Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kavachi (Solomon Islands) Discolored water plumes observed in satellite imagery during early September 2020

Krakatau (Indonesia) Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Raung (Indonesia) Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

Klyuchevskoy (Russia) Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Fuego (Guatemala) Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Nishinoshima (Japan) Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Turrialba (Costa Rica) New eruptive period on 18 June 2020 consisted of ash eruptions

Etna (Italy) Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Ol Doinyo Lengai (Tanzania) Multiple lava flows within the summit crater; September 2019-August 2020

Yasur (Vanuatu) Ash and gas explosions continue through August 2020

Villarrica (Chile) Continued summit incandescence February-August 2020 with larger explosions in July and August

Stromboli (Italy) Strombolian activity continues at both summit craters during May-August 2020



Kavachi (Solomon Islands) — October 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes observed in satellite imagery during early September 2020

Kavachi is an active submarine volcano in the SW Pacific, located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism has been characterized by phreatomagmatic explosions that ejected steam, ash, and incandescent bombs. The previous report described discolored water plumes extending from a single point during early 2018 and April 2020 (BGVN 45:05); similar activity was recorded for this current reporting period covering May through September 2020 and primarily using satellite data.

Activity at Kavachi is most frequently observed through satellite images and typically consists of discolored submarine plumes. On 2 September 2020 a slight yellow discoloration in the water was observed extending E from a specific point (figure 22). Similar faint plumes continued to be recorded on 5, 7, 12, and 17 September, each of which seemed to be drifting generally E from a point source above the summit where previous activity has occurred. On 7 September the discolored plume was accompanied by white degassing and possibly agitated water on the surface at the origin point (figure 22).

Figure (see Caption) Figure 22. Sentinel-2 satellite images of a discolored plume (light yellow) at Kavachi beginning on 2 September (top left) and continuing through 17 September 2020 (bottom right). The light blue circle on the 7 September image highlights the surface degassing and source of the discolored water plume. The white arrow on the bottom right image is pointing to the faint discolored plume. Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — October 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. Presently, the caldera is underwater, except for three surrounding islands (Verlaten, Lang, and Rakata) and the active Anak Krakatau that was constructed within the 1883 caldera and has been the site of frequent eruptions since 1927. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). The previous report (BGVN 45:06) described activity that included Strombolian explosions, ash plumes, and crater incandescence. This report updates information from June through September 2020 using information primarily from Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and satellite data.

A VONA notice from PVMBG reported that the last eruptive event at Krakatau was reported on 17 April 2020, though the eruptive column was not observed. Activity after that was relatively low through September 2020, primarily intermittent diffuse white gas-and-steam emissions, according to PVMBG. No activity was reported during June-August, except for minor seismicity. During 11-13, 16, and 18 September, the CCTV Lava93 webcam showed intermittent white gas-and-steam emissions rising 25-50 m above the crater.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent hotspots within 5 km of the crater from May through September (figure 113). Some of these thermal hotspots were also detected in Suomi NPP/VIIRS sensor data. Sentinel-2 thermal satellite imagery showed faint thermal anomalies in the crater during June; no thermal activity was detected after June (figure 114).

Figure (see Caption) Figure 113. Intermittent thermal activity at Anak Krakatau from 13 October 2019-September 2020 shown on a MIROVA Low Radiative Power graph. The power of the thermal anomalies decreased after activity in April but continued intermittently through September. Courtesy of MIROVA.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images showing a faint thermal anomaly in the crater during 1 (left) and 11 (right) June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Raung (Indonesia) — September 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Visual reports of activity have often come from commercial airline flights that pass near the summit; Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption in 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. Confirmation and details of eruptions in 2012, 2013, and 2014-2015 are covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), several sources of satellite data, and visitors to the volcano.

Newly available visual and satellite information confirm eruptions at Raung during October 2012-January 2013, June-July 2013, and extend the beginning of the 2015 eruption back to November 2014. The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor. Raung was quiet after the 2015 eruption ended in August of that year until July 2020.

Eruption during October 2012-January 2013. A MODVOLC thermal alert appeared inside the summit crater of Raung on 14 October 2012, followed by another four alerts on 16 October. Multiple daily alerts were reported on many days through 8 November, most within the main crater. Single alerts appeared on 29 November and 1 December 2012 (figure 9). PVMBG raised the Alert Level on 17 October from 1 to 2 due to increased seismicity and raised it further to Level 3 on 22 October. A local news report by Aris Yanto indicted that a minor Strombolian eruption occurred inside the crater on 19 October. Strombolian activity was also observed inside the inner crater on 5 November 2012 by visitors (figure 10); they reported loud rumbling sounds that could be heard up to 15 km from the crater.

Figure (see Caption) Figure 9. Thermal activity at Raung during October and November 2012 included multiple days of multi-pixel anomalies, with almost all activity concentrated within the summit crater. Strombolian activity was observed on 5 November. Image shows all pixels from 23 September-1 December 2012. Courtesy of MODVOLC.
Figure (see Caption) Figure 10. Strombolian activity was observed inside the inner crater of Raung on 5 November 2012 by visitors. They reported loud rumbling sounds that could be heard up to 15 km from the crater. Photo by Galih, courtesy of Volcano Discovery.

The Darwin VAAC issued an advisory of an eruption plume to 9.1 km altitude reported at 0237 UTC on 8 November 2012. In a second advisory about two hours later they noted that an ash plume was not visible in satellite imagery. A press article released by the Center for Volcanology and Geological Hazard Mitigation (PVMBG) indicated that gray ash plumes were observed on 6 January 2013 that rose 300 m above the summit crater rim. Incandescence was observed around the crater and thundering explosions were heard by nearby residents.

Eruption during June-July 2013. Two MODVOLC thermal alerts were measured inside the summit crater on 29 June 2013. A photo taken on 21 July showed minor Strombolian activity at the inner crater (figure 11). A weak SO2 anomaly was detected in the vicinity of Raung by the OMI instrument on the Aura satellite on 27 July. Thermal alerts were recorded on 29 and 31 July. When Google Earth imageryrom 14 March 2011 created by Maxar Technologies is compared with imagery from 29 July 2013 captured by Landsat/Copernicus, dark tephra is filling the inner crater in the 2013 image; it was not present in 2011 (figure 12).

Figure (see Caption) Figure 11. Strombolian activity was observed inside the inner crater at the summit of Raung on 21 July 2013. Photo by Agus Kurniawan, courtesy of Volcano Discovery.
Figure (see Caption) Figure 12. Satellite imagery from Google Earth showing the eroded pyroclastic cone inside the summit crater of Raung on 14 March 2011 (left) and 29 July 2013 (right). Dark tephra deposits filling the inner crater in the 2013 image were not present in 2011. The crater of the pyroclastic cone is 200 m wide; N is to the top of the images. Courtesy of Google Earth.

Eruption during November 2014-August 2015. Information about this eruption was previously reported (BGVN 41:12), but additional details are provided here. Landsat-8 imagery from 28 October 2014 indicated clear skies and little activity within the summit crater. Local observers reported steam plumes beginning in mid-November (figure 13). MODVOLC thermal alerts within the summit crater were issued on 28 and 30 November, and then 15 alerts were issued on seven days in December. Thermal Landsat-8 imagery from cloudy days on 29 November and 15 December indicated an anomaly over the area of the pyroclastic cone inside the summit crater (figure 14).

Figure (see Caption) Figure 13. Local observers reported steam plumes at Raung beginning in mid-November 2014; this one was photographed on 17 November 2014. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 14. Satellite evidence of new eruptive activity at Raung first appeared on 29 November 2014. The true color-pansharpened Landsat-8 image of Raung from 28 October 2014 (left) shows the summit crater and an eroded pyroclastic cone with its own crater (the inner crater) with no apparent activity. Although dense meteoric clouds on 29 November (center) and 15 December 2014 (right) blocked true color imagery, thermal imagery indicated a thermal anomaly from the center of the pyroclastic cone on both dates. Courtesy of Sentinel Hub Playground.

In January 2015 the MODVOLC system identified 25 thermal anomalies in MODIS data, with a peak of eight alerts on 8 January. Visitors to the summit crater on 6 January witnessed explosions from the inner crater approximately every 40 minutes that produced gas and small amounts of ash and tephra. They reported lava flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was seen at night (figure 15). Landsat-8 images from 16 January showed a strong thermal anomaly covering an area of fresh lava (figure 16).

Figure (see Caption) Figure 15. Visitors to the summit crater of Raung on 6 January 2015 witnessed explosions from the inner crater approximately every 40 minutes that produced abundant gas and small amounts of ash and tephra. Lava was flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was observed at night. Photos by Sofya Klimova, courtesy of Volcano Discovery.
Figure (see Caption) Figure 16. On a clear 16 January 2015, Landsat-8 satellite imagery revealed fresh lava flows NW of the pyroclastic cone within the summit crater at Raung. A strong thermal anomaly matches up with the dark material, suggesting that it flowed NW from within the pyroclastic cone. Left image is true color-pansharpened rendering, right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Satellite images were obscured by meteoric clouds during February 2015, but PVMBG reported gray and brown plumes rising 300 m multiple times and incandescence and rumbling on 14 February. Visitors to the summit crater during the second half of February reported Strombolian activity with lava fountains from the inner crater, at times as frequently as every 15 minutes (figure 17). Loud explosions and rumbling were heard 10-15 km away. MODVOLC thermal alerts stopped on 25 February and did not reappear until late June.

Figure (see Caption) Figure 17. A report issued on 25 February 2015 from visitors to the summit of Ruang noted large Strombolian explosions with incandescent ejecta and lava flowing across the crater floor. The fresh lava on the crater floor covered a noticeably larger area than that shown in early January (figure 15). Photo by Andi, courtesy of Volcano Discovery.

PVMBG raised the Alert Level to 2 in mid-March 2015. Weak thermal anomalies located inside and NW of the pyroclastic cone were present in satellite imagery on 21 March. PVMBG reported gray and brown emissions during March, April, and May rising as high as 300 m above the crater. Landsat imagery from 22 April showed a small emission inside the pyroclastic cone, and on 8 May showed a clearer view of the fresh black lava NW and SW of the pyroclastic cone (figure 18).

Figure (see Caption) Figure 18. Fresh lava was visible in Landsat-8 satellite imagery in April and May 2015 at Raung. A small emission was present inside the pyroclastic cone at the summit of Raung on 22 April 2015 (left). Fresh dark material is also evident in the SW quadrant of the summit crater that was not visible on 16 January 2015. A clear view on 8 May 2015 also shows the extent of the fresh black material around the pyroclastic cone (right). The summit crater is 2 km wide. Courtesy of Sentinel Hub Playground.

Nine MODVOLC thermal alerts appeared inside the summit crater on 21 June 2015 after no alerts since late February, suggesting an increase in activity. The Darwin VAAC issued the first ash advisory for 2015 on 24 June noting an aviation report of recent ash. The following day the Ujung Pandang Meteorological Weather Office (MWO) reported an ash emission drifting W at 3.7 km altitude. The same day, 25 June, Landsat-8 imagery clearly showed a new lava flow on the W side of the crater and a strong thermal anomaly. The thermal data showed a point source of heat widening SW from the center of the crater and a second point source of heat that appeared to be inside the pyroclastic cone. A small ash plume was visible over the cone (figure 19). Strombolian activity and ash plumes were reported by BNPB and PVMBG in the following days. On 26 June the Darwin VAAC noted the hotspot had remained visible in infrared imagery for several days. PVMBG reported an ash emission to 3 km altitude on 29 June.

Figure (see Caption) Figure 19. A new lava flow and strong thermal anomaly appeared inside the summit crater of Raung on 25 June 2015 in Landsat-8 imagery. The new flow was visible on the W side of the crater. The darker area extending SW from the rising ash plume is a shadow. The thermal data showed a point source of heat widening SW from the center of the crater and spreading out in the SW quadrant and a second point source of heat on the flank of the pyroclastic cone. Left image is True color-pansharpened rendering, and right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Activity increased significantly during July 2015 (BGVN 41:12). Ash plumes rose as high as 6.7 km altitude and drifted hundreds of kilometers in multiple directions, forcing multiple shutdowns at airports on Bali and Lombok, as well as Banyuwangi and Jember in East Java. The Darwin VAAC issued 152 ash advisories during the month. Ashfall was reported up to 20 km W during July and 20-40 km SE during early August. Visitors to the summit in early July observed a new pyroclastic cone growing inside the inner crater from incandescent ejecta and dense ash emissions (figure 20). Landsat-8 imagery from 11 July showed a dense ash plume drifting SE, fresh black lava covering the 2-km-wide summit caldera floor, and a very strong thermal anomaly most intense at the center near the pyroclastic cone and cooler around the inner edges of the crater (figure 21). On 12 July, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a view of an ash-and-gas plume drifting hundreds of kilometers SE from Raung (figure 22).

Figure (see Caption) Figure 20. A new pyroclastic cone was growing inside the inner crater at the summit of Raung when photographed by Aris Yanto in early July 2015. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 21. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and a large thermal anomaly caused by fresh lava. On 11 July a dense ash plume drifted SE and a strong thermal anomaly was centered inside the summit crater. The 2-km-wide crater floor was covered with fresh lava (compare with 25 June image in figure 19). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 22. On 12 July 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a natural-color view of a plume of ash and volcanic gases drifting hundreds of kilometers SE from Raung. Courtesy of NASA Earth Observatory.

A satellite image on 20 July showed fresh incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit (figure 23). Incandescent ejecta emerged from two vents on the new pyroclastic cone inside the inner crater on 26 July (figure 24). On 27 July a dense ash plume was visible again in satellite imagery drifting NW and the hottest part of the thermal anomaly was in the SE quadrant of the crater (figure 25). Substantial SO2 plumes were recorded by the OMI instrument on the Aura satellite during July and early August 2015 (figure 26).

Figure (see Caption) Figure 23. A satellite image of the summit of Raung on 20 July 2015 showed fresh, incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit. Thermal activity on the NE flank was likely the result of incandescent ejecta from the crater causing a fire. Image created by DigitalGlobe, captured by WorldView3, courtesy of Volcano Discovery.
Figure (see Caption) Figure 24. Incandescent ejecta emerged from two vents on the new pyroclastic cone growing inside the inner crater of Raung on 26 July 2015. Photo by Vianney Tricou, used with permission, courtesy of Volcano Discovery.
Figure (see Caption) Figure 25. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and large thermal anomalies from fresh lava. The 2-km-wide crater floor was fully covered with fresh lava by 11 July. On 27 July the dense ash plume was drifting NW and the highest heat was concentrated in the SE quadrant of the crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 26. Substantial plumes of sulfur dioxide from Raung were measured by the OMI instrument on the AURA satellite during July and August 2015. The first plumes were measured in mid-June; they intensified during the second half of July and the first week of August, but had decreased by mid-August. Wind directions were highly variable throughout the period. The date is recorded above each image. Courtesy of NASA Global Sulfur Dioxide Page.

Significant ash emissions continued into early August 2015 with numerous flight cancellations. The Darwin VAAC reported ash plumes rising to 5.2 km altitude and extending as far as 750 km SE during the first two weeks in August (figure 27). Satellite imagery indicated a small ash plume drifting W from the center of the crater on 12 August and weak thermal anomalies along the E and S rim of the floor of the crater (figure 28). The summit crater was covered with fresh lava on 14 August when viewed by visitors, and ash emissions rose a few hundred meters above the crater rim from a vent in the SW side of the pyroclastic cone (figure 29). The visitors observed pulsating ash emissions rising from the SW vent on the large double-crater new cinder cone. The larger vent to the NE was almost entirely inactive except for two small, weakly effusive vents on its inner walls.

Figure (see Caption) Figure 27. A dense ash plume drifted many kilometers S from Raung on 2 August 2015 in this view from nearly 100 km W. Incandescence at the summit indicated ongoing activity from the major 2015 eruption. In the foreground is Lamongan volcano whose last known eruption occurred in 1898. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 28. Landsat-8 satellite imagery of Raung indicated a small ash plume drifting W from the center of the crater on 12 August 2015. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. The summit crater of Raung on 14 August 2015 was filled with fresh lava from an eruption that began in November 2014. Ash emissions from a vent in the side of the newly grown pyroclastic cone within the crater rose a few hundred meters above the crater rim. Courtesy of Volcano Discovery.

The lengthy sequence of multiple daily VAAC reports that began in late June ended on 16 August 2015 with reports becoming more intermittent and ash plume heights rising to only 3.7-3.9 km altitude. Multiple discontinuous eruptions to 3.9 km altitude were reported on 18 August. The plumes extended about 100 km NW. The last report of an ash plume was from an airline on 22 August noting a low-level plume 50 km NW. Two MODVOLC alerts were issued that day. By 28 August only a very small steam plume was present at the center of the crater; the southern half of the edge of the crater floor still had small thermal anomalies (figure 30). The last single MODVOLC thermal alerts were on 29 August and 7 September. The Alert Level was lowered to 2 on 24 August 2015, and further lowered to 1 on 20 October 2016.

Figure (see Caption) Figure 30. By 28 August 2015 only a very small steam plume was present at the center of the summit crater of Raung, and the southern half of the edge of the crater floor only had weak thermal anomalies from cooling lava. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/);Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/, https://earthobservatory.nasa.gov/images/86213/eruption-of-raung-volcano); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Aris Yanto (URL: https://www.exploredesa.com/2012/11/mount-raung-produce-of-vulcanic-ash-plume-and-continue-eruption/); DigitalGlobe (URL: https://www.maxar.com/, https://twitter.com/Maxar/status/875449111398547457); Øystein Lund Andersen (URL: https://twitter.com/OysteinVolcano/status/1194879946042142726, http://www.oysteinlundandersen.com).


Klyuchevskoy (Russia) — September 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Klyuchevskoy is a frequently active stratovolcano located in northern Kamchatka. Historical eruptions dating back 3,000 years have included more than 100 flank eruptions with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks. The previous report (BGVN 45:06) described ash plumes, nighttime incandescence, and Strombolian activity. Strombolian activity, ash plumes, and a strong lava flow continued. This report updates activity from June through August 2020 using weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.

Moderate explosive-effusive activity continued in June 2020, with Strombolian explosions, frequent gas-and-steam emissions that contained some amount of ash, and an active lava flow. On 1 June a gas-and-steam plume containing some ash extended up to 465 km SE and E. The lava flow descended the SE flank down the Apakhonchich chute (figure 43). Occasionally, phreatic explosions accompanied the lava flow as it interacted with snow. Intermittent ash plumes, reported throughout the month by KVERT using video and satellite data and the Tokyo VAAC using HIMAWARI-8 imagery, rose to 5.5-6.7 km altitude and drifted in different directions up to 34 km from the volcano. On 12 and 30 June ash plumes rose to a maximum altitude of 6.7 km. On 19 June, 28-30 June, and 1-3 July some collapses were detected alongside the lava flow as it continued to advance down the SE flank.

Figure (see Caption) Figure 43. Gray ash plumes (left) and a lava flow descending the Apakhonchich chute on the SE flank, accompanied by a dark ash plume and Strombolian activity (right) were observed at the summit of Klyuchevskoy on 10 June 2020. Courtesy of E. Saphonova, IVS FEB RAS, KVERT.

During 1-3 July moderate Strombolian activity was observed, accompanied by gas-and-steam emissions containing ash and a continuous lava flow traveling down the Apakhonchich chute on the SE flank. On 1 July a Tokyo VAAC advisory reported an ash plume rising to 6 km altitude and extending SE. On 3 July the activity sharply decreased. KVERT reported there was some residual heat leftover from the lava flow and Strombolian activity that continued to cool through at least 13 July; KVERT also reported frequent gas-and-steam emissions, which contained a small amount of ash through 5 July, rising from the summit crater (figure 44). The weekly KVERT report on 16 July stated that the eruption had ended on 3 July 2020.

Figure (see Caption) Figure 44. Fumarolic activity continued in the summit crater of Klyuchevskoy on 7 July 2020. Courtesy of KSRS ME, Russia, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity within 5 km of the summit crater from March through June followed by a sharp and sudden decline in early July (figures 45). A total of six weak thermal anomalies were detected between July and August. According to the MODVOLC thermal algorithm, a total of 111 thermal alerts were detected at or near the summit crater from 1 June to 1 July, a majority of which were due to the active lava flow on the SE flank and Strombolian explosions in the crater. Sentinel-2 thermal satellite imagery frequently showed the active lava flow descending the SE flank as a strong thermal anomaly, sometimes even through weather clouds (figure 46). These thermal anomalies were also recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data on a MIROVA graph, showing a strong cluster during June to early July, followed by a sharp decrease and then a hiatus in activity (figure 47).

Figure (see Caption) Figure 45. Thermal activity at Klyuchevskoy was frequent and strong during February through June 2020, according to the MIROVA graph (Log Radiative Power). Activity sharply decreased during July through August with six low-power thermal anomalies. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 thermal satellite images show the strong and persistent lava flow (bright yellow-orange) originating from the summit crater at Klyuchevskoy from 1 June through 1 July 2020. The lava flow was active in the Apakhonchich chute on the SE flank. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 47. Strong clusters of thermal anomalies were detected in the summit at Klyuchevskoy (red dots) during January through June 2020, as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Activity sharply decreased during July through August with few low-power thermal anomalies. Courtesy of MIROVA.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — September 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Fuego, located in Guatemala, is a stratovolcano that has been erupting since 2002 with historical eruptions dating back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 45:04) described recent activity that included multiple ash explosions, block avalanches, and intermittent lava flows. This report updates activity from April through July 2020 that consisted of daily explosions, ash plumes, block avalanches ashfall, intermittent lava flows, and lahars. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity during April-July 2020. Daily activity throughout April-July 2020 was characterized by multiple hourly explosions, ash plumes that rose to a maximum of 4.9 km altitude, incandescent pulses that reached 600 m above the crater, block avalanches into multiple drainages, and ashfall affecting nearby communities (table 21). The highest rate of explosions occurred on 2 and 3 April and 2 May with up to 16 explosions per hour. White degassing occurred frequently during the reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 132); the number of flows decreased in June through July, which is represented in the MIROVA analysis of MODIS satellite data, where the strength and frequency of thermal activity slightly decreased (figure 133). Occasional lahars were detected descending several drainages on the W and SE flanks, sometimes carrying tree branches and large blocks up to 1 m in diameter.

Table 21. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Number of explosions per hour Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Villages reporting ashfall
Apr 2020 5-16 4.3-4.9 km 8-20 km E, NE, SE, W, NW, SW, S, N Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, Honda, and Santa Teresa Morelia, Panimaché I and II, Sangre de Cristo, Santa Sofía, Finca Palo Verde, San Pedro Yepocapa, Las Cruces Quisache, La Rochela, Ceylan, and Osuna
May 2020 4-16 4.3-4.9 km 10-17 km S, SW, W, N, NE, E, SE Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala
Jun 2020 3-15 4.2-4.9 km 10-25.9 km E, SE, S, N, NE, W, SW, NW Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa and Honda San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir, Yucales, Santa Emilia, Santa Sofía
Jul 2020 1-15 4-4.9 km 10-24 km W, NW, SW, S, NE Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir
Figure (see Caption) Figure 132. Sentinel-2 thermal satellite images of Fuego between 9 April 2020 and 13 July 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the summit crater. Some lava flows were accompanied by gas emissions (9 April, 9 May, and 24 May 2020). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 133. Thermal activity at Fuego was persistent and strong from 16 September through late May 2020, according to the MIROVA graph (Log Radiative Power). From early to mid-June activity seemed to stop briefly before resuming again at a lower rate. Courtesy of MIROVA.

Activity during April-May 2020. Activity in April 2020 consisted of 5-16 explosions per hour, generating ash plumes that rose 4.3-4.9 km altitude and drifted 8-20 km in multiple directions. Ashfall was reported in Morelia (9 km SW), Panimaché I and II (8 km SW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Las Cruces Quisache (8 km NW), La Rochela, Ceylan, Osuna (12 km SW). The Washington VAAC issued multiple aviation advisories for a total of six days in April. Intermittent white gas-and-steam emissions reached 4.1-4.5 km altitude drifting in multiple directions. Incandescent ejecta was frequently observed rising 75-400 m above the crater; material ejected up to 600 m above the crater on 11 April. These constant explosions produced block avalanches that traveled down the Taniluyá (SW), Ceniza (SSW), Las Lajas (SE), Trinidad (S), Seca (W), Honda, and Santa Teresa (W) drainages. Effusive activity was reported on 6-13 and 15 April from the summit vent, traveling 150-800 m down the Ceniza drainage, accompanied by block avalanches in the front of the flow up to 1 km. Crater incandescence was also observed.

On 19-20 April a new lava flow descended the Ceniza drainage measuring 200-400 long, generating incandescent block avalanches at the front of the flow that moved up to 1 km. On 22 April lahars descended the Honda, Las Lajas, El Juté (SE), Trinidad, Ceniza, Taniluyá, Mineral, and Seca drainages and tributaries in Guacalate, Achiguate, and Pantaleón. During the evening of 23 April the rate of effusive activity increased; observatory staff observed a second lava flow in the Seca drainage was 170 m long and incandescent blocks from the flow traveled up to 600 m. Two lava flows in the Ceniza (130-400 m) and Seca (150-800 m) drainages continued from 23-28 April and had stopped by 30 April. On 30 April weak and moderate explosions produced ash plumes that rose 4.5-4.7 km altitude drifting S and SE, resulting in fine ashfall in Panimaché I, Morelia, Santa Sofía (figure 134).

Figure (see Caption) Figure 134. Photo of a small ash plume rising from Fuego on 30 April 2020. Photo has been slightly color corrected. Courtesy of William Chigna, CONRED.

During May 2020, the rate of explosion remained similar, with 4-16 explosions per hour, which generated gray ash plumes that rose 4.3-4.9 km altitude and drifted 10-17 km generally W and E. Ashfall was observed in Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango (8 km ENE), Ciudad Vieja (13.5 km NE), San Miguel Dueñas (10 km NE), and Antigua Guatemala (18 km NE). The Washington VAAC issued volcanic ash advisory notices on six days in May. White gas-and-steam emissions continued, rising 4-4.5 km altitude drifting in multiple directions. Incandescent ejecta rose 100-400 m above the crater, accompanied by some crater incandescence and block avalanches in the Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda drainages that moved up to 1 km and sometimes reached vegetated areas.

During 8-11 May a new 400 m long lava flow was detected in the Ceniza drainage, accompanied by constant crater incandescence and block avalanches traveling up to 1 km, according to INSIVUMEH. On 8 and 17 May moderate to strong lahars descended the Santa Teresa and Mineral drainages on the W flank and on 21 May they descended the Las Lajas drainage on the E flank and the Ceniza drainage on the SW flank. During 20-24 May a 100-400 m long lava flow was reported in the Ceniza drainage alongside degassing and avalanches moving up to 1 km and during 25-26 May a 150 m long lava flow was reported in the Seca drainage.

Activity during June-July 2020. The rate of explosions in June 2020 decreased slightly to 3-15 per hour, generating gray ash plumes that rose 4.2-4.9 km altitude and drifted 10-26 km in multiple directions (figure 135). As a result, intermittent ashfall was reported in San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir (8 km ENE), Yucales (12 km SW), Santa Emilia, Santa Sofia, according to INSIVUMEH. VAAC advisories were published on eight days in June. Degassing persisted in the summit crater that rose 4.1-4.5 km altitude extending in different directions. Crater incandescence was observed occasionally, as well as incandescent pulses that rose 100-300 m above the crater. Block avalanches were observed descending the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa, and Honda drainages, which could sometimes carry blocks up to 1 km in diameter.

On 2 June at 1050 a weak to moderate lahar was observed in the Las Lajas drainage on the SE flank. On 5 June, more lahars were detected in the Seca and Mineral drainages on the W flanks. A new lava flow was detected on 12 June, traveling 250 m down the Seca drainage on the NW flank, and accompanied by constant summit crater incandescence and gas emissions. The flow continued into 14 June, lengthening up to 300 m long. On 24 June weak and moderate explosions produced ash plumes that rose 4.3-4.7 km altitude drifting W and SW (figure 135). On 29 June at 1300 a weak lahar was reported in the Seca, Santa Teresa, and Mineral drainages on the W flank.

Figure (see Caption) Figure 135. Examples of small ash plumes at Fuego on 15 (left) and 24 (right) June 2020. Courtesy of William Chigna, CONRED.

Daily explosions and ash plumes continued through July 2020, with 1-15 explosions per hour and producing consistent ash plumes 4-4.9 km altitude drifting generally W for 10-24 km. These explosions resulted in block avalanches that descended the Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa drainages. The number of white gas emissions decrease slightly compared to previous months and 4-4.4 km altitude. VAAC advisories were distributed on twenty different days in July. Incandescent ejecta was observed rising 100-350 m above the crater. Occasional ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir, according to INSIVUMEH.

On 4 July in the early morning, a lava flow began in the Seca drainage, which also produced some fine ash particles that drifted W. The lava flow continued into 5 July, measuring 150 m long. On the same day, weak to moderate lahars traveled only 20 m, carrying tree branches and blocks measuring 30 cm to 1 m. On 14, 24, and 29 July more lahars were generated in the Las Lajas drainages on the former date and both the Las Lajas and El Jute drainages on the two latter dates.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Nishinoshima (Japan) — September 2020 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted through November 2015 and returned during mid-2017, continuing the growth of the island with ash plumes, ejecta, and lava flows. A short eruptive event in July 2018 produced a small lava flow and vent on the side of the pyroclastic cone. The next eruption of ash plumes, incandescent ejecta, and lava flows began in early December 2019, resulting in significant growth of the island. This report covers the ongoing activity from March-August 2020 when activity decreased. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular overflights to make observations.

Renewed eruptive activity that began on 5 December 2019 continued during March-August 2020 but appeared to wane by the end of August. Major lava flows covered all sides of the island, with higher levels of activity during late June and early July. Ash emissions increased significantly during June and produced dense black ash plumes that rose up to 6 km altitude in early July. Explosive activity produced lightning and incandescent jets that rose 200 m and large bombs that fell to the base of the pyroclastic cone. Lava flow activity diminished at the end of July. Ash emissions decreased throughout August and appeared to cease after 27 August 2020. The MIROVA plot clearly reflects the high levels of thermal activity between December 2019 and August 2020 (figure 80); this event was reported by JMA as the largest eruption recorded to date. Sulfur dioxide emissions were very high during late June through early August, producing emissions that drifted across much of the western Pacific region.

Figure (see Caption) Figure 80. The MIROVA plot of thermal activity at Nishinoshima from 14 October 2019 through August 2020 indicates the high levels between early December 2019 and late July 2020 that resulted from the eruption of numerous lava flows on all flanks of the pyroclastic cone, significantly enlarging the island. Courtesy of MIROVA.

The Japan Coast Guard (JCG) conducted overflights of Nishinoshima on 9 and 15 March 2020 (figure 81). During both visits they observed eruptive activity from the summit crater, including ash emissions that rose to an altitude of approximately 1,000 m and lava flowing down the N and SE flanks (figure 82). Large ejecta was scattered around the base of the pyroclastic cone. The lava flowing north had reached the coast and was producing vigorous steam as it entered the water on 9 March; whitish gas emissions were visible on the N flank of the cone at the source of the lava flow (figure 83). On 9 March yellow-green discolored water was noted off the NE shore. The lava flow on the SE coast produced a small amount of steam at the ocean entry point and a strong signal in thermal imagery on 15 March (figure 84). Multiple daily MODVOLC thermal alerts were issued during 1-10, 17-24, and 27-30 March. Landsat-8 visual and thermal imagery on 30 March 2020 confirmed that thermal anomalies on the N and SE flanks of the volcano continued.

Figure (see Caption) Figure 81. The Japan Coast Guard conducted an overflight of Nishinoshima on 9 March 2020 and observed ash emissions rising 1,000 m above the summit and lava flowing into the ocean off the N flank of the island. Courtesy of Japan Coast Guard (JCG) and JMA.
Figure (see Caption) Figure 82. Lava flows at Nishinoshima during February and March 2020 were concentrated on the N and SE flanks. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. The growth of the SE-flank flow decreased during March while the N-flank flow rate increased significantly. Left image shows changes between 14 and 28 February and right image shows the differences between 28 February and 13 March. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the Japan National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, March 2020).
Figure (see Caption) Figure 83. Vigorous steam emissions on the N flank of Nishinoshima on 9 March 2020 were caused by the active flow on the N flank. Whitish steam and gas midway up the flank indicated the outlet of the flow. Ash emissions rose from the summit crater and drifted E. Courtesy of Japan Coast Guard and JMA.
Figure (see Caption) Figure 84. Infrared imagery from 15 March 2020 at Nishinoshima showed the incandescent lava flow on the SE flank (foreground), blocks of ejecta scattered around the summit and flanks of the pyroclastic cone, and the active N-flank flow (left). Courtesy of Japan Coast Guard and JMA.

Ash emissions were not observed at Nishinoshima during JCG overflights on 6, 16, and 19 April 2020, but gas-and-steam emissions were noted from the summit crater, and a yellow discoloration interpreted by JMA to be sulfur precipitation was observed near the top of the pyroclastic cone. The summit crater was larger than during previous visits. Steam plumes seen each of those days on the N and NE coasts suggested active ocean entry of lava flows (figure 85). A lava flow was observed emerging from the E flank of the cone and entering the ocean on the E coast on 19 and 29 April (figure 86). During the overflight on 29 April observers noted lava flowing southward from a vent on the E flank of the pyroclastic cone. A narrow, brown, ash plume was visible on 29 April at the summit crater rising to an altitude of about 1,500 m. Thermal observations indicated continued flow activity throughout the month. Multiple daily MODVOLC thermal alerts were recorded during 2-6, 10-11, 17-23, and 28-30 April. Significant growth of the pyroclastic cone occurred between early February and late April 2020 (figure 87).

Figure (see Caption) Figure 85. Multiple entry points of lava flowed into the ocean producing jets of steam along the N flank of Nishinoshima on 6 April 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 86. Lava flowed down the E flank of Nishinoshima from a vent below the summit on 19 April 2020. The ocean entry produced a vigorous steam plume (left). Courtesy of JCG.
Figure (see Caption) Figure 87. The pyroclastic cone at Nishinoshima grew significantly in size between 4 February (left), 9 March (middle), and 19 April 2020 (right). View is to the E. Courtesy of JMA and JCG.

Infrared satellite imagery from 17 May 2020 showed a strong thermal anomaly at the summit and hot spots on the NW flank indicative of flows. Visible imagery confirmed emissions at the summit and steam plumes on the NW flank (figure 88). Gray ash plumes rose to about 1,800 m altitude on 18 May during the only overflight of the month made by the Japan Coast Guard. In addition, white gas emissions rose from around the summit area and large blocks of ejecta were scattered around the base of the pyroclastic cone (figure 89). Steam from ocean-entry lava on the N flank was reduced from previous months, but a new flow moving NW into the ocean was generating a steam plume and a strong thermal signature. Multi-pixel thermal alerts were measured by the MODVOLC system on 1-3, 9-10, 13-15, 18, and 26-30 May. Sulfur dioxide emissions had been weak and intermittent from March through early May 2020 but became more persistent during the second half of May. Although modest in size, the plumes were detectible hundreds of kilometers away from the volcano (figure 90).

Figure (see Caption) Figure 88. Landsat-8 satellite imagery of Nishinoshima from 17 May 2020 confirmed continued eruptive activity. Visible imagery showed emissions at the summit and steam plumes on the NW flank (left) and infrared imagery showed a strong thermal anomaly at the summit and anomalies on the NW flank indicative of lava flows (right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Lava continued to enter the ocean at Nishinoshima during May 2020. A new lava flow on the NW flank produced a strong steam plume at an ocean entry (left) on 18 May 2020. In addition to a light gray plume of gas and ash, steaming blocks of ejecta were visible on the flanks of the pyroclastic cone. The strong thermal signature of the NW-flank flow in infrared imagery that same day showed multiple new lobes flowing to the ocean (right). Courtesy of JCG and JMA.
Figure (see Caption) Figure 90. Small but distinct SO2 emissions from Nishinoshima were recorded by the TROPOMI instrument on the Sentinel-5P satellite during the second half of May 2020. The plumes drifted tens to hundreds of kilometers away from the volcano in multiple directions as the wind directions changed. Nishinoshima is about 1,000 kilometers S of Tokyo. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity increased significantly during June 2020. Satellite imagery from 2 June revealed two intense thermal anomalies at the summit indicating a new crater, and lava flows active on the NW and NE flanks, all showing gas or steam emissions (figure 91). Dense brown and gray ash emissions were observed rising from the summit crater during JCG overflights on 7 and 15 June (figure 92). Plumes reached at least 1,500 m altitude, and ejecta reached the base of the pyroclastic cone. Between 5 and 19 June the lava flow on the WNW coast slowed significantly, while the flows to the N and E became significantly more active (figure 93). The Tokyo VAAC reported the first ash plume since mid-February on 12 June rose to 2.1 km and drifted NE. On 14 June they reported an ash plume extending E at 2.7 km altitude. Dense emissions continued to drift N and E at 2.1-2.7 km altitude until the last week of the month. The JCG overflight on 19 June observed darker ash emissions than two weeks earlier that drifted at least 180 km NE (figure 94) and incandescent tephra that exploded from the enlarged summit area where three overlapping craters trending E-W had formed.

Figure (see Caption) Figure 91. Landsat-8 satellite imagery on 2 June 2020 confirmed ongoing activity at Nishinoshima. Lava produced ocean-entry steam on the NE coast; a weak plume on the NW coast suggested reduced activity in that area (left). In addition, a dense steam plume drifted E from the summit, while a fainter plume adjacent to it also drifted E. The infrared image (right) indicated two intense anomalies at the summit, and weaker anomalies from lava flows on the NW and NE flanks. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 92. Lava flows at Nishinoshima entered the ocean on the N and NE coasts (left) on 7 June 2020, and dense, gray ash emissions rose to at least 1,500 m altitude. Courtesy of JCG.
Figure (see Caption) Figure 93. The lava flow on the WNW coast of Nishinoshima slowed significantly in early June 2020, while the flows to the N and E covered large areas of those flanks between 5 and 19 June. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows the differences between 22 May and 5 June and right image shows changes between 5 and 19 June. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 94. Ash emissions and explosive activity at Nishinoshima increased significantly during the second half of June. Dense black ash rose to 2.4 km altitude and drifted at least 180 km to the NE on 19 June 2020. Vigorous white steam plumes rose from the ocean on the E flank where a lava flow entered the ocean. Courtesy of JCG.

The Tokyo VAAC reported ash emissions that rose to 4.6 km altitude and drifted NE on 25 June. For the remainder of the month they rose to 2.7-3.9 km altitude and drifted N and NE. By the time of the JCG overflight on 29 June, the new crater that had opened on the SW flank had merged with the summit crater (figure 95). Dense black ash emissions rose to 3.4 km altitude and drifted NE, lava flowed down the SW flank into the ocean producing violent steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity (figure 96). Multiple layers of recent flow activity were visible along the SW coast (figure 97). Yellow-green discolored water encircled the entire island with a width of 1,000 m.

Figure (see Caption) Figure 95. The new crater on the SW flank of Nishinoshima had merged with the summit crater by 29 June 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 96. Dense black ash emissions rose to 3.4 km altitude and drifted NE from the summit of Nishinoshima on 29 June 2020. Lava flowed down the SW flank into the ocean producing steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity at the summit (inset). Courtesy of JCG.
Figure (see Caption) Figure 97. Different textures of lava flows were visible along the SW flank of Nishinoshima on 29 June 2020. The active flow appeared dark brown and blocky, and produced steam explosions at the ocean entry site (right). Slightly older, brownish-red lava (center) still produced steam along the coastline. Courtesy of JCG.

MODVOLC thermal alerts reached their highest levels of the period during June 2020 with multi-pixel alerts recorded on most days of the month. Sulfur dioxide emissions increased steadily throughout June to the highest levels recorded for Nishinoshima; by the end of the month plumes of SO2 were drifting thousands of kilometers across the Pacific Ocean and being captured in complex atmospheric circulation currents (figure 98).

Figure (see Caption) Figure 98. Sulfur dioxide emissions at Nishinoshima increased noticeably during the second half of June 2020 as measured by the TROPOMI instrument on the Sentinel-5P satellite. Atmospheric circulation currents produced long-lived plumes that drifted thousands of kilometers from the volcano. Nishinoshima is 1,000 km S of Tokyo. Courtesy of NASA Sulfur Dioxide Monitoring Page.

By early July 2020, satellite data indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank, creating fans extending into the ocean (figure 99). The Tokyo VAAC reported ash emissions that rose to 3.7-4.9 km altitude and drifted N during 1-6 July. The altitude increased to 6.1 km during 8 and 9 July, and ranged from 4.6-6.1 km during 10-14 July while the drift direction changed to NE. The marine meteorological observation ship "Ryofu Maru" reported on 11 July that dense black ash was continuously erupting from the summit crater and drifting W at 1,700 m altitude or higher. They observed large volcanic blocks scattered around the base of the pyroclastic cone, and ash falling from the drifting plume. During the night of 11 July incandescent lava and volcanic lightning rose to about 200 m above the crater rim (figure 100).

Figure (see Caption) Figure 99. By early July 2020, satellite data from Nishinoshima indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank creating fans extending into the ocean. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows differences between 5 and 19 June and the right image shows changes between 19 June and 3 July that included abundant ashfall on the NE flank. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 100. High levels of activity were observed at Nishinoshima by crew members aboard the marine meteorological observation ship "Ryofu Maru” on 11 July 2020. Abundant ash emissions filled the sky and tephra fell out of the ash cloud for several kilometers downwind (left, seen from 6 km NE). Incandescent explosions rose as much as 200 m into the night sky (right, seen from 4 km E). Courtesy of JMA.

During 16-26 July 2020 the Tokyo VAAC reported ash emissions at 3.7-5.2 km altitude that drifted primarily N and NE. The vessel "Keifu Maru" passed Nishinoshima on 20 July and crewmembers observed continuing emissions from the summit of dense, black ash. JCG observed an ash plume rising to at least 2.7 km altitude during their overflight of 20 July. A large dome of fresh lava was visible on the SW flank of the island (figure 101). Lower ash emissions from 2.4-3.7 km altitude were reported by the Tokyo VAAC during 27-29 July, but the altitude increased to 5.5-5.8 km during the last two days of the month. During an overflight on 30 July by the National Research Institute for Earth Science and Disaster Prevention, dark and light gray ash emissions rose to 3.0 km altitude, but no flowing lava or large bombs were observed. They also noted thick deposits of brownish-gray ash on the N side of the island (figure 102).

Figure (see Caption) Figure 101. JCG observed an ash plume at Nishinoshima rising to at least 2.7 km altitude during their overflight of 20 July 2020. A large dome of fresh lava was visible on the SW flank of the island. Courtesy of JCG.
Figure (see Caption) Figure 102. Ash emissions changed from dark to light gray on 30 July 2020 at Nishinoshima as seen during an overflight by the National Research Institute for Earth Science and Disaster Prevention. Thick brownish-gray ash was deposited over the lava on the N side of the island. Courtesy of JMA (Information on volcanic activity in Nishinoshima, July 2020).

JMA reported a sharp decrease in the lava eruption rate during July with thermal anomalies decreasing significantly mid-month. Multiple daily MODVOLC thermal alerts were recorded during the first half of the month but were reduced to two or three per day during the last third of July. Throughout July, SO2 emissions were the highest recorded in modern times for Nishinoshima. High levels of emissions were measured daily, producing streams with high concentrations of SO2 that were caught up in rotating wind currents and drifted thousands of kilometers across the Pacific Ocean (figure 103).

Figure (see Caption) Figure 103. Complex atmospheric wind patterns carried the largest SO2 plumes recorded from Nishinoshima thousands of kilometers around the western Pacific Ocean during July 2020. Nishinoshima is about 1,000 km S of Tokyo. Top and bottom left images both show 6 July but at different scales. Courtesy of NASA Sulfur Dioxide Monitoring Page.

Thermal activity was greatly reduced during August 2020. Only one or two MODVOLC alerts were issued on 11, 18, 20, 21, 29, and 30 August, and no fresh lava flows were observed. The Tokyo VAAC reported ash emissions daily from 1-20 August. Plume heights were 4.9-5.8 km altitude during 1-4 August after which they dropped to 3.9 km altitude through 15 August. A brief pulse to 4.6 km altitude was recorded on 16 August, but then they dropped to 3.0 km or lower through the end of the month and became intermittent. The last ash emission was reported at 2.7 km altitude drifting W on 27 August.

No eruptive activity was observed during the Japan Coast Guard overflights on 19 and 23 August. High temperatures were measured on the inner wall of the summit crater on 19 August (figure 104). Steam plumes rose from the summit crater to about 2.5 km altitude during both visits (figure 105). Yellow-green discolored water was present on 23 August around the NW and SW coasts. No lava flows were observed, and infrared cameras did not measure any surface thermal anomalies outside of the crater. Very high levels of SO2 emissions were measured through 12 August when they began to noticeably decrease (figure 106). By the end of the month, only small amounts of SO2 were measured in satellite data.

Figure (see Caption) Figure 104. A strong thermal anomaly was still present inside the newly enlarged summit crater at Nishinoshima on 19 August 2020. Courtesy of JCG.
Figure (see Caption) Figure 105. Only steam plumes were observed rising from the summit crater of Nishinoshima during the 23 August 2020 overflight by the Japan Coast Guard. Courtesy of JCG.
Figure (see Caption) Figure 106. Sulfur dioxide emissions remained very high at Nishinoshima until 12 August 2020 when they declined sharply. Circulating air currents carried SO2 thousands of kilometers around the western Pacific region. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG), Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan (URL: http://www.eorc.jaxa.jp/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Turrialba (Costa Rica) — September 2020 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


New eruptive period on 18 June 2020 consisted of ash eruptions

Turrialba is a stratovolcano located in Costa Rica that overlooks the city of Cartago. Three well-defined craters occur at the upper SW end of a broad 800 x 2,200 m summit depression that is breached to the NE. Activity described in the previous report primarily included weak ash explosions and minor ash emissions (BGVN 44:11). This reporting period updates information from November 2019-August 2020; volcanism dominantly consists of ash emissions during June-August, based on information from daily and weekly reports by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) and satellite data.

Volcanism during November 2019 through mid-June was relatively low, dominated by low SO2 emissions (100-300 tons/day) and typical low seismic tremors. A single explosion was recorded at 1850 on 7 December 2019, and two gas-and-steam plumes rose 800 m and 300 m above the crater on 25 and 27 December, respectively. An explosion was detected on 29 January 2020 but did not result in any ejecta. An overflight during the week of 10 February measured the depth of the crater (140 m); since the previous measurements made in February 2019 (220 m), the crater has filled with 80 m of debris due to frequent collapses of the NW and SE internal crater walls. Beginning around February and into at least early May 2020 the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system detected a small cluster of thermal anomalies (figure 52). Some of these anomalies were faintly registered in Sentinel-2 thermal satellite imagery during 10 and 25 April, with a more distinct anomaly occurring on 15 May (figure 53).

Figure (see Caption) Figure 52. A small cluster of thermal anomalies were detected in the summit area of Turrialba (red dots) during February-May 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.
Figure (see Caption) Figure 53. Sentinel-2 thermal satellite imagery detected minor gas-and-steam emissions (left) and a weak thermal anomaly (right) in the summit crater at Turrialba on 11 January and 15 May 2020, respectively. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

On 18 June activity increased, which marked the start of a new eruptive period that produced ash emissions rising 100 m above the crater rim at 1714, 1723, and 1818. The next morning, 19 June, two more events at 1023 and 1039 resulted in ash emissions rising 100 m above the crater. During 23-26 June small ash emissions continued to occur each day, rising no higher than 100 m above the crater. A series of small ash eruptions that rose 100 m above the crater occurred during 28 and 29 June; four events were recorded at 0821, 1348, 1739, and 2303 on 28 June and five more were recorded at 0107, 0232, 0306, 0412, and 0818 on 29 June. The two events at 0107 and 0412 were accompanied by ballistics ejected onto the N wall of the crater, according to OVSICORI-UNA.

Almost daily ash emissions continued during 1-7 July, rising less than 100 m above the crater; no ash emissions were observed on 3 July. On 6 July, gas-and-steam and ash emissions rose hundreds of meters above the crater at 0900, resulting in local ashfall. Passive gas-and-steam emissions with minor amounts of ash were occasionally visible during 9-10 July. On 14 July an eruptive pulse was observed, generating brief incandescence at 2328, which was likely associated with a small ash emission. Dilute ash emissions at 1028 on 16 July preceded an eruption at 1209 that resulted in an ash plume rising 200 m above the crater. Ash emissions of variable densities continued through 20 July rising as high as 200 m above the crater; on 20 July incandescence was observed on the W wall of the crater. An eruptive event at 0946 on 29 July produced an ash plume that rose 200-300 m above the crater rim. During 30-31 July a series of at least ten ash eruptions were detected, rising no higher than 200 m above the crater, each lasting less than ten minutes. Some incandescence was visible on the SW wall of the crater during this time.

On 1 August at 0746 an ash plume rose 500 m above the crater. During 4-5 August a total of 19 minor ash emissions occurred, accompanied by ash plumes that rose no higher than 200 m above the crater. OVSICORI-UNA reported on 21 August that the SW wall of the crater had fractured; some incandescence in the fracture zone had been observed the previous month. Two final eruptions were detected on 22 and 24 August at 1253 and 2023, respectively. The eruption on 24 August resulted in an ash plume that rose to a maximum height of 1 km above the crater.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — September 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Etna, located on the island of Sicily, Italy, is a stratovolcano that has had historical eruptions dating back 3,500 years. Its most recent eruptive period began in September 2013 and has continued through July 2020, characterized by Strombolian explosions, lava flows, and ash plumes. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. Volcanism during this reporting period from April through July 2020 includes frequent Strombolian explosions primarily in the Voragine and NSEC craters, ash emissions, some lava effusions, and gas-and-steam emissions. Information primarily comes from weekly reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during April-July 2020. Degassing of variable intensity is typical activity from all summit vents at Etna during the reporting period. Intra-crater Strombolian explosions and ash emissions that rose to a maximum altitude of 5 km on 19 April primarily originated from the Voragine (VOR) and New Southeast Crater (NSEC) craters. At night, summit crater incandescence was occasionally visible in conjunction with explosions and degassing. During 18-19 April small lava flows were observed in the VOR and NSEC craters that descended toward the BN from the VOR Crater and the upper E and S flanks of the NSEC. On 19 April a significant eruptive event began with Strombolian explosions that gradually evolved into lava fountaining activity, ejecting hot material and spatter from the NSEC. Ash plumes that were produced during this event resulted in ashfall to the E of Etna. The flows had stopped by the end of April; activity during May consisted of Strombolian explosions in both the VOR and NSEC craters and intermittent ash plumes rising 4.5 km altitude. On 22 May Strombolian explosions in the NSEC produced multiple ash plumes, which resulted in ashfall to the S. INGV reported that the pit crater at the bottom of BN had widened and was accompanied by degassing. Explosions with intermittent ash emissions continued during June and July and were primarily focused in the VOR and NSEC craters; mild Strombolian activity in the SEC was reported in mid-July.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity throughout the reporting period (figure 296). In early April, the frequency and power of the thermal anomalies began to decrease through mid-June; in July, they had increased in power again but remained less frequent compared to activity in January through March. According to the MODVOLC thermal algorithm, a total of seven alerts were detected in the summit craters during 10 April (1), 17 April (1), 24 April (2), 10 July (1), 13 July (1), and 29 July (1) 2020. These thermal hotspots were typically registered during or after a Strombolian event. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in different directions (figure 297).

Figure (see Caption) Figure 296. Multiple episodes of varying thermal activity at Etna from 14 October 2019 through July 2020 were reflected in the MIROVA data (Log Radiative Power). In early April, the frequency and power of the thermal anomalies decreased through mid-June. In July, the thermal anomalies increased in power, but did not increase in frequency. Courtesy of MIROVA.
Figure (see Caption) Figure 297. Distinct SO2 plumes from Etna were detected on multiple days during April to July 2020 due to frequent Strombolian explosions, including, 24 April (top left), 9 May (top right), 25 June (bottom left), and 21 July (bottom right) 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during April-May 2020. During April, INGV reported Strombolian explosions that produced some ash emissions and intra-crater effusive activity within the Voragine Crater (VOR) and abundant degassing from the New Southeast Crater (NSEC), Northeast Crater (NEC), and from two vents on the cono della sella (saddle cone) that were sometimes accompanied by a modest amount of ash (figure 298). At night, summit crater incandescence was observed in the cono della salla. The Strombolian activity in the VOR built intra-crater scoria cones while lava flows traveled down the S flank of the largest, main cone. On 18 April effusive activity from the main cone in the VOR Crater traveled 30 m toward the Bocca Nuova (BN) Crater; the pit crater at the bottom of the BN crater had widened compared to previous observations. A brief episode of Strombolian explosions that started around 0830 on 19 April in the NSEC gradually evolved into modest lava fountaining activity by 0915, rising to 3 km altitude and ejecting bombs up to 100 m (figure 299). A large spatter deposit was found 50 m from the vent and 3-4 small lava flows were descending the NSEC crater rim; two of these summit lava flows were observed at 1006, confined to the upper E and S flanks of the cone. Around 1030, one or two vents in the cono della sella produced a gas-and-steam and ash plume that rose 5 km altitude and drifted E, resulting in ashfall on the E flank of Etna in the Valle del Bove, as well as between the towns of Zafferana Etnea (10 km SE) and Linguaglossa (17 km NE). At night, flashes of incandescence were visible at the summit. By 1155, the lava fountaining had gradually slowed, stopping completely around 1300. The NEC continued to produce gas-and-steam emissions with some intra-crater explosive activity. During the week of 20-26 April, Strombolian activity in the VOR intra-crater scoria cone ejected pyroclastic material several hundred meters above the crater rim while the lava flows had significantly decreased, though continued to travel on the E flank of the main cone. Weak, intra-crater Strombolian activity with occasional ash emissions and nightly summit incandescence were observed in the NSEC (figure 300). By 30 April there were no longer any active lava flows; the entire flow field had begun cooling. The mass of the SO2 emissions varied in April from 5,000-15,000 tons per day.

Figure (see Caption) Figure 298. Photos of Strombolian explosions at Etna in the Voragine Crater (top left), strong degassing at the Northeast Crater (NEC) (top right), and incandescent flashes and Strombolian activity in the New Southeast Crater (NSEC) seen from Tremestieri Etneo (bottom row) on 10 April 2020. Photos by Francesco Ciancitto (top row) and Boris Behncke (bottom row), courtesy of INGV.
Figure (see Caption) Figure 299. Strombolian activity at Etna’s “cono della sella” of the NSEC crater on 19 April 2020 included (a-b) lava fountaining that rose 3 km altitude, ejecting bomb-sized material and a spatter deposit captured by the Montagnola (EMOV) thermal camera. (c-d) An eruptive column and increased white gas-and-steam and ash emissions were captured by the Montagnola (EMOV) visible camera and (e-f) were also seen from Tremestieri Etneo captured by Boris Behncke. Courtesy of INGV (Report 17/2020, ETNA, Bollettino Settimanale, 13/04/2020 – 19/04/2020, data emissione 21/04/2020).
Figure (see Caption) Figure 300. Webcam images showing intra-crater explosive activity at Etna in the Voragine (VOR) and New Southeast Crater (NSEC) on 24 April 2020 captured by the (a-b) Montagnola and (c) Monte Cagliato cameras. At night, summit incandescence was visible and accompanied by strong degassing. Courtesy of INGV (Report 18/2020, ETNA, Bollettino Settimanale, 20/04/2020 – 26/04/2020, data emissione 28/04/2020).

Strombolian explosions produced periodic ash emissions and ejected mild, discontinuous incandescent material in the VOR Crater; the coarse material was deposited onto the S flank of BN (figure 301). Pulsating degassing continued from the summit craters, some of which were accompanied by incandescent flashes at night. The Strombolian activity in the cono della sella occasionally produced reddish ash during 3-4 May. During 5 and 8 May, there was an increase in ash emissions at the NSEC that drifted SSE. A strong explosive event in the VOR Crater located E of the main cone produced a significant amount of ash and ejected coarse material, which included blocks and bombs measuring 15-20 cm, that fell on the W edge of the crater, as well as on the S terrace of the BN Crater (figure 302).

Figure (see Caption) Figure 301. Photos of Strombolian explosions and summit incandescence at Etna on 4 May (left) and during the night of 11-12 May. Photos by Gianni Pennisi (left) and Boris Behncke (right, seen from Tremestieri Etneo). Courtesy of INGV.
Figure (see Caption) Figure 302. A photo on 5 May (left) and thermal image on 8 May (right) of Strombolian explosions at Etna in the Voragine Crater accompanied by a dense, gray ash plume. Photo by Daniele Andronico. Courtesy of INGV (Report 20/2020, ETNA, Bollettino Settimanale, 04/05/2020 – 10/05/2020, data emissione 12/05/2020).

On 10 May degassing continued in the NSEC while Strombolian activity fluctuated in both the VOR and NSEC Craters, ejecting ballistics beyond the crater rim; in the latter, some of the blocks fell back in, accumulated on the edge, and rolled down the slopes (figure 303). During the week of 11-17 May, eruptive activity at the VOR Crater was the lowest observed since early March; there were 4-5 weak, low intensity pulses not accompanied by bombs or ashfall in the VOR Crater. Degassing continued in the BN Crater. The crater of the cono della sella had widened further N following collapses due to the Strombolian activity, which exposed the internal wall.

Figure (see Caption) Figure 303. Map of the summit craters of Etna showing the active vents, the area of cooled lava flows (light green), and the location of the widening pit crater in the Bocca Nuova (BN) Crater (light blue circle) updated on 9 May 2020. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).

On 18 May an ash plume from the NSEC rose 4.5 km altitude and drifted NE. Strombolian explosions on 22 May at the NSEC produced multiple ash plumes that rose 4.5 km altitude and drifted S and SW (figure 304), depositing a thin layer of ash on the S slope, and resulting in ashfall in Catania (27 km S). Explosions from the VOR Crater had ejected a deposit of large clasts (greater than 30 cm) on the NE flank, between the VOR Crater and NEC on 23 May. INGV reported that the pit crater in the BN continued to widen and degassing was observed in the NSEC, VOR Crater, and NEC. During the week of 25-31 May persistent visible flashes of incandescence at night were observed, which suggested there was intra-crater Strombolian activity in the SEC and NSEC. The mass of the SO2 plumes varied between 5,000-9,000 tons per day.

Figure (see Caption) Figure 304. Photo of repeated Strombolian activity and ash emissions rising from Etna above the New Southeast Crater (NSEC) on 22 May 2020 seen from Zafferana Etnea on the SE flank at 0955 local time. Photo by Boris Behncke, INGV.

Activity during June-July 2020. During June, moderate intra-crater Strombolian activity with intermittent ash emissions continued in the NSEC and occurred more sporadically in the VOR Crater; at night, incandescence of variable intensity was observed at the summit. During the week of 8-14 June, Strombolian explosions in the cono della sella generated some incandescence and rare jets of incandescent material above the crater rim, though no ash emissions were reported. On the morning of 14 June a sequence of ten small explosions in the VOR Crater ejected incandescent material just above the crater rim and produced small ash emissions. On 25 June an overflight showed the developing pit crater in the center of the BN, accompanied by degassing along the S edge of the wall; degassing continued from the NEC, VOR Crater, SEC, and NSEC (figure 305). The mass of the SO2 plumes measured 5,000-7,000 tons per day, according to INGV.

Figure (see Caption) Figure 305. Aerial photo of Etna from the NE during an overflight on 25 June 2020 by the Catania Coast Guard (2 Nucleo Aereo della Guardia Costiera di Catania) showing degassing of the summit craters. Photo captured from the Aw139 helicopter by Stefano Branca. Courtesy of INGV (Report 27/2020, ETNA, Bollettino Settimanale, 22/06/2020 – 28/06/2020, data emissione 30/06/2020).

Similar modest, intra-crater Strombolian explosions in the NSEC, sporadic explosions in the VOR Crater, and degassing in the BN, VOR Crater, and NEC persisted into July. On 2 July degassing in the NEC was accompanied by weak intra-crater Strombolian activity. Intermittent weak ash emissions and ejecta from the NSEC and VOR Crater were observed during the month. During the week of 6-12 July INGV reported gas-and-steam emissions continued to rise from the vent in the pit crater at the bottom of BN (figure 306). On 11 July mild Strombolian activity, nighttime incandescence, and degassing was visible in the SEC (figure 307). By 15 July there was a modest increase in activity in the NSEC and VOR Craters, generating ash emissions and ejecting material over the crater rims while the other summit craters were dominantly characterized by degassing. On 31 July an explosion in the NSEC produced an ash plume that rose 4.5 km altitude.

Figure (see Caption) Figure 306. Photos of the bottom of the Bocca Nuova (BN) crater at Etna on 8 July 2020 showing the developing pit crater (left) and degassing. Minor ash emissions were visible in the background at the Voragine Crater (right). Both photos by Daniele Andronico. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).
Figure (see Caption) Figure 307. Mild Strombolian activity and summit incandescence in the “cono della sella” (saddle vent) at the Southeast crater (SEC) of Etna on 11 July 2020, seen from Piano del Vescovo (left) and Piano Vetore (right). Photo by Boris Behncke, INGV.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy.


Ol Doinyo Lengai (Tanzania) — September 2020 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Multiple lava flows within the summit crater; September 2019-August 2020

Ol Doinyo Lengai, located near the southern end of the East African Rift in Tanzania, is a stratovolcano known for its unique low-temperature carbonatitic lava. Frequent eruptions have been recorded since the late 19th century. Activity primarily occurs in the crater offset to the N about 100 m below the summit where hornitos (small cones) and pit craters produce lava flows and spattering. Lava began overflowing various flanks of the crater in 1993. The eruption transitioned to significant explosive activity in September 2007, which formed a new pyroclastic cone inside the crater. Repeated ash emissions reached altitudes greater than 10 km during March 2008. By mid-April 2008 explosive activity had decreased. In September new hornitos with small lava flows formed on the crater floor. The most recent eruptive period began in April 2017 and has been characterized by spattering confined to the crater, effusive activity in the summit crater, and multiple lava flows (BGVN 44:09). Effusive activity continued in the summit crater during this reporting period from September 2019 through August 2020, based on data and images from satellite information.

Throughout September 2019 to August 2020, evidence for repeated small lava flows was recorded in thermal data and satellite imagery. A total of seven low-level pulses of thermal activity were detected within 5 km from the summit in MIROVA data during September 2019 (1), February (2), March (2), and August (2) 2020 (figure 207). Sentinel-2 satellite imagery also provided evidence of multiple lava flows within the summit crater throughout the reporting period. On clear weather days, intermittent thermal anomalies were observed in thermal satellite imagery within the summit crater; new lava flows were detected due to the change in shape, volume, and location of the hotspot (figure 208). During a majority of the reporting period, the thermal anomaly dominantly appeared in the center of the crater, though occasionally it would also migrate to the SE wall, as seen on 3 February, the E wall on 12 July, or the NE wall on 31 August. In Natural Color rendering, fresh lava flows appear black within the crater that quickly cools to a white-brown color. These satellite images showed the migration of new lava flows between February, March, and June (figure 209). The flow on 8 February occurs in the center and along the W wall of the crater; the flow on 9 March is slightly thinner and is observed in the center and along the E wall of the crater; finally, the flow on 17 June is located in the center and along the N wall of the crater.

Figure (see Caption) Figure 207. Seven low-level pulses of thermal activity within 5 km of the summit of Ol Doinyo Lengai were recorded in the MIROVA thermal data between September 2019 to August 2020; one in early September 2019, two in February, two in March, and two in August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 208. Sentinel-2 thermal satellite images of Ol Doinyo Lengai from November 2019 to August 2020 show intermittent thermal anomalies (bright yellow-orange) within the summit crater. The location of these anomalies occasionally changes, indicating new lava flows. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 209. Sentinel-2 satellite images of new lava flows within the summit crater at Ol Doinyo Lengai during 8 February (left), 9 March (middle), and 17 June (right) 2020. Lava flows appear black in the center of the crater that changes in volume and location from February to June. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

During August, multiple lava flows were detected in Sentinel-2 satellite imagery. On relatively clear days, lava flows were visible in the middle of the summit crater, occasionally branching out to one side of the crater (figure 210). On 6 August, a thin lava flow branched to the E flank, which became thicker by 11 August. On 16 and 21 August, the lava remained mostly in the center of the crater. A large pulse of fresh lava occurred on 31 August, extending to the NW and SE sides of the crater.

Figure (see Caption) Figure 210. Sentinel-2 images of multiple new lava flows at Ol Doinyo Lengai during August 2020. When visible in the first half of August, dark lava is concentrated in the center and E side of the crater; by the end of August the lava flows had reached the NW side of the crater. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Yasur (Vanuatu) — September 2020 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Ash and gas explosions continue through August 2020

Recent activity at Yasur, which has been erupting since July 1774, includes frequent Strombolian explosions, along with ash and gas plumes from several vents in the summit crater (BGVN 44:02, 45:03). This report summarizes activity during March through August 2020, using information from monthly bulletins of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and various satellite data. The volcano has remained on Alert Level 2 (major unrest state, on a scale of 0-5), where it has been since 18 October 2016, according to VMGD.

During the current reporting period, VMGD reported that explosive activity continued at an elevated level, with ongoing ash and gas emissions (figure 71). Some of the more intense explosions ejected bombs outside the summit crater. During 2-3, 13, and 17 March, 2-3 April, and 19 July, the Wellington Volcanic Ash Advisory Center (VAAC) identified low-level ash plumes that reached an altitude of 1.5 km and drifted in multiple directions; the ash plume during 2-3 April resulted in ashfall on the SSW part of the island. On 19 May an ash plume rose to a maximum altitude of 2.1 km and drifted SE.

Figure (see Caption) Figure 71. Webcam photos of ash emissions from Yasur on 18 March (left)and gas-and-steam emissions on 2 April (right) 2020. Courtesy of VMGD.

During the reporting period, the MODVOLC thermal algorithm using MODIS satellite data detected a total of 55 thermal hotspots during three days in April, nine days in May, six days in June and August, and four days in July. A maximum of four pixels were recorded on a single day during 26 May, 6 June, and 20 July. The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected numerous hotspots from 16 September 2019 through August 2020, with a slight increase in power and frequency during May (figure 72). Satellite images from Sentinel-2 detected a strong thermal anomaly within the summit crater on 10 May, accompanied by ash and gas emissions (figure 73).

Figure (see Caption) Figure 72. Persistent low to moderate thermal activity at Yasur occurred from the summit area from 16 September 2019 through August 2020, as shown in this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 73. Sentinel-2 images of Yasur on 10 May 2020 showing a strong thermal anomaly from the summit crater (left) and a gas emission that appears to contain some ash (right). The thermal anomaly in the S vent area was stronger than in the N vent, an observation also noted in March and April 2019 (BGVN 44:06). The volcano was usually obscured by clouds during March through August. The left image is in false color (bands 12, 11, 4) rendering, the right image is in natural color (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

High-resolution satellite sensors commonly recorded moderate sulfur dioxide levels drifting in multiple directions from the volcano. High sulfur dioxide levels were also occasionally observed, especially during March (figure 74).

Figure (see Caption) Figure 74. High-density SO2 emissions streaming from Yasur during 8 (left) and 13 (middle) March and 21 April (right) 2020, were observed using the TROPOMI imaging spectrometer on the Sentinel-5P satellite. The plume drifted W on 8 March and E on both 13 March and 21 April. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://vaac.metservice.com/index.html); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Villarrica (Chile) — September 2020 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Continued summit incandescence February-August 2020 with larger explosions in July and August

Historical eruptions at Chile's Villarrica, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. An intermittently active lava lake at the summit has been the source of Strombolian activity, incandescent ejecta, and thermal anomalies for several decades; the current eruption has been ongoing since December 2014. Continuing activity during February-August 2020 is covered in this report, with information provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a private research group that studies volcanoes across Chile. Sentinel satellite imagery also provided valuable data.

Intermittent incandescence was observed at the summit throughout February-August 2020, which was reflected in the MIROVA thermal anomaly data for the period (figure 92). Continuous steam and gas emissions with occasional ash plumes rose 100-520 m above the summit. Every clear satellite image of Villarrica from February -August 2020 showed either a strong thermal anomaly within the summit crater or a dense cloud within the crater that prevented the heat signal from being measured. Sentinel-2 captured on average twelve images of Villarrica each month (figure 93). Larger explosions on 25 July and 7 August produced ejecta and ash emissions.

Figure (see Caption) Figure 92. Thermal anomaly data for Villarrica from 13 October 2019 through August 2020 showed intermittent periods of activity. Incandescence was intermittently reported from the summit and satellite imagery showed a persistent hot spot inside the summit crater throughout the period. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Examples of strong thermal anomalies inside the summit crater of Villarrica each month from March-August 2020 are shown with dates on the image. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, 8A) showed thermal anomalies at the summit in all clear satellite images during the period. Courtesy of Sentinel Hub Playground.

Primarily white gas emissions rose up to 400 m above the summit during the first half of February 2020 and to 320 m during the second half. Incandescence was observed on clear nights. Incandescent ejecta was captured in the POVI webcam on 7 February (figure 94). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 5, 8, 10, 13, 18, 20, 23, 25, and 28 February, nine of the eleven days that images were taken; the other days were cloudy.

Figure (see Caption) Figure 94. Incandescent ejecta at the summit of Villarrica was captured in the POVI webcam late on 7 February 2020. Time sequence runs from top to bottom, then left to right. Courtesy of POVI.

Villarrica remained at Alert Level Yellow (on a four-level Green-Yellow-Orange-Red scale) in March 2020. Plumes of gas rose 350 m above the crater during the first half of March. The POVI webcam captured incandescent ejecta on 1 March (figure 95). SERNAGEOMIN reported continuous white emissions and incandescence at night when the weather permitted. During the second half of March emissions rose 300 m above the crater; they were mostly white but occasionally gray and drifted N, S, and SE. Nighttime incandescence could be observed from communities that were tens of kilometers away on multiple occasions (figure 96). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 1, 3, 4, 6, 9, 11, 14, 16, 19, 26, 29, and 31 March, twelve of the fourteen days images were taken. The other days were cloudy.

Figure (see Caption) Figure 95. Incandescent ejecta rose from the summit of Villarrica in the early morning of 1 March 2020. Courtesy of POVI.
Figure (see Caption) Figure 96. Nighttime incandescence was observed on 24 March 2020 tens of kilometers away from Villarrica. Courtesy of Luis Orlando.

During the first half of April 2020 plumes of gas rose 300 m above the crater, mostly as continuous degassing of steam. Incandescence continued to be seen on clear nights throughout the month. Steam plumes rose 150 m high during the second half of the month. A series of Strombolian explosions on 28-29 April ejected material up to 30 m above the crater rim (figure 97). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 3, 8, 10, 13, 20, and 30 April, six of the twelve days images were taken; other days were cloudy.

Figure (see Caption) Figure 97. A series of Strombolian explosions on 28-29 April 2020 at Villarrica ejected material up to 30 m above the crater rim. Courtesy of POVI.

Daily plumes of steam rose 160 m above the summit crater during the first half of May 2020; incandescence was visible on clear nights throughout the month. During 5-7 May webcams captured episodes of dark gray emissions with minor ash that, according to SERNAGEOMIN, was related to collapses of the interior crater walls. Plumes rose as high as 360 m above the crater during the second half of May. The continuous degassing was gray and white with periodic ash emissions. Pyroclastic deposits were noted in a radius of 50 m around the crater rim associated with minor explosive activity from the lava lake. The POVI infrared camera captured a strong thermal signal rising from the summit on 29 May (figure 98), although no visual incandescence was reported. Residents of Coñaripe (17 km SSW) could see steam plumes at the snow-covered summit on 31 May (figure 99). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 5, 13, 20, 23, 25 and 30 May, six of the twelve days images were taken. The other days were cloudy.

Figure (see Caption) Figure 98. The POVI infrared camera captured a strong thermal signal rising from the summit of Villarrica on 29 May 2020; no visual incandescence was noted. Courtesy of POVI.
Figure (see Caption) Figure 99. Residents of Coñaripe (17 km SSW) could see steam plumes at the snow-covered summit of Villarrica on 31 May 2020. Courtesy of Laura Angarita.

For most of the first half of June, white steam emissions rose as high as 480 m above the crater rim. A few times, emissions were gray, attributed to ash emissions from collapses of the inner wall of the crater by SERNAGEOMIN. Incandescence was visible on clear nights throughout the month. Vertical inflation of 1.5 cm was noted during the first half of June. Skies were cloudy for much of the second half of June; webcams only captured images of the summit on 21 and 27 June with 100-m-high steam plumes. Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 4, 7, and 14 June, three of the twelve days images were taken. The other days were cloudy.

Atmospheric clouds prevented most observations of the summit during the first half of July (figure 100); during brief periods it was possible to detect incandescence and emissions rising to 320 m above the crater. Continuous degassing was observed during the second half of July; the highest plume rose to 360 m above the crater on 23 July. On 25 July, monitoring stations in the vicinity of Villarrica registered a large-period (LP) seismic event associated with a moderate explosion at the crater. It was accompanied by a 14.7 Pa infrasound signal measured 1 km away. Meteorological conditions did not permit views of any surface activity that day, but a clear view of the summit on 28 July showed dark tephra on the snow around the summit crater (figure 101). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 2 and 29 July, two of the twelve days images were taken. The other days were either cloudy or had steam obscuring the summit crater.

Figure (see Caption) Figure 100. Although a multi-layer cap cloud formed over the summit of Villarrica on 15 July 2020, steam emissions could be seen close to the summit drifting down the slope. Cap clouds form when a stable airstream rises to pass over a peak and cools, condensing moisture into clouds. Photograph by Sebastián Campos, courtesy of Geography Fans.
Figure (see Caption) Figure 101. Dark tephra appeared near the summit of Villarrica on 28 July 2020; an explosion had been measured seismically on 25 July but clouds obscured visual observations. Image taken from Coñaripe, courtesy of Laura Angarita.

An explosion on 7 August at 1522 local time (1922 UTC) produced an LP seismic signal and a 10 Pa infrasound signal. Webcams were able to capture an image of the explosion which produced a dense plume of steam and ash that rose 370 m above the summit and drifted SE (figure 102). The highest plumes in the first half of August reached 520 m above the summit on 7 August. Sporadic emissions near the summit level were reported by the Buenos Aires VAAC the following day but were not observed in satellite imagery. When weather permitted during the second half of the month, continuous degassing to 200 m above the crater was visible on the webcams. SERNAGEOMIN participated in a webinar on 20 August 2020 discussing safety at Villarrica and showed an image of the summit crater taken during an overflight on 19 August (figure 103). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 6, 21, and 31 August, three of the thirteen days images were taken. The other days were cloudy.

Figure (see Caption) Figure 102. An explosion at Villarrica on 7 August 2020 at 1522 local time (1922 UTC) produced an LP seismic signal and 10 Pa infrasound signal. Webcams were able to capture an image of the explosion which produced a dense plume of steam and ash that rose 370 m above the summit and drifted SE Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, volcan Villarrica, 7 de Agosto de 2020, 16:15 Hora local).
Figure (see Caption) Figure 103. SERNAGEOMIN participated in a webinar on 20 August 2020 discussing safety at Villarrica and showed an image of the summit crater taken during an overflight on 19 August. Courtesy of Turismo Integral.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Proyecto Observación Villarrica Internet (POVI), (URL: http://www.povi.cl/, https://twitter.com/povi_cl/status/1237541250825248768); Luis Orlando (URL: https://twitter.com/valepizzas/status/1242657625495539712); Laura Angarita (URL: https://twitter.com/AngaritaV/status/1267275374947377152, https://twitter.com/AngaritaV/status/1288086614422573057); Geography Fans (URL: https://twitter.com/Geografia_Afic/status/1284520850499092480); Turismo Integral (URL: https://turismointegral.net/expertos-entregan-recomendaciones-por-actividad-registrada-en-volcan-villarrica/).


Stromboli (Italy) — September 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit craters during May-August 2020

Stromboli, located in northeastern-most part of the Aeolian Islands, is composed of two active summit vents: the Northern (N) Crater and the Central-South (CS) Crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano. The current eruption period began in 1934, continuing to the present with volcanism characterized by consistent Strombolian explosions in both summit craters, ash plumes, pyroclastic flows, and occasional lava flows (BGVN 45:08). This report updates activity consisting of dominantly Strombolian explosions and ash plumes from May to August 2020 with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Activity was consistent during this reporting period. Explosion rates ranged from 1-23 events per hour and were of variable intensity, producing material that typically rose from less than 80 to over 300 m above the crater. One ash plume on 19 July rose 1 km above the crater and high energy ballistics were ejected 500 m above the crater during the week of 20-26 July (table 9). Strombolian explosions were often accompanied by gas-and-steam emissions and spattering that has occasionally resulted in material deposited on the slopes of the Sciara del Fuoco. According to INGV, the average SO2 emissions measured 250-300 tons/day.

Table 9. Summary of activity at Stromboli during May-August 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
May 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 1-17 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. The average SO2 emissions measured 300 tons/day.
Jun 2020 Strombolian activity and degassing continued with spattering. Explosion rates varied from 2-14 per hour. Ejected material rose 80-200 m above the N crater and 150 m above the CS crater. Spattering was primarily focused in the CS crater. The average SO2 emissions measured 300 tons/day.
Jul 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 1-12 per hour. Ejected material rose 80-1,000 m above the N crater. Spattering was primarily focused in the CS crater. The average SO2 emissions measured 300 tons/day.
Aug 2020 Strombolian activity continued with discontinuous spattering. Explosion rates varied from 1-23 per hour. Ejected material rose at least 200 m above the N crater and at least 250 m above the CS crater.

Explosive activity was relatively consistent during May 2020 and was mainly produced in 3-4 eruptive vents in the N crater and at least two eruptive vents in the CS crater. As a result of some explosions fallout covered the slopes of the Sciara del Fuoco. Explosion rates varied from 1-17 per hour in the N crater and 1-8 per hour in the CS crater; ejected material rose 80-250 m above the craters.

During June, explosions originated from 2-3 eruptive vents in the N crater and at least 2-3 localized vents in the CS crater. The Strombolian explosions ejected material 80-200 m above the craters, some of which fell back onto the Sciara (figure 182). Explosion rates varied from 5-14 per hour in the N crater and 2-9 per hour in the CS crater. Spattering was typically observed in the CS crater.

Figure (see Caption) Figure 182. An explosion at Stromboli produced gas-and-steam and ash emissions on 18 June 2020 was observed in the CS crater in the Sciara del Fuoco. Courtesy of INGV (Rep. No. 26/2020, Stromboli, Bollettino Settimanale, 15/06/2020 - 21/06/2020, data emissione 23/06/2020).

Ongoing explosive activity continued into July, originating from 2-3 eruptive vents in the N crater and 3-4 eruptive vents in the CS crater. Explosions varied from 3-12 per hour in the N crater and 1-11 per hour in the CS crater; ejected lapilli and bombs rose 80-1,000 m above the craters (figure 183). On 19 July a high-energy explosion between 0500 and 0504 produced an ash plume containing ejecta more than 50 cm that rose to a maximum of 1 km above the crater, with fallout reaching the Pizzo sopra la Fossa and resulting in ashfall on the Sciara and the towns of Liscione and Roccette. During the week of 20-26 July explosions in the E portion of the volcano ejected ballistics 500 m above the crater; the size and shape of these varied between slag bombs to clasts greater than 50 cm.

Figure (see Caption) Figure 183. Webcam (left column) and thermal (right column) images of explosive activity at Stromboli on 29 July (top row) and 2 August (bottom row) 2020 originated from the N and CS craters, producing spatter and ash plumes. Courtesy of INGV (Rep. No. 32/2020, Stromboli, Bollettino Settimanale, 27/07/2020 - 02/08/2020, data emissione 04/08/2020).

Strombolian activity accompanied by discontinuous spattering continued during August. Total daily explosions varied from 3-23 per hour ejecting material that up to 200-250 m above the craters. During the first half of the month the explosions were low-intensity and consisted of fine material. On 13 August the intensity of the explosions increased, producing an ash plume that rose 300 m above the crater drifting SE and resulting in a significant amount of ashfall on the Sciara. During the week of 17-23, explosions in the N1 crater ejected material 200 m above the crater while explosions in the CS crater ejected material 250 m above the crater, predominantly during 22 August in the S2 crater (figure 184).

Figure (see Caption) Figure 184. Images of gas-and-steam and ash plumes rising from the N2 (left), S2 (middle), and CS craters (right) at Stromboli on 22 August 2020. Courtesy of INGV (Rep. No. 35/2020, Stromboli, Bollettino Settimanale, 17/08/2020 - 23/08/2020, data emissione 25/08/2020).

Moderate thermal activity was relatively consistent from October 2019 through mid-April 2020; during May-August thermal activity became less frequent and anomalies were lower in power based on the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 185). Though there were no detected MODVOLC thermal alerts during this reporting period, many thermal hotspots were observed in Sentinel-2 thermal satellite imagery in both summit craters (figure 186).

Figure (see Caption) Figure 185. Low to moderate thermal activity at Stromboli occurred frequently from 16 September to mid-April 2020 as shown in the MIROVA graph (Log Radiative Power). During May-August thermal activity decreased and was less frequent compared to the previous months. Courtesy of MIROVA.
Figure (see Caption) Figure 186. Weak thermal anomalies (bright yellow-orange) at Stromboli were observed in thermal satellite imagery from both of the summit vents throughout May-August 2020. Images with atmospheric penetration (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 27, Number 06 (June 2002)

Managing Editor: Richard Wunderman

Asamayama (Japan)

Periods of heightened seismicity during September 2000 and June 2002

Chiliques (Chile)

Signs of awakening despite recent dormancy

Colima (Mexico)

Perilous summit visits during 2001 and 2002

Great Sitkin (United States)

Abnormal tremor and earthquake swarms in May 2002

Karymsky (Russia)

Explosions eject ash to 3 km above summit during April and July 2002

Kick 'em Jenny (Grenada)

Bathymetry indicates circular summit crater with dome missing

Klyuchevskoy (Russia)

Increased seismicity prompts KVERT to raise hazard status to Yellow

Merapi (Indonesia)

Pyroclastic flows and lava avalanches occur during February-June 2002

Popocatepetl (Mexico)

Dome extrusions continue, accompanied by minor explosions

Semeru (Indonesia)

Seismicity increases beginning in March 2002; Alert Level increased to 2

Soufriere Hills (United Kingdom)

During 19-29 February large spines and plumes occurred at tidal maxima

Talang (Indonesia)

Small explosion earthquakes dominate through June 2002

Three Sisters (United States)

Studies suggest magma slowly accumulating at depth

Villarrica (Chile)

General decrease in activity during February-May 2002



Asamayama (Japan) — June 2002 Citation iconCite this Report

Asamayama

Japan

36.406°N, 138.523°E; summit elev. 2568 m

All times are local (unless otherwise noted)


Periods of heightened seismicity during September 2000 and June 2002

Asama has a history of periodic heightened seismicity; the last reported seismicity increase occurred in September 1996 (BGVN 21:11). A previously unreported seismic increase began on 18 September 2000. During 18-24 September the Japan Meteorological Agency (JMA) recorded 138, 431, 310, 243, 96, 33, and 14 earthquakes per day, respectively.

During 22-23 June 2002 another period of heightened seismicity occurred at Asama that was similar to the September 2000 activity (figure 15). The earthquakes began at 0100 on 22 June and at 0900 JMA issued a Volcanic Advisory stating that 210 volcanic tremor events had occurred during 0100-0800. The report also stated that the temperature of the crater floor had increased since May 2002; on 19 June the floor was at 180°C. Prior to the heightened seismicity, on 2 and 4 June plumes rose 700 and 1,000 m above Asama's summit, respectively.

Figure (see Caption) Figure 15. Plot showing volcanic earthquakes registered at Asama during 22-24 June 2002. The number of earthquakes peaked on 22 June around 0300 and gradually decreased, reaching background levels on 24 June. Courtesy of Asama Volcano Observatory, ERI-University of Tokyo.

The Asama Volcano Observatory (ERI, University of Tokyo) reported that the number of B-type earthquakes peaked around 0300 on 22 June, with more than 30 earthquakes recorded per hour at a station located on the middle of Asama's eastern slope. Several A-type earthquakes, with a maximum magnitude of 2.1, occurred during 0300-0700. The B- and A-type earthquakes occurred 1.5 and 3.5 km beneath the volcano, respectively.

The restricted area surrounding Asama's summit was increased from 2 km to a 4-km radius on 22 June. After the 22nd, seismicity gradually decreased and JMA reported that by the afternoon of 24 June neither volcanic tremor nor notable changes in ground deformation had been recorded.

Geologic Background. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

Information Contacts: Tsuneomi Kagiyama, Earthquake Research Institute, University of Tokyo; Yukio Hayakawa, Gunma University, Japan (URL: http://www.hayakawayukio.jp/).


Chiliques (Chile) — June 2002 Citation iconCite this Report

Chiliques

Chile

23.58°S, 67.7°W; summit elev. 5778 m

All times are local (unless otherwise noted)


Signs of awakening despite recent dormancy

On 12 April 2002, NASA's Jet Propulsion Laboratory reported that new images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) on NASA's Terra satellite showed signs of activity at Chiliques. This volcano was previously considered to be dormant; however, on 6 January, a nighttime thermal infrared image from Aster showed a hot spot in the summit crater, as well as several others along the upper flanks, indicating new volcanic activity (figure 1). Examination of an earlier nighttime thermal infrared image from 24 May 2000 showed no such hot spots.

Figure (see Caption) Figure 1. Aster images of Chiliques. The larger view is a daytime image acquired on 19 November 2000, created by displaying ASTER bands 1, 2, and 3. The inset is a nighttime thermal infrared image of Chiliques on 6 January 2002. Both images cover an area of 7.5 x 7.5 km and are centered at 23.6°S latitude, 67.6°W longitude. Courtesy Michael Abrams, NASA's Jet Propulsion Laboratory.

General Reference. de Silva, S.L., and Francis, P.W., 1991, Volcanoes of the Central Andes: Berlin: Springer-Verlag, 216 p.

Geologic Background. Volcán Chiliques is a structurally simple stratovolcano located immediately south of Laguna Lejía. The summit contains a 500-m-wide crater. Several youthful lava flows, some of which are considered to be of possible Holocene age (de Silva, 2007 pers. comm.), descend its flanks. The largest of these extends 5 km NW. Older lava flows reach up to 10 km from the summit on the N flank. This volcano had previously been considered to be dormant; however, in 2002 a NASA nighttime thermal infrared satellite image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) showed low-level hot spots in the summit crater and upper flanks.

Information Contacts: Michael Abrams, Jet Propulsion Laboratory, California Institute of Technology, National Aeronautics and Space Administration, Pasadena, CA 91109 (URL: http://www.jpl.nasa.gov/).


Colima (Mexico) — June 2002 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Perilous summit visits during 2001 and 2002

The following report documents several climbs to the summit of Volcán de Colima, carried out in order to accurately measure the size of the growing lava dome, measure fumarole temperatures, and sample gases when possible. Strict safety precautions were followed and climbs were only undertaken during periods of low seismicity. Time is local (calibrated to RESCO seismographic clock). Coordinates and most calculations were obtained by GPS navigator (accuracies of 3-6 m indicated by the instrument) and GARMIN software.

Between 19 August 2001 and 29 June 2002, Nick Varley, Juan Carlos Gavilanes-Ruiz, Mitchell Ventura-Fishgold, Philippa Swannell, and Ruri Ursúa-Calvario performed four ascents to the growing dome, obtaining fresh lava samples, as well as ballistic-projectile samples ejected by the pre-extrusion explosion that occurred on 22 February 2001 (table 12). The lava sample of 18 February 2002 was obtained by Carlos Navarro-Ochoa (a block from a rockfall at the active lava front).

Table 12. The authors took fresh lava samples at Colima at these specified dates and locations. Latitude and longitude are given in degrees, minutes, and decimal minutes. Courtesy Universidad de Colima and Instituto de Geofísica.

Date Sample Sampling site Coordinates
22 Feb 2001 1 El Playon, 1.72 km to the NE of the crater (ballistic projectile). 19°31.607'N, 103°36.645'W
19 Aug 2001 2 Growing dome (1 meter from a glowing fumarole at 808°C). 19°30.773'N, 103°37.013'W
26 Nov 2001 3 Growing dome (andesitic spine). 19°30.747'N, 103°36.983'W
18 Feb 2002 A W face, ~1.2 km below the lava flow's active front. [location unknown?]
22 Feb 2002 4 Growing dome (see figure 57). 19°30.788'N, 103°37.021'W
29 Jun 2002 5 Growing dome SE part. 19°30.755'N, 103°36.904'W

During each ascent GPS and geometric measurements were taken in order to calculate the volume of the dome and the current rate of extrusion. Figures 53 and 54 show the preliminary calculations of these variations. The samples collected during the ascents were analyzed by Juan Carlos Mora-Chaparro.

Figure (see Caption) Figure 53. Increase in volume of lava dome and flows measured at Colima during May 2001-April 2002. Courtesy Universidad de Colima and Instituto de Geofísica.
Figure (see Caption) Figure 54. Variation in effusion rates seen at Colima from May 2001 to April 2002. Courtesy Universidad de Colima and Instituto de Geofísica.

Ascent to the crater, 19 August 2001. On this occasion Varley and Gavilanes descended into the crater and circumnavigated the dome discovered on 26 May 2001. The volume of the dome had increased by ~77% since then, and a new lobe had appeared. The GPS tracks recorded around the dome revealed a maximum distance of 103 m in its N-S axis, and a maximum of 122 m in the E-W axis. A zone of incandescent fumaroles (with temperatures up to 877°C) was found on the NE slope of the dome and on the adjacent crater floor (figure 55). This high-temperature zone was located in the same position as the high-temperature group of fumaroles that existed above the previous dome and was monitored between 1995 and 1998. This suggests that the location of the main conduit has not changed since then. During the nearly 4-hour-long stay (0950-1400) on the crater rim and inside the crater, only two small rockfalls were heard.

Figure (see Caption) Figure 55. Incandescent fumarole on the E flank of the growing dome inside the major crater on 19 August 2001. A lava sample was obtained 1 m to the left. Photo taken by J.C. Gavilanes-Ruiz. Courtesy Universidad de Colima and Instituto de Geofísica.

Samples of high-temperature fumarolic gases were taken during this ascent. Unlike previous samples from Colima, they were relatively uncontaminated by atmospheric air. The results of the analyses are shown in table 13. The temperature ranges recorded in the N crater-floor field and in the N and NE crater-rim field are shown in table 14.

Table 13. Volume of gases of high-temperature fumarolic gas collected on 19 August 2001 at Colima. R/Ra represents the isotopic ratio of helium normalized to the atmospheric ratio. (Gas volumes are in mol%). Courtesy Universidad de Colima and Instituto de Geofísica.

H2O H2 CO2 CO Stot HCl HF N2 CH4 He R/Ra He/Ne
95.22 0.75 0.99 0.006 2.04 0.42 0.010 0.39 0 0.0001 6.2 48

Table 14. Temperature ranges of fumarole fields at Colima during 19 August 2001-26 November 2002. Courtesy Universidad de Colima and Instituto de Geofísica.

Date Fumarole field Temperature range
19 Aug 2001 N and NE rim 122-330°C
26 Nov 2001 N and NE rim 100-295°C
22 Feb 2002 N and NE rim 128-221°C
29 Jun 2002 N and NE rim 162-272°C
19 Aug 2001 NE crater-floor 590-877°C
26 Nov 2002 South side of the dome 80-140°C

Ascent to the crater and to the base of the active dome, 26 Nov 2001. During this excursion Varley and Ventura descended into the crater and measured temperatures of the new fumarole field on the S border of the growing dome (figure 56). Meanwhile, Gavilanes and Ursúa measured the fields located on the N and NE borders of the main crater and performed GPS measurements. Gas condensates were sampled from the NE fumarole field. Rock samples were taken from the andesitic spine (figure 57) first observed almost one month previously by personnel of Proteccion Civil of the State of Jalisco. The spine was located in the same area where the maximum temperatures were found on 19 August 2001. The mean frequency of rockfalls from the active dome caused by the lava effusion was once every 5 minutes, with larger events occurring approximately once every 30 minutes. Ranges of fumarole temperatures measured on the S side of the dome and in the NE field are shown in table 14.

Figure (see Caption) Figure 56. Composite photos giving a wide-angle view of the growing dome and collapsing spine from the E border of the main crater on 26 November 2001. The circle (left) locates Nick Varley and Mitch Ventura who were measuring fumarole temperatures in the S sector of the main crater. GPS data indicated that by this day the dome measured 98 m along its N-S axis. Photo taken by J.C. Gavilanes-Ruiz. Courtesy Universidad de Colima and Instituto de Geofísica.
Figure (see Caption) Figure 57. Photo taken on 26 November 2001 showing Ruri Ursúa standing on the E inner border of the main crater of Colima. The highest part of the growing dome can be seen in the background, the andesitic spine in the center of the photo (~ 10 m high in the visible part). Photo taken by J.C. Gavilanes-Ruiz. Courtesy Universidad de Colima and Instituto de Geofísica.

Ascent to the dome, 22 Feb 2002. During this ascent several light ashfall-producing, small explosive events were observed (figure 58). One event expelled several bombs (up to 20 cm in diameter) to a height of ~20 m above the dome. The explosions appeared to originate from the central to W side of the dome. Small rockfalls were occurring approximately once every 15 to 20 minutes on the E side of the dome. Due to the potential of rockfalls, a temperature was only obtained from the fumarole field to the N. There had been an increase in the size of this field, which was located outside of the crater, high on the N flank. The temperature range is shown in table 14.

Figure (see Caption) Figure 58. The ~10 m-high E border of the growing dome at Colima on 22 February 2002. The area covered by the outermost blocks is the remaining ~ 20 m-wide part of the 1987 crater. Photo taken by Nick Varley. Courtesy Universidad de Colima and Instituto de Geofísica.

Ascent to the lava flow's front, 7 June 2002. On this ascent Varley and Gavilanes, climbing the S flank of the volcano, reached a point (19°30.218N, 103°37.392W) located at the same elevation (3,090 m) and approximately 75 m to the E of the front of the active lava flow emplaced on the upper part of the Cordobán Central ravine. The maximum length of the Cordobán Central 2002 lava flow was estimated to be 1,290 m on 7 June 2002. During this 6-hour-long ascent, the average frequency of rockfalls originating from both the lava flow front and the active dome was on the order of one rockfall every 10 minutes. No pyroclastic flows were observed.

Ascent to El Volcancito. On 11 June 2001 Juan Carlos Gavilanes and Alejandro Elizalde ascended to the dome formed in 1869-1872 called El Volcancito in order to repair the meteorological station (19°30.996 N, 103°36.511 W). El Volcancito is located on Colima's E summit (1,010 m horizontal distance, and N62°E of the center of the active dome of Volcán de Colima at 19°30.746 N, 103°37.020 W). Only one rockfall was observed on the E face while the team was 1,750 m from the dome, during the period from 1200-1545. In comparison to the 22 February 2001 observations performed from the same distance, no substantial changes in the size of the dome were apparent from El Volcancito (figure 59).

Figure (see Caption) Figure 59. Alejandro Elizalde repairing the meteorological station located on El Volcancito dome. Volcancito sits ~1 km NE of Volcán de Colima's active summit dome, which can be seen capping the summit in the background. Photo taken by J.C. Gavilanes-Ruiz. Courtesy Universidad de Colima and Instituto de Geofísica.

Ascent to the dome, 29 June 2002. Varley and Gavilanes remained on the N (figure 60), NE, and E borders of the active dome during 1147-1540. On the NE and N borders they measured angular heights and distances between the crater's lip and the upper part of the new dome borders. Only a small volume of lava blocks was observed to have fallen outside of the crater rim on the N border, extending only 4 m. No rockfalls were observed. The team tried to reach the center of the dome, but the complicated array of big scoriaceous and fragile new lava blocks, with abundant 3-to 7-m-deep void spaces between them (figure 61), impeded movement. They measured temperatures at the N fumarole field (table 14) and obtained a condensate gas sample. They also saw and/or heard several short-lived and high-pressure emissions of volcanic gas (table 15).

Figure (see Caption) Figure 60. Photo on 29 June 2002 showing Nick Varley walking adjacent to the crater's N rim. The dark blocks of lava (on the right) represent loose debris that has fallen from the active dome. Photo taken by J.C. Gavilanes-Ruiz. Courtesy Universidad de Colima and Instituto de Geofísica.
Figure (see Caption) Figure 61. Photo on 29 June 2002 showing J.C. Gavilanes-Ruiz (enclosed by the circle) walking on the NE border of the active dome. Photo taken by Nick Varley. Courtesy Universidad de Colima and Instituto de Geofísica.

Table 15. High-pressure emissions of volcanic gas at Colima on 29 June 2002. Courtesy Universidad de Colima and Instituto de Geofísica.

Date Time Observations
29 June 2002 1252 Observed and heard at 40 m (white/bluish gas discharges ~30 m high)
29 June 2002 1420 Observed and heard at 50 m (white/bluish gas discharges ~30 m high)
29 June 2002 1520 Heard at 250 m
29 June 2002 1603 Heard at 250 m
29 June 2002 1857 Heard at 1,800 m

Petrographical and chemical analyses were conducted on recent rock samples from Volcán de Colima at the Instituto de Geofísica, UNAM. The results were compared with similar analyses reported by Mora et al. (2002) from the 1998, 1999, and 2001 samples (table 16).

Table 16. Chemical composition of Colima lava. Numbers in parentheses correspond to the sample numbers in table 12. Fe2O3t = Fe total (except 1913). References: 1Mora et al. (2002), 2Luhr and Carmichael (1982). New data courtesy Universidad de Colima and Instituto de Geofísica.

Sample/wt. % 1818 1818 18182 19132 19981 19981 19991 19991 20001 2001 (1) 2001 (2) 2001 (3) 2002 (A) 2002 (4) 2002 (5)
SiO2 58.71 57.70 58.52 57.57 60.44 61.00 60.59 59.83 60.77 59.53 59.81 59.60 60.67 59.10 59.70
TiO2 0.66 0.79 0.83 0.79 0.62 0.55 0.64 0.63 0.61 0.63 0.64 0.64 0.61 0.64 0.64
Al2O3 17.88 17.71 17.53 17.42 18.10 18.06 18.29 18.83 18.08 16.84 17.14 16.90 17.23 17.01 17.32
Fe2O3t 6.25 6.78 6.89 2.64 5.28 4.91 5.09 5.99 5.85 6.14 6.08 6.31 5.83 6.20 6.07
FeO -- -- -- 3.74 -- -- -- -- -- -- -- -- -- -- --
MnO 0.11 0.12 0.12 0.12 0.10 0.09 0.08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
MgO 3.82 4.26 3.77 4.14 3.22 3.42 3.07 3.70 2.54 4.13 3.96 4.60 2.91 4.35 3.99
CaO 6.54 6.96 7.11 7.02 6.04 5.88 6.56 6.33 6.16 6.18 6.23 6.22 5.76 6.26 6.13
Na2O 4.50 4.49 4.46 4.40 4.69 4.56 4.53 4.68 4.47 4.53 4.56 4.43 4.72 4.51 4.59
K2O 1.22 1.32 1.23 1.16 1.35 1.37 1.12 1.31 1.28 1.30 1.27 1.29 1.36 1.29 1.38
P2O5 0.19 0.24 0.20 0.19 0.13 0.12 0.18 0.20 0.13 0.20 0.20 0.19 0.23 0.19 0.19
LOI 0.19 -0.03 -- 0.49 0.34 0.36 0.12 0.16 0.41 -0.25 -0.24 -0.12 -0.04 0.04 0.02
Total 100.07 100.34 101.66 99.68 100.31 100.32 100.27 100.77 100.91 99.34 99.76 100.17 99.39 99.70 100.14

Chemical analyses indicated that the new rocks registered a slight decrease in SiO2 and Al2O3 contents, and a slight increase in MgO with respect to the 1998 samples. Trace elements registered a decrease of Ba, and increases of Cu, Cr, and Ni (table 16).

Chemical analyses of rocks from 1818 to 2002 eruptions (Luhr, J.F. and Carmichael, I.S.E., 1982; Mora et al. 2002), show maximum variations of ~4 wt.% SiO2 (57 to 61 wt.%), and ~1.6 wt.% MgO (3.0 to 4.6 wt.%). The most mafic compositions were recorded in the products of the largest explosive eruptions (1818 and 1913). Notable disequilibrium textures observed in phenocrysts, as well as the shift to less evolved compositions in the new dome (2002 samples) with respect to the 1998 eruptive products may indicate an input of magma from a deeper chamber or an injection of new magma into the more shallow magma chamber. Therefore, we think that these detailed petrographic and chemical studies of the more recent eruptive products may provide valuable information for the monitoring of this volcano.

References. Luhr, J.F., and Carmichael, I.S.E., 1982, The Colima Volcanic Complex, Mexico: Part III, Ash and scoria-fall deposits from the upper slopes of Volcán Colima: Contrib. Mineral. Petrol., v. 80, p. 262-275.

Mora, J.C., Macías, J.L., Saucedo, R., Orlando A., Manetti, P., and Vaselli, O., 2002, Petrology of the 1998-2000 products of Volcán de Colima, Mexico: Accepted in the Special Issue of the Journal of Volcanology and Geothermal Research "Volcán de Colima, México, and its Activity in 1997-2000" (in press).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: N. Varley, J. C. Gavilanes-Ruiz, Facultad de Ciencias and Centro Universitario de Investigaciones en Ciencias del Ambiente, Universidad de Colima; J.C. Mora, J.L. Macias, R. Castro, R. Arias, Instituto de Geofísica, UNAM.


Great Sitkin (United States) — June 2002 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Abnormal tremor and earthquake swarms in May 2002

On 27 and 28 May the Alaska Volcano Observatory (AVO) detected anomalous seismicity at Great Sitkin, a volcano located 1,895 km SW of Anchorage, Alaska. On 27 May two periods of seismic tremor lasted for 20 and 55 minutes and on 28 May earthquake swarms began at 0306 and 1228. The earthquake swarms each began with a relatively large event (ML 2.2 and ML 4.3) followed by tens to hundreds of smaller aftershocks, most located 5-6 km SE of the crater at depths of 0-5 km. Both the tremor and earthquake swarms represent significant changes from background seismicity at Great Sitkin. However, aftershocks declined significantly overnight, and seismicity returned to background levels with a lack of recorded tremor since 27 May. Satellite imagery showed no signs of surface volcanic activity, and no reports of anomalous activity were received by AVO.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Tom Murray and John Eichelberger, Alaska Volcano Observatory (AVO) (URL: http://www.avo.alaska.edu/).


Karymsky (Russia) — June 2002 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Explosions eject ash to 3 km above summit during April and July 2002

Seismicity at Karymsky was above background during late March through at least mid-July 2002. Local shallow events occurred at the same rate previously reported in BGVN 27:03 (~10 events per hour). The rate increased briefly during mid-May to ~10-15 events per hour. The character of the seismicity indicated that weak gas-and-ash explosions and avalanches possibly occurred. Thermal anomalies and occasional plumes were visible on satellite imagery throughout the report period (table 2).

Table 2. Thermal anomalies and plumes visible on AVHRR satellite imagery at Karymsky during 30 March-9 July 2002. No airborne ash was detected in any image. Courtesy KVERT.

Date Time (local) Size (pixels) Max. band-3 temperature Background temperature Visible plume
30 Mar 2002 -- -- 13°C -15 to -20°C --
31 Mar 2002 -- -- -- -- Faint thermal anomaly visible through cloud cover.
09 Apr 2002 -- 4 29°C 0°C --
12 Apr-19 Apr 2002 -- 2-5 -- -- --
17 Apr 2002 1807 2 29°C -3°C Faint aerosol/steam plume trended SE.
20 Apr 2002 -- 3 23°C -5 to -20°C --
22 Apr 2002 -- 5 30°C 3°C --
26 Apr-03 May 2002 -- 1-6 42°C 0- ~10°C Possible faint aerosol/steam plume trended SE, visible at 1704 on 28 April.
03 May 2002 -- 3-4 13.4°C -8°C --
04 May 2002 -- 3-4 40°C -1°C Small aerosol/steam plume visible trended S at 1800.
09 May 2002 1740 2 37.5°C 4°C Faint ash-and-gas plume visible extended 20 km to the SE.
10 May-17 May 2002 -- 2-4 ~50°C 2-7°C --
10 May 2002 0727 -- -- -- Ash-and-steam plume visible trended 50 km to the S.
13 May 2002 1744 -- -- -- Faint steam/aerosol plume extended ~60 km to the SE.
20 May 2002 -- 1 16°C -2°C Faint plume extended 30 km to the SE at 0647.
22 May 2002 -- 2 ~49°C 7°C --
24 May 2002 0651 3 16.4°C -2°C --
01 Jun 2002 -- 1 11°C 0°C --
02 Jun 2002 -- 3 49°C 6°C --
09 Jun 2002 0708 2-4 43.5°C -1.5°C --
15 Jun 2002 -- 3 ~49°C 17°C Karymsky lake visible on image at temperature of 33.6°C, six pixels square, warmest to the W.
20 Jun 2002 -- 3 38°C 17°C --
23, 25, 27 Jun 2002 -- 1-3 10 - ~49°C 1 - 18°C Steam/gas plume extended 35 km to the W on 25 June.
29 Jun-30 Jun 2002 -- 1-4 15 - ~49°C -4 - 25°C --
01 Jul-02 Jul 2002 -- -- -- -- Small steam plume extended ~50 km to the NE on 1 July.
06, 08-09 Jul 2002 -- 1-3 ~25 - 31°C 5 - 11.5°C --

According to a pilot's report, at 1115 on 15 April an explosion ejected ash to a height of 3.0 km above the volcano. MODIS imagery on 17 April revealed at least five traces of ashfall extending to ~25 km in various directions.

During a helicopter flight on 28 April, observers reported an ash explosion to 500 m above the crater. Ash deposits were visible on the W (most intense) and E flanks of the volcano. A new ~100-m-high cone was visible on 28 April inside the active crater.

On 10 May the new cone was visible along with a lava flow 1.3 km down the S-SW slope of the volcano (figure 9). It reached ~300 m wide. The flow was unusual because it had an andesitic composition, rather than the typical basaltic composition that was common in lava flows down the SW flank during 1996-2000. Seismic data on 29 June indicated a possible ash-and-gas explosion to a height of ~4.0 km at 1631. On 9 July at 1032, a helicopter pilot reported a plume to a height of 3.0 km. The Concern Color Code remained at Yellow throughout the report period.

Figure (see Caption) Figure 9. View of Karymsky from a helicopter on 10 May 2002. The billowing plume at the time of this photo concealed the new intracrater cone at the summit; winds carried the plume approximately ENE. The active crater generated a conspicuous lava flow down the S-SW slope that reached ~1.3 km long and ~300 m wide (~ 20% of its length continued beyond the lower right-hand margin of this photo). Caption help courtesy of Victor Ivanov (Institute of Volcanology). Photo by Nikolay I. Seliverstov (Institute of Volcanology); provided courtesy of KVERT.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tokyo Volcanic Ash Advisory Center (VAAC),Tokyo, Japan (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Kick 'em Jenny (Grenada) — June 2002 Citation iconCite this Report

Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


Bathymetry indicates circular summit crater with dome missing

Submarine volcanic eruptions occurred at Kick-'em-Jenny during 4-6 December 2001 (BGVN 26:11). Following the 6 December seismicity, no further volcanic or seismic activity were recorded. On 8 December the Alert Level was reduced from Orange to Yellow.

On 12 March 2002, the NOAA Research Vessel Ronald H. Brown conducted extensive mapping of Kick-'em Jenny using the SeaBeam® sonar mapping system (SeaBeam® is a registered trademark of L-3 Communications SeaBeam Instruments). The resulting bathymetric map (figure 3) shows several interesting features.

Figure (see Caption) Figure 3. Bathymetric sonar map of the Kick-'em-Jenny created on 12 March 2002. Courtesy Seismic Research Unit, University of the West Indies.

The volcano's crater is clearly visible (immediately right of center on the image) on top of a symmetrical cone of about 1 km diameter. The crater is nearly perfectly circular with a diameter of ~330 m and a maximum depth of ~80 m. The crater center is located precisely at 12.3004° N, 61.6378° W. The dome, first noticed in 1978 when it almost filled the crater, has now disappeared except for a few remnants on the crater floor. The sonar image shows a breach of the crater to the NE. A prominent escarpment arcs around the E side of the cone and extends at least a few kilometers to the NE and S of the volcano. A series of ridges, principally in the cone's N to W sectors, trend radial or sub-radial to the cone's crater.

The topographic image furnished a bases for some new studies. Temperature-depth profiles were obtained within the crater and on the flanks, water samples were collected at a range of depths, and rock samples were collected from the summit region.

The Seismic Research Unit of the University of the West Indies reported that complete analysis of the results will take some time but preliminary analysis of the bathymetry confirms that the depth to the summit of the volcano has increased since the last detailed survey in 1989. Depth to the highest point on the crater rim is now ~183 m. The difference between this depth and the depths of ~160 m measured from 1978 to 1989 is probably accounted for by the fact that the dome that filled the crater beginning in 1977 has now completely disappeared.

Geologic Background. Kick 'em Jenny, a historically active submarine volcano 8 km off the N shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred since 1939, when an eruption cloud rose 275 m above the sea. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

Information Contacts: John Shepard, Richie Robertson, Jan Lindsay, and Joan Latchman, Seismic Research Unit, University of the West Indies, St. Augustine, Trinidad, W.I. (URL: http://www.uwiseismic.com/).


Klyuchevskoy (Russia) — June 2002 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Increased seismicity prompts KVERT to raise hazard status to Yellow

During mid-September 2001 through at least mid-June 2002 activity at Kliuchevskoi was characterized by brief periods of increased seismicity and minor surface activity. Earthquakes up to M 3 occurred (table 3) along with weak spasmodic tremor with a maximum amplitude up to 1.5 x 10-6 m/s (table 4). Gas-and-steam plumes often accompanied the increased seismicity and were visible reaching up to 2.0 km above the crater (table 5).

Table 3. Seismicity at Kliuchevskoi during mid-September 2001 through mid-June 2002. Courtesy KVERT.

Date Event Magnitude
13 Sep 2001 Two earthquakes M ~2 and ~1.7
01 Oct-02 Oct 2001 Eleven earthquakes five M ~2, six ~1.7
18 Oct 2001 Series of large earthquakes within the edifice --
26 Oct-09 Nov 2001 Series of earthquakes within the edifice and ~30 km depth --
13 Nov 2001 Swarm of shallow earthquakes ~M 3
13 Nov-15 Nov 2001 150+ earthquakes M 1.7
07 Apr 2002 Series of shallow earthquakes began M 2.3
24 May-31 May 2002 Weak earthquakes at a depth of ~30 km --
31 May-07 Jun 2002 ~20 earthquakes/day at a depth of ~30 km M 2.3
11 Jun 2002 ~30 min series of shallow earthquakes M 2.8
07 Jun-14 Jun 2002 22-48 earthquakes/day at a depth of ~30 km --

Table 4. Tremor recorded at Kliuchevskoi during mid-September through mid-June 2002. Courtesy KVERT.

Date Event Magnitude/amplitude (µm/s)
20 Sep 2001 Volcanic tremor 0.15
21 Sep-22 Sep 2001 Volcanic tremor 0.23-0.21
23 Sep 2001 Volcanic tremor 0.28
24 Sep 2001 Volcanic tremor 0.4
25 Sep-26 Sep 2001 Volcanic tremor 0.23-0.27
27 Sep-29 Sep 2001 Weak, continuous volcanic tremor 0.22-0.32
01 Oct 2001 Intermittent weak spasmodic volcanic tremor 0.19
02 Oct-04 Oct 2001 Intermittent weak spasmodic volcanic tremor 0.30
05 Oct 2001 Continuous, spasmodic tremor 0.30
06 Oct 2001 Continuous, spasmodic tremor 0.18
09 Oct 2001 Continuous, spasmodic tremor 0.26
10 Oct 2001 Continuous, spasmodic tremor 0.51
11 Oct 2001 Continuous, spasmodic tremor 0.47
12 Oct 2001 Continuous, spasmodic tremor 0.51
13 Oct 2001 Continuous, spasmodic tremor 0.54
14 Oct 2001 Volcanic tremor 0.13
15 Oct-17 Oct 2001 Volcanic tremor 0.15-0.17
Nov 2001 Episodes of weak volcanic tremor --
Apr-May 2002 Weak volcanic tremor --
30 May 2002 Volcanic tremor 1.5

Table 5. Plumes visible at Kliuchevskoi during 13 September 2001 to 20 June 2002. Plumes were visible from Klyuchi town unless noted otherwise. Heights are above the crater. Courtesy KVERT.

Date Time Plume details
13, 17, 19-20 Sep 2001 -- Gas-and-steam plumes rose 50-100 m.
19 Sep 2001 -- Gas-and-steam plume rose 1.0 km and extended 20 km to the S.
23 Sep 2001 -- Gas-and-steam plume rose 100 m.
24 Sep 2001 1828 Possible gas-and-steam plume observed in satellite image.
01 Oct 2001 0810 Gas-and-steam plume up to 1.0 km extending 30 km to the NW.
01 Oct 2001 1150 Gas-and-steam plume up to 2.0 km extending 15 km to the NW.
01 Oct 2001 1400 Gas-and-steam plume up to 1.5-2.0 km extending 10 km to the W.
01 Oct 2001 1730 Gas-and-steam plume up to 800 m extending 5 km to the S visible from Kozyurevsk.
02 Oct 2001 ~0830 Gas-and-steam plume up to 300 m extending 3 km to the S visible from Kozyurevsk and Klyuchi.
05 Oct 2001 0850 Gas-and-steam plume rose 300 m and extended 3 km to the S visible from Kozyurevsk.
05 Oct 2001 1200 Gas-and-steam plume rose 100 m.
10 Oct 2001 0815 Gas-and-steam plume rose 500 m and extended 5 km to the S.
12, 14, 16, 27-29 Oct 2001 -- Gas-and-steam plumes rose 50-100 m.
30 Oct 2001 -- Gas-and-steam plume rose 700 m and extended 5 km to the SE.
31 Oct 2001 -- Gas-and-steam plume rose 50-100 m and extended 5 km to the SE.
01 Nov 2001 -- Gas-and-steam plume rose 50-100 m.
02 Nov 2001 -- Gas-and-steam plume rose 50-200 m and extended 3 km to the SE.
06 Nov 2001 -- Gas-and-steam plume rose 50-200 m and extended 20 km to the NE.
08 Nov 2001 -- Gas-and-steam plume rose 50-200 m.
09 Nov 2001 -- Gas-and-steam plume rose 600 m.
11-13, 18 Nov 2001 -- Gas-and-steam plume rose 50-100 m.
19 Nov 2001 -- Gas-and-steam plume rose 700 m and extended 10 km to the SE.
21 Nov 2001 -- Gas-and-steam plume rose 500 m and extended to the SW.
09 Apr 2002 2038 Explosion sent a gas-and-steam plume with possible ash to 1.0 km.
06, 09-10 Apr; 24, 27 May 2002 -- Gas-and-steam plume rose 100 m.
31 May; 1-3, 6, 9 15-16, 20 Jun 2002 -- Gas-and-steam plume rose 100-300 m.

On 13 November a swarm of shallow M 3 earthquakes caused the Kamchatkan Volcanic Eruption Response Team (KVERT) to increase the Alert Level from Green to Yellow. According to a pilot's report, at 1315 on 19 November powerful fumarolic activity was observed. Seismicity decreased during the following days and on 23 November KVERT decreased the Color Code to Green. Seismicity remained at or near background levels with only slight increases in activity until 31 May when a series of earthquakes (up to M 2.3) was recorded in the volcano's edifice. As a result, the Color Code was increased to Yellow.

During 31 May-7 June ~20 earthquakes occurred daily at a depth of ~30 km (table 3). Overflight observations on 9 June indicated fresh ash on the volcano's slopes. The deposits were not accompanied by visually or seismically detected explosions. At the end of the report period, seismicity was slightly above background with a small gas-and-steam plume visible from nearby villages.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Merapi (Indonesia) — June 2002 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Pyroclastic flows and lava avalanches occur during February-June 2002

From 25 February through 16 June 2002 a generally white, variably dense, low-pressure plume rose 150-820 m above the summit of Merapi. Seismicity was dominated by avalanche earthquakes (table 14). During the week of 25-31 March, one shallow volcanic earthquake was reported. The Volcanological Survey of Indonesia (VSI) reported that Merapi emitted varying amounts of SO2 (table 15).

Table 14. Seismicity (low-frequency, avalanche, and multiphase) and crater characteristics at Merapi during 25 February-16 June 2002. Magnetic field strength was measured at Pusang-Lempong and is reported in nanoteslas (nT). "--" indicates that the information was not reported. Courtesy VSI.

Date Low-frequency events Avalanche events Multiphase events Magnetic field strength Gendol crater Woro crater
25 Feb-03 Mar 2002 -- -- -- -- -- 571°C
04 Mar-10 Mar 2002 -- 666 -- -- -- --
11 Mar-17 Mar 2002 5 652 -- -- -- --
18 Mar-24 Mar 2002 1 609 -- -- -- --
25 Mar-31 Mar 2002 60 575 -- -- -- --
01 Apr-07 Apr 2002 135 539 1 -- -- --
15 Apr-21 Apr 2002 46 364 -- 3.09 nT -- --
22 Apr-28 Apr 2002 19 367 1 0.32 nT -- --
29 Apr-05 May 2002 9 383 13 -3.22 nT 737-742°C 421-434°C
06 May-12 May 2002 13 353 -- 4.64 nT 737-746°C 398-431°C
13 May-19 May 2002 2 345 2 8.28 nT 734-748°C 406-430°C
20 May-26 May 2002 -- 308 15 -1.02 nT 734-749°C 421-431°C
27 May-02 Jun 2002 8 310 6 -1.47 nT 620-750°C 354-430°C
03 Jun-09 Jun 2002 9 268 6 -1.65 nT 741-756°C 423-435°C
10 Jun-16 Jun 2002 -- 281 5 1.65 nT 736-755°C 423-434°C

Table 15. COSPEC-measured SO2 gas emission at Merapi during 3 March-16 June 2002. "--" indicates that the information was not reported. Courtesy VSI.

Date Average SO2 emission (ton/day) Range (ton/day) Max. avg. (ton/day)
03 Mar-10 Mar 2002 156 96-254 196
11 Mar-17 Mar 2002 131 87-173 138
18 Mar-24 Mar 2002 146 103-206 --
25 Mar-31 Mar 2002 133 74-172 136
01 Apr-07 Apr 2002 107 73-145 108
15 Apr-21 Apr 2002 124 105-167 --
22 Apr-28 Apr 2002 155 97-219 182
29 Apr-05 May 2002 156 109-245 173
06 May-12 May 2002 166 123-210 169
13 May-19 May 2002 90 43-182 145
20 May-26 May 2002 140 64-206 160
27 May-02 Jun 2002 131 62-216 167
03 Jun-09 Jun 2002 141 85-196 167
10 Jun-16 Ju 2002 125 42-218 161

In total, 69-108 lava avalanches per week were observed during mid-February through late March. The avalanches generally traveled 2.5-2.75 km towards the upstream ends of the Senowo, Sat, and Lamat rivers, and partly to the Bebeng river. During 25 February-3 March, a total of four minor pyroclastic flows traveled to the upstream part of the Bebeng river to a maximum distance of 1.0 km (3 on 25 February and 1 on 3 March). Field observations of the summit on 28 February revealed very thin solfatara sublimation at Gendol and Woro craters. Temperatures at the craters were 354-755°C (table 14). No further pyroclastic flows occurred until 29 and 30 March, when 7 and 2 flows, respectively, traveled 1.8 km down to the upstream ends of the Sat and Senowo rivers. Low-frequency (LF) earthquakes, which had been recorded during the previous few weeks, increased (table 14), and high-intensity rain fell but did not trigger lahars.

Table 15 shows Merapi's SO2 fluxes. The molar concentrations of volcanic gases from Gendol crater on 28 February were as follows: 0.21% H2, 0.02% (O2 + Ar), 0.54% N2, 3.87% CO2, 0.01% CO, 1.00% H2S, 5.49% HCl, 88.86% H2O. One pyroclastic flow was reported during 25-31 March.

During early April, two minor pyroclastic flows traveled 1.3 km toward the Sat river. Activity at Merapi increased significantly; LF earthquakes reached 135 events within the week. The most intense rain was ~65 mm/hour near the Babadan post observatory on 4 April, but it did not trigger lahars. On 14 April, two minor pyroclastic flows reached 1.8 km maximum distance. Seismicity began to decrease but was still higher than normal. Deformation data from Reflector 4 at the Babadan post observatory indicated 7 mm of deflation, and the lava dome morphology did not change.

No further pyroclastic flows were reported through at least mid-June. Seismicity and general activity at Merapi was reportedly decreasing. Merapi remained at Alert Level 2 throughout the report period.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Popocatepetl (Mexico) — June 2002 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome extrusions continue, accompanied by minor explosions

During March through at least late June 2002, volcanic activity at Popocatépetl consisted of small-to-moderate, but at times explosive, eruptions of steam, gas, and generally minor amounts of ash, along with episodes of harmonic tremor. Ash clouds rose up to ~2 km above the summit. Because of the remote location and high elevation of the summit, the dome growth within the crater was often hard to constrain, although seismicity and occasional flights over the summit did shed light on the situation. The following report is compiled from updates from the Centro Nacional de Prevencion de Desastres (CENAPRED) and from reports issued by the Washington Volcanic Ash Advisory Center (VAAC).

March began with activity at low and steady levels with up to 18 small steam-and-gas emissions per day and occasional episodes of harmonic tremor. The amount of ash emitted was generally minor. Occasional M 3 volcano-tectonic (VT) events were recorded. Low fumarolic activity began on 4 March and was frequently visible throughout the report period. Overflight observations on 7 March confirmed the presence of a lava dome in the crater (figure 44). A gas-and-steam plume reached ~2 km above the crater on 9 March. According to CENAPRED, the activity implied the possibility of low-level explosive activity in the coming days or weeks.

Figure (see Caption) Figure 44. Aerial view from the NE on 7 March 2002 of the crater of Popocatépetl. The darkest circle in the center of the crater represents the newest lava-dome growth. Courtesy CENAPRED.

Activity increased during 26-27 March when 42 gas and steam emissions reached 200-500 m above the crater, accompanied by small amounts of ash and low-amplitude harmonic tremor. The Washington VAAC issued a volcanic ash warning based upon seismic observations that indicated a possible ash-bearing eruption, but no ash was visible in satellite images. Activity decreased to levels similar to earlier in the month and continued at those levels through early April.

At 0438 on 8 April, observers recorded a moderate eruption with explosive characteristics accompanied by some visible incandescence. An accompanying ash cloud moved E towards the coastline and diffused within 24 hours. After a M 2.3 VT earthquake was recorded at 0545 on 8 April, activity returned to steady levels.

Activity remained low through mid-April, with the exception of a brief period around 11 April when observers detected a slight increase in low-amplitude tremor and fumarolic activity. An increased number of small-to-moderate exhalations per day (up to 52) accompanied by episodes of low-level harmonic and high-frequency tremor, and weak VT earthquakes characterized increased activity that began in late April and lasted through early May. According to CENAPRED, this activity was most likely related to motion of small amounts of magma towards the surface and growth of the lava dome within the crater.

An air photo taken on 29 April (figure 45) by the Department of Federal Roads showed a small dome ~170 m in diameter. On 1 May CENAPRED reported an ash plume moving W at 1.0 km above the summit. No ash was visible on satellite imagery.

Figure (see Caption) Figure 45. Air photo of the Popocatépetl crater taken by the Department of Federal Roads on 29 April 2002. The darkest circle in the left-center of the photo is the newest lava dome, measuring 170 m across. Subsequent flights indicated that explosive activity on 12 May destroyed part of this dome. Courtesy CENAPRED.

Activity increased slightly during mid-May with 33 small-to-moderate exhalations and 1 hour of low-amplitude tremor on 10 May. At 0609 on 12 May, a small explosive eruption occurred, ejecting incandescent fragments on the N flank up to 500 m from the crater. During the next few days, CENAPRED reported increased numbers of exhalations per day (up to 124 on 14 May) of steam, gas, and sometimes small amounts of ash. It was later determined from overflight observations that this explosive activity destroyed part of the growing dome.

This period of increased activity decreased beginning around 17 May. During the rest of May, activity was again characterized by numerous (up to 66) small-to-moderate gas-and-steam exhalations accompanied by small amounts of ash and periods of harmonic tremor. Fumarolic activity continued at the surface. A pilot reported an ash cloud in the region on 21 May.

Activity declined to steady, low levels through June with the average number of exhalations per day dropping to less than 10, occasional isolated harmonic tremor episodes of ~15 minutes duration, and as many as five VT earthquakes per day (M 2.5).

On 17 June at 1136 an ash plume extended up to 2 km above the summit and drifted to the WSW. Shortly thereafter, CENAPRED recorded high-frequency tremor for almost 8 hours and four VT events (M 2.0-2.2). The resulting ash cloud moved across Mexico to the SW. During the following days the volcano quieted but continued to emit gas, steam, and ash in small quantities with episodes of harmonic tremor lasting less than an hour. On 27 and 29 June ash plumes reaching up to 2 km above the summit were accompanied by periods of harmonic tremor lasting up to 2 hours. The Alert Level remained at Yellow throughout the report period.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevencion de Desastres (CENAPRED), Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacán, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).


Semeru (Indonesia) — June 2002 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Seismicity increases beginning in March 2002; Alert Level increased to 2

Since mid-July 2001, Semeru was at Alert Level 1 (on a scale of 1-4). On 8 March 2002 two pyroclastic flows traveled 2.5 km downslope to the Besuk Kembar river. The same day, tectonic and volcanic earthquakes increased, prompting the Volcanological Survey of Indonesia (VSI) to raise the Alert Level to 2. Tectonic and volcanic earthquakes continued, along with explosions, avalanches, pyroclastic flows, and tremor (table 7). Plumes, sometimes containing ash, were visible reaching up to 500 m above the summit (table 8).

Table 7. Seismicity registered at Semeru during 3 March-16 June 2002. "--" indicates that information was not reported. Courtesy VSI.

Date Deep volcanic Shallow volcanic Explosion Avalanche Local tectonic Pyroclastic flow Tremor Far tremor
03 Mar-10 Mar 2002 8 1 479 22 2 2 -- --
11 Mar-17 Mar 2002 1 2 444 21 -- -- 3 --
18 Mar-24 Mar 2002 2 -- 514 10 1 -- -- --
25 Mar-31 Mar 2002 9 6 302 171 1 -- 2 --
01 Apr-07 Apr 2002 26 2 415 278 -- -- -- --
08 Apr-14 Apr 2002 9 -- 509 141 3 -- 1 --
15 Apr-21 Apr 2002 16 4 791 194 -- -- -- --
22 Apr-28 Apr 2002 6 0 585 64 3 0 5 14
29 Apr-05 May 2002 0 0 664 52 0 0 3 14
06 May-12 May 2002 5 0 783 62 0 0 0 15
13 May-19 May 2002 1 0 575 146 0 0 0 13
20 May-26 May 2002 -- -- -- -- -- -- -- --
27 May-02 Jun 2002 2 1 556 90 1 -- 2 --
03 Jun-09 Jun 2002 2 -- 556 45 -- -- 1 --
10 Jun-16 Jun 2002 2 -- 637 31 -- -- -- --

Table 8. Plumes observed at Semeru during 8 March-16 June 2002. Courtesy VSI.

Date Plume Type Plume height (above the summit)
08 Mar 2002 White-gray 400 m
12, 14, and 17 Mar 2002 White-gray 300-400 m
19-23 Mar 2002 White-gray ~300-500 m
25-31 Mar 2002 White-gray 300-500 m
15-21 Apr 2002 White-gray, medium pressure 400 m
22 Apr-26 May 2002 White-gray, medium pressure 400 m
10-16 Jun 2002 White-gray ash 200-400 m

On 31 March two tremor earthquakes occurred with amplitudes of ~3-17 mm. During mid-April, a tremor earthquake occurred with an amplitude of 0.2 mm. Lava avalanches continued to travel up to 750 m down to Besuk Kembar. Seismic signals thought to indicate local floods registered 15-21 April. Incandescence was observed up to 25 m above the crater rim during 1820-2025 on 18 April. During that time, seismicity was dominated by low-frequency earthquakes, with amplitudes of 2-3 mm. During 27 May-2 June ash explosions produced white-gray plumes that reached ~200-400 m above the summit, while lava avalanches traveled ~100 m away. Semeru remained at Alert Level 2 through at least 16 June 2002.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Soufriere Hills (United Kingdom) — June 2002 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


During 19-29 February large spines and plumes occurred at tidal maxima

Stephen O'Meara and four Volcano Watch International (VWI) team members (Robert Benward, Tippy D'Auria, Scott Ireland, and Larry Mitchell) visually monitored Soufrière Hills for 10 days beginning on 19 February 2002. The observations took place on Jack Boy Hill, a spot at ~180 m elevation 6 km N of the volcano. In addition, for 3 hours on the night of 25 February, the group joined Montserrat Volcano Observatory (MVO) scientists Peter Dunkley and Richard Herd on the runway at Bramble Airport. Except for a storm on 20 February, the weather facilitated exceptionally clear views of the dome during both day and night. The team employed a variety of telescopes and other optical equipment and had an interest in astronomy as well as the volcano (O'Meara, 2002).

Benward brought along a homemade night-vision scope (near-infrared image intensifier) that captured images of the dome, even through local atmospheric conditions where visible light was weakened or scattered. The intensifier was coupled to camera lenses. It could be used visually or attached to a video camera (figure 47). The camera's phosphor viewing screen yielded green-colored images of the hot portions of the dome.

Figure (see Caption) Figure 47. The night-vision scope (image intensifier) put together by Robert Benward and used to obtain images of Soufriere Hills' growing dome. In this configuration the intensifier lies between two other components: a telephoto camera lens (left) and a video camera (right). Courtesy of Steve O'Meara, Robert Benward, and Sky and Telescope magazine.

One purpose of the VWI team's visit to Montserrat was to chronicle changes in the volcano's visible behavior with approach to the time of the full Moon and its perigee (when the Moon is closest to the Earth). The idea was that the tidal influence associated with the full Moon and its perigee might lead to enhanced activity. With approach of the full Moon, there did seem to be a rise in visible indicators, particularly plume height, a strong pulse of extruded spines, and less-substantial increases in the numbers of rockfalls and pyroclastic flows.

As background on tidal forces, the paths of both the Moon around the Earth, and Earth around the Sun are elliptical throughout the lunar cycle (29.53 days) and solar cycle (the year), meaning that the separations and resulting gravitational forces vary with time. The Earth-Moon separations change by ~50,000 km; when they are smallest (perigee) and largest (apogee) the respective tidal forces are higher or lower than usual. In addition, the gravitational attractions of Moon and Sun on the Earth may act along a common line or at changing angles relative to each other. Particularly large tides affect the Earth's crust and oceans when the Sun and the Moon are lined up with the Earth; this occurs at the new and full phases of the Moon. These orientations lead to what are called spring tides (a name not associated with the season of Spring, but which implies a "welling up"). The amount of tidal enhancement is roughly the same whether the Sun and Moon are lined up on opposite sides of the Earth (full Moon) or on the same side of the Earth (new Moon). In contrast, when the Moon is at first quarter or last quarter (meaning that it is located at right angles to the Earth-Sun line), the Sun and Moon produce tidal bulges called neap tides. These are generally weaker than the above-described spring tides.

A two-month record of seismicity and tides at the volcanically active Axial seamount on the Juan de Fuca ridge during 1994 found both bi-weekly and diurnal patterns in earthquakes and volcanic tremor (Tolstoy and others, 2002). The authors concluded that microearthquakes took place at tidal minima.

Montserrat, Moon, and magma. The full Moon occurred at 0518 on 27 February; perigee, ~11 hours later, at 1630. The team's 10-day stay was too short to see more than a partial lunar cycle, but soon after full Moon and perigee, the numbers for the observed visible indicators appeared to drop considerably.

After an initial study of dome activity on 19 February and a storm on 20 February, the group began taking regular visible observations on 21 February. At that time, activity appeared to be on the increase and a high-level of activity was sustained throughout the observation period. According to MVO: "The level of volcanism at Soufrière Hills during 22 February-1 March was higher than it had been in previous weeks." The growing dome was quite active, displaying near continuous rockfall and small pyroclastic flows, most of which traveled E to the Tar River Valley, though some activity was directed to the S and W. During the 10-day observation interval, the dome also rapidly extruded very large spines.

By midnight on 27 February the team had recorded and tabulated 440 observations of notable rockfalls and pyroclastic flows. On the whole during this interval, the number of these events per hour stood well below 10, typically ranging from ~4 to ~8. One low, late on 23 February, only reached 1 event per hour. The average number of these events per hour reached a low of ~5 during 21-23 February rising to ~8 on 27 February. The highest hourly total recorded during the observing period occurred on 27 February with 13 of these events during 0000-0100 and 10 during 1120-1320. These times fall on either side of the full Moon; the second total lies at the midpoint between the full Moon and lunar perigee.

Visible activity decreased sharply on 28 February. The team, which departed on 3 March, made sporadic observations until 1 March. Their observations on and after 28 February suggested dome activity had remained substantially lower than during 21-27 February.

During their interval of observation the team found a direct correlation between the number of large visible events and the size of the dome's emerging and collapsing spines. The mass of each spine also increased during the observation period; the largest spine was observed on 26 February, the day before the full Moon and perigee.

Each of the spines collapsed in less than a day, only to regrow rapidly. The largest (shown on figures 48-53) reached 90 m tall; it enabled the summit to attain 1,080-m elevation, the highest the summit has been during the entire eruption to date (according to the MVO weekly update). It grew rapidly; specifically, it was not present from 1830 to 2100 on the evening of 25 February, but was fully grown by 0600 the following morning. When seen at 0330 on 26 February the new spine appeared as an incandescent obelisk about one-fifth its maximum size. The majority of this massive spine then grew to its record height in 3 hours.

Figure (see Caption) Figure 48. A S-view taken from Jack Boy Hill of Soufrière Hills dome shown with the yet-highest-reaching spine seen to date, which was photographed shortly after sunrise on 26 February 2002. The spine appears as a triangular peak at the summit; it soon began to collapse. Courtesy of Steve and Donna O'Meara, Volcano Watch International.
Figure (see Caption) Figure 49. A S-looking night shot taken from Jack Boy Hill at 0300 on 26 February that depicts Soufriere Hills in a highly incandescent state, with a large and growing spine extruding out of the top of the dome. Disrupted and displaced dome materials, including falling blocks, incandescent rockfalls, and pyroclastic flows, have left a conspicuous apron of hot material on the dome's left (W) side. Surprisingly little ash and steam appear to be present. Courtesy of Steve and Donna O'Meara, Volcano Watch International.
Figure (see Caption) Figure 50. A daytime shot taken from Jack Boy Hill showing part of a comparatively large pyroclastic flow at Soufriere Hills on 24 February 2002. Courtesy of Steve and Donna O'Meara, Volcano Watch International.
Figure (see Caption) Figure 51. The ragged summit of the dome at Soufriere Hills as it lies beneath a small plume at sunset. Taken from Jack Boy Hill looking S on 25 February 2002. Courtesy of Steve and Donna O'Meara, Volcano Watch International.
Figure (see Caption) Figure 52. A night shot of the dome at Soufriere Hills showing the summit dome that was soon to extrude a large spine (not yet visible). This photo was taken from the airport (several kilometers NE of the dome) in conditions of moonlight on 25 February at about 2100. Courtesy of Steve and Donna O'Meara, Volcano Watch International.
Figure (see Caption) Figure 53. Soufriere Hills' glowing dome showing triangular spine in the moonlight with stars in the night sky. Taken from the airport (several kilometers NE of the dome). Courtesy of Steve and Donna O'Meara, Volcano Watch International.

Figure 54 is one of several plots constructed to illustrate the results. It was made by omitting the smaller events, which the team judged from small to medium using a qualitative visual scale that ran from S1 to S3 and continued upwards from M1 to M3 (where event sizes are abbreviated as S for "small" and M for "medium" and termed as S-class or M-class, respectively). Thus, the largest events seen were M3 (i.e., they saw no events in these time periods that they classified as "large"). On their scale, events of size S3 and M1 were judged to be of very similar magnitude. Figure 54 shows the increase in larger event size seen during 21-26 February, culminating in the highest numbers late on 26 February to early on 27 February.

Figure (see Caption) Figure 54. A plot of the number of larger observed rockfall and pyroclastic-flow events seen at Soufrière Hills during 21-27 February 2002. The events counted in this plot excluded the smallest two categories (S1 and S2 classes, see text). High tides were shown (thin vertical lines) for those cases where they occurred during an interval in which observations were conducted; otherwise they are absent. The symbols along the top of the plot indicate processes described in the key. The symbol sizes were increased or reduced for events judged to be of larger or smaller size. For example, the largest spine grew on 26 February (large dark triangle). Courtesy of Steve and Donna O'Meara, Volcano Watch International.

Figure 54 shows six high tides that occurred at times when observations were conducted (on 21, 22, 24, 26 and 27 February). Five of the six of these tides coincided with observation intervals with the day's highest number of the largest events (the M-class events).

Plume height. As shown on figure 55, an increase in plume height took place around the time of first quarter Moon followed by a decrease, then a gradual rise in plume height, until it reached a maximum at the time of perigee on 27 February. Although atmospheric conditions could clearly affect the extent and height of a plume, the team found the pattern of the plotted data compelling. The plot may disclose tidal effects.

Figure (see Caption) Figure 55. Plume heights (in degrees above a reference horizon) at Soufriere Hills plotted against time as observed during 19-28 February 2002. Courtesy of Steve and Donna O'Meara, Volcano Watch International.

References. O'Meara, S., 2002, Firelight nights: Stargazing from the Caribbean's Emerald Isle; A group of American amateur astronomers helps residents of Montserrat and its neighboring island explore the universe: Sky & Telescope, August 2002, p. 79-83.

Tolstoy, M., Vernon, F.L., Orcutt, J.A., and Wyatt, F.K., 2002, Breathing of the seafloor, tidal correlations of seismicity at Axial Volcano: Geological Society of America (GSA), Geology, v. 30, no. 6, p. 503-506.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Steve and Donna O'Meara, Robert Benward, Tippy D'Auria, Scott Ireland, and Larry Mitchell, Volcano Watch International, PO Box 218, Volcano, Hawaii 96785.


Talang (Indonesia) — June 2002 Citation iconCite this Report

Talang

Indonesia

0.979°S, 100.681°E; summit elev. 2575 m

All times are local (unless otherwise noted)


Small explosion earthquakes dominate through June 2002

During 11 March-16 June 2002 at Talang, seismicity was dominated by small explosion earthquakes (table 4). A thin white plume reached 50-100 m above the summit and sometimes drifted E. Hotspring temperatures were 42-64°C. As of 13 May, the Volcanological Survey of Indonesia (VSI) reported that no seismic data were available because of a broken seismograph. During April and early May seismicity had been decreasing. Talang remained at Alert Level 2 (on a scale of 1-4) throughout the report period.

Table 4. Earthquakes at Talang during 11 March-12 May 2002. The seismograph was broken as of 13 May, so no seismicity data was available through at least 16 June. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Small explosion Tectonic
11 Mar-17 Mar 2002 1 17 61 14
18 Mar-24 Mar 2002 2 -- 120 9
25 Mar-31 Mar 2002 2 -- 120 13
01 Apr-07 Apr 2002 2 -- 63 5
08 Apr-14 Apr 2002 1 -- 23 12
15 Apr-21 Apr 2002 3 -- -- 6
22 Apr-28 Apr 2002 6 -- -- 7
29 Apr-05 May 2002 4 -- -- 14
06 May-12 May 2002 3 -- -- 3

Geologic Background. Talang, which forms a twin volcano with the extinct Pasar Arbaa volcano, lies ESE of the major city of Padang and rises NW of Dibawah Lake. Talang has two crater lakes on its flanks; the largest of these is 1 x 2 km wide Danau Talang. The summit exhibits fumarolic activity, but which lacks a crater. Historical eruptions have mostly involved small-to-moderate explosive activity first documented in the 19th century that originated from a series of small craters in a valley on the upper NE flank.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Three Sisters (United States) — June 2002 Citation iconCite this Report

Three Sisters

United States

44.133°N, 121.767°W; summit elev. 3159 m

All times are local (unless otherwise noted)


Studies suggest magma slowly accumulating at depth

Uplift (up to ~10 cm) occurred during 1996-2000 over a broad region centered 5 km W of South Sister in the Three Sisters region (BGVN 26:05). At the time scientists did not know exactly when the uplift had occurred, whether it would continue, or its specific cause. Although most of these questions remain, some new data are available.

On 18 March 2002 scientists from the USGS Cascades Volcano Observatory and Central Washington University reported that they, in cooperation with staff from the U.S. Forest Service's (USFS) Willamette and Deschutes National Forests, confirmed that slow uplift of the area was continuing at approximately the same rate as previously reported (i.e., a maximum rate of ~2.5 cm/year).

About a month later NASA's Jet Propulsion Laboratory (JPL) released a simulated natural-color image from the Aster high-resolution imaging instrument on the satellite Terra. Aster uses 14 spectral bands, at wavelengths from visible to thermal-infrared, and it has a spatial resolution of 15-90 m. By draping the Aster data over digital topography from the U.S. Geological Survey's National Elevation Dataset, they created a new perspective view of the Three Sisters and adjacent Cascade volcanoes (figure 2). The image was timely because of concerns about continued uplift in the area. BGVN 26:05 included a radar interferogram showing ground uplift pattern during 1996-2000, movement centered ~ 5 km W of South Sister.

Figure (see Caption) Figure 2. The Three Sisters volcanic area appears in this perspective view from the SW quadrant. The view uses a simulated natural-color image from the satellite-borne Aster imaging system, which has been draped over digital topography taken from the U.S. Geological Survey's National Elevation Dataset. N lies to the upper-right; the distance between the summits of North Sister and South Sister is ~ 7 km. The image was released on 12 April 2002. Courtesy NASA's Jet Propulsion Laboratory.

Analyses of spring water samples collected during late summer 2001 were similar to those from earlier surveys but isotopic studies of carbon and helium in the most recent samples, which were not done previously, suggested a magmatic source. Taken together, the ground deformation, seismic, spring water chemistry, and gas emission results suggest that uplift was caused by slow accumulation of magma at a depth of 6-7 km beneath the surface. If magma intrusion were to continue, it could eventually lead to a volcanic eruption; however, an eruption is unlikely without months to years of precursory activity. In addition to continued or accelerating uplift, precursors to an eruption would include earthquakes, typically swarms of small events generated by fracturing of rock as magma moves upward, and large emissions of volcanic gases, such as carbon dioxide, which is released from the magma.

The Pacific Northwest Seismograph Network (PNSN) has reported three earthquakes in the Three Sisters region since January 2001. On 21 August 2001 a M 1.9 earthquake occurred at a depth of 4.9 km; on 5 November 2001 a M 1 earthquake occurred at a depth of 1 km; and on 18 January 2002 an M 2.4 earthquake occurred at a depth of 3.0 km. The recent earthquakes are consistent with background seismicity at Three Sisters. As of mid-July 2002, the number of earthquakes and gas emissions remained at low-t-obackground levels while steady uplift continued.

General Reference. Scott, W.E., 1987, Holocene rhyodacite eruptions on the flanks of South Sister volcano, Oregon: Geol Soc Amer Spec Pap, v. 212, p. 35-53.

Geologic Background. The north-south-trending Three Sisters volcano group dominates the landscape of the Central Oregon Cascades. All Three Sisters stratovolcanoes ceased activity during the late Pleistocene, but basaltic-to-rhyolitic flank vents erupted during the Holocene, producing both blocky lava flows north of North Sister and rhyolitic lava domes and flows south of South Sister volcano. Glaciers have deeply eroded the Pleistocene andesitic-dacitic North Sister stratovolcano, exposing the volcano's central plug. Construction of the main edifice ceased at about 55,000 yrs ago, but north-flank vents produced blocky lava flows in the McKenzie Pass area as recently as about 1600 years ago. Middle Sister volcano is located only 2 km to the SW and was active largely contemporaneously with South Sister until about 14,000 years ago. South Sister is the highest of the Three Sisters. It was constructed beginning about 50,000 years ago and was capped by a symmetrical summit cinder cone formed about 22,000 years ago. The late Pleistocene or early Holocene Cayuse Crater on the SW flank of Broken Top volcano and other flank vents such as Le Conte Crater on the SW flank of South Sister mark mafic vents that have erupted at considerable distances from South Sister itself, and a chain of dike-fed rhyolitic lava domes and flows at Rock Mesa and Devils Chain south of South Sister erupted about 2000 years ago.

Information Contacts: Cascades Volcano Observatory (CVO), U.S. Geological Survey (USGS), Building 10, Suite 100, 1300 SE Cardinal Court, Vancouver, WA 98683 (URL: https://volcanoes.usgs.gov/observatories/cvo/); Volcano Hazards Team, USGS, 345 Middlefield Road, Menlo Park, CA 94025-3591 USA (URL: http://volcanoes.usgs.gov/); Pacific Northwest Seismograph Network (PNSN), University of Washington Geophysics Program, Box 351650, Seattle, WA 98195-1650 USA (URL: http://www.geophys.washington.edu/SEIS/PNSN/); Jet Propulsion Laboratory, California Institute of Technology, National Aeronautics and Space Administration, Pasadena, CA 91109 (URL: http://www.jpl.nasa.gov/).


Villarrica (Chile) — June 2002 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


General decrease in activity during February-May 2002

Our last report described activity at Villarrica during January 2001 (BGVN 27:02) through January 2002, when incandescent lava was observed in the crater and ballistics were ejected ~80-150 m. At that time explosions generally occurred every ~1-10 minutes and degassing sounds were occasionally heard.

During February through at least May 2002, sporadic observations showed a general decrease in activity. Degassing noises were sometimes heard; however, no incandescence or ballistics were reported. A crater visit on 9 April revealed that no incandescence or explosive noises occurred. The surface of the lava lake, last seen on 19 January, remained low (~200 m below the crater rim). On 10 April, explosions occurred every ~10-13 minutes.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Proyecto de Observacion Villarrica (POVI), Wiesenstrasse 8, 86438 Kissing, Germany (URL: http://www.povi.cl/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports