Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sangay (Ecuador) Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September

Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020

Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020

Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September

Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020

Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020

Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater

Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020



Sangay (Ecuador) — January 2021 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September

Sangay is one of the most active volcanoes in Ecuador with the current eruptive period continuing since 26 March 2019. Activity at the summit crater has been frequent since August 1934, with short quiet periods between events. Recent activity has included frequent ash plumes, lava flows, pyroclastic flows, and lahars. This report summarizes activity during July through December 2020, based on reports by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), ash advisories issued by the Washington Volcanic Ash Advisory Center (VAAC), webcam images taken by Servicio Integrado de Seguridad ECU911, and various satellite data.

Overall activity remained elevated during the report period. Recorded explosions were variable during July through December, ranging from no explosions to 294 reported on 4 December (figure 80), and dispersing mostly to the W and SW. SO2 was frequently detected using satellite data (figure 81) and was reported several times to be emitting between about 770 and 2,850 tons/day. Elevated temperatures at the crater and down the SE flank were frequently observed in satellite data (figure 82), and less frequently by visual observation of incandescence. Seismic monitoring detected lahars associated with rainfall events remobilizing deposits emplaced on the flanks throughout this period.

Figure (see Caption) Figure 80. A graph showing the daily number of explosions at Sangay recorded during July through December 2020. Several dates had no recorded explosions due to lack of seismic data. Data courtesy of IG-EPN (daily reports).
Figure (see Caption) Figure 81. Examples of stronger SO2 plumes from Sangay detected by the Sentinel 5P/TROPOMI instrument, with plumes from Nevado del Ruiz detected to the north. The image dates from left to right are 31 August 2020, 17 September 2020, 1 October 2020 (top row), 22 November 2020, 3 December 2020, 14 December 2020 (bottom row). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 82. This log radiative power MIROVA plot shows thermal output at Sangay during February through December 2020. Activity was relatively constant with increases and decreases in both energy output and the frequency of thermal anomalies detected. Courtesy of MIROVA.

Activity during July-August 2020. During July activity continued with frequent ash and gas emission recorded through observations when clouds weren’t obstructing the view of the summit, and Washington VAAC alerts. There were between one and five VAAC alerts issued most days, with ash plumes reaching 570 to 1,770 m above the crater and dispersing mostly W and SE, and NW on two days (figure 83). Lahar seismic signals were recorded on the 1st, 7th, three on the 13th, and one on the 19th.

Figure (see Caption) Figure 83. Gas and ash plumes at Sangay during July 2020, at 0717 on the 17th, at 1754 on the 18th, and at 0612 on the 25th. Bottom picture taken from the Macas ECU 911 webcam. All images courtesy of IG-EPN daily reports.

During August there were between one and five VAAC alerts issued most days, with ash plumes reaching 600 to 2,070 m above the crater and predominantly dispersing W, SW, and occasionally to the NE, S, and SE (figure 84). There were reports of ashfall in the Alausí sector on the 24th. Using seismic data analysis, lahar signals were identified after rainfall on 1, 7, 11-14, and 21 August. A lava flow was seen moving down the eastern flank on the night of the 15th, resulting in a high number of thermal alerts. A pyroclastic flow was reported descending the SE flank at 0631 on the 27th (figure 85).

Figure (see Caption) Figure 84. This 25 August 2020 PlanetScope satellite image of Sangay in Ecuador shows an example of a weak gas and ash plume dispersing to the SW. Courtesy of Planet Labs.
Figure (see Caption) Figure 85. A pyroclastic flow descends the Sangay SE flank at 0631 on 27 August 2020. Webcam by ECU911, courtesy of courtesy of IG-EPN (27 August 2020 report).

Activity during September-October 2020. Elevated activity continued through September with two significant increases on the 20th and 22nd (more information on these events below). Other than these two events, VAAC reports of ash plumes varied between 1 and 5 issued most days, with plume heights reaching between 600 and 1,500 m above the crater. Dominant ash dispersal directions were W, with some plumes traveling SE, S, SE, NE, and NW. Lahar seismic signals were recorded after rainfall on 1, 2, 5, 8-10, 21, 24, 25, 27, and 30 September. Pyroclastic flows were reported on the 19th (figure 86), and incandescent material was seen descending the SE ravine on the 29th. There was a significant increase in thermal alerts reported throughout the month compared to the July-August period, and Sentinel-2 thermal satellite images showed a lava flow down the SE flank (figure 87).

Figure (see Caption) Figure 86. Pyroclastic flows descended the flank of Sangay on 19 (top) and 20 (bottom) September 2020. Webcam images by ECU911 from the city of Macas, courtesy of IG-EPN (14 August 2018 report).
Figure (see Caption) Figure 87. The thermal signature of a lava flow is seen on SW flank of Sangay in this 8 September 2020 Sentinel-2 thermal satellite image, indicated by the white arrow. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Starting at 0420 on the morning of 20 September there was an increase in explosions and emissions recorded through seismicity, much more energetic than the activity of previous months. At 0440 satellite images show an ash plume with an estimated height of around 7 km above the crater. The top part of the plume dispersed to the E and the rest of the plume went W. Pyroclastic flows were observed descending the SE flank around 1822 (figure 88). Ash from remobilization of deposits was reported on the 21st in the Bolívar, Chimborazo, Los Ríos, Guayas and Santa Elena provinces. Ash and gas emission continued, with plumes reaching up to 1 km above the crater. There were seven VAAC reports as well as thermal alerts issued during the day.

Figure (see Caption) Figure 88. An eruption of Sangay on 22 September 2020 produced a pyroclastic flow down the SE flank and an ash plume that dispersed to the SW. PlanetScope satellite image courtesy of Planet Labs.

Ash plumes observed on 22 September reached around 1 km above the crater and dispersed W to NW. Pyroclastic flows were seen descending the SE flank (figure 89) also producing an ash plume. A BBC article reported the government saying 800 km2 of farmland had experienced ashfall, with Chimborazo and Bolívar being the worst affected areas (figure 90). Locals described the sky going dark, and the Guayaquil was temporarily closed. Ash plume heights during the 20-22 were the highest for the year so far (figure 91). Ash emission continued throughout the rest of the month with another increase in explosions on the 27th, producing observed ash plume heights reaching 1.5 km above the crater. Ashfall was reported in San Nicolas in the Chimborazo Province in the afternoon of the 30th.

Figure (see Caption) Figure 89. A pyroclastic flow descending the flank of Sangay on 22 September 2020. Webcam image by ECU911 from the city of Macas, courtesy of IG-EPN (Sangay Volcano Special Report - 2020 - No 5, 22 September 2020).
Figure (see Caption) Figure 90. Ashfall from an eruption at Sangay on 22 September 2020 affected 800 km2 of farmland and nearby communities. Images courtesy of EPA and the Police of Ecuador via Reuters (top-right), all via the BBC.
Figure (see Caption) Figure 91. Ash plume heights (left graph) at Sangay from January through to late September, with the larger ash plumes during 20-22 September indicated by the red arrow. The dominant ash dispersal direction is to the W (right plot) and the average speed is 10 m/s. Courtesy of IG-EPN (Sangay Volcano Special Report - 2020 - No 5, 22 September 2020).

Thermal alerts increased again through October, with a lava flow and/or incandescent material descending the SE flank sighted throughout the month (figure 92). Pyroclastic flows were seen traveling down the SE flank during an observation flight on the 6th (figure 93). Seismicity indicative of lahars was reported on 1, 12, 17, 19, 21, 23, 24, and 28 October associated with rainfall remobilizing deposits. The Washington VAAC released one to five ash advisories most days, noting plume heights of 570-3,000 m above the crater; prevailing winds dispersed most plumes to the W, with some plumes drifting NW, N, E to SE, and SW. Ashfall was reported in Alausí (Chimborazo Province) on the 1st and in Chunchi canton on the 10th. SO2 was recorded towards the end of the month using satellite data, varying between about 770 and 2,850 tons on the 24th, 27th, and 29th.

Figure (see Caption) Figure 92. A lava flow descends the SE flank of Sangay on 2 October 2020. Webcam images courtesy of ECU 911.
Figure (see Caption) Figure 93. A pyroclastic flow descends the Sangay SE flank was seen during an IG-EPN overflight on 6 October 2020. Photo courtesy of S. Vallejo, IG-EPN.

Activity during November-December 2020. Frequent ash emission continued through November with between one and five Washington VAAC advisories issued most days (figure 94). Reported ash and gas plume heights varied between 570 and 2,700 m above the crater, with winds dispersing plumes in all directions. Thermal anomalies were detected most days, and incandescent material from explosions was seen on the 26th. Seismicity indicating lahars was registered on nine days between 15 and 30 November, associated with rainfall events.

Figure (see Caption) Figure 94. Examples of gas and ash plumes at Sangay during November 2020. Webcam images were published in IG-EPN daily activity reports.

Lahar signals associated with rain events continued to be detected on ten out of the first 18 days of November. Ash emissions continued through December with one to five VAAC alerts issued most days. Ash plume heights varied from 600 to 1,400 m above the crater, with the prevailing wind direction dispersing most plumes W and SW (figure 95). Thermal anomalies were frequently detected and incandescent material was observed down the SE flank on the 3rd, 14th, and 30th, interpreted as a lava flow and hot material rolling down the flank. A webcam image showed a pyroclastic flow traveling down the SE flank on the 2nd (figure 96). Ashfall was reported on the 10th in Capzol, Palmira, and Cebadas parishes, and in the Chunchi and Guamote cantons.

Figure (see Caption) Figure 95. Examples of ash plumes at Sangay during ongoing persistent activity on 9, 10, and 23 December 2020. Webcam images courtesy of ECU 911.
Figure (see Caption) Figure 96. A nighttime webcam image shows a pyroclastic flow descending the SE flank of Sangay at 2308 on 2 December 2020. Image courtesy of ECU 911.

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); ECU911, Servicio Integrado de Seguridad ECU911, Calle Julio Endara s / n. Itchimbía Park Sector Quito – Ecuador. (URL: https://www.ecu911.gob.ec/; Twitter URL: https://twitter.com/Ecu911Macas/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); BBC News “In pictures: Ash covers Ecuador farming land” Published 22 September 2020 (URL: https://www.bbc.com/news/world-latin-america-54247797).


Ebeko (Russia) — December 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall; June-November 2020

Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.

Figure (see Caption) Figure 26. Photo of a dense gray ash plume rising from Ebeko on 22 June 2020. Photo by L. Kotenko (color corrected), courtesy of IVS FEB RAS, KVERT.

Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.

In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.

Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).

Figure (see Caption) Figure 27. Photos of dense ash plumes rising from Ebeko on 22 (left) and 26 (right) September 2020. Photos by S. Lakomov (color corrected), IVS FEB RAS, KVERT.

During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.

Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.

Figure (see Caption) Figure 28. Sentinel-2 satellite imagery of a gray-white gas-and-ash plume at Ebeko on 8 (left) and 11 (right) November 2020, resulting in ashfall (dark gray) to the SE of the volcano. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. Photos of continued ash explosions from Ebeko on 28 October (left) and 29 November (right) 2020. Photos by S. Lakomov (left) and L. Kotenko (right), courtesy of IVS FEB RAS, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.

Figure (see Caption) Figure 30. A small pulse in thermal activity at Ebeko began in early June and continued through early August 2020, according to the MIROVA graph (Log Radiative Power). The detected thermal anomalies were of relatively low power but were persistent during this period. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 satellite imagery showed gray ash plumes rising from Ebeko on 11 June (top left) and 16 July (bottom left) 2020, accompanied by occasional thermal anomalies (yellow-orange) within the summit crater, as shown on 24 June (top right) and 25 August (bottom right). The ash plume on 11 June drifted N from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 11 June (top left) and 16 July (bottom left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — November 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and small eruptions in May and August 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).

Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.

Figure (see Caption) Figure 10. Sentinel-2 thermal satellite images showed a strong thermal anomaly (bright yellow-orange) in the Shindake crater at Kuchinoerabujima on 1 May 2020 (top left). Weaker thermal anomalies were also seen in the Shindake crater during 19 August (top right) and 3 (bottom left) and 13 (bottom right) October 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images; courtesy of Sentinel Hub Playground.

Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.

Figure (see Caption) Figure 11. Webcam images of an eruption at Kuchinoerabujima on 6 May 2020 (top), producing a gray ash plume that rose 500 m above the crater. Crater incandescence was observed from the summit crater at night on 25 May 2020 (bottom). Courtesy of JMA (Monthly bulletin report 509, May 2020).

Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.

According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).

The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — December 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.

Figure (see Caption) Figure 91. MIROVA graph of thermal activity (log radiative power) at Nyamuragira during March 2020-January 2021. During June-November 2020, most were in the low to moderate range, with a decrease in power during November. Courtesy of MIROVA.

Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.

Figure (see Caption) Figure 92. Sentinel-2 satellite images of Nyamuragira on 26 July (left) and 28 November (right) 2020. Thermal activity is present at several locations within the summit crater (upper right of each image) and in the SW part of the caldera (lower left). SWIR rendering (bands 12, 8A, 4). Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).


Raung (Indonesia) — December 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.

Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).

Figure (see Caption) Figure 31. Little change can be seen at the summit of Raung in Google Earth images dated 19 October 2017 (left) and 28 April 2018 (right). The summit crater was full of black lava flows from the 2015 eruption. Courtesy of Google Earth.
Figure (see Caption) Figure 32. A Malaysian hiker celebrated his climbing to the summit of Raung on 30 August 2019. Weak fumarolic activity was visible from the base of the breached crater of the cone near the center of the summit crater, and many features of the lava flow that filled the crater in 2015 were still well preserved. Courtesy of MJ.

PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.

Figure (see Caption) Figure 33. An ash plume rose from the summit of Raung on 16 July 2020 at the beginning of a new eruption. The last previous eruption was in 2015. Courtesy of Volcano Discovery and PVMBG.

After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.

Figure (see Caption) Figure 34. MIROVA thermal anomaly data indicated renewed activity on 16 July 2020 at Raung as seen in this graph of activity from 13 October 2019 through September 2020. Satellite images indicated that the dark lines at the beginning of the graph are from a large area of fires that burned on the flank of Raung in October 2019. Heat flow remained high through July and began to diminish in mid-August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 35. Thermal anomalies were distinct inside the crater of the pyroclastic cone within the summit crater of Raung on 19, 24, and 29 July 2020. Data is from the Sentinel-2 satellite shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.

In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).

Figure (see Caption) Figure 36. The thermal anomaly at Raung recorded in Sentinel-2 satellite data decreased in intensity between August and October 2020. It was relatively strong on 13 August (left) but had decreased significantly by 12 September (middle) and remained at a lower level into early October (right). Data shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground
Figure (see Caption) Figure 37. A small but distinct thermal anomaly was still present within the pyroclastic cone inside the summit crater of Raung on 7 October 2020 (left) but was gone by 12 October (middle) and did not reappear in subsequent clear views of the crater through the end of October. Satellite imagery of 7 and 12 October processed with Atmospheric penetration rendering (bands 12, 11, 8A). Natural color rendering (bands 4, 3, 2) from 17 October (right) shows no clear physical changes to the summit crater during the latest eruption. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).


Sinabung (Indonesia) — November 2020 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Explosions begin again on 8 August 2020; dome growth confirmed in late September

Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.

Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.

Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.

A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.

Figure (see Caption) Figure 77. Numerous explosions were recorded at Sinabung during August 2020. An ash plume rose to 5,000 m above the summit on 10 August (left) and drifted both NE and SE. On 14 August gray and brown ash plumes rose 1,000-4,200 m above the summit and drifted S, SW, SE and NE (right) while ashfall covered crops SE of the volcano. Courtesy of PVMBG (Sinabung Eruption Notices, 10 and 14 August 2020).

White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).

Figure (see Caption) Figure 78. On 23 August 2020 an explosion at Sinabung produced a gray ash plume that rose 1,500 m above the summit and produced pyroclastic flows that traveled 1,000 m down the E and SE flanks. Courtesy of PVMBG (Sinabung Eruption Notice, 23 August 2020).
Figure (see Caption) Figure 79. An explosion on 25 August 2020 at Sinabung produced an ash plume that rose 800 m above the peak and drifted W and NW. Courtesy of PVMBG (Sinabung Eruption Notice, 25 August 2020).
Figure (see Caption) Figure 80. Significant sulfur dioxide emissions were measured at Sinabung during August 2020 when near-daily explosions produced abundant ash emissions. A small plume was also recorded from Kerinci on 19 August 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.

The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).

Figure (see Caption) Figure 81. A new lava dome appeared at the summit of Sinabung in late September 2020. Block avalanches from the dome were first reported on 8 October. Satellite imagery indicating a thermal anomaly at the summit was very faint at the end of September and slightly stronger by the end of October. The dome grew slowly between 30 September (top) and 22 October 2020 (bottom). Photos taken by Firdaus Surbakti, courtesy of Rizal.
Figure (see Caption) Figure 82. Pyroclastic flows at Sinabung were accompanied ash emissions multiple times during the last week of October, including the event seen here on 27 October 2020. Courtesy of PVMBG and CultureVolcan.
Figure (see Caption) Figure 83. Block avalanches from the growing summit dome at Sinabung descended the SE flank on 28 October 2020. The dome is visible at the summit. Courtesy of PVMBG and MAGMA.
Figure (see Caption) Figure 84. A very faint thermal anomaly appeared at the summit of Sinabung in Sentinel 2 satellite imagery on 28 September 2020 (left). One month later on 28 October the anomaly was bigger, corroborating photographic evidence of the growing dome. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).


Heard (Australia) — November 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Persistent thermal anomalies in the summit crater from June through October 2020

The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.

Figure (see Caption) Figure 43. A small pulse in thermal activity at Heard was detected in early June and continued through July 2020, according to the MIROVA system (Log Radiative Power). Thermal anomalies appeared again starting in late August and continued intermittently through mid-October 2020. Courtesy of MIROVA.

Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).

Figure (see Caption) Figure 44. Thermal satellite images of Heard Island’s Big Ben volcano showed strong thermal signatures (bright yellow-orange) sometimes accompanied by gas-and-steam emissions drifting SE (top left) and NE (bottom right) during June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 45. Thermal satellite images of Heard Island’s Big Ben volcano showed persistent thermal anomalies (bright yellow-orange) near the summit during July through October 2020. During 14 (top left) and 17 (top right) July a second hotspot was visible NW of the summit. By 22 October (bottom right) the thermal anomaly had significantly decreased in strength in comparison to previous months. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — October 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.

Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).

Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.

Month Avg. daily explosions by week Max plume heights (km above the crater) Plume drift (km) and direction Communities reporting ashfall Minimum days with SO2 over 2 DU SO2 emissions per day (tons) by week
Jun 2020 20, 10, 9, 13 1.5-4 30 km, SE, S, SW, NE, W, E Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa 28 8,400, 2,200, 3,100, 7,600
Jul 2020 20, 15, 11, 12, 19 2-2.6 15-30 km E, NE, NW, SE, SW, S, W Achoma and Chivay 23 4,400, 6,000, 1,900, 2,100, 5,900
Aug 2020 18, 12, 9, 29 1.7-3.6 20-30 km W, SW, SE, S, E, NW - 20 2,300, 3,800, 5,300, 10,700
Sep 2020 39, 35, 33, 38, 40 1.8-3.5 25-35 km SE, S, SW, W, E, NE, N, NW, W Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta 28 9,700, 2,600, 8,800, 7,800, 4,100
Figure (see Caption) Figure 83. Sulfur dioxide plumes were captured almost daily from Sabancaya during June through September 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes occurred on 19 June (top left), 5 July (top right), 30 August (bottom left), and 10 September (bottom right) 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 84. Thermal activity at Sabancaya varied in power from 13 October 2019 through September 2020, but was consistent in frequency, according to the MIROVA graph (Log Radiative Power). A pulse in thermal activity is shown in late August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 85. Sentinel-2 thermal satellite imagery showed frequent gas-and-steam and ash plumes rising from Sabancaya, accompanied by ongoing thermal activity from the summit crater during June through September 2020. On 23 June (top left) a dense gray-white ash plume was visible drifting E from the summit. On 3 July (top right) and 27 August (bottom left) a strong thermal hotspot (bright yellow-orange) was accompanied by some degassing. On 1 September (bottom right) the thermal anomaly persisted with a dense gray-white ash plume drifting SE from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 23 June 2020 (top left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.

Figure (see Caption) Figure 86. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.5-4 km above the crater during June 2020. Images are showing 8 (left) and 27 (right) June 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-24-2020/INGEMMET Semana del 08 al 14 de junio del 2020 and RSSAB-26-2020/INGEMMET Semana del 22 al 28 de junio del 2020).

Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.

Figure (see Caption) Figure 87. Multiple daily explosions at Sabancaya produced ash plumes that rose 2-3.5 km above the crater during July 2020. Images are showing 7 (left) and 26 (right) July 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-28-2020/INGEMMET Semanal: del 06 al 12 de julio del 2020 and RSSAB-30-2020/INGEMMET Semanal: del 20 al 26 de julio del 2020).

OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.

Figure (see Caption) Figure 88. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.7-3.6 km above the crater during August 2020. Images are showing 1 (left) and 29 (right) August 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-31-2020/INGEMMET Semanal del 27 de julio al 02 de agosto del 2020 and RSSAB-35-2020/INGEMMET Semanal del 24 al 30 de agosto del 2020).

Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.

Figure (see Caption) Figure 89. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.8-2.6 km above the crater during September 2020. Images are showing 4 (left) and 27 (right) September 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-36-2020/INGEMMET Semanal del 31 de agosto al 06 de septiembre del 2020 and RSSAB-39-2020/INGEMMET Semanal del 21 al 27 de septiembre del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — October 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).

Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.

Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.

Month Minimum total days of eruptions Ash plume height (m above the crater) Notable plume drift Gas-and-steam plume height (m above the crater)
Apr 2020 16 200-1,000 - 50-1,500
May 2020 15 200-3,000 W, NW, SW 200-2,000
Jun 2020 8 100-2,000 N -
Jul 2020 10 1,000 - -
Aug 2020 18 500-1,000 - 500
Sep 2020 13 700 - 50

During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.

Figure (see Caption) Figure 30. Webcam image of small hydrothermal eruptions at Rincón de la Vieja on 19 April 2020. Image taken by the webcam in Dos Ríos de Upala; courtesy of OVSICORI-UNA.

Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.

Figure (see Caption) Figure 31. Webcam images of gray gas-and-steam and ash emissions at Rincón de la Vieja on 21 (left), and 27 (right) May 2020. Both images taken by the webcam in Dos Ríos de Upala and Sensoria; courtesy of OVSICORI-UNA.

There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.

Figure (see Caption) Figure 32. Webcam images of gray gas-and-steam and ash plumes rising from Rincón de la Vieja on 1 (top left), 2 (top right), 7 (bottom left), and 13 (bottom right) June 2020. The ash plume on 1 June rose between 1.5 and 2 km above the crater. The ash plume on 13 June rose 1 km above the crater. Courtesy of OVSICORI-UNA.

Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.

On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.

Figure (see Caption) Figure 33. Webcam image of an eruption plume rising above Rincón de la Vieja on 17 September 2020. Courtesy of OVSICORI-UNA.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Fuego (Guatemala) — December 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Daily explosions, ash emissions, and block avalanches during August-November 2020

Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.

Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.

Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.

Month Explosions per hour Ash Plume Heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Communities reporting ashfall
Aug 2020 2-15 4.3-4.8 SW, W, NW, S, N, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa
Sep 2020 3-16 4.3-4.9 W, SW, NW, N, S, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita
Oct 2020 3-19 4.1-4.8 SW, W, S, SE, N, E, 10-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde
Nov 2020 4-14 4.0-4.8 S, SW, SE, W, NW, 10-35 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia
Figure (see Caption) Figure 136. Consistent daily ash emissions produced similar looking ash plumes at Fuego during August-November 2020. Plumes usually rose to 4.5-4.8 km altitude and drifted SW. Courtesy of INSIVUMEH.

The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.

Figure (see Caption) Figure 137. The MIROVA graph of activity at Fuego for the period from 15 January through November 2020 suggested persistent moderate to high-level heat flow for much of the time. Courtesy of MIROVA.
Figure (see Caption) Figure 138. Atmospheric penetration rendering of Sentinel-2 satellite images (bands 12, 11, 8A) of Fuego during August-November 2020 showed continued thermal activity from block avalanches, explosions, and lava flows at the summit and down several different ravines. Courtesy of Sentinel Hub Playground.

Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.

The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.

Figure (see Caption) Figure 139. Avalanche blocks descended the Ceniza ravine (left) and the Las Lajas ravine (right) at Fuego on 17 September 2020. The webcam that captured this image is located at Finca La Reunión on the SE flank. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEVFGO # 76-2020, 18 de septiembre de 2020, 14:30 horas).

The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.

Figure (see Caption) Figure 140. Heavy rains on 9 October 2020 at Fuego caused lahars in all the major ravines. Debris from Las Lajas ravine overflowed highway RN-14 near the community of San Miguel on the SE flank, the area devastated by the pyroclastic flow of June 2018. Courtesy of INSIVUMEH (BEFGO #96 VOLCAN DE FUEGO- ZONA CERO RN-14, SAN MIGUEL LOS LOTES y BARRANCA LAS LAJAS, 09 de octubre de 2020).

On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Kikai (Japan) — November 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Explosion on 6 October 2020 and thermal anomalies in the crater

Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).

Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).

Figure (see Caption) Figure 17. White gas-and-steam emissions rose 1 km above the crater at Satsuma Iwo Jima (Kikai) on 25 May (top) 2020. At night, occasional incandescence could be seen in the Iodake crater, as seen on 29 May (bottom) 2020. Both images taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, May 2nd year of Reiwa [2020]).

A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).

Figure (see Caption) Figure 18. Webcam images of the eruption at Satsuma Iwo Jima (Kikai) on 6 October 2020 that produced an ash plume rising 200 m above the crater (top). Nighttime summit crater incandescence was also observed (bottom). Images were taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).
Figure (see Caption) Figure 19. Weak thermal hotspots (bright yellow-orange) were observed at Satsuma Iwo Jima (Kikai) during late September through October 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. Webcam image of a white gas-and-steam plume rising 1.1 km above the crater at Satsuma Iwo Jima (Kikai) on 27 October 2020. Image was taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Manam (Papua New Guinea) — October 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020

Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.

Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.

Figure (see Caption) Figure 76. Distinct sulfur dioxide plumes rising from Manam and drifting generally W were detected using data from the TROPOMI instrument on the Sentinel-5P satellite on 28 April (top left), 24 May (top right), 16 July (bottom left), and 12 September (bottom right) 2020. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 77. Intermittent thermal activity at Manam increased in power and frequency beginning around late July and continuing through September 2020, as shown on the MIROVA Log Radiative Power graph. Courtesy of MIROVA.
Figure (see Caption) Figure 78. Sentinel-2 thermal satellite images showing a persistent thermal anomaly (yellow-orange) at Manam’s summit craters (Main and South) each month during April through August; sometimes they were seen in both summit craters, as shown on 8 June (top right), 28 July (bottom left), and 17 August (bottom right). A particularly strong anomaly was visible on 17 August (bottom right). Occasional gas-and-steam emissions accompanied the thermal activity. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.

Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 28, Number 08 (August 2003)

Managing Editor: Edward Venzke

Arenal (Costa Rica)

Ongoing lava extrusion and intermittent pyroclastic flows late 2001 through mid-2003

Colima (Mexico)

Explosions in July and August generate pyroclastic flows and create a new summit crater

Etna (Italy)

Ash emissions during April from Bocca Nuova; volcanic seismicity and ash puff on 11 August

Fournaise, Piton de la (France)

Lava eruption from three fissures during 22-27 August

Kanlaon (Philippines)

Frequent ash explosions from 7 March until 23 July 2003

Karthala (Comoros)

Increased shallow seismic activity to 100 events per day by late August

Krakatau (Indonesia)

Continued shallow volcanic seismicity through mid-August

Masaya (Nicaragua)

Fumarolic emissions and low-level seismicity from April 2002 through May 2003

Nyamuragira (DR Congo)

Rumbling and explosion sounds April-June, but no confirmed eruptions

Nyiragongo (DR Congo)

Continued lava lake activity during May-June; ashfall in local villages

Popocatepetl (Mexico)

Continuing intermittent eruptions; ashfall in June and July

Ruang (Indonesia)

Rapid decrease in activity following September 2002 eruption

Soputan (Indonesia)

Lava avalanches and ash explosions during 18-22 July 2003

Soufriere Hills (United Kingdom)

Major dome collapse and explosive activity during 12-13 July

Stromboli (Italy)

Explosive activity in the summit craters and thermal signatures in the lava-flow field

Tandikat-Singgalang (Indonesia)

Increased seismicity during January 2003

Tangkuban Parahu (Indonesia)

Elevated seismicity during August-October 2002

Whakaari/White Island (New Zealand)

Large crater lake floods the active vent; new hazards identified



Arenal (Costa Rica) — August 2003 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Ongoing lava extrusion and intermittent pyroclastic flows late 2001 through mid-2003

This report concerns Arenal behavior during November 2001 through August 2003, although some reports were absent (specifically, November and December 2001 and January, February, and April 2002). The available reports portrayed an interval with only a few pyroclastic flows and with plumes generally under 500 m. Lava flows continued to travel down Arenal's slopes; in many cases these flows did not follow well-defined channels. Spatter and related deposition from crater C caused a slightly higher summit elevation. During 2002 lavas descended along many routes down the W, NW, N, and NE flanks. Seismicity remained prominent during the interval, with the number of monthly eruption signals in the hundreds (200-800) and monthly tremor duration in the hundreds of hours.

Seismicity registered during March 2000-December 2001 and for the year 2002 appears as figures 96 and 97, where the numbers of eruptions plotted monthly were inferred. The seismic station VACR (table 22) returned to service on 28 March 2000, registering totals for four days at the end of March consisting of 164 eruptions and 45 hours of tremor. Also reported this month, the electronic distance measuring network (sub-radial lines) continued to show a contraction averaging 7-10 ppm per year. Similar conclusions were stated for August 2003, although in that case deflation was only mentioned on Arenal's W flank. In accord with that observation, dry tilt in the radial direction showed a deflation equivalent to 5 µrad per year, a value that has prevailed through mid-2003.

Figure (see Caption) Figure 96. Arenal seismicity registered during March 2000-December 2001 (eruptions inferred). The blank areas before March 2000 and during July 2001 were due to equipment down-times. Known pyroclastic flows are shown, but some may be missing because some monthly reports were not available. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 97. Arenal seismicity registered during 2002 (eruption counts seismically inferred). Note change in scale compared to previous figure. The number of eruptions decreased compared to those registered in the year 2000. On the other hand, long-period (LP) earthquakes grew substantially in number during the last months of 2002; tremor repeatedly reached over 400 hours per month during mid-2002. Courtesy of OVSICORI-UNA.

Table 22. Background describing the OVSICORI-UNA seismic station at Arenal (station VACR), as well as the typical kinds of seismic and audible acoustical signals and corresponding eruptive conditions. Courtesy of OVSICORI-UNA.

Seismic Station Features
Name VACR
Location 10.477°N, 84.684°W
Elevation 360 m
Location relative to crater 2.7 km NNE
Instrument Ranger SS-short-period (1 Hz)
Gain 60 decibels (dB)
Amplification 9,605-times normalized at 1 Hz
Typical seismic signals recorded at Arenal include those registered in association with explosions and gas eruptions; these signals often correspond to sounds similar to a locomotive or jet engine. Tremors typically correlate to strong degassing and discharge of lava flows. The following types of tremor signal are known to occur: low frequency (typically less than 2.0 Hz), mid-frequency (typically 2.0-3.0 Hz), high frequency (typically above 3.0 Hz), polychromatic (occurring in any frequency range), monochromatic (low-frequency range), and spasmodic (high-frequency range).

The number of monthly earthquakes generally dropped or held steady during 2002 compared to 2000-2001 (figure 97). Tremor duration, however, did increase through July 2002, approaching 700 hours a month, typically several times larger than seen in the previous two years. Long-period (LP) earthquakes suddenly became prominent in November and December 2002 (roughly 3- to 7-fold more numerous than seen earlier in 2002).

Two prominent PFs occurred during 2000-2001: in August 2000 and March 2001. They did not correlate with short-term increases in precursory seismicity. However, the August 2000 PF took place after clear increases in the number of earthquakes, the duration of tremor (figure 96), and the number of explosions.

One of a series of PFs judged smaller than the one in March occurred on 16 June 2001. They descended the NW flank for an unstated distance in the direction of Balneario de Tabacón (the Tabacón hot springs and resort complex). Associated seismic signals persisted for ~48 minutes. Although seismicity during June 2001 was comparatively low overall, May 2001 seismicity was moderately high, although not outstanding (figure 96).

During March 2002, Arenal's lava traveled down the N and NE flanks. Eruptive vigor remained low in terms of the number of eruptions and quantity of ejected pyroclastics. On the NE, E, and SE flanks there had been acidic rains and tephra falls. These, in combination with the steep slopes, unconsolidated material, and high rainfall, had caused vegetation to recede. This led to greater erosion, and small cold avalanches swept down the drainages Calle de Arenas, Manolo, Guillermina, and Agua Caliente.

On 18 May 2002 a pyroclastic flow resulted from the structural failure of a lava channel's margin in the region adjacent to the active crater (Crater C). The pyroclastic flow descended to ~900 m elevation, traveling roughly NW. Otherwise, the eruptive vigor around this time continued to remain low; a few eruptions produced columns that rose ~500 m above Crater C. Some minor changes took place in the lava flow channels during May 2002.

Although reports for June and July 2002 were absent during the preparation of this report, the August report mentioned sporadic Strombolian eruptions during those months. Lava that began to be emitted in May 2002 traveled NW and stopped during August. After that, a new lava flow began during August, heading NW in its upper reaches. Very close to the crater, it divided into two arms, heading W and NW. The August effusive activity had increased over recent months, yet, overall the eruptive vigor around that time generally remained low with few eruptions bearing ash, and columns failing to rise more than 500 m above crater C's summit.

Low activity again prevailed during September-December 2002, but lava flows continued to emerge. During September lavas were active on Arenal's W flank, and to some extent on its NW, N, and NE flanks. During October, lavas chiefly descended the NW slopes. During November, the NW-flank lava flow that began to be emitted during August 2002 stopped advancing. A new lava flow began to descend the W flank. Flows down the NW-NE flanks were noted in reports for December 2002-August 2003. In addition, during December 2002 and January and August 2003, some lavas appeared active on the SW flank. During January 2003 plumes again rose to under 500 m high, and calm generally prevailed in February through August as well. Two noteworthy events broke the relative calm of 2003; these occurred during February, May, and September.

On 21 February 2003 at about 0825, NE-flank residents witnessed a small pyroclastic flow descending the same flank. Other details were not disclosed in the OVSICORI-UNA reports; nor was the May PF much described. The 5 September 2003 PF will be discussed in a later report.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, E. Duarte, E. Malavassi, R. Sáenz, V. Barboza, R. Van der Laat, T. Marino, E. Hernández, and F. Chavarría, Observatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Colima (Mexico) — August 2003 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Explosions in July and August generate pyroclastic flows and create a new summit crater

In February 2003 lava emission at Colima ceased, ending an earlier eruptive stage (BGVN 28:06); after the termination of lava emission a new eruptive stage began. A series of small explosions during March-June was followed by the explosion on 17 July 2003 (BGVN 28:07), the first of three large explosions in July and August. The 17 July explosion sent blocks up to 500 m and an ash column higher than 3,000 m. The explosion was accompanied by five pyroclastic flows with runout distances up to 2 km on the W-SW slopes of the volcano (figure 66).

Figure (see Caption) Figure 66. Photo of the WSW flank of Colima showing the paths of pyroclastic flows that followed the 17 July 2003 explosion. Arrows mark five of the pyroclastic-flow deposits. Courtesy of Colima Volcano Observatory.

The second large explosion was recorded on 2 August at 1541. The Washington VAAC reported a plume to ~7.6 km altitude. The third large explosion occurred on 28 August at 2352 and produced an ash column at least 3 km high with ashfall up to 60 km W-NW of the volcano. The explosion was accompanied by pyroclastic flows out to 2.5 km, covering the majority of the volcano's flanks; the total deposit volume was about 244,000 m3.

As a result of this explosion sequence, a new crater 200 m across and 30 m deep formed at the summit (figure 67). About 2 x 106 m3 of the material of the former lava dome was ejected as volcanic bombs and projectiles out to distances of ~1.0-2.5 km. The seismic energy released during these three large explosions was lower than during the 1999 explosions (BGVN 24:01).

Figure (see Caption) Figure 67. A view of Colima's new crater on 30 August 2003, a result of an explosive sequence that began on 17 July 2003. The airplane wing can be seen in the foreground. Courtesy of Colima Volcano Observatory.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Observatorio Vulcanológico de la Universidad de Colima, Colima, Col., 28045, México (URL: https://portal.ucol.mx/cueiv/).


Etna (Italy) — August 2003 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Ash emissions during April from Bocca Nuova; volcanic seismicity and ash puff on 11 August

Activity at Etna since the end of the last flank eruption on 28 January 2003 (BGVN 28:01) was characterized by intense degassing at the Northeast Crater (NEC). In April, ash emission was observed from Bocca Nuova crater (BN), and ash fell for about 1 hour on E-flank villages. On 17 April a helicopter survey, aided by use of a thermal camera, revealed a cinder cone within the S pit of BN with a hot vent at its top. However, no degassing was taking place from this vent, and the pit appeared mostly obstructed by debris from the crater walls. Rare explosions from the vent caused little emission of juvenile material on the crater floor. Another helicopter-borne thermal survey in May showed that the summit craters were mostly obstructed.

Only a hot crack within the S pit of BN was observed during a June field survey. A new vent on the N rim of the Voragine (VOR), detected during a June field survey, was ~0.5 m wide, and the temperature measured through a thermal camera was ~500°C, much higher than the two vents within the crater. Given the presence of hot features within the summit craters and the obstructions observed inside BN, Southeast Crater (SEC), and VOR, it is possible that renewal of explosive activity at these summit craters could be accompanied by sudden, unpredictable gas explosions.

On the afternoon of 11 August an increase in volcanic tremor at the summit seismic stations lasted about 15 minutes and was followed by about 30 minutes of strong explosion earthquakes recorded at all summit stations of the INGV-CT seismic network. This was the first such event recorded at Etna since the end of the flank eruption. The INGV-CT web camera at Milo (~11 km from the summit) showed a puff of red ash from the summit of NEC. Red glows from the same crater were reported that night. A field survey on 14 August did not reveal any explosive activity or sounds of explosions from the crater. There were no explosion earthquakes or increased volcanic tremor between 11 and 16 August.

Periodic measurements of the gas plume from the summit using both COSPEC (SO2 flux) and FTIR (SO2/HCl and HCl/HF ratios) showed decreases in all three values since the end of the flank eruption. This suggests a general decreasing trend in gas output from Etna's summit craters.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sonia Calvari, Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/).


Piton de la Fournaise (France) — August 2003 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Lava eruption from three fissures during 22-27 August

Five months of slow inflation at Piton de la Fournaise and the eruptive series that occurred between May and July 2003 (BGVN 28:05 and 28:06) were followed by new activity in August. Ongoing eruptions in June at the Dolomieu crater had ceased by mid-July, but at 1848 on 22 August seismic activity was again detected beneath the crater. Around 2120 that night an eruptive fissure opened in the Bory crater (adjacent to Dolomieu on the W), followed at 2210 by a second fissure at ~2,450-2,470 m elevation on the N flank. Both fissures remained active for a short time.

At 2330 a final fissure opened on the N flank ~250 m below the second fissure, at 2,200 m elevation. Most of the activity was focused at this third fissure, opening a new crater ~50 m E of the 1998 Piton Kapor crater. During this activity on 22 August lava flowed down into la Plaine des Osmondes. The 36 hours following the initial activity were characterized by a substantial increase in tremor intensity and lava emissions, but by 2152 on 27 August the eruption abruptly ceased. A series of long-period events were observed after 27 August through at least 1 September.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France.


Kanlaon (Philippines) — August 2003 Citation iconCite this Report

Kanlaon

Philippines

10.412°N, 123.132°E; summit elev. 2435 m

All times are local (unless otherwise noted)


Frequent ash explosions from 7 March until 23 July 2003

A report on 19 September 2003 from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) summarized activity at Canlaon from 7 March to 23 July 2003. This included the ash ejections of 10 and 11 July (BGVN 28:07). There were 46 ash explosions recorded since March, characterized by emission of steam clouds with small amounts of ash rising 100-1,500 m above the active crater. Prevailing winds dispersed the ash mainly SW and SE, which settled predominantly over the mid-upper slopes of the volcano.

Seismic activity remained elevated through this period, with epicenters of some high-frequency events located near the active crater, focal depths ranged from near-surface down to 18 km. From June to July, the numbers of recorded low-frequency volcanic earthquakes and low-frequency short-duration harmonic tremor events increased. This coincided with phreatic episodes between 8 June and 23 July 2003.

On 23 July an ash explosion was observed from Kanlaon Volcano Observatory, 8.5 km ESE of the crater. Ash-laden steam clouds were ejected to heights of ~800 m above the active crater. After 23 July only weak steam emission was noted, and seismic activity returned to low levels.

Geologic Background. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros. The massive andesitic stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The largest debris avalanche known in the Philippines traveled 33 km SW from Kanlaon. The summit contains a 2-km-wide, elongated northern caldera with a crater lake and a smaller, but higher, historically active vent, Lugud crater, to the south. Historical eruptions, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, PHIVOLCS Building, C.P. Garcia Avenue, Univ. of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/).


Karthala (Comoros) — August 2003 Citation iconCite this Report

Karthala

Comoros

11.75°S, 43.38°E; summit elev. 2361 m

All times are local (unless otherwise noted)


Increased shallow seismic activity to 100 events per day by late August

Since July 2003, Karthala has exhibited significant, but relatively shallow, seismicity. As of 28 August, P. Bachelery of the University of La Réunion reported that an average of 100 seismic events/day were being recorded, some felt by the local population.

The first seismic station was installed at the Karthala Volcanological Observatory in 1988 by the University of La Réunion and the Institut de Physique du Globe de Paris (IPGP). During the summer and fall of 2000 increased seismicity was reported, and an earthquake swarm was recorded in October 2000 (BGVN 25:10). In April 1991, a notable increase in the number of seismic events began and, after about three months of seismic activity, there was an eruption in July (BGVN 16:06 and 16:08).

Geologic Background. The southernmost and largest of the two shield volcanoes forming Grand Comore Island (also known as Ngazidja Island), Karthala contains a 3 x 4 km summit caldera generated by repeated collapse. Elongated rift zones extend to the NNW and SE from the summit of the Hawaiian-style basaltic shield, which has an asymmetrical profile that is steeper to the S. The lower SE rift zone forms the Massif du Badjini, a peninsula at the SE tip of the island. Historical eruptions have modified the morphology of the compound, irregular summit caldera. More than twenty eruptions have been recorded since the 19th century from the summit caldera and vents on the N and S flanks. Many lava flows have reached the sea on both sides of the island. An 1860 lava flow from the summit caldera traveled ~13 km to the NW, reaching the W coast to the N of the capital city of Moroni.

Information Contacts: Patrick Bachelery, Laboratoire des Sciences de la Terre, Université de La Réunion BP 7151, 15 Avenue, René Cassin, 97715 Saint-Denis (URL: http://volcano.ipgp.jussieu.fr/karthala/stationkar.html).


Krakatau (Indonesia) — August 2003 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Continued shallow volcanic seismicity through mid-August

Due to continued foggy weather, no visual observations could be made at Krakatau during July and through 17 August. Throughout this period the volcano remained at Alert Level 2. Seismicity reported by the Volcanological Survey of Indonesia (VSI) between 30 June and 17 August consisted mostly of shallow volcanic events (table 4), although 36 deep volcanic earthquakes were recorded during the week of 30 June-6 July.

Table 4. Seismicity at Krakatau, 30 June-17 August 2003. Courtesy of VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Tectonic
30 Jun-06 Jul 2003 36 123 9
07 Jul-13 Jul 2003 5 112 13
14 Jul-20 Jul 2003 4 28 8
21 Jul-27 Jul 2003 8 33 6
28 Jul-03 Aug 2003 7 37 2
04 Aug-10 Aug 2003 6 25 4
11 Aug-17 Aug 2003 2 22 8

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Dali Ahmad and Nia Haerani, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi. esdm.go.id/).


Masaya (Nicaragua) — August 2003 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Fumarolic emissions and low-level seismicity from April 2002 through May 2003

During April 2002-May 2003, monthly visits were made to Masaya for observations and temperature measurements. This report summarizes the recorded activity.

Between April and October the volcano continued to emit large amounts of gas. Tremors stayed consistently above 40 RSAM units. Seismicity was low, with fewer than 50 total earthquakes during the observation period; temperatures generally remained constant.

Fumarole temperature measurements in the Santiago crater on 22 April 2002 showed only a slight variation from October 2001. On 9 May, however, temperatures showed an increase of 20°C since April; again on 4 June a 20°C increase from May was observed. Measurements by Jaime Cardenas of the National Park at El Comalito and San Fernando on 10 and 30 April also showed little change from previous measurements. Similarly, on 5 and 21 May and in June measurements at El Comalito and San Fernando showed no significant changes. The temperatures at El Comalito and San Fernando fumaroles remained constant through the rest of the year.

In July 2002 tremor stayed above 40 RSAM units, and the volcano continued to emit great amounts of gas. Seismic stations registered 20 earthquakes. On 7 July several rumblings were reported. During a visit to the volcano emissions of dark-colored gases were seen. Landslides were observed to have extended to the inner crater, which had a diameter of 20 m; the diameter was 10 m when the crater opened on 23 April 2001. Gas emanations were abundant; a plume rising more than 1,000 m was observed. Fumarole temperatures varied between 106 and 89.3°C.

In August 2002 gas emissions continued. Martha Navarro and Virginia Tenorio visited on 15 August and observed and clearly heard gases emanating from two locations in the inner crater. Gas columns mixed with vapor reached heights of up to 700 m. The emission of gases was lower than during the previous month, possibly due to decreased rainfall. The tremor continued to stay above 40 RSAM units, and 11 earthquakes were registered.

Navarro visited the volcano twice in September. Gas columns were low and there was little vapor on 13 September; on 30 September she observed greater gas emissions and within the inner crater she could hear with greater force the sound of gas emissions. Weeds within an area of 600 m had been affected by acid rain. A small collapse along the N and E walls was observed within the crater.

On 3 October park guards reported a small collapse from the W wall. Observations on 7 and 28 October showed more water vapor than in September, as well as greater gas emissions and louder sounds associated with them. Through September and October tremor remained above 40 RSAM units; no earthquakes were registered. On 6, 16, and 18 December fumarole temperature measurements were taken with an infrared camera at Santiago crater; measurements on those dates were 216°C, 230°C, and 205°C respectively.

Through December 2002 and January and February 2003 fumarole temperatures at El Comalito and San Fernando remained constant. The low level of gas and vapor exhalation continued; columns reached as high as 100 m at the mouth of the crater. RSAM stayed constant at 30 units, with frequency between 1.5 and 2 Hz. In both January and February two earthquakes were registered. During 25 and 26 February there was a small earthquake swarm in Masaya caldera, with earthquakes located under the lake. Six earthquakes registered in March, with 3 Hz frequency, and five registered in April, with 2.8 Hz. RSAM stayed at 20 units, with frequencies between 1.5 and 2 Hz, in March and April.

Gustavo Chigna (INSIVUMEH-Guatemala) reported that the sulfur-dioxide measurements obtained using COSPEC on 28 March yielded a flux of 840 t/d. Measurements by Glyn Williams-Jones (University of Hawaii) with a 2FlySPEC (gas measurement spectrometer) on 28 March showed a value of 849 t/d. On 8 and 22 May measurements at El Comalito and San Fernando showed little variation. The temperatures at the six fumaroles at El Comalito ranged between 59.5°C at fumarole 6 and 76.4°C at fumarole 3. At San Fernando temperatures ranged from 56.4°C at fumarole 4 to 63.6°C at fumarole 2. The seismic tremor stayed constant with 20 units RSAM, with frequencies of 1.5-2 Hz. Only one earthquake registered, with 3 Hz frequency. Pedro Pérez measured the fumarole temperatures in the Santiago crater at 175°C on 15 May.

Gas monitoring. A scientific and technical team from ITER, INETER, and WESTSYSTEMS (Italy) installed a geochemical station, developed by WESTSYSTEMS, for continuous monitoring of diffuse CO2 and H2S degassing at El Comalito. The observation site was selected after a 1999 diffuse degassing survey at Masaya. The station has been in operation since 15 March 2002.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Virginia Tenorio, Wilfried Strauch, and Martha Navarro, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Nemesio M. Pérez, Instituto Tecnológico y de Energías Renovables (ITER), 38611 Granadilla, Tenerife, Canary Islands, Spain; Giorgio Virgili, WESTSYSTEMS, Via Molise, 3 56025 Pontedera, PI (Italy) (URL: http://www.westsystems.com/).


Nyamuragira (DR Congo) — August 2003 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Rumbling and explosion sounds April-June, but no confirmed eruptions

According to reports from the Goma Volcano Observatory, since late October 2002 tectonic and magmatic seismicity at Nyamuragira has continued. Some of this seismicity was thought to be related to the refilling of a magma chamber emptied by a previous eruption. No eyewitness accounts of activity were reported until 26 February 2003, when a seismic crisis occurred. From 30 April into June 2003, local villagers reported rumblings and sounds of explosions coming from the volcano.

Activity during 27 October-14 December 2002. During 27 October-2 November, seismic data were collected at eight operational stations (Katale, Kibumba, Bulengo, Rusayo, Luboga, Goma, Lwiro, and Kunene). During this time volcanic seismicity was masked by aftershocks from a tectonic earthquake on 24 October 2002. Some rare magmatic events had hypocenters 10-25 km deep. During November 2002 epicenters of magmatic seismicity were concentrated in the NE area where the last eruption took place, an observation consistent with refilling of the magma chamber.

During 3-23 November, magmatic seismicity was more prevalent than tectonic seismicity, the latter dominated by aftershocks of the 24 October earthquake. The distribution of the magmatic earthquakes covered a zone 0-22 km deep, with an earthquake-free zone between approximately 3 and 7 km depth. The latter was interpreted as the location of a magma chamber, the same position as the chamber that fed the 27 July 2002 eruption. The tectonic earthquakes had depths of 0-30 km with an aseismic zone between 12 and 17 km. During the week of 24-30 November both tectonic and magmatic earthquakes were more frequent. Magmatic earthquakes increased at Katale to 348 from 239 during the previous week. High-frequency earthquakes in the E disappeared during the period. High-frequency earthquakes appeared in an isolated area in Virunga and densely NW of Lake Kivu in the area of Kalehe, where a landslide in late April 2003 killed ten people.

During 8-14 December the number of long-period earthquakes fell from to 169 at the Katale station from 239 the previous week, though the number of high-frequency earthquakes increased from 92 to 120. This increase was thought to be related to rifting in the area of the Large African Lakes. In general, volcanic tremors remained omnipresent. The epicenters of these long-period earthquakes were mainly concentrated in the NE of the central crater between 0 and 7 km depths. High-frequency earthquakes were concentrated in the aftershock zone of the 24 October 2002 earthquake in the Territory of Kalehe, NW of Idjwi Island.

Activity during February-March 2003. A seismic crisis started the night of 26 February and continued through the next morning. Seismicity increased greatly at the Goma seismic station; it was mainly tremor, but not at the same high levels of July 2002. Seismograms indicated clear increases in the numbers of both long-period and tectonic earthquakes and an increase in tremor amplitude. Visual observations were limited to the E flank, where the eruption of July 2002 started, but clouds obscured the summit crater.

Although seismic activity and warning phone calls occurred at the same time, there was no visible eruptive activity. Some very minor and brief activity (possibly witnessed) might have occurred in the central crater, which was not visible from the Rumangabo site. Seismic activity in late February included fracturing earthquakes, mainly on the N and NE sides of the volcano. Persistent long-period earthquakes were associated with magma movement. Short-period earthquakes associated with fracturing were observed for the first time.

A fresh outbreak of long-period earthquakes was noted in the NE quadrant during the week of 1-8 March, along with the growing presence of short-period events. Many long-period earthquakes occurred during the week of 16-22 March, including frequent fracture-related earthquakes.

Activity during April-June 2003. From 30 March through 27 April long-period earthquakes were concentrated beneath the NE flank, along with some short-period events. Although the number of long-period earthquakes decreased appreciably in late April and early May, similar seismicity continued through 21 June. The long-period events were distributed along a NW-SE trend, corresponding to the fracture zone towards Nyiragongo.

From 30 April until 1 May, it seemed that there was some renewal of activity, but no eruption was detected. Residents of Katale and Tongo, the closest villages to the volcano, reported some rumblings on 30 April between 1730 and 2130, plus clear sounds of individual explosions. The closest seismic station (Katale) recorded at the same time ~18 distinct explosion signals, directly followed at 1927 by a tectonic earthquake centered under the volcano. Later, seven type-C events followed until 2232. Another tectonic earthquake occurred at 2338.

Residents of Kunene (~12 km SW), Katale (~10 km NE), and Tongo claimed to have heard explosions and growling noises on 9 May. Local tectonic earthquakes from late May through late June were 0-27 km deep, with an aseismic zone at 3-7 km. Seismicity during 22-28 June was dominated by long-period earthquakes concentrated in the NE, in which there was an apparent increase compared to the previous week.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.


Nyiragongo (DR Congo) — August 2003 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Continued lava lake activity during May-June; ashfall in local villages

Reports from the staff of the Goma Volcano Observatory (GVO) during May to 5 July 2003 noted that the hazard status remained at Yellow ("Vigilance"). Seismicity was characterized by tectonic, long-period, and short-period earthquakes. Deformation across the majority of fractures lacked significant extensional displacements, but the fractures in the S of Shaheru had compressional displacements. In spite of significant crater activity, geochemical and deformation measurements did not suggest any danger to the inhabited zones on the S flank.

During 4-24 May there was ashfall at Kibati (below 2,000 m on the SSE flank, ~8 km from the summit), Rusayo (~8 km from the summit on the SW flank), and Goma (~18 km S). Nightly red glows and degassing were observed each day. Crater observations revealed two pits containing lava fountains, with a NE-SW lengthening of the principal pit. An active lava flow was observed on 7 May inside the crater. During 18-24 May volcanic ash, including Pele's hair, continued to fall in villages around the volcano, including Goma. During 8-28 June the lava lake continued to emit a gas-and-ash plume. The lake was ~700 m below the edge of the crater. Collapses in the crater were observed during 13-14 and 18-20 June.

Seismicity. During 4-24 May 2003, seismic activity was dominated by persistent volcanic tremor. During 4-10 May, only two long-period earthquakes and a short-period fracture earthquake were recorded, although during 11-17 May an increased number of long-period earthquakes were distributed on the N flank along the fracture trending from Nyiragongo to Nyamuragira. A small number of short-period earthquakes occurred to the WSW along the Nyiragongo-Sake axis (Sake is ~24 km NW of Goma). During 18-24 May long-period earthquakes continued to appear in the NE-SE direction; some isolated long-period events were observed ENE towards Kibumba.

During 8-21 June persistent tremor continued, and six long-period earthquakes were reported. These tremors suggested intense activity in the crater. Weaker seismicity during the following week, 22-28 June, remained dominated by tremors caused by lava lake activity.

All earthquakes were recorded at the Kibumba, Rusayo, and Bulengo seismic stations and occurred at depths of 0-27 km, with an aseismic zone at 3-7 km.

Deformation and temperature. During 4-10 May 2003, measurements of deformation along the cracks in the S flank indicated neither contraction nor extension when compared with the previous week. During the next two weeks, no deformation occurred along the cracks at numerous other S-flank sites.

Contraction during 8-14 June along the Shaheru fractures (~2 km S of the crater) was 8 mm in Lower Shaheru and 29 mm in Higher Shaheru, suggesting that magma in the fractures S of Nyiragongo had not moved. During 15-21 June, temperature measurements in fractures at Nyiragongo, Shaheru, and Monigi (~1.5 km NE of the Goma airport) varied less than those measured in April-May. Average temperatures were in the range of 14.6-63.1°C.

During 22-28 June deformation measurements of fractures did not reveal any notable variation compared to previous measurements at Monigi, Mugara, and Nyiragongo Cants. Temperatures measured in the Monigi and Lemera fractures did not vary, while those at Mugara showed a slight increase of 3.6°C between 21 May and 28 June.

Crater observations, 22-23 May 2003. Kasereka and Yalire (GVO) remained at the summit of Nyiragongo during 22-23 May. During their SSE-flank ascent, vegetation was covered with slag and ash from Kibati (2,000 m) to the summit (3,470 m). Two types of Pele's hair were observed: those with a length of 20-40 cm were present from Shaheru (2,200 m) to the huts (3,250 m), and those shorter than 15 cm were present from the huts to the summit.

Upon arrival at the summit they observed a gas plume that covered the entire crater. The crater could only be seen for a few seconds at a time. However, the bottom of the crater was entirely occupied by the lava lake, and not by separate lava-filled pits; the crater bottom had an elliptical form elongated in a NE-SW direction. This lava lake was, when calm, characterized by undulatory movements of low amplitude, and, when agitated, projected materials 40-60 m high. A collapse in the crater was not recorded by the seismic network. For three hours that evening there were explosions in the crater, followed by ashfall on the summit.

For one hour on the morning of 23 May there was a total lull, with no growls or explosions, that corresponded to a decline of volcanic tremor recorded at the Bulengo, Kibumba, and Rusayo stations. The atmosphere immediately above the crater then cleared for at least 10 minutes, and photos were taken of the crater floor showing the single lava lake at the bottom of the crater (figure 31). Measurements could not be taken of the depth of the lava lake surface because the atmosphere was clouded by the gas plume. Analyses by the GVO showed that the pH of rainwater from the air was 4.13 and its conductivity was 2.08 ms/cm.

Figure (see Caption) Figure 31. Photograph of the lava lake (seen through the gas plume) occupying the bottom of the Nyiragongo crater, 23 May 2003. Courtesy of the Goma Volcano Observatory.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.


Popocatepetl (Mexico) — August 2003 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Continuing intermittent eruptions; ashfall in June and July

Volcanic activity at Popocatépetl during March-July 2003, as reported by the Centro Nacional de Prevención de Desastres (CENAPRED), was similar to that from July 2002 to February 2003 (BGVN 27:10 and 28:02). Activity was comprised principally of multiple exhalations (some with significant ash), volcano-tectonic (VT) earthquakes, and explosions. Daily exhalations averaged 10-30 during March, 5-25 during April and May, and _50 during July. VT earthquakes in these months were M 2-3 at depths of 2-5 km located E or SE of the volcano.

On 28 April and 10 May, low-frequency harmonic tremors during the VT events attained moderate, but significant, amplitude levels lasting 13 and 4 hours, respectively. Eruptive activity during June, presumed to be predominantly phreatic, increased and caused ash-bearing exhalations and explosions. Another significant tremor episode was detected on 8 June. Eruptions on 20 and 28 June caused minor ashfall on some towns near the volcano. During July, many exhalations were explosive and carried significant ash. The largest explosive events in July were recorded on 1, 15, 19, and 25. The event of 19 July (figure 48) caused light ashfall as far as the southern metropolitan area of Mexico City. Aerial photography of the crater on 30 April and 19 May indicated no evidence of new lava dome emplacement during the report period.

Figure (see Caption) Figure 48. Photograph of an eruption at Popocatépetl volcano, 19 July 2003. Courtesy of CENAPRED.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Angel Gómez Vázquez, Alicia Martinez Bringas, Roberto Quass Weppen, Enrique Guevara Ortiz, Gilberto Castela Pescina, and Javier Ortiz Castro, Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665, Coyoacan, México D.F. 04360, Mexico (URL: https://www.gob.mx/cenapred/); Servando De la Cruz-Reyna and Carlos Valdez Gonzalez, Instituto de Geofísica, UNAM, Cd. Universitaria, Circuito Institutos, Coyoácan, México D.F. 04510, Mexico (URL: http://www.geofisica.unam.mx/).


Ruang (Indonesia) — August 2003 Citation iconCite this Report

Ruang

Indonesia

2.3°N, 125.37°E; summit elev. 725 m

All times are local (unless otherwise noted)


Rapid decrease in activity following September 2002 eruption

Volcanic activity had decreased by 30 September 2002 after a strong eruption on the 25th. After the hazard status was lowered from Alert Level 4 to 3 on 30 September, it was dropped to Level 2 during the week of 7-13 October. However, activity continued to be higher than normal that week, with frequent strong emissions and "thick white ash" rising ~100 m above the summit. Emission earthquakes decreased (table 1). High-pressure plumes decreased in frequency from 14 October through 10 November, but "thick white ash" continued to rise from the summit. No ashfall was reported during October or November. Rainfall on 23 October caused a lahar. No volcanic or emission earthquakes were recorded during 4-10 November, and the Alert Level was reduced to level 1.

Table 1. Seismicity at Ruang, 7 October-10 November 2002. Courtesy of VSI.

Date Emission earthquakes Tectonic earthquakes
07 Oct-13 Oct 2002 3 46
14 Oct-20 Oct 2002 6 39
21 Oct-27 Oct 2002 2 85
28 Oct-03 Nov 2002 2 63
04 Nov-10 Nov 2002 -- 58

Geologic Background. Ruang volcano, not to be confused with the better known Raung volcano on Java, is the southernmost volcano in the Sangihe Island arc, north of Sulawesi Island. The 4 x 5 km island volcano rises to 725 m across a narrow strait SW of the larger Tagulandang Island. The summit contains a crater partially filled by a lava dome initially emplaced in 1904. Explosive eruptions recorded since 1808 have often been accompanied by lava dome formation and pyroclastic flows that have damaged inhabited areas.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi. esdm.go.id/).


Soputan (Indonesia) — August 2003 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Lava avalanches and ash explosions during 18-22 July 2003

On 18 July 2003, large glowing lava avalanches resulted in a pyroclastic surge towards the W and NW. An ash column rose up to 2,000 m above the summit, and the Alert Level was raised to 3. Lava avalanches and ash explosions continued over the next few days, but by 21 July volcanic activity had started to decrease. Night observations showed that areas where glowing lava had illuminated the W slope on 18 and 19 July became dull and gradually disappeared over the three days following the eruption. Volcanic tremor due to fluid movement also ceased as of 22 July. Ash explosions continued sporadically, but were not as thick or as high as during previous observations. On 22 July between 20 of these minor ash explosions were recorded; another 50 ash explosions were reported after that time. No volcanic earthquakes were recorded, although small-amplitude tremor (0.25 mm) was recorded continuously. After 25 July the volcano was lowered to Alert Level 2.

During the week of 28 July-3 August, lava avalanches on the W slope continued, and emissions and avalanche earthquakes dominated seismic records. In addition, a white gas plume rose 50 m.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi. esdm.go.id/).


Soufriere Hills (United Kingdom) — August 2003 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Major dome collapse and explosive activity during 12-13 July

Activity at Soufriere Hills has been high over recent months, culminating in the collapse of a major dome and explosive activity during 12-13 July 2003. A summary of reports by the Montserrat Volcano Observatory (MVO) from 27 June to 12 September 2003 is provided below, with sulphur dioxide emissions and activity data (table 48).

Table 48. Summary of activity at Soufriere Hills, 2 May-12 September 2003. Activity occurred as summarized above, with the addition of three explosion signals during 11-18 August. Courtesy of the Montserrat Volcano Observatory.

Date Rockfall Long-period / Rockfall Long-period Hybrid Volcano-tectonic
02 May-09 May 2003 767 88 138 7 2
09 May-16 May 2003 580 65 55 7 --
16 May-23 May 2003 774 75 81 8 2
30 May-06 Jun 2003 445 34 40 5 1
06 Jun-13 Jun 2003 79 8 16 6 2
13 Jun-20 Jun 2003 48 10 -- 55 --
20 Jun-27 Jun 2003 54 4 2 135 1
27 Jun-04 Jul 2003 193 61 7 37 --
04 Jul-11 Jul 2003 156 12 38 9 --
11 Jul-18 Jul 2003 58 3 24 84 1
18 Jul-25 Jul 2003 -- 6 5 21 --
25 Jul-01 Aug 2003 34 -- 5 30 --
01 Aug-08 Aug 2003 25 -- 5 35 --
08 Aug-15 Aug 2003 12 -- 7 38 2
15 Aug-22 Aug 2003 5 1 6 39 --
22 Aug-29 Aug 2003 7 -- 2 26 --
29 Aug-05 Sep 2003 4 -- -- 18 --
05 Sep-12 Sep 2003 2 -- 3 27 --

Activity was generally at a moderate level in early May, increasing over 7-9 May and remaining high through 23 May. Activity mainly focused towards the NE, with rockfalls and numerous pyroclastic flows along the N side of the Tar River and in the Tar River Valley. On 12 and 13 May, flows were seen on the N and NW flanks in the area of Farrell's Plain and the upper reaches of Tyre's Ghaut. During 21-23 May there was increased activity on the N flanks, with a number of pyroclastic flows into the top of Farrell's Plain, Tyre's Ghaut, and Tuitt's Ghaut. Pulses of vigorous ash venting were observed at the summit, and intense glow on the summit and NE flanks was seen on the nights of 20 and 21 May. Sulfur emissions varied during May, with a high of 744 metric tons/day (t/d) (8.6 kg/s) on 14 May and a low of 300 t/d (3.4 kg/s) on 18 May. Extreme highs of 850 t/d (9.9 kg/s) and 820 t/d (9.5 kg/s) occurred on 4 and 9 May, respectively.

During the first week of June, activity was variable, generally declining to a moderately low level. Most activity through 6 June was focused on the E and NE flank, producing rockfalls and numerous pyroclastic flows in the Tar River Valley and occasionally in White's Ghaut and Tuitt's Ghaut. Activity during the week ending 13 June decreased to a low level, and remained low through 27 June, increasing over 26-27 June on the N flanks. Hybrid earthquake activity developed into a diffuse swarm on 22-23 June, some events at depths of 3 km below the lava dome. SO2 emissions were relatively stable in June, varying between 240 t/d (2.8 kg/s) and 540 t/d (6.3 kg/s).

Sulfur emissions varied between 260 t/d (3 kg/s) and 585 t/d (6.8 kg/s) in July, but jumped to 840 t/d (9.7 kg/s) on 2 July. This could be related to increased activity during the first week of July, with pyroclastic flow and rockfall activity focused on the N flanks of the dome. Most flows occurred in Tuitt's Ghaut, with some in Tyre's Ghaut and White's Ghaut. Sporadic flows also occurred on the W side of the dome in the Gages area.

Activity remained high over the week ending 11 July, with a swarm of several thousand small hybrid earthquakes, at a rate of 1-2 per minute, commencing in the early hours of 9 July. While the size of these earthquakes increased slowly, individual events were below the normal recording threshold. The swarm of hybrid earthquakes intensified slightly over the night of 11 July, with events becoming larger and more closely spaced. Glimpses of the N part of the dome complex on 10 and 11 July confirmed that dome growth switched to the N, as was also shown by the northerly focus to the rockfalls and pyroclastic flows. Pyroclastic flows occurred most frequently in White's Ghaut, Tar River Valley, and Tuitt's Ghaut, with several small flows in Tyre's Ghaut earlier in the week.

By the morning of 12 July, events in the earthquake swarm merged into a continuous tremor signal. A period of prolonged and heavy rainfall between 0600 and 0900 caused mudflows in the Belham Valley. Small pyroclastic flows, the first of which were pale and weakly convective, occurred in the Tar River Valley. Flow activity built slowly through the afternoon until it was almost continuous. There were marked increases in the intensity of the activity at 1827 and again at 2007. Some flows traveled more than 2 km over the surface of the sea at the mouth of the Tar River Valley. Pyroclastic flows also reached the sea in White's Ghaut and the Spanish Point area. These flows resulted in the extremely heavy fallout of ash and accretionary lapilli over the island, particularly S of Woodlands.

A number of explosive events took place towards the end of the dome collapse of 12 July, with the largest occurring between 2300 and midnight. Showers of rock fragments fell on the island, with dense rocks up to 60 mm in diameter recorded. The Washington Volcanic Ash Advisory Center (VAAC) provided a column height of around 16 km for this event. The activity persisted at a high level until around 0200 on 13 July. It began subsiding slowly, declining to very low levels by the following morning, when a sudden Vulcanian explosion occurred from the lava dome. Two more explosions occurred in the next two days, producing pumice that reached 15 cm in size at Richmond Hill (~5 km W) and 4 cm in Olveston. Heavy ashfall from the collapse was experienced over all the inhabited parts of Montserrat, with the greatest thickness (over 15 cm) recorded at Vue Pointe Hotel. North of St Peter's the thickness was less than 1 cm.

The bulk of the dome structure was removed in the collapse, and pyroclastic flows impacted the area between Tar River Valley and Spanish Point. The activity destroyed GPS sites at White's Yard and Hermitage, and a camera site at White's Yard. Solar panels were smashed by falling rocks at Spring Estate GPS site and at Garibaldi Hill. After the collapse, sulfur-dioxide emissions jumped to highs between 1,030 t/d (12 kg/s) and 1,720 t/d (20 kg/s), much higher than any other readings over the past several weeks.

Activity was extremely low through 1 August with only a few events triggering the seismic network. The restrictions of the October 2002 exclusion zone were lifted on 1 August. The pattern of earthquakes through the week of 25 July indicated that dome growth within the explosion crater probably restarted, although it was not possible to confirm this visually due to low clouds. Intense activity began at 0608 on 1 August with an episode of powerful ash venting. There were many strong bursts of gas release and jets of ash; the plume rose to over 3.2 km. This activity declined to very low levels about 0730. Another episode of gas venting began at 0834.

Over the next week activity fluctuated, with periods of relative quiet separating episodes of intense degassing and hybrid earthquake activity. At the beginning of the week the volcano was extremely active with intense ash venting from the explosion crater. It was then fairly quiet with occasional rockfalls and hybrid earthquakes. A good view of the new dome was obtained from the air on 5 August, showing a small southerly directed lobe growing extremely slowly, if at all. Earthquake activity increased on the evening of 7 August with eight large hybrid events occurring overnight.

Through 22 August activity was at low levels; the dome remained a small lobe just over 100 m across. Several small slumps from the interior wall of the 12 July collapse scar produced small rockfalls, light ash in the plume, and the formation of some large fumaroles. By 29 August new fumaroles opened SE of the main explosion crater, towards the upper parts of the Tar River Valley. A strong sulphurous smell and blue haze N of the volcano did not reflect increased activity. SO2 emissions in August were again variable, with a low of 450 t/d (5.4 kg/s) on 6 August and highs approaching 2,500 t/d (29 kg/s) the following week.

Through the latter part of the week ending 5 September, the gas plume was out of reach of the spectrometer network due to winds from Hurricane Fabian. Activity remained low through 12 September, but several episodes of ash venting occurred with a few small earthquakes.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Richard Herd, Montserrat Volcano Observatory, Fleming, Montserrat, West Indies (URL: http://www.mvo.ms/).


Stromboli (Italy) — August 2003 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Explosive activity in the summit craters and thermal signatures in the lava-flow field

The latest effusive eruption at Stromboli ended between 21 and 22 July (BGVN 28:07), when active lava flows on the upper Sciara del Fuoco were no longer visible. Since then explosive Strombolian activity became more common at both summit craters. Four active vents were observed within Crater 1 (the NE crater), and there was one funnel-shaped incandescent depression within Crater 3 (the SW crater). Strombolian activity during the first half of August was very intense at Crater 1, causing a spatter cone to form on the crater floor and incandescent bombs to fall on the outer flanks. Explosive activity at Crater 3 was apparently deeper, and was often accompanied by ash emission.

During the first half of August, thermal images of the apparently inactive lava flow field revealed thermal signatures within cracks on the upper flow field, and within skylights along two lava tubes in the upper Sciara del Fuoco, at ~550 m elevation. Temperatures of over 300°C, and incandescence of these hot spots, suggest endogenous growth. Incandescence and thermal signatures at these sites were not observed between 22 and 31 July.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Sonia Calvari, Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/).


Tandikat-Singgalang (Indonesia) — August 2003 Citation iconCite this Report

Tandikat-Singgalang

Indonesia

0.39°S, 100.331°E; summit elev. 2854 m

All times are local (unless otherwise noted)


Increased seismicity during January 2003

Seismic activity at Tandikat increased significantly over the week of 20-26 January 2003. One felt earthquake (III on the MMI scale) on 20 January was followed by a significant number of deep volcanic earthquakes. The number of both volcanic and tectonic earthquakes resulted in the volcano's hazard status being upgraded to Alert Level 2 on 25 January. Seismic activity decreased over the period 27 January-16 February (table 1), but remained at an elevated level.

Table 1. Seismicity recorded at Tandikat, 13 January-16 February 2003. Data courtesy of VSI.

Date Shallow Volcanic Deep Volcanic Emission Tremor Tectonic
13 Jan-19 Jan 2002 -- 6 -- -- 22
20 Jan-26 Jan 2002 1 149 -- 2 174
27 Jan-02 Feb 2002 -- 46 4 1 54
03 Feb-09 Feb 2002 -- 24 3 -- 18
10 Feb-16 Feb 2002 -- 19 5 -- 15

Geologic Background. Tandikat and its twin volcano to the NNE, Singgalang, lie across the Bukittinggi plain from Marapi volcano. Volcanic activity has migrated to the SSW from the higher Singgalang, and only Tandikat has had historical activity. The summit of Tandikat has a partially eroded 1.2-km-wide crater containing a large central cone capped by a 360-m-wide crater with a small crater lake. The only three reported historical eruptions, in the late 19th and early 20th centuries, produced only mild explosive activity.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi. esdm.go.id/).


Tangkuban Parahu (Indonesia) — August 2003 Citation iconCite this Report

Tangkuban Parahu

Indonesia

6.77°S, 107.6°E; summit elev. 2084 m

All times are local (unless otherwise noted)


Elevated seismicity during August-October 2002

In August and September 2002 Tankubanparahu showed its first elevated seismicity since 1992 (BGVN 27:09). This activity continued in October of 2002. The volcano is at Alert Level 2.

From September through 6 October, volcanic events dominated seismicity, particularly during the week of 16-22 September, when there were 331 shallow volcanic [B-type] events. Crater fumarole temperatures of 92-95°C were recorded at Domas and Ratu craters; the hotspring temperature at Ciater was 47°C. H2S concentrations were above detections limits, ranging from 80 to more than 100 ppm at Ratu; more than 80 ppm H2S was also recorded at Jagal. A "thin white ash plume" was observed to rise 2.5 m, and a whizzing sound could be heard 50 m away. A strong sulfur smell and sulfur sublimation were noted.

Between 7 and 13 October, volcanic events again dominated seismic activity, but numbers were lower than the previous week, with 151 B-type events, down from 199, and four A-type events, down from five. Tectonic activity occurred at the same rate as the previous week, with 21 events. The following week volcanic activity again dropped, with 57 shallow volcanic (B-type) events. However, deep volcanic (A-type) events increased slightly, to 15. Observations during the week included a "white-thin ash plume" to 2 m and medium-strong gas pressure. A strong sulfur smell and yellow sublimation were also noted. The fumarole temperature at Ratu crater was 95°C.

Shallow volcanic earthquakes increased through the week of 21-27 October, with 123 events. Deep volcanic events dropped to 7, and tectonic activity again remained stable, with 19 events. On 25 October Upas crater was measured at 44°C; a "white-thin ash plume" was only noted to rise 0.5-1 m, and the sulfur smell was weak.

Geologic Background. Gunung Tangkuban Parahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The Sunda caldera rim forms a prominent ridge on the western side; elsewhere the rim is largely buried by deposits of the current volcano. The dominantly small phreatic eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi. esdm.go.id/).


Whakaari/White Island (New Zealand) — August 2003 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Large crater lake floods the active vent; new hazards identified

Following increased SO2 emissions in December 2002 and mud ejections during February and early March 2003 (BGVN 28:02), the active vent at White Island continued to emit a small plume of steam and gases through 4 April, but seismic activity was at a very low level. Seismicity remained low through August 2003.

Scientists visited White Island during the week of 5-11 April for routine monitoring. This fieldwork included sampling high-temperature fumaroles, measuring carbon dioxide output, and geodetic surveying. The crater lake had grown in size and flooded the active vent, greatly reducing the emission of a gas plume from the vent and also reducing the seismicity to very low levels. A minor plume of steam and gases persisted through 20 June, but was not visible the week of 21-27 June; no further mention of a plume was made in reports through August.

Scientists from the Institute of Geological & Nuclear Sciences (IGNS) who visited the island during the week of 28 June-4 July noted striking changes in the crater lake, which had turned a light green color, and was very warm (58°C). The water level had risen several meters, to ~30 m below the crater rim, flooding all the active vents and spreading into all the areas of the crater floor. This lake is the largest to form within the 1978/90 Crater Complex. Fumarole temperatures ranged from 101 to 114°C.

By the first week of August the lake seemed to be semi-permanent, reaching a size of ~300 m long and somewhat less in width, with an unknown depth. As a result, a Science Alert Bulletin issued by the IGNS on 7 August 2003 noted that the existence of the lake created new hazards. Over the last 10-15 years many small ponds and lakelets have formed in topographic lows or the floors of small sub-craters within the 1978/90 Crater Complex. Their lives have typically been short as they have been filled in by the next eruption, or drained as new vents have formed. The small volumes of these lakes was such that they had no influence on eruptive activity.

However, the current lake volume is large enough that it could influence eruptive activity. Ejection of the lake in an eruption could cause flooding of the shallow stream valleys across the Main Crater floor, maybe as far as the sea. Should there be no significant eruptive activity within the next 18-24 months and the lake continues to fill, it may reach overflow level. In this situation water may overflow into drainage channels on Peg 12 Flat, S of the 1978/90 Crater Complex, and these channels may further erode if water is continuously flowing in them.

As of 29 August seismic and hydrothermal activity remained at the low levels recorded during the past four weeks. The lake level had risen since early July, and the temperature was 53°C, down slightly from 58°C on 2 July. The volcano monitoring team installed temporary benchmarks inside the main crater, so changes in the lake level could be observed from the safety of the crater rim. Although the development of the crater lake has been a concern, there is no significant change in volcanic activity on the island, so the hazard status for White Island remains at Alert Level 1.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: Brad Scott, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports