recorded by the MODVOLC thermal algorithm, there were a total of 79 thermal hotspots detected: 28 during February, 24 during March, one during April, five during May, and 21 during June.

Figure (see Caption) Figure 64. Strong thermal activity was detected during mid-February 2023 through March and mid-May through June at Karangetang during January through June 2023, as recorded by this MIROVA graph (Log Radiative Power). During April through mid-May the power of the anomalies decreased, but the frequency at which they occurred was still relatively high. A brief gap in activity was shown during mid-June. Courtesy of MIROVA.
Figure (see Caption) Figure 65. Incandescent avalanches of material and summit crater incandescence was visible in infrared satellite images (bands 12, 11, 8A) at both the N and S summit crater of Karangetang on 17 February 2023 (top left), 13 April 2023 (top right), 28 May 2023 (bottom left), and 7 June 2023 (bottom right), as shown in these infrared (bands 12, 11, 8A) satellite images. The incandescent avalanches mainly affected the SW and S flanks. Sometimes gas-and-steam plumes accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); IDN Times, Jl. Jend. Gatot Subroto Kav. 27 3rd Floor Kuningan, Jakarta, Indonesia 12950, Status of Karangetang Volcano in Sitaro Islands Increases (URL: https://sulsel.idntimes.com/news/indonesia/savi/status-gunung-api-karangetang-di-kepulauan-sitaro-meningkat?page=all).


Ahyi (United States) — July 2023 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Ahyi seamount is a large, conical submarine volcano that rises to within 75 m of the ocean surface about 18 km SE of the island of Farallon de Pajaros in the Northern Marianas. The remote location of the seamount has made eruptions difficult to document, but seismic stations installed in the region confirmed an eruption in the vicinity in 2001. No new activity was detected until April-May 2014 when an eruption was detected by NOAA (National Oceanic and Atmospheric Administration) divers, hydroacoustic sensors, and seismic stations (BGVN 42:04). New activity was first detected on 15 November by hydroacoustic sensors that were consistent with submarine volcanic activity. This report covers activity during November 2022 through June 2023 based on daily and weekly reports from the US Geological Survey.

Starting in mid-October, hydroacoustic sensors at Wake Island (2.2 km E) recorded signals consistent with submarine volcanic activity, according to a report from the USGS issued on 15 November 2022. A combined analysis of the hydroacoustic signals and seismic stations located at Guam and Chichijima Island, Japan, suggested that the source of this activity was at or near the Ahyi seamount. After a re-analysis of a satellite image of the area that was captured on 6 November, USGS confirmed that there was no evidence of discoloration at the ocean surface. Few hydroacoustic and seismic signals continued through November, including on 18 November, which USGS suggested signified a decline or pause in unrest. A VONA (Volcano Observatory Notice for Aviation) reported that a discolored water plume was persistently visible in satellite data starting on 18 November (figure 6). Though clouds often obscured clear views of the volcano, another discolored water plume was captured in a satellite image on 26 November. The Aviation Color Code (ACC) was raised to Yellow (the second lowest level on a four-color scale) and the Volcano Alert Level (VAL) was raised to Advisory (the second lowest level on a four-level scale) on 29 November.

Figure (see Caption) Figure 6. A clear, true color satellite image showed a yellow-green discolored water plume extending NW from the Ahyi seamount (white arrow) on 21 November 2022. Courtesy of Copernicus Browser.

During December, occasional detections were recorded on the Wake Island hydrophone sensors and discolored water over the seamount remained visible. During 2-7, 10-12, and 16-31 December possible explosion signals were detected. A small area of discolored water was observed in high-resolution Sentinel-2 satellite images during 1-6 December (figure 7). High-resolution satellite images recorded discolored water plumes on 13 December that originated from the summit region; no observations indicated that activity breached the ocean surface. A possible underwater plume was visible in satellite images on 18 December, and during 19-20 December a definite but diffuse underwater plume located SSE from the main vent was reported. An underwater plume was visible in a satellite image taken on 26 December (figure 7).

Figure (see Caption) Figure 7. Clear, true color satellite images showed yellow-green discolored water plumes extending NE and W from Ahyi (white arrows) on 1 (left) and 26 (right) December 2022, respectively. Courtesy of Copernicus Browser.

Hydrophone sensors continued to detect signals consistent with possible explosions during 1-8 January 2023. USGS reported that the number of detections decreased during 4-5 January. The hydrophone sensors experienced a data outage that started at 0118 on 8 January and continued through 10 January, though according to USGS, possible explosions were recorded prior to the data outage and likely continued during the outage. A discolored water plume originating from the summit region was detected in a partly cloudy satellite image on 8 January. On 11-12 and 15-17 January possible explosion signals were recorded again. One small signal was detected during 22-23 January and several signals were recorded on 25 and 31 January. During 27-31 January a plume of discolored water was observed above the seamount in satellite imagery (figure 8).

Figure (see Caption) Figure 8. True color satellite images showed intermittent yellow-green discolored water plumes of various sizes extending N on 5 January 2023 (top left), SE on 30 January 2023 (top right), W on 4 February 2023 (bottom left), and SW on 1 March 2023 (bottom right) from Ahyi (white arrows). Courtesy of Copernicus Browser.

Low levels of activity continued during February and March, based on data from pressure sensors on Wake Island. During 1 and 4-6 February activity was reported, and a submarine plume was observed on 4 February (figure 8). Possible explosion signals were detected during 7-8, 10, 13-14, and 24 February. During 1-2 and 3-5 March a plume of discolored water was observed in satellite imagery (figure 8). Almost continuous hydroacoustic signals were detected in remote pressure sensor data on Wake Island 2,270 km E from the volcano during 7-13 March. During 12-13 March water discoloration around the seamount was observed in satellite imagery, despite cloudy weather. By 14 March discolored water extended about 35 km, but no direction was noted. USGS reported that the continuous hydroacoustic signals detected during 13-14 March stopped abruptly on 14 March and no new detections were observed. Three 30 second hydroacoustic detections were reported during 17-19 March, but no activity was visible due to cloudy weather. A data outage was reported during 21-22 March, making pressure sensor data unavailable; a discolored water plume was, however, visible in satellite data. A possible underwater explosion signal was detected by pressure sensors at Wake Island on 26, 29, and 31 March, though the cause and origin of these events were unclear.

Similar low activity continued during April, May, and June. Several signals were detected during 1-3 April in pressure sensors at Wake Island. USGS suggested that these may be related to underwater explosions or earthquakes at the volcano, but no underwater plumes were visible in clear satellite images. The pressure sensors had data outages during 12-13 April and no data were recorded; no underwater plumes were visible in satellite images, although cloudy weather obscured most clear views. Eruptive activity was reported starting at 2210 on 21 May. On 22 May a discolored water plume that extended 4 km was visible in satellite images, though no direction was recorded. During 23-24 May some signals were detected by the underwater pressure sensors. Possible hydroacoustic signals were detected during 2-3 and 6-8 June. Multiple hydroacoustic signals were detected during 9-11 and 16-17 June, although no activity was visible in satellite images. One hydroacoustic signal was detected during 23-24 June, but there was some uncertainty about its association with volcanic activity. A single possible hydroacoustic signal was detected during 30 June to 1 July.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the ocean surface ~18 km SE of the island of Farallon de Pajaros in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: US Geological Survey, Volcano Hazards Program (USGS-VHP), 12201 Sunrise Valley Drive, Reston, VA, USA, https://volcanoes.usgs.gov/index.html; Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 25, Number 03 (March 2000)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

October 1999 pyroclastic flow amid 2 years of comparative quiet

Etna (Italy)

Frequent eruptions in early 2000 discharging lava flows at new vents and fissures

Galeras (Colombia)

Two small eruptions in March and April 2000 preceded by tornillo events

Guagua Pichincha (Ecuador)

January-February marked by dome growth and small ash emissions

Irazu (Costa Rica)

Microseisms during June-November 1999 take place 12-61 times a month

Langila (Papua New Guinea)

Vapor and weak ash emissions in early 2000

Manam (Papua New Guinea)

In early 2000 low seismicity, weak ash emissions, and some inflation

Momotombo (Nicaragua)

Very low seismicity during April-November 1999

Poas (Costa Rica)

Conspicuous plumes and abundant low-frequency earthquakes in late 1999

Rabaul (Papua New Guinea)

During early 2000, occasional ash clouds and the 1995 vent reactivates

Rincon de la Vieja (Costa Rica)

Non-eruptive through November 1999 but with ongoing tremor

Telica (Nicaragua)

Eruptive activity declines in February, but seismicity remains high

Toya (Japan)

Eruptions began on 31 March and proceeded from multiple craters on the NW flank

Turrialba (Costa Rica)

Microseisms diminish in number during July-November 1999

Ulawun (Papua New Guinea)

Minor vapor emissions continue in early 2000

Whakaari/White Island (New Zealand)

Minor ash emissions resume on 7 March, escaping from multiple vents



Arenal (Costa Rica) — March 2000 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


October 1999 pyroclastic flow amid 2 years of comparative quiet

Activity at Arenal since May 1999 (BGVN 24:06) has been comparatively quiet, a condition which has generally prevailed since an energetic outburst in May 1998 (BGVN 23:06), continued during July 1999 through January 2000. However, this relative quiet was broken in October 1999 by an anomalous pyroclastic flow, discussed below. Elevated activity occurred in November as well. In addition to lava flows traveling N and NE during this interval, in July a new, N-directed lava flow was emitted. Another during September traveled NE spawning occasional rockfalls off its front. Few eruptions produced plumes rising more than a kilometer above crater C, and crater D remained fumarolic in nature. Cold avalanches continued to occur down local valleys (including the Calle de Arenas, Manolo, Guillermina, and Agua Caliente). During June-August electronic distance measuring disclosed that the survey points underwent an average of 2 cm expansion.

A pyroclastic flow at 1721 on 26 October descended the W flank as far as the ~900 m contour and left an eroded swath. It was smaller and its path differed from the May 1998 pyroclastic flow down the N-NW flank along the Tabacón river (BGVN 23:04). In the 26 October event, fine tephra accumulated in an area ~200 m wide. This pyroclastic flow may have consisted of a series of several distinct events. The column height was ~1 km above the vent.

The 26 October event's precursors included heightened explosive activity and increased seismicity beginning on 8 October, and a decrease in tremor. A precursory seismic swarm may have also been related. Although high-frequency earthquake swarms are generally rare at Arenal, a modest one began in August 1999 and reached a maximum on 17 September (5 events per day). The swarm ceased after 1 October; it consisted of 55 registered events with 13 of these located. The earthquakes comprising the swarm had amplitudes below Mc 2.3. Hypocenters for the located earthquakes typically occurred at depths of 2-4 km. After the pyroclastic flow, the energy transmitted in explosions and the amplitude of tremors dropped considerably.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, E. Duarte, V. Barboza, R. Sáenz, E. Malavassi, R. Van der Laat, T. Marino, J. Barquero, and E. Hernández, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; M. Martinez and J. Valdez; Laboratorio de Quimica de la Atmosfera, Universidad Nacional; R. Barquero, Instituto Costarricense de Electricidad (I.C.E.), Departamento de Geologia, Apdo. 10032-1000, San José, Costa Rica; I. Arroyo and G. Alvarado, Observatorio Sismológico Vulcanológico Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Etna (Italy) — March 2000 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Frequent eruptions in early 2000 discharging lava flows at new vents and fissures

Etna showed relatively low levels of activity during December 1999 and through 25 January 2000. In contrast, on 26 January, Southeast Crater (SEC) started a new series of strong eruptive episodes, and from then until the end of March, 46 episodes occurred at that crater (table 7). Episodic eruptive activity continued into April. The information for the following report, covering December 1999 to March 2000, was compiled by Boris Behncke at the University of Catania, with additional information from Marco Fulle, Roberto Carniel, and Jürg Alean of Stromboli On-Line. The compilation is based on personal visits to the summit, observations from Catania, and other sources cited in the text.

Table 7. Chronology of eruptive episodes from the Southeast Crater at Etna, 26 January-24 March 2000. Courtesy of Boris Behncke.

Episode Number Date Approximate Time Comment
1 26 Jan 2000 0100-1300 Lava flows until late evening, flow about 2.5 km long.
2 29 Jan 2000 0845-0900 Lava flows until nightfall; less voluminous than 1st episode.
3 01 Feb 2000 0900-1000 Light ashfall on Catania.
4 02 Feb 2000 0800-0830 --
5 03 Feb 2000 0800-0900 --
6 04 Feb 2000 0950-1020 --
7 05 Feb 2000 0010-0030 Lava emission from N flank fracture heralds this episode.
8 05 Feb 2000 1200-1230 --
9 06 Feb 2000 0430-0500 --
10 06 Feb 2000 2300-2330 --
11 07 Feb 2000 1650-1710 Spectacular fountains from multiple vents at SEC summit, and eruption column ~5 km high.
12 08 Feb 2000 1130-1145 Observed from 3 km distance.
13 08 Feb 2000 2000-2015 --
14 09 Feb 2000 0700-0800 --
15 10 Feb 2000 0020-0100 --
16 10 Feb 2000 1330-1345 --
17 10 Feb 2000 2130-2300 --
18 11 Feb 2000 0530-0550 Four spectacular 400-m-high fire-fountains from the summit of SEC, and eruptive fracture on N flank.
19 11 Feb 2000 2200-2220 --
20 12 Feb 2000 0350-0430 --
21 12 Feb 2000 0945-1030 Strong ash emission from upper N flank at end of episode.
22 13 Feb 2000 0030-0050 Occurred during very bad weather and poor visibility.
23 13 Feb 2000 1240-1300 --
24 14 Feb 2000 0300-0330 --
25 14 Feb 2000 1600-1630 Oblique cauliflower-shaped plume; ashfall 50 km away. Observed from 900 m distance.
26 15 Feb 2000 1800-1820 The most violent episode of the sequence, with fountains to 800 m. Observed from ~1 km distance.
27 16 Feb 2000 0640-0700 --
28 16 Feb 2000 1605-1615 Observed from 1 km distance.
29 17 Feb 2000 0500-0530 --
30 17 Feb 2000 1310-1330 --
31 17 Feb 2000 2130-2200 --
32 18 Feb 2000 0730-0800 --
33 18 Feb 2000 1640-1700 --
34 19 Feb 2000 0900-0945 --
35 20 Feb 2000 1700-1820 --
36 23 Feb 2000 0245-0435 Activity less violent than during earlier paroxysms; buildup phase lasts much longer than in previous events.
37 27 Feb 2000 0645-0950 --
38 28 Feb 2000 1630-1730 Activity begins to concentrate at eruptive center S of the SEC ("Sudestino").
39 04 Mar 2000 0400-0450 --
40 08 Mar 2000 0745-1030 --
41 12 Mar 2000 1300-1415 Activity mainly concentrated at the Sudestino. Lava flows pass close to Torre del Filosofo.
42 14 Mar 2000 0710-0740 Activity at the Sudestino. Lava reaches Torre del Filosofo and piles up on two sides of the building to about two-thirds of its height, burns wooden hut.
43 19 Mar 2000 0100-0330 Activity at the Sudestino. Ashfall in Catania.
44 22 Mar 2000 1945-2100 Activity returns to SEC; lava emitted from fissures on S and N flanks of the SEC cone.
45 24 Mar 2000 1940-2035 Very similar to episode 44.

Activity at Southeast Crater, 26 January-29 February 2000. Eruptive activity resumed early on 26 January at the summit vent of SEC (figure 83), after 4.5 months of quiet, and 2.5 months after the cessation of lava emission from fissures at its SE base. Initially the activity was Strombolian, but at about 0500 the activity changed to fire-fountaining, followed by the opening of a fissure on the S flank of the cone. Fountaining continued intermittently until about noon, but lava continued to flow from the lower end of the fissure until the late evening, advancing ~2.5 km into the Valle del Bove along the S margin of the 1999 lava field. Field inspections later revealed that numerous blocks of older lava and welded scoriae from the upper part of the cone fell up to 500 m from the summit of the cone.

Figure (see Caption) Figure 83. Map of the summit area of Etna showing the approximate extent of lavas erupted from the Southeast Crater (SEC) between late January and March 2000. Flows terminating in arrows indicate the flow direction rather than its length. Lavas erupted from fissures near SEC between February and November 1999 and from Bocca Nuova in October-November 1999 are shown for comparison. The broken line extending from TDF (Torre del Filosofo) to the W is the margin of the Piano caldera, presumably formed during a powerful explosive eruption in 122 BC. V is the Voragine and BN is the Bocca Nuova. Courtesy of Boris Behncke.

The second eruptive episode, on the morning of 29 January, lasted about 15 minutes. As during the preceding episode, the cone fractured on the S side, and lava flowed for a few hundred meters to the SSE and SE. After the cessation of lava fountaining, lava continued to trickle from the fissure until the evening.

Beginning on 1 February, eruptive episodes occurred at ever shorter intervals. For the next four days, these events were separated by quiet intervals of 20-24 hours. They essentially resembled the second episode, with initial mild Strombolian activity followed by lava fountaining at the summit vent. Fountaining continued for a few minutes before the S flank of the cone fractured and small fountains rose along the fracture, while lava flowed from its lower end. Activity continued for up to 10 minutes and then ceased.

During these days intermittent minor lava effusion occurred from vents on the lower N flank of the SEC cone, feeding short flows. On the evening of 4 February the lava output gradually increased. Mild Strombolian activity began sometime before 2330 from a vent high on the SSW flank. By this time lava apparently spilled over the N rim of the crater. The volume of lava running down the N flank increased, and explosive activity at the summit vent (and possibly at the SSW flank vent) became increasingly vigorous. Shortly after 0010 on 5 February the activity culminated with lava fountains and voluminous lava emission. After only ten minutes the activity began to diminish.

Between 5 and 18 February, eruptive episodes occurred at a rate of 2-3 events/day, separated by quiet intervals of 5.5-26 hours. During the first ten days of this period, lava slowly issued from the vents on the N flank of the SEC cone. Before each episode the volume of lava output gradually increased, followed by the onset of lava spattering at the same vents and increasing gas emission from the summit vent. The spattering soon graded into a continuous fountain of very fluid lava, jetting obliquely from the N-flank vents, and then the activity would extend to one or more vents at and near the SEC summit. At the height of the activity, an eruption column mainly consisting of white vapor rose several kilometers, and ash fell up to 40 km downwind. Towns at the base of the volcano, mostly in the E and SE sectors, received light rains of ash and lapilli.

During several episodes a fracture opened progressively across the N flank from the base up to the summit vent, with small fountains, while Strombolian bursts began at the summit vent. This activity rapidly culminated in high lava fountains from one or more summit vents. During an eruption late on 11 February, four fountains rose up to 400 m high, while a continuous line of smaller fountains played along the N-flank fracture. Lava flowed copiously from the lower end of that fracture, while a new vent high on the S flank fed a lava flow which reached the base of the cone. The activity became intermittent after 10 minutes of fountaining and ended shortly thereafter, while lava continued to flow at diminishing rate from the lower end of the N-flank fissure.

An eruptive episode on the afternoon of 14 February was observed from less than 1 km away by Behncke and Giuseppe Scarpinati (Italian delegate of the Association Européenne Volcanologique), who had arrived shortly before the onset at a spot SE of the cone. Like on other occasions, the activity started with increasing gas emission from the vents on the lower N flank. By 1600 a broad, dull red fountain roared to a height of ~100 m, and gas emissions increased rapidly on the upper N flank. Small rockfalls occurred on the SE flank.

Soon after 1605 a huge jet of glowing bombs from the summit formed a rapidly expanding eruption column. Shortly thereafter, a densely tephra-charged, cauliflower-shaped plume burst obliquely upwards from the S side of the summit. At the same time, incandescent pyroclastics fell far beyond the base of the cone, but none hit the area from where Behncke and Scarpinati were located. Instead, the curtain of falling ash and scoriae rapidly extended southwards, towards Torre del Filosofo, a mountain hut ~1 km S of the SEC. Scoria clasts up to 30 cm long fell around the building. Lapilli-sized scoriae fell abundantly up to 5 km to the S, and ash fell up to 50 km away. The continuous loud rumbling of the fountains mixed with the pattering noise of large clasts impacting the snow near Torre del Filosofo. Lava could be seen flowing down the S flank in a broad stream a few minutes after the onset of explosive activity. At about 1620, the activity began to wane, although lava trickled from a vent high on the S flank for several hours.

The next day, after 26 hours of quiet, the most powerful episode of the sequence was observed from Torre del Filosofo by a group including Marco Fulle of the Astronomical Observatory of Trieste, Italy. The event was heralded by increased gas emission from the summit vent shortly before 1800, followed by mild Strombolian activity. For about 10 minutes there was a gradual buildup of the activity, with Strombolian bursts from at least two vents. As the activity became more continuous, incandescent pyroclastics were thrown to ever greater distances, mainly onto the E flank. Shortly after 1800, a glowing spot appeared immediately below the S lip of the summit vent in a deep notch. A small pulsating fountain from this new vent gained rapidly in height and vigor. Eruption noises began to change from the intermittent gushing of the Strombolian activity to a continuous loud noise similar to heavy surf.

Within 1-2 minutes after the appearance of the S-flank vent, huge jets of fluid lava rose from that vent and from vents at the summit. The volume of lava from the S vent increased rapidly, at times generating surges overriding earlier flows. The upper part of the cone was soon covered by incandescent pyroclastics; most fallout occurred on the E side due to a strong wind from the W. Activity escalated when a huge incandescent jet burst obliquely from the S vent in the direction of the Torre del Filosofo, and within a few seconds it rose to a height of ~1,000 m. The noise soon became dominated by thousands of bombs crashing on the ground at rapidly growing distance from the cone. The observers fled under a side roof of the Torre del Filosofo building a few seconds before bombs began falling around and beyond the building. Some of them had diameters of tens of centimeters, and many were seen bouncing and bursting into fragments. This rain of bombs lasted about 20 seconds, after which activity stabilized with lava jetting vertically from S-flank and the summit vents.

As was evident from video filmed by British cameraman David Bryant, the largest fountain came from the summit, and from the video as well as from estimates made by other observers, including Behncke (in Catania) and Scarpinati (in Acireale), the fountain height was consistently 500-600 m with bursts reaching 800 m above the summit. The entire cone was covered with incandescent material, some of which developed secondary flowage, while a broad lava flow ran down the S flank.

About 10 minutes after the onset of violent fountaining, the fountains from the cone appeared slightly weaker, although the continuous uprush continued for some time. Then the fountains stopped abruptly, while thousands of incandescent projectiles continued to fall onto the cone. After a few seconds, new lava jets appeared that were short-lived and much weaker. At the end of the activity, dense ash from the summit vent blew E as far as Acireale. Lava continued to run out of a fracture on the S flank, and the gradual sinking of the lava level in the fracture indicated that the conduit was subsiding.

On the afternoon of 16 February, Fulle observed another eruptive episode from the Torre del Filosofo. This event included lava fountaining from a vent about halfway down the S flank of the SEC cone. The activity then extended to the summit vent, continued vigorously for about 10 minutes and ended abruptly.

Eruptive episodes began to diminish in frequency and intensity after 18 February. The near-continuous effusive activity at the N-flank vents stopped. During the last 10 days of the month, five episodes occurred. On the early morning of 23 February, an episode lasted more than 1 hour, but consisted mainly of strong Strombolian explosions. The last two episodes of February, on the 27th and 28th, involved significant activity from vents near the S base of the cone. In both events the activity lasted for several hours, and erupted more lava from the S vents than during earlier episodes. During some of the episodes lava was apparently also produced from N-flank vents.

Activity at Southeast Crater during March. Episodic eruptive activity at the SEC continued in March and became more focused at the vents at the S base of the SEC cone, where a cone began to grow. This cone was informally named "Sudestino" (little Southeast), following the example of the "Nordestino," a lava shield crowned by a large hornito that formed in 1970 at the NE base of the Northeast Crater. In late March, the main focus of activity returned to the SEC, and episodes became very similar to those of early- to mid-February, with lava emission mostly from fractures on the N and S flanks of the SEC cone.

The initial March activity began on the late afternoon of 3 March. At first the activity consisted of slow lava effusion from Sudestino. Loud detonations became audible in Acireale and other towns in the SE and E sectors around 0400 on 4 March, marking the period of strongest explosive activity. Scarpinati, who observed the activity from his home in Acireale, noted that even in the moments of strongest activity, no sustained lava fountaining occurred, but all activity consisted of discrete powerful explosions. When the activity began to diminish (at about 0430), a fountain of very fluid lava in the area of the Sudestino rose ~30 m. The episode ended at about 0500, but after 0430 most activity appears to have come from Sudestino. Minor outflow of lava continued for about two days from Sudestino. Another episode on 8 March was preceded by slow lava effusion from Sudestino. During a summit visit by Behncke and others on 11 March, the SEC and Sudestino were quiet.

Sudestino erupted again shortly after noon on 12 March. The activity began with increased gas emission, and by about 1300 a lava fountain rose to a height of several tens of meters. Ash was expelled from the crater lying a short distance further up the S flank. Later a densely ash-laden plume was emitted from the summit. Lava flowed abundantly from Sudestino, mainly to the S and SW. A lava flow passed only a few tens of meters W of the Torre del Filosofo and extended ~100 m down the steep slope, burying a section of the dirt road that leads to the building.

The Sudestino vent erupted once more on 14 March with a brightly incandescent lava fountain and emission of a voluminous lava flow that advanced to the S with a front hundreds of meters wide, reaching Torre del Filosofo sometime after 1100. Eyewitnesses reported that by about 1100 the lava front was still ~50 m from the building, but presumably the lava reached and encircled it on two sides shortly afterwards. The wooden shack next to the building, used as a souvenir shop by mountain guides during the summer, was burnt by the lava, melting the snow which had covered the shack. Lava flowed ~100 m further down the slope to the W of Torre del Filosofo. A new dirt road built on this flow two days later allowed monitoring and communication equipment to be salvaged prior to the building's destruction.

Lava fountains were visible at the Sudestino around 0130 on 19 March, by which time lava had already begun extending down the flanks. The activity continued vigorously until about 0300, and generated significant ash that fell in Catania and surrounding areas. A large volume of lava was emplaced on the plain SW of the SEC, and several flow lobes extended as far as the N base of Monte Frumento Supino, a prehistoric cinder cone (figure 83).

Sometime after 1800 on 22 March, mild Strombolian activity began at the summit vent, and by 1945 there was a pulsating lava fountain. A new vent burst open high on the SSW flank at about 2010, emitting a lava flow and producing a small fountain. The activity progressively increased at both vents until another vent opened at about 2025 near the NE base of the cone. At this vent, a lava fountain rapidly began to rise several tens of meters high, while two lava flows spilled into the adjacent Valle del Bove. The lava fountain from the summit began to diminish, and ceased shortly before 2100. Lava continued for some time from the flank vents. The southern flow rapidly reached the WSW base of the cone and turned W or WSW, in the direction of the 1971 "Observatory cone." About 500 m NW of Torre del Filosofo the flow turned SW and reached the slope near Monte Frumento Supino, where it advanced up to 100 m. On the NE side of the SEC cone, the two lava flows advanced several hundred meters into the Valle del Bove.

Lava effusion from the vents on the NE side of the SEC cone increased during the late afternoon of 24 March. Mild spattering and intermittent glow at the summit indicated the onset of Strombolian activity. This activity graded into a lava fountain shortly before the new year (2000), and a second, smaller fountain played at the effusive vent on the NE side of the cone. Lava flowed into the Valle del Bove, reaching a length of possibly more than 1 km. Sometime after the new year began, a vent opened on the upper S flank of the SEC cone, feeding a minor flow. The activity was still vigorous at around 2030, when loud rumbling noises could be heard in Catania, and windows were vibrating in Acireale and other towns nearer to the volcano. The strongest activity apparently ceased by 2100, but at 2230 there was still vigorous effusive activity.

The last significant activity of the reporting period occurred on the evening of 29 March, after five days of quiet, the longest repose period of the eruptive sequence. Lava effusion from vents on the NE side of the cone became evident after nightfall and gradually increased, accompanied by the weak Strombolian activity at the summit vent. By 2000, the Strombolian bursts had become more frequent, and soon blended into a continuous pulsating fountain. A new vent high on the S flank emitted a lava flow that rapidly spilled to the base of the cone, then was deflected to the SW by the Sudestino. During the following 30 minutes, at least three smaller vents opened at progressively lower elevations on the S flank in the direction of Sudestino. After the opening of the first S-flank vent, activity at the summit became weaker and discontinuous. Sometime around 2120 large fountains from vents on the N flank sent lava flows NE towards the Valle del Leone. Fountaining ceased at around 2200, but lava continued to flow from the N vents, feeding several lobes, the longest of which advanced ~2 km into the Valle del Leone. On the S side, lava extended ~1-1.5 km SW to the N base of Monte Frumento Supino.

Activity at Bocca Nuova, Voragine, and Northeast Crater. During December 1999-25 January 2000 Bocca Nuova produced intermittent mild Strombolian activity that at times ejected bombs outside the crater. Ash emissions were frequent in late December and early January.

Activity at Bocca Nuova during the eruptive episodes at SEC continued at relatively low levels. During a summit visit on 2 February, Behncke and Scarpinati observed frequent small explosions from the E part of the crater, but all ejecta fell back into the vent. Six days later, Behncke and Scarpinati entered the crater from the SW – this had become possible due to the filling of the crater in October-November 1999 – and approached the vent which was the source of intermittent night glow for most of February. Activity consisted of vigorous gas emission, punctuated by strong blasts of incandescent gas, but no pyroclastic ejections. When standing on the edge of the vent, Behncke and Scarpinati saw an incandescent hole ~2 m across on the floor of the funnel-shaped vent which was the source of the gas ejections. Scarpinati noted that the activity was similar to that observed during the first year of the life of the Bocca Nuova, when it was only a small vent ~8 m wide.

The same activity was observed in early March by Charles Rivière (from Tremblay-en-France, France). In late March activity was the same as in early February, consisting of jets of incandescent gas without pyroclastic ejections. A small amount of strongly altered, fine-grained lithics were sometimes contained in the gas jet. It appeared that no ejections of fresh magmatic material had occurred within the Bocca Nuova since at least early February.

The other two summit craters remained essentially quiet during the reporting period. Northeast Crater occasionally produced emissions of thick gas plumes, at times charged with a little lithic ash. No eruptive activity is known to have occurred at the Voragine. When seen by Behncke on 8 February, the crater emitted only wisps of vapor from the large pit formed during the 4 September 1999 eruption.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Dipartimento di Scienze Geologiche, Palazzo delle Scienze, Universitá di Catania, Corso Italia 55, 95129 Catania, Italy; Roberto Carniel, Dipartimento di Georisorse e Territorio, Universitá di Udine, Via Cotonificio 114, 33100 Udine (URL: http://www.swisseduc.ch/stromboli/); Jürg Alean, Kantonsschule Zürcher Unterland, CH-8180 Bülach, Switzerland; Marco Fulle, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34131 Trieste, Italy.


Galeras (Colombia) — March 2000 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Two small eruptions in March and April 2000 preceded by tornillo events

During 1 January-15 April 2000 there were two small eruptive episodes preceded by 24 tornillo ("screw-type") seismic events which showed dominant frequencies around 2.0 Hz and other peaks from 5 to 18 Hz. Volcano-tectonic events centered NE of the crater were also felt by local residents.

The first eruptive episode occurred on 21 March at 1628. The seismic signal associated with this activity was characterized by long-period events followed by 30 minutes of spasmodic tremor, and then 17 small long-period events registered in the following three hours. The dominant frequency of the main event was around 2.0 Hz, but at the nearest station to the crater other frequencies between 5 and 13 Hz were recorded. Field inspections before and after the 21 March eruption revealed fluctuations in the output pressure and in the quantity of gas emitted from the active vents; emissions were generally gray and white in color. Temperature measurements taken during March at Las Deformes fumarole (SSW border of the main crater) registered values of 124-127°C, which are similar to those observed in recent years. However, Las Chavas fumarole (WSW border of the main crater) showed a significant temperature increase one day before the 21 March eruption.

The second eruptive episode, on 5 April at 1738, was smaller than the 21 March event. Its associated seismicity was characterized by spasmodic tremor. The dominant frequency was around 2.4 Hz, but again at the nearest station to the active crater other frequencies between 6 to 17 Hz were observed.

Radon-222 soil emissions measured at stations around the volcano showed values between 98 and 8,619 pCi/l. Most of them were unchanged from previous measurements. The highest peak correspond to the Sismo5 station, located 7 km N of the summit.

Two volcano-tectonic events during this period were felt in some areas of Pasto city and Nariño town; a maximum Modified Mercalli Intensity of III was estimated in these regions. The first event occurred on 10 January centered 10 km NE of the summit at a depth of 8 km and with a magnitude of 3.2. The second event occurred 5 km NE of the summit on 6 April, with a depth of 9 km and a magnitude of 2.4.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.

Information Contacts: Observatorio Vulcanológico y Sismológico de Pasto (OVSP), Carrera 31, 18-07 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Guagua Pichincha (Ecuador) — March 2000 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


January-February marked by dome growth and small ash emissions

This report covers the interval from 16 January to 28 February 2000 (table 10). This interval was marked by poor visibility and small emissions, some with and some without visible ash. These rose on the order of a few tens of meters to 2 km. Besides small ash emissions, evidence of the ongoing gradual growth of the dome (locally termed "dome 8") was provided by abundant rockfalls in the W crater, sulfurous odors, minor local ashfalls, and infrequent glimpses of extrusions and various changes within the crater. Several intervals of near-quiet also occurred.

Table 10. Seismic observations at Guagua Pichincha, 16 January-28 February 2000. The table shows the daily tally of these categories of earthquakes: long-period (LP), volcano-tectonic (VT), hybrid, rockfall, and emissions. Explosions were only recorded on 20 January (4) and 17 February (1). Dashes indicate a lack of (essentially zero) reported events. Courtesy of the Geophysical Institute.

Date LP VT Hybrid Rockfalls Emissions
16 Jan 2000 401 -- 10 136 5
17 Jan 2000 396 1 10 110 2
18 Jan 2000 330 -- 19 104 1
19 Jan 2000 65 7 24 6 2
20 Jan 2000 35 1 12 101 3
21 Jan 2000 108 1 6 79 1
22 Jan 2000 107 4 19 83 --
23 Jan 2000 82 -- 2 50 --
24 Jan 2000 50 2 21 40 2
25 Jan 2000 161 2 7 89 1
26 Jan 2000 202 4 21 86 1
27 Jan 2000 271 3 16 98 --
28 Jan 2000 271 3 16 98 --
29 Jan 2000 257 4 10 50 1
30 Jan 2000 105 18 11 19 1
31 Jan 2000 217 2 14 67 --
01 Feb 2000 107 -- -- 24 1
02 Feb 2000 116 2 7 65 --
03 Feb 2000 147 2 7 69 --
04 Feb 2000 163 1 9 42 --
05 Feb 2000 102 2 -- 21 --
06 Feb 2000 98 2 4 38 --
07 Feb 2000 100 -- 16 15 --
08 Feb 2000 124 1 4 39 --
11 Feb 2000 -- -- -- -- 1
12 Feb 2000 133 -- -- 15 2
13 Feb 2000 100 -- 12 63 2
14 Feb 2000 147 2 -- 45 8
15 Feb 2000 314 8 18 74 2
16 Feb 2000 421 1 10 95 2
17 Feb 2000 355 -- 4 80 6
18 Feb 2000 380 -- 21 97 5
19 Feb 2000 210 2 8 73 2
20 Feb 2000 80 2 -- 35 3
21 Feb 2000 283 2 -- 83 3
22 Feb 2000 233 -- 5 79 1
23 Feb 2000 253 5 5 80 2
24 Feb 2000 267 2 11 60 4
25 Feb 2000 276 1 -- 66 1
26 Feb 2000 210 5 7 52 4
27 Feb 2000 268 2 26 79 --
28 Feb 2000 401 1 98 87 1

The daily reports noted that small emissions occurred on many days in the reporting interval, which is also clear from the seismically based tallies shown on table 3. On the morning 19 January, the atmosphere was clear enough to see incandescent lava glowing through fractures in the dome. Observers noted lulls in fumarolic activity on 19 and 20 January, as well as on 22 and 23 January; in some cases they saw small, blue-tinged (sulfur-bearing) plumes that only rose 20-100 m. On 22 January observers looked into the small inner crater formed in 1999 (termed the "Herradura crater" or the "1999 crater") and noted a recent accumulation of fallen rocks there, including about twelve that stood ~10-12 m above the floor. Although the daily report noted that these rockfalls traveled in the direction of the head of the Río Cristal, their source was not made clear.

Starting at 1521 on 26 January a seismic emission signal with a small-to-moderate reduced displacement persisted for 120 minutes. Ash then fell W of the volcano. This emission followed a high-frequency seismic signal that possibly stemmed from a partial dome collapse. The possibility of a collapse appeared confirmed when observers noted the 26 January collapse of the crater's W zone. The latter event spawned a pyroclastic flow in the Río Cristal; associated deposits there exceeded 10 m in thickness.

In the morning on 1 February police reported the newly ash-covered Herradura crater generated white fumarolic columns that rose between 300 to 500 m. Blue vapors also hung in the air, indicating the presence of sulfur gases. On 2, 3, 12, 20, and on 28 February plumes rose to 1-2 km. In several cases the plumes carried noticeable ash, and a few ash falls were seen near the vent. The 12 February ash plume rose 1.3 km high; the plume's lower margins extended to engulf all sides of the caldera.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately W of Ecuador's capital city, Quito. A lava dome grew at the head of a 6-km-wide scarp formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the lava dome. Many minor eruptions have been recorded since the mid-1500's; the largest took place in 1660, when ash fell over a 1,000 km radius and accumulated to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity.

Information Contacts: Geophysical Institute (Instituto Geofísico), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador.


Irazu (Costa Rica) — March 2000 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3436 m

All times are local (unless otherwise noted)


Microseisms during June-November 1999 take place 12-61 times a month

Seismic monitoring disclosed many days during June-November 1999 without any detectable microseisms. Monthly averages for July-November 1999 (table 6) tallied 12 to 61 microseisms a month, an average of roughly 0.5-2 microseisms per day. Other monitoring data were absent. The last eruption at Irazú consisted of a small phreatic explosion in December 1994 (BGVN 19:12).

Table 6. Monthly microseisms at Irazú as recorded at station IRZ2, located 5 km SW of the active crater, July-November 1999. The two months with available RSAM data show the range of computed values (e.g., October estimates of 7 to 101 units). Courtesy of OVSICORI-UNA.

Month Number of microseisms RSAM
Jul 1999 61 --
Aug 1999 17 --
Sep 1999 35 --
Oct 1999 29 7-101
Nov 1999 12 8-136

Geologic Background. The massive Irazú volcano in Costa Rica, immediately E of the capital city of San José, covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad summit crater complex. At least 10 satellitic cones are located on its S flank. No lava effusion is known since the eruption of the Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the main crater, which contains a small lake. The first well-documented eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas. Phreatic activity reported in 1994 may have been a landslide event from the fumarolic area on the NW summit (Fallas et al., 2018).

Information Contacts: E. Fernandez, E. Duarte, V. Barboza, R. Sáenz, E. Malavassi, R. Van der Laat, T. Marino, J. Barquero, and E. Hernández, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Langila (Papua New Guinea) — March 2000 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Vapor and weak ash emissions in early 2000

Activity remained at a low level during 1-20 January and no unusual volcanism was reported for February or March. Reports were absent for 21-31 January, but earlier in the month Crater 2 released weak thin-to-thick white vapor in moderate volumes. On 3-6, 19, and 20 January the emissions included weak gray and brown ash clouds. Crater 3 released weak white vapor throughout the month. The seismograph remained non-operational.

Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano sits NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (Crater 3) was formed in 1960 and has a diameter of 150 m. The Cape Gloucester observation post, airstrip, and seismometer is 9 km N of the volcano.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Manam (Papua New Guinea) — March 2000 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


In early 2000 low seismicity, weak ash emissions, and some inflation

Weak activity at Manam continued during 1-16 January, and the months of February and March 2000. (Reports for the second half of the month were not received.) During 1-16 January Main and Southern craters both issued weak white vapor. By the end of the second week of January seismicity had reached a trough similar to that in mid-December. Still, the average number of daily earthquakes was over 1,000 (specifically, 1,160-1,470 except on 3 and 4 January, when they were 820 and 300). The wet tilt readings (available until 5 January) showed minor fluctuations.

Seismicity remained low, with amplitude measurements at normal background level until 18 March, when amplitudes increased slightly but remained within the background range. The higher level continued through March. Event counts were also steady through this period, averaging ~1,200/day, although several days in March had only 500-600. The water-tube tiltmeter ~4 km SW of the summit area measured ~14 µrad of inflation in March. The inflation began sometime in late January 2000.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Momotombo (Nicaragua) — March 2000 Citation iconCite this Report

Momotombo

Nicaragua

12.423°N, 86.539°W; summit elev. 1270 m

All times are local (unless otherwise noted)


Very low seismicity during April-November 1999

Seismic activity registered at Momotombo stayed at consistently low levels during the seven months of April-November 1999, with a total of 81 small earthquakes, 30 of them in May and 26 in August. Only a few of these events were able to be located. RSAM (real-time seismic amplitude measurement) values never rose above two units. Starting in December, and continuing through March 2000, the seismic station only worked intermittently. Very few events were detected during this period, including two earthquakes when the station worked during 1-15 March.

Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Poas (Costa Rica) — March 2000 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2697 m

All times are local (unless otherwise noted)


Conspicuous plumes and abundant low-frequency earthquakes in late 1999

Comparative quiet continued at Poás; however, in addition to the fumarolic degassing often seen, seismicity was relatively high during the reporting period, June 1999-January 2000, when low-frequency earthquakes typically registered over 4,000 times per month (table 9). For comparison, a relative high in 1999 occurred in May when low-frequency events occurred ~1,400 times, and during a high in January 1998, when there were over 2,500 events. On 18 July 1999 an MR 3.1 earthquake occurred with 6 km focal depth and an epicenter 5 km NW of the active crater.

Table 9. A summary of seismic, temperature, and lake height data for Poás during July 1999-January 2000. Lake heights are with respect to the previous month and positive upwards (rising lake levels). The stated temperature for the pyroclastic cone's degassing refers to the value at an accessible point where the measurements are taken regularly. The seismic station POA2 lies 2.8 km SW of the active crater. "NR" indicates information absent and not reported. Courtesy of OVSICORI-UNA.

Month Low-frequency earthquakes Mid-frequency earthquakes Total earthquakes Crater lake temperature Surface elevation change of crater lake
Jun 1999 2,571 -- -- -- --
Jul 1999 2,996 64 3,061 32°C -47 cm
Aug 1999 4,548 184 4,736 37°C -32 cm
Sep 1999 5,264 274 5,542 40°C --
Oct 1999 4,743 190 4,987 38°C --
Nov 1999 4,142 221 4,393 33°C 101 cm
Dec 1999 4,278 405 4,679 35°C 156 cm
Jan 2000 -- -- low 40°C ~140 cm

Tremor, which was seldom reported in 1999, took place for less than about 0.5 hours a day during October-November 1999. In contrast, tremor averaged only 0.1 hours a day during December 1999. In contrast, tremor durations of 20 to 70 hours were common in early 1998. Also appearing in the month of October 1999 were 5 unusual low-frequency events in conjunction with tremor; these low-frequency earthquakes had periods of 40-175 seconds.

During August -October, the pyroclastic cone's degassing led to unusually high plumes reaching 0.7 to 2 km above the crater floor. December plume heights ranged between 0.7 and 1 km. Some of the hottest temperatures were measured near the pyroclastic cone: up to 95°C during December-January and often over 92°C when reported during other months in late 1999.

Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, E. Duarte, V. Barboza, R. Sáenz, E. Malavassi, R. Van der Laat, T. Marino, J. Barquero, and E. Hernández, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Rabaul (Papua New Guinea) — March 2000 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


During early 2000, occasional ash clouds and the 1995 vent reactivates

After the emissions of dark gray ash clouds from the 1941 vent on 30 December 1999, through 16 January 2000 activity consisted mostly of thin white and grayish clouds. Occasional pale gray to dark gray ash clouds of moderate volumes were interspersed among the ongoing thin white vapor emissions.

The 1995 lava-producing vent reactivated on 16 January at 1532 with emissions of dark gray ash clouds until the 18th, before going quiet again at month's end. The initial emissions on 16 January occurred frequently (4/minute) during the first 30-45 minutes before decreasing to 1/minute thereafter. The ash clouds rose ~500-1,000 m above the summit and were later blown by high-altitude winds to the N and low-altitude winds to the SE, resulting in ashfalls in those directions.

Seismicity associated with the ongoing activity at Tavurvur was very low in January. A total of 66 low-frequency events were detected, of which most were associated with surface activity. The only harmonic tremor was recorded on the 30th. Nine high-frequency events were recorded during the month. Only two of these events which originated NE of the volcano, were located outside of the caldera. The other seven were too small to locate; however, their arrival times indicated an azimuth of NE.

The eruptive activity remained low throughout February. Gentle emissions of very thin volumes of white vapor continued for most of the period. However, between 7 and 14 February small volumes of pale gray ash clouds were produced at irregular intervals, and seismicity fluctuated. Again between 21st and 22nd small amounts of white-to-brownish ash clouds were produced. Most of the ash emissions during both periods rose to several hundred meters above the summit before they were blown to the SE and occasionally to the N, NW, and SW by variable winds. Very fine ash fell in the same areas.

Event trigger counts were similar to December 1999 and January 2000, with a total of 78 low-frequency events detected. Most of these were associated with the summit activity of Tavurvur. Three high-frequency earthquakes were detected in February. Two were located to the S and NE, outside of the caldera. The other was too small to locate, however, arrival times on the few stations that detected it indicated a NE azimuth.

A slight increase in ash emission associated with sub-continuous non-harmonic tremor was observed in March. Bands of such tremor were recorded on 8, 14-20, and 30-31 March. The tremor occurred only once each day, but at different times of the day. The duration for each episode of tremor ranged from an hour to about 5 hours. During the corresponding period of 15-20 March, Tavurvur's 1995 vent produced occasional gentle puffs of thick gray ash clouds that were blown SE by low-altitude winds and later to the W by high-altitude winds. Similar ash emission was observed on 31st. On that day the ash clouds rose only a few hundred meters at the highest and were later blown N and NW. The 1941 vent remained quiet, releasing only very small volumes of thin white vapor.

March's low-frequency earthquakes continued to fluctuate around normal background. Trigger counts for March were 90. Most of these events were associated with the summit activity of Tavurvur. Seven high-frequency earthquakes were detected in March. Three were locatable. The others occurred outside of the caldera. Ground deformation measurements by the electronic and water-tube tilt instrumentation showed an inflationary trend which began in late February.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Rincon de la Vieja (Costa Rica) — March 2000 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Non-eruptive through November 1999 but with ongoing tremor

The noisy escape of fumarolic gases continued at Rincón de la Vieja during June-November 1999. A summary of monitoring data appears in table 3. During August the crater floor became covered with a shallow ephemeral lake, covering the fumaroles there. Plumes then rose less than 100 m above their fumarolic sources. The active crater lake, with a sky-blue color, had a temperature of 36°C; the maximum measured fumarole temperature was 70°C.

Table 3. Geotechnical data at Rincón de la Vieja, July-November 1999. Seismic data recorded at station RIN3, 5 km SW of the active crater, includes microseisms who's amplitudes were under 5 mm, and those volcano-tectonic (VT) earthquakes with S minus P arrival times under 1.5 seconds (i.e. focused near the volcano). The reported tremor durations were sums of discontinuous segments, and were low-frequency (below 2 Hz). Courtesy of OVSICORI-UNA.

Month Low-frequency earthquake Microseism (amplitude <5 mm) VT earthquake Tremor duration
Jul 1999 9 2 2 hours --
Aug 1999 8 1 14 0.5 hours
Sep 1999 5 21 4 0.75 hours
Oct 1999 4 12 4 6.5 hours
Nov 1999 6 5 0 2 hours

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, E. Duarte, V. Barboza, R. Sáenz, E. Malavassi, R. Van der Laat, T. Marino, J. Barquero, and E. Hernández, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Telica (Nicaragua) — March 2000 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Eruptive activity declines in February, but seismicity remains high

Seismic and eruptive activity consisting of gas-and-ash explosions continued during January. Observations from the León-Chinandega highway during fieldwork on 13 January showed that constant strong ash-and-gas emissions were continuing (figures 12 and 13). A resident on the S flank informed the scientists that strong rumblings had been heard at dawn on the 12th. The observers remained near the summit for several hours and witnessed moderate explosions every five minutes, with occasional periods of more frequent explosions (3/minute). The bottom of the crater could not be seen through the ash, but it appeared that the explosions did not come from the intercrater that formed in May 1999, but from a new vent in the NNW part of the crater. Evidence of collapses were present along all sides of the crater. In January the number of volcanic earthquakes was 3,950, and the RSAM (real-time seismic amplitude measurement) signal oscillated between the 40 and 120 units.

Figure (see Caption) Figure 12. Photograph of the active crater during an ash explosion at Telica, 13 January 2000. View is from the south. Courtesy of INETER.
Figure (see Caption) Figure 13. Photograph of Telica, 13 January 2000. View is from the north. Courtesy of INETER.

Low-intensity eruptive activity with ash-and-gas emanations continued through 17 February, after which the activity began to gradually decline. However, seismicity stayed high with 3,670 earthquakes detected in February. The volcano maintained constant tremor during March, but despite the continued high number of registered earthquakes (2,892) there were no gas or ash expulsions.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Toya (Japan) — March 2000 Citation iconCite this Report

Toya

Japan

42.544°N, 140.839°E; summit elev. 733 m

All times are local (unless otherwise noted)


Eruptions began on 31 March and proceeded from multiple craters on the NW flank

Following several days of increased seismicity, an eruption of Usu volcano began on 31 March. The eruption, the first at Usu since 1977-82, was continuing in April. This report is based on information compiled from a wide variety of sources cited in the text by Setsuya Nakada at the Volcano Research Center, University of Tokyo. Vigorous activity continued through April, and by the end of the month there were more than 50 craters; details will be provided in the next Bulletin.

Precursory activity. The number of volcanic earthquakes around Usu began increasing after 0800 on 27 March, prompting a series of Volcano Advisory notices from the Japan Meteorological Agency (JMA). At the site of the seismic station, ~2 km S of the summit, there were 16 earthquakes recorded on 27 March, followed by 599 (including 68 felt earthquakes) on the 28th (table 5). Neither volcanic tremor nor visible change in fumarolic gas had been observed by the night of 28 March.

Table 5. Numbers of earthquake events at Usu during 27 March-4 April 2000. The JMA seismometer is located ~2 km S of the summit. Courtesy of JMA.

Date Volcanic Low-frequency Felt Tremor
27 Mar 2000 16 0 ? 0
28 Mar 2000 599 5 68 0
29 Mar 2000 1629 164 600 0
30 Mar 2000 2454 326 537 0
31 Mar 2000 788 139 299 0
01 Apr 2000 159 24 52 0
02 Apr 2000 48 3 3 0?
03 Apr 2000 22 0 2 0?
04 Apr 2000 9 0 1 0?

On the evening of 28 March the National Coordination Committee of Volcanic Eruption Prediction (chaired by Yoshiaki Ida, Univ. of Tokyo) warned about the high possibility of an imminent eruption. JMA also called resident's attention to the hazard of mudflows triggered due to snow melting during an eruption. A hot spring resort at the N foot of the volcano had about 1,600 guests this night. However, more than 400 persons living around the volcano voluntarily evacuated by the night of 28 March.

A Volcano Alert was issued by JMA on the morning of 29 March. That day the number of volcanic earthquakes totaled 1,629 (600 of them felt), including low-frequency earthquakes whose number increased with time. At 0708 on 29 March a M 3.4 had a hypocenter on the N slope. Later that day, at 1722, one of M 4.2 was centered on the NW slope; analysis indicated faulting along a nearly vertical slip plane. The GPS network around the volcano, maintained by the Geographical Survey Institute (GSI), detected inflation. Neither volcanic tremor nor visible changes in fumarolic gas had been observed yet. People living in a city and two towns around the volcano were required to evacuate on the afternoon of 29 March. By that night, more than 9,000 people evacuated, including all tourists in resorts at the N foot of the volcano.

The number of volcanic earthquakes continued to increase on 30 March, to a total of 2,454, including 326 low-frequency earthquakes and 537 felt events. During a helicopter flight, Yoshio Katsui and Hiromu Okada (Hokkaido University) found chains of cracks as long as 100 m along the NW part of the caldera rim, just above the hypocenters of the volcanic earthquakes. A group of geologists from the same university, the Geological Survey of Japan (GSJ), and the Geological Survey of Hokkaido also found small cracks and signs of ground deformation at the N-NW foot of the volcano. The hot-spring resort on the S shore of Lake Toya, Toyako-Onsen, lies within the area that these phenomena were observed. The Usu Volcano Observatory of Hokkaido University, at the N foot of the volcano, was moved ~8 km S to the western part of Date City. Frequency and magnitude of earthquakes changed in a manner similar to that seen in the 1910 eruption; that event started with a phreatic eruption after 5 days of precursory phenomena. This was followed by explosions from 45 craters aligned along a 2.7-km-long, EW-trending zone. The 1910 eruption ended with a 3-month period of cryptodome emplacement.

Eruptions begin on 31 March. At 1310 on 31 March a phreatic eruption ~4 km NW of the summit and ~2 km NE of the epicenters of the volcanic earthquakes sent ash 3,200 m above the crater. Ash and cinders from the newly formed craters fell on nearby houses. After about 2 hours of strong ash emissions the eruption declined. No injuries were reported. According to Yoshio Katsui, who did a helicopter inspection, five craters formed successively that joined into one larger crater (roughly 200 m long and 60 m wide) during this eruptive episode.

According to the Joint University Research Group (JURG) on the morning of 31 March, additional cracks were observed in the W flank of the volcano, and on the summit of the old lava dome within the caldera. Cracks found the previous day on the NW flank and foot of the volcano became wider. Seismicity had decreased from the previous day.

According to a Volcano Advisory at 0312 on 1 April, a M 4.8 earthquake occurred, the largest so far during this eruption. Observations using a JMA camera indicated that another phase of the eruption started at the W foot around 0250, when explosions formed new craters near the previous craters W of Nishi-yama and also 1.5 km NE, on Konpira-yama. The latter were close to houses in the resort on the shore of Lake Toya. Cock's-tail-shaped jets were frequently observed from the active craters. Sometimes eruption clouds rose more than 2 km above the vents. According to Tadahide Ui, petrological work in Hokkaido University identified a few juvenile fragments in the products of the first eruption. Takayuki Kaneko (VRC, U. Tokyo) inspected the craters from the Asahi Shinbun news helicopter on 1 April (figure 21 and table 6).

Figure (see Caption) Figure 21. Topographic map of the NW sector of Usu, showing the distribution of new craters in the Nishi-yama and Konpira-yama dome areas, 1 April 2000. The summit, on the O-Usu dome, is at the lower right. Craters are numbered in the order of their opening. Courtesy of Takayuki Kaneko.

Table 6. Venting from west of Nishi-yama dome (craters A1-A6) and near Konpira-yama dome (craters B1-B2) at stated times on 1 April 2000, as seen from helicopter by Takayuki Kaneko (VRC, U. Tokyo). Craters formed in the same order as their numbers, but the opening sequence of A4 and A5 was unclear.

Crater Status on 1 April (1110-1130) Status on 1 April (1310-1330)
A1 Inactive Inactive
A2 Active (white-to-dark cloud) Active (white)
A3 Active (dark) Active (dark)
A4 Not open Active (white)
A5 Not open Active (white)
A6 Not open Activity began (white)
B1 Not open Active (white)
B2 Not open Activity began (white)

According to the JURG and the GSJ, deformation on the NW part of the volcano continued. During 31 March to 1 April, with respect to the volcano's foot, the NW caldera rim uplifted by as much as 30 cm a day and migrated NE by 25 cm over a period of 19 hours. Small crack systems observed in the N foot also supported some slow but continual migration on the NW part of the volcano.

The GSJ and Hokkaido University noted that on 2 April fresh pumice fragments floated in Toya Lake, ~3.7 km ENE of the 31 May eruption vent. Three faults extending E-W for a few hundred meters were seen on 3 April near the explosion craters (NW of Nishi-yama). The maximum throw of the faults was ~10 m. They form a normal fault system with subsidence in the N side according to Kiyoaki Niida of Hokkaido University. A new fault system was found on 4 April a few hundred meters N of the one near the craters NW of Nishi-yama, according to Okada, and the area between the two fault systems was subsiding to form a graben. In early April, the fracture, which formed near the NW part of the summit caldera rim on 30 March, widened to ~4-5 m. The eruptive activity continued and the Asahi newspaper reported that at 1700 on 4 April at least one new crater lying between the two existing groups of craters sent a white plume 600 m high.

A new crater formed on the morning of 5 April on Konpira-yama near the previous two craters and sent a grayish plume to ~400 m height, according to JMA. On the W slope of Konpira-yama, a mudflow moved down slowly toward the spa, raising steam.

The main edifice consists of basaltic to basaltic-andesites (49-53% SiO2) with a small summit caldera. Ten dacitic lava or cryptodomes (68-73 % SiO2) lie on the summit and N slope arranged in two lines trending NW-SE. The eruptions that occurred at the summit (in 1663, 1769, 1822, 1853 and 1977-82) commenced with a strong Plinian phase and, apart from 1977-82, were accompanied by pyroclastic flows. All but perhaps the 1769 eruption also involved the growth of lava or cryptodomes in the middle to final stages. Both summit (O-Usu and Ko-Usu) and flank (Showa-Shinzan) lava domes, along with seven cryptodomes, were erupted in historical time. The war-time growth of Showa-Shinzan was painstakingly documented by the local postmaster, who created the first detailed record of lava-dome growth.

During the flank eruptions (in 1910 and 1943-45) the building of lava or cryptodomes was preceded by phreatic explosions in the initial stage. Each eruption lasted from one month to two years, with between thirty and one hundred years of repose between them. According to Akihiko Tomiya (Geological Survey of Japan), precursory seismicity of the historical eruptions (mainly volcanic earthquakes) lasted from 32 hours (1977-82) to 6 months (1943-45).

Geologic Background. Usuzan, one of Hokkaido's most well-known volcanoes, is a small stratovolcano located astride the southern topographic rim of the 110,000-year-old Toya caldera. The center of the 10-km-wide, lake-filled caldera contains Nakajima, a group of forested Pleistocene andesitic lava domes. The summit of the basaltic-to-andesitic edifice of Usu is cut by a somma formed about 20-30,000 years ago when collapse of the volcano produced a debris avalanche that reached the sea. Dacitic domes erupted along two NW-SE-trending lines fill and flank the summit caldera. Three of these domes, O-Usu, Ko-Usu and Showashinzan, along with seven crypto-domes, were erupted during historical time. The 1663 eruption of Usu was one of the largest in Hokkaido during historical time. The war-time growth of Showashinzan from 1943-45 was painstakingly documented by the local postmaster, who created the first detailed record of growth of a lava dome.

Information Contacts: Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Geological Survey of Japan, 1-1-3 Higashi, Ibaraki, Tsukuba 305, Japan (URL: https://www.gsj.jp/); Usu Volcano Observatory, Institute of Seismology and Volcanology, Graduate School of Science, Hokkaido University, Sohbetsu-cho, Usu-gun, Hokkaido, 052-0103, Japan (URL: http://www.sci.hokudai.ac.jp/isv/english/); Japan Meteorological Agency, Volcanological Division, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Turrialba (Costa Rica) — March 2000 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Microseisms diminish in number during July-November 1999

Mass wasting and elevated seismicity continued at Turrialba during July-November 1999 (table 4). The seismicity has appeared anomalously high since it increased suddenly during May 1996, escalating to 540 such events in September 1996. Microseisms have dropped since then, although they still remained at over 100 per month during September and October 1999. Between April and August 1999 scientists made surveys of the distance to a reflector 500 m from the active crater on the SW flank; these failed to show significant changes in length. After 18 September three new seismic receivers helped detect and locate three earthquakes, M 1.7-2.8, at depths of 3-11 km centered 2.5-10 km E, SE, and SW of the volcano.

Table 4. Monthly seismicity at Turrialba as recorded at station VTU, ~ 0.5 km E of the active crater. Microseisms were defined as earthquakes registered on the local seismic system with amplitudes under 15 mm. NR indicates information not reported. Courtesy of OVSICORI-UNA.

Month Total earthquakes Microseisms Type-AB earthquakes Tremor duration Max fumarolic temp.
Jul 1999 89 54 35 NR NR
Aug 1999 155 99 55 NR 90°C
Sep 1999 213 134 76 NR 91°C
Oct 1999 209 120 39 9 minutes 90°C
Nov 1999 144 39 42 35 minutes 90°C

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernandez, E. Duarte, V. Barboza, R. Sáenz, E. Malavassi, R. Van der Laat, T. Marino, J. Barquero, and E. Hernández, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Ulawun (Papua New Guinea) — March 2000 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Minor vapor emissions continue in early 2000

Low-level activity continued in January with weak emissions of thin white vapor throughout the month. Slightly stronger emissions occurred on 17 and 26 January. Emissions from the summit crater during February consisted of fluctuating volumes of thin-to-thick white vapor being released gently. March emissions consisted of thin white vapor. The seismograph remained out of operational.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Whakaari/White Island (New Zealand) — March 2000 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Minor ash emissions resume on 7 March, escaping from multiple vents

Minor eruptive activity recommenced on 7 March when a vent on the ridge SW of PeeJay vent began producing very weak ash emissions. Following reports from tour operators of ash emissions and the progressive failure of the transmission signal from the island, a visit by IGNS scientists was made on 9 March to ascertain the status of the eruptive activity and repair the seismic system.

When they arrived on the island, a weak, ash-charged gas plume rose ~1,500 m above the vent before being blown downwind >40 km. Viewing conditions within the Main Crater area were excellent. The steam-and-ash cloud was being fed from four vents on the ridge SW of the May 1991 embayment. PeeJay vent also was active in this area during 1999. Two of the vents on the ridge continuously emitted light brown ash while the other two emitted vivid white gas plumes. There was no evidence of ash accumulating on the Main Crater floor or on the outer flanks of the cone, indicating insignificant total ash emission; there was also no evidence of impact craters. Moderate convection was present in the crater lake, although there was no discoloration of the lake, which remained a bright green color with light gray surface slicks.

COSPEC flights were conducted on 10 and 17 March to measure the SO2 flux within the gas plume. The results indicated an average estimated flux of 2,256 metric tons/day, the highest SO2 values ever recorded from White Island. Despite a significant change in SO2 flux, a prominent 1,500-m-high gas plume, and a phase of sustained but very minor ash discharge, there had not been any associated seismic activity or visible escalation of activity as of 21 March.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: Brad Scott and Brent Alloway, Wairakei Research Center, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports