Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Nyiragongo (DR Congo) Lava lake persists during June-November 2019

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Nevado del Ruiz (Colombia) Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Bagana (Papua New Guinea) Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Kerinci (Indonesia) Intermittent gas-and-steam and ash plumes during June-early November 2019

Bezymianny (Russia) Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

Mayon (Philippines) Gas-and-steam plumes and summit incandescence during May-October 2019

Merapi (Indonesia) Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows



Nyiragongo (DR Congo) — December 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake persists during June-November 2019

Nyiragongo is a stratovolcano with a 1.2 km-wide summit crater containing an active lava lake that has been present since at least 1971. It is located the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System. Typical volcanism includes strong and frequent thermal anomalies, primarily due to the lava lake, incandescence, gas-and-steam plumes, and seismicity. This report updates activity during June through November 2019 with the primary source information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the July 2019 monthly report, OVG stated that the lava lake level had dropped during the month, with incandescence only visible at night (figure 68). In addition, the small eruptive cone within the crater, which has been active since 2014, decreased in activity during this timeframe. A MONUSCO (United Nations Stabilization Mission in the Democratic Republic of the Congo) helicopter overflight took photos of the lava lake and observed that the level had begun to rise on 27 July. Seismicity was relatively moderate throughout this reporting period; however, on 9-16 July and 21 August strong seismic swarms were recorded.

Figure (see Caption) Figure 68. Webcam images of Nyiragongo on 20 July 2019 where incandescence is not visible during the day (left) but is observed at night (right). Incandescence is accompanied by gas-and-steam emissions. Courtesy of OVG.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent and strong thermal anomalies within 5 km of the crater summit through November 2019 (figure 69). Similarly, the MODVOLC algorithm reported almost daily thermal hotspots (more than 600) within the summit crater between June 2019 through November. These data are corroborated with Sentinel-2 thermal satellite imagery and a photo from OVG on 19 December 2019 showing the active lava lake (figures 70 and 71).

Figure (see Caption) Figure 69. Thermal anomalies at Nyiragongo from 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 70. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) at Nyiragongo during June through November 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 71. Photo of the active lava lake in the summit crater at Nyiragongo on 19 December 2019. Incandescence is accompanied by a gas-and-steam plume. Courtesy of OVG via Charles Balagizi.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Charles Balagizi (Twitter: @CharlesBalagizi, https://twitter.com/CharlesBalagizi).


Ebeko (Russia) — December 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Activity at Ebeko includes frequent explosions that have generated ash plumes reaching altitudes of 1.5-6 km over the last several years, with the higher altitudes occurring since mid-2018 (BGVN 43:03, 43:06, 43:12, 44:07). Ash frequently falls in Severo-Kurilsk (7 km ESE), which is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT). This activity continued during June through November 2019; the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Explosive activity during December 2018 through November 2019 often sent ash plumes to altitudes between 2.2 to 4.5 km, or heights of 1.1 to 3.4 km above the crater (table 8). Eruptions since 1967 have originated from the northern crater of the summit area (figure 20). Webcams occasionally captured ash explosions, as seen on 27 July 2019(figure 21). KVERT often reported the presence of thermal anomalies; particularly on 23 September 2019, a Sentinel-2 thermal satellite image showed a strong thermal signature at the crater summit accompanied by an ash plume (figure 22). Ashfall is relatively frequent in Severo-Kurilsk (7 km ESE) and can drift in different direction based on the wind pattern, which can be seen in satellite imagery on 30 October 2019 deposited NE and SE from the crater(figure 23).

Table 8. Summary of activity at Ebeko, December 2018-November 2019. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-07 Dec 2018 3.6 -- E Explosions. Ashfall in S-K on 1, 4 Dec.
07-14 Dec 2018 3.5 -- E Explosions.
25 Jan-01 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 27 Jan.
02-08 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 4 Feb.
08-15 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 11 Feb.
15-22 Feb 2019 3.6 -- -- Explosions.
22-26 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 23-26 Feb.
01-02, 05 Mar 2019 -- -- -- Explosions. Ashfall in S-K on 1, 5 Mar.
08-10 Mar 2019 4 30 km ENE Explosions. Ashfall in S-K on 9-10 Mar.
15-19, 21 Mar 2019 4.5 -- -- Explosions. Ashfall in S-K on 15-16, 21 Mar.
22, 24-25, 27-28 Mar 2019 4.2 -- -- Explosions. Ashfall in S-K on 24-25, 27 Mar.
29-31 Mar, 01, 04 Apr 2019 3.2 -- -- Explosions. Ashfall in S-K on 31 Mar. TA on 31 Mar.
09 Apr 2019 2.2 -- -- Explosions.
12-15 Apr 2019 3.2 -- -- Explosions. TA on 13 Apr.
21-22, 24 Apr 2019 -- -- -- Explosions.
26 Apr-03 May 2019 3 -- -- Explosions.
04, 06-07 May 2019 3.5 -- -- Explosions. TA on 6 May.
12-13 May 2019 2.5 -- -- Explosions. TA 12-13 May.
16-20 May 2019 2.5 -- -- Explosions. TA on 16-17 May.
25-28 May 2019 3 -- -- Explosions. TA on 27-28 May.
03 Jun 2019 3 -- E Explosions.
12 Jun 2019 -- -- -- TA.
14-15 Jun 2019 2.5 -- NW, NE Explosions.
21-28 Jun 2019 -- -- -- TA on 23 June.
28 Jun-05 Jul 2019 4.5 -- Multiple Explosions. TA on 29 Jun, 1 Jul.
05-12 Jul 2019 3.5 -- S Explosions. TA on 11 Jul.
15-16 Jul 2019 2 -- S, SE Explosions. TA on 13-16, 18 Jul.
20-26 Jul 2019 4 -- Multiple Explosions. TA on 18, 20, 25 Jul
25-26, 29 Jul, 01 Aug 2019 2.5 -- Multiple Explosions.
02, 04 Aug 2019 3 -- SE Explosions. TA on 2, 4 Aug.
10-16 Aug 2019 3 -- SE Explosions. TA on 10, 12 Aug.
17-23 Aug 2019 3 -- SE Explosions. TA on 16 Aug.
23, 27-28 Aug 2019 3 -- E Explosions. TA on 23 Aug.
30-31 Aug, 03-05 Sep 2019 3 -- E, SE Explosions on 30 Aug, 3-5 Sep. TA on 30-31 Aug.
07-13 Sep 2019 3 -- S, SE, N Explosions. Ashfall in S-K on 6 Sep. TA on 8 Sep.
13-15, 18 Sep 2019 2.5 -- E Explosions. TA on 15 Sep.
22-23 Sep 2019 3 -- E, NE Explosions. Ashfall in S-K.
27 Sep-04 Oct 2019 4 -- SE, E, NE Explosions.
07-08, 10 Oct 2019 2.5 -- E, NE Explosions. Ashfall in S-K on 4-5 Oct. Weak TA on 8 Oct.
11-18 Oct 2019 4 -- NE Explosions. Ashfall in S-K on 15 Oct. Weak TA on 12 Oct.
18, 20-21, 23 Oct 2019 3 -- N, E, SE Explosions. Weak TA on 20 Oct.
25-26, 29-30 Oct 2019 2.5 -- E, NE Explosions. Weak TA on 29 Oct.
02-06 Nov 2019 3 -- N, E, SE Explosions.
11-12, 14 Nov 2019 3 -- E, NE Explosions.
15-17, 20 Nov 2019 3 -- SE, NE Explosions.
22-23, 28 Nov 2019 2.5 -- SE, E Explosions. Ashfall in S-K on 23 Nov.
Figure (see Caption) Figure 20. Satellite image showing the summit crater complex at Ebeko, July 2019. Monthly mosaic image for July 2019, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 21. Webcam photo of an explosion and ash plume at Ebeko on 27 July 2019. Videodata by IMGG FEB RAS and KB GS RAS (color adjusted and cropped); courtesy of Institute of Volcanology and Seismology FEB RAS, KVERT.
Figure (see Caption) Figure 22. Satellite images showing an ash explosion from Ebeko on 23 September 2019. Top image is in natural color (bands 4, 3, 2). Bottom image is using "Atmospheric Penetration" rendering (bands 12, 11, 8A) to show a thermal anomaly in the northern crater visible around the rising plume. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. A satellite image of Ebeko from Sentinel-2 (LC1 natural color, bands 4, 3, 2) on 30 October 2019 showing previous ashfall deposits on the snow going in multiple directions. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected four low-power thermal anomalies during the second half of July, and one each in the months of June, August, and October; no activity was recorded in September or November MODVOLC thermal alerts observed only one thermal anomaly between June through November 2019.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevado del Ruiz (Colombia) — December 2019 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Nevado del Ruiz is a glaciated volcano in Colombia (figure 86). It is known for the 13 November 1985 eruption that produced an ash plume and associated pyroclastic flows onto the glacier, triggering a lahar that approximately 25,000 people in the towns of Armero (46 km west) and Chinchiná (34 km east). Since 1985 activity has intermittently occurred at the Arenas crater. The eruption that began on 18 November 2014 included ash plumes dominantly dispersed to the NW of Arenas crater (BGVN 42:06). This bulletin summarizes activity during January 2016 through December 2017 and is based on reports by Servicio Geologico Colombiano and Observatorio Vulcanológico y Sismológico de Manizales, Washington Volcanic Ash Advisory Center (VAAC) notices, and satellite data.

Figure (see Caption) Figure 86. A satellite image of Nevado del Ruiz showing the location of the active Arenas crater. September 2019 Monthly Mosaic image copyright Planet Labs 2019.

Activity during 2016. Throughout January 2016 ash and steam plumes were observed reaching up to a few kilometers. Significant water vapor and volcanic gases, especially SO2, were detected throughout the month. Thermal anomalies were detected in the crater on the 27th and 31st. Significant water vapor and volcanic gas plumes, in particular SO2, were frequently detected by the SCAN DOAS (Differential Optical Absorption Spectroscopy) station and satellite data (figure 87). A M3.2 earthquake was felt in the area on 18 January. Similar activity continued through February with notable ash plumes up to 1 km, and a M3.6 earthquake was felt on the 6th. Ash and gas-and-steam plumes were reported throughout March with a maximum of 3.5 km on the 31st (figure 88). Significant water vapor and gas plumes continued from the Arenas crater throughout the month, and a thermal anomaly was noted on the 28th. An increase in seismicity was reported on the 29th.

Figure (see Caption) Figure 87. Examples of SO2 plumes from Nevado del Ruiz detected by the Aura/OMI instrument on 10, 26, and 31 January 2019. Courtesy of Goddard Space Flight Center.
Figure (see Caption) Figure 88. Ash plumes at Nevado del Ruiz during March. Webcam images courtesy of Servicio Geologico Colombiano, various 2016 reports.

The activity continued into April with a M 3.0 earthquake felt by nearby inhabitants on the 8th, an increase in seismicity reported in the week of 12-18, and another significant increase on the 28th with earthquakes felt around Manizales. Thermal anomalies were noted during 12-18 April with the largest on the 16th. Ash plumes continued through the month as well as significant steam-and-gas plumes. Ashfall was reported in Murillo on the 29th.

The elevated activity continued through May with significant steam plumes up to 1.7 km above the crater during the week of 10-16. Thermal anomalies were reported on the 11th and 12th. Steam, gas, and ash plumes reached 2.5 km above the crater and dispersed to the W and NW. Ashfall was reported in La Florida on the 20th (figure 89) and multiple ash plumes on the 22nd reached 2.5 km and resulted in the closure of the La Nubia airport in Manizales. Ash and gas-and-steam emission continued during June (figure 90).

Figure (see Caption) Figure 89. Ash plumes at Nevado del Ruiz on 17, 18, and 20 May 2016 with fine ash deposited on a car in La Florida, Manizales on the 20th. Webcams located in the NE Guali sector of the volcano, courtesy of Servicio Geologico Colombiano 20 May 2016 report.
Figure (see Caption) Figure 90. Examples of gas-and-steam and ash plumes at Nevado del Ruiz during June and July 2016. Courtesy of Servicio Geologico Colombiano (7 July 2016 report).

Similar activity was reported in July with gas-and-steam and ash plumes often dispersing to the NW and W. Ashfall was reported to the NW on 16 July (figure 91). Drumbeat seismicity was detected on 13, 15, 16, and 17 July, with two hours on the 16th being the longest duration episode do far. Drumbeat seismicity was noted by SGC as indicating dome growth. Significant water vapor and gas emissions continued through August. Ash plumes were reported through the month with plumes up to 1.3 km above the crater on 28 and 2.3 km on 29. Similar activity was reported through September as well as a thermal anomaly and ash deposition apparent in satellite data (figure 92). Drumbeat seismicity was noted again on the 17th.

Figure (see Caption) Figure 91. The location of ashfall resulting from an explosion at Nevado del Ruiz on 16 July 2016 and a sample of the ash under a microscope. The ash is composed of lithics, plagioclase and pyroxene crystals, and minor volcanic glass. Courtesy of Servicio Geologico Colombiano (16 July 2016 report).
Figure (see Caption) Figure 92. This Sentinel-2 thermal infrared satellite image shows elevated temperatures in the Nevado del Ruiz Arenas crater (yellow and orange) on 16 September 2016. Ash deposits are also visible to the NW of the crater. In this image blue is snow and ice. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During the week of 4-10 October it was noted that activity consisting of regular ash plumes had been ongoing for 22 months. Ash plumes continued with reported plumes reaching 2.5 above the crater throughout October (figure 93), accompanied by significant steam and water vapor emissions. A M 4.4 earthquake was felt nearby on the 7th. Similar activity continued through November and December 2016 with plumes consisting of gas and steam, and sometimes ash reaching 2 km above the crater.

Figure (see Caption) Figure 93. An ash plume rising above Nevado del Ruiz on 27 October 2016. Courtesy of Servicio Geologico Colombiano.

Activity during 2017. Significant steam and gas emissions, especially SO2, continued into early 2017. Ash plumes detected through seismicity were confirmed in webcam images and through local reports; the plumes reached a maximum height of 2.5 km above the volcano on the 6th (figure 94). Drumbeat seismicity was recorded during 3-9, and on 22 January. Inflation was detected early in the month and several thermal anomalies were noted.

Intermittent deformation continued into February. Significant steam-and-gas emissions continued with intermittent ash plumes reaching 1.5-2 km above the volcano. Thermal anomalies were noted throughout the month and there was a significant increase in seismicity during 23-26 February.

Figure (see Caption) Figure 94. Ash plumes at Nevado del Ruiz on 6 January 2017. Courtesy of Servicio Geologico Colombiano.

Thermal anomalies continued to be detected through March. Ash plumes continued to be observed and recorded in seismicity and maximum heights of 2 km above the volcano were noted. Deflation continued after the intermittent inflation the previous month. On 10-11 April a period of short-duration and very low-energy drumbeat seismicity was recorded. Significant gas and steam emission continued through April with intermittent ash plumes reaching 1.5 km above the volcano. Thermal anomalies were detected early in the month.

Unrest continued through May with elevated seismicity, significant steam-and-gas emissions, and ash plumes reaching 1.7 km above the crater. Five episodes of drumbeat seismicity were recorded on 29 May and intermittent deformation continued. There were no available reports for June and July.

Variable seismicity was recorded during August and deflation was measured in the first week. Gas-and-steam plumes were observed rising to 850 m above the crater on the 3rd, and 450 m later in the month. A thermal anomaly was noted on the 14th. There were no available reports for September through December.

On 18 December 2017 the Washington VAAC issued an advisory for an ash plume to 6 km that was moving west and dispersing. The plume was described as a "thin veil of volcanic ash and gasses" that was seen in visible satellite imagery, NOAA/CIMSS, and supported by webcam imagery.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html); Observatorio Vulcanológico y Sismológico de Manizales (URL: https://www.facebook.com/ovsmanizales); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).


Bagana (Papua New Guinea) — December 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Bagana volcano is found in a remote portion of central Bougainville Island in Papua New Guinea. The most recent eruptive phase that began in early 2000 has produced ash plumes and thermal anomalies (BGVN 44:06, 50:01). Activity has remained low between January-July 2019 with rare thermal anomalies and occasional steam plumes. This reporting period updates information for June-November 2019 and includes thermal anomalies and intermittent gas-and-steam emissions. Thermal data and satellite imagery are the primary sources of information for this report.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed an increased number of thermal anomalies within 5 km from the summit beginning in late July-early August (figure 38). Two Sentinel-2 thermal satellite images showed faint, roughly linear thermal anomalies, indicative of lava flows trending EW and NS on 7 July 2019 and 6 August, respectively (figure 39). Weak thermal hotspots were briefly detected in late September-early October after a short hiatus in September. No thermal anomalies were recorded in Sentinel-2 past August due to cloud cover; however, gas-and-steam emissions were visible on 7 July and in September (figures 39, 40, and 41).

Figure (see Caption) Figure 38. Thermal anomalies near the crater summit at Bagana during February-November 2019 as recorded by the MIROVA system (Log Radiative Power) increased in frequency and power in early August. A small cluster was detected in early October after a brief pause in activity in early September. Courtesy of MIROVA.
Figure (see Caption) Figure 39. Sentinel-2 thermal satellite imagery showing small thermal anomalies at Bagana between July-August 2019. Left: A very faint thermal anomaly and a gas-and-steam plume is seen on 7 July 2019. Right: Two small thermal anomalies are faintly seen on 6 August 2019. Both Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. A gas-and-steam plume rising from the summit of Bagana on 18 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

The Deep Carbon Observatory (DCO) scientific team partnered with the Rabaul Volcano Observatory and the Bougainville Disaster Office to observe activity at Bagana and collect gas data using drone technology during two weeks of field work in mid-September 2019. For this field work, the major focus was to understand the composition of the volcanic gas emitted at Bagana and measure the concentration of these gases. Since Bagana is remote and difficult to climb, research about its gas emissions has been limited. The recent advancements in drone technology has allowed for new data collection at the summit of Bagana (figure 41). Most of the emissions consisted of water vapor, according to Brendan McCormick Kilbride, one of the volcanologists on this trip. During 14-19 September there was consistently a strong gas-and-steam plume from Bagana (figure 42).

Figure (see Caption) Figure 41. Degassing plumes seen from drone footage 100 m above the summit of Bagana. Top: Zoomed out view of the summit of Bagana degassing. Bottom: Closer perspective of the gases emitted from Bagana. Courtesy of Kieran Wood (University of Bristol) and the Bristol Flight Laboratory.
Figure (see Caption) Figure 42. Photos of gas-and-steam plumes rising from Bagana between 14-19 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brendan McCormick Kilbride, University of Manchester, Manchester M13 9PL, United Kingdom (URL: https://www.research.manchester.ac.uk/portal/brendan.mccormickkilbride.html, Twitter: https://twitter.com/BrendanVolc); Kieran Wood, University of Bristol, Bristol BS8 1QU, United Kingdom (URL: http://www.bristol.ac.uk/engineering/people/kieran-t-wood/index.html, Twitter: https://twitter.com/DrKieranWood, video posted at https://www.youtube.com/watch?v=A7Hx645v0eU); University of Bristol Flight Laboratory, Bristol BS8 1QU, United Kingdom (Twitter: https://twitter.com/UOBFlightLab).


Kerinci (Indonesia) — December 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam and ash plumes during June-early November 2019

Kerinci, located in Sumatra, Indonesia, is a highly active volcano characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 and included intermittent explosions with ash plumes. Volcanism continued from June-November 2019 with ongoing intermittent gas-and-steam and ash plumes. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and MAGMA Indonesia.

Brown- to gray-colored ash clouds drifting in different directions were reported by PVMBG, the Darwin VAAC, and MAGMA Indonesia between June and early November 2019. Ground observations, satellite imagery, and weather models were used to monitor the plume, which ranged from 4.3 to 4.9 km altitude, or about 500-1,100 m above the summit. On 7 June 2019 at 0604 a gray ash emission rose 800 m above the summit, drifting E, according to a ground observer. An ash plume on 12 July rose to 4 km altitude and drifted SW, as determined by satellite imagery and weather models. An eruption produced a gray ash cloud on 31 July that rose to 4.6 km altitude and drifted NE and E, according to PVMBG and the Darwin VAAC (figure 17). Another ash cloud rose up to 4.3 km altitude on 3 August. On 2 September a possible ash plume rose to a maximum altitude of 4.9 km and drifted WSW, according to the Darwin VAAC advisory.

Figure (see Caption) Figure 17. A gray ash plume at Kerinci rose roughly 800 m above the summit on 31 July 2019 and drifted NE and E. Courtesy of MAGMA Indonesia.

Brown ash emissions rose to 4.4 km altitude at 1253 on 6 October, drifting WSW. Similar plumes reached 4.6 km altitude twice on 30 October and moved NE, SE, and E at 0614 and WSW at 1721, based on ground observations. On 1-2 November, ground observers saw brown ash emissions rising up to 4.3 km drifting ESE. Between 3 and 5 November the brown ash plumes rose 100-500 m above the summit, according to PVMBG.

Gas emissions continued to be observed through November, as reported by PVMBG and identified in satellite imagery (figure 18). Seismicity that included volcanic earthquakes also continued between June and early November, when the frequency decreased.

Figure (see Caption) Figure 18. Sentinel-2 thermal satellite imagery showing a typical white gas-and-steam plume at Kerinci on 9 August 2019. Sentinel-2 satellite image with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — December 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

The long-term activity at Bezymianny has been dominated by almost continuous thermal anomalies, moderate gas-steam emissions, dome growth, lava flows, and an occasional ash explosion (BGVN 44:06). The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT. Throughout the reporting period of June to November 2019, the Aviation Colour Code remained Yellow (second lowest of four levels).

According to KVERT weekly reports, lava dome growth continued in June through mid-July 2019. Thereafter the reports did not mention dome growth, but indicated that moderate gas-and-steam emissions (figure 32) continued through November. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, based on analysis of MODIS data, detected hotspots within 5 km of the summit almost every day. KVERT also reported a thermal anomaly over the volcano almost daily, except when it was obscured by clouds. Infrared satellite imagery often showed thermal anomalies generated by lava flows or dome growth (figure 33).

Figure (see Caption) Figure 32. Photo of Bezymianny showing fumarolic activity on 4 July 2019. Photo by O. Girina (IVS FEB RAS, KVERT); courtesy of KVERT.
Figure (see Caption) Figure 33. Typical infrared satellite images of Bezymianny showing thermal anomalies in the summit crater, including a lava flow to the WNW. Top: 21 August 2019 with SWIR filter (bands 12, 8A, 4). Bottom: 17 September 2019 with Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Mayon (Philippines) — November 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and summit incandescence during May-October 2019

Mayon, located in the Philippines, is a highly active stratovolcano with recorded historical eruptions dating back to 1616. The most recent eruptive episode began in early January 2018 that consisted of phreatic explosions, steam-and-ash plumes, lava fountaining, and pyroclastic flows (BGVN 43:04). The previous report noted small but distinct thermal anomalies, gas-and-steam plumes, and slight inflation (BGVN 44:05) that continued to occur from May into mid-October 2019. This report includes information based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Sentinel-2 satellite imagery.

Between May and October 2019, white gas-and-steam plumes rose to a maximum altitude of 800 m on 17 May. PHIVOLCS reported that faint summit incandescence was frequently observed at night from May-July and Sentinel-2 thermal satellite imagery showed weaker thermal anomalies in September and October (figure 49); the last anomaly was identified on 12 October. Average SO2 emissions as measured by PHIVOLCS generally varied between 469-774 tons/day; the high value of the period was on 25 July, with 1,171 tons/day. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during May-September 2019 (figure 50).

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite imagery of Mayon between May-October 2019. Small thermal anomalies were recorded in satellite imagery from the summit and some white gas-and-steam plumes are visible. Top left: 30 May 2019. Top right: 9 June 2019. Bottom left: 22 September 2019. Bottom right: 12 October 2019. Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Small SO2 plumes rising from Mayon during May-September 2019 recorded in DU (Dobson Units). Top left: 28 May 2019. Top right: 26 July 2019. Bottom left: 16 August 2019. Bottom right: 23 September 2019. Courtesy of NASA Goddard Space Flight Center.

Continuous GPS data has shown slight inflation since June 2018, corroborated by precise leveling data taken on 9-17 April, 16-25 July, and 23-30 October 2019. Elevated seismicity and occasional rockfall events were detected by the seismic monitoring network from PHIVOLCS from May to July; recorded activity decreased in August. Activity reported by PHIVOLCS in September-October 2019 consisted of frequent gas-and-steam emissions, two volcanic earthquakes, and no summit incandescence.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/).


Merapi (Indonesia) — October 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Merapi is an active volcano north of the city of Yogyakarta (figure 79) that has a recent history of dome growth and collapse, resulting in block-and-ash flows that killed over 400 in 2010, while an estimated 10,000-20,000 lives were saved by evacuations. The edifice contains an active dome at the summit, above the Gendol drainage down the SE flank (figure 80). The current eruption episode began in May 2018 and dome growth was observed from 11 August 2018-onwards. This Bulletin summarizes activity during April through September 2019 and is based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), Sutopo of Badan Nasional Penanggulangan Bencana (BNPB), MAGMA Indonesia, along with observations by Øystein Lund Andersen and Brett Carr of the Lamont-Doherty Earth Observatory.

Figure (see Caption) Figure 79. Merapi volcano is located north of Yogyakarta in Central Java. Photo courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 80. A view of the Gendol drainage where avalanches and block-and-ash flows are channeled from the active Merapi lava dome. The Gendol drainage is approximately 400 m wide at the summit. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

At the beginning of April the rate of dome growth was relatively low, with little morphological change since January, but the overall activity of Merapi was considered high. Magma extrusion above the upper Gendol drainage resulted in rockfalls and block-and-ash flows out to 1.5 km from the dome, which were incandescent and visible at night. Five block-and-ash flows were recorded on 24 April, reaching as far as 1.2 km down the Gendol drainage. The volume of the dome was calculated to be 466,000 m3 on 9 April, a slight decrease from the previous week. Weak gas plumes reached a maximum of 500 m above the dome throughout April.

Six block-and-ash flows were generated on 5 May, lasting up to 77 seconds. Throughout May there were no significant changes to the dome morphology but the volume had decreased to 458,000 by 4 May according to drome imagery analysis. Lava extrusion continued above the Gendol drainage, producing rockfalls and small block-and-ash flows out to 1.2 km (figure 81). Gas plumes were observed to reach 400 m above the top of the crater.

Figure (see Caption) Figure 81. An avalanche from the Merapi summit dome on 17 May 2019. The incandescent blocks traveled down to 850 m away from the dome. Courtesy of Sutopo, BNPB.

There were a total of 72 avalanches and block-and-ash flows from 29 January to 1 June, with an average distance of 1 km and a maximum of 2 km down the Gendol drainage. Photographs taken by Øystein Lund Andersen show the morphological change to the lava dome due to the collapse of rock and extruding lava down the Gendol drainage (figures 82 and 83). Block-and-ash flows were recorded on 17 and 20 June to a distance of 1.2 km, and a webcam image showed an incandescent flow on 26 June (figure 84). Throughout June gas plumes reached a maximum of 250 m above the top of the crater

Figure (see Caption) Figure 82. The development of the Merapi summit dome from 2 June 2018 to 17 June 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 83. Photos taken of the Merapi summit lava dome in June 2019. Top: This nighttime time-lapse photograph shows incandescence at the south-facing side of the dome on the 16 June. Middle: A closeup of a small rockfall from the dome on 17 June. Bottom: A gas plume accompanying a small rockfall on 17 June. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 84. Blocks from an incandescent rockfall off the Merapi dome reached out to 1 km down the Gendol drainage on 26 June 2019. Courtesy of MAGMA Indonesia.

Analysis of drone images taken on 4 July gave an updated dome volume of 475,000 m3, a slight increase but with little change in the morphology (figure 85). Block-and-ash flows traveled 1.1 km down the Gendol drainage on 1 July, 1 km on the 13th, and 1.1 km on the 14th, some of which were seen at night as incandescent blocks fell from the dome (figure 86). During the week of 19-25 July there were four recorded block-and-ash flows reaching 1.1 km, and flows traveled out to around 1 km on the 24th, 27th, and 31st. The morphology of the dome continued to be relatively stable due to the extruding lava falling into the Gendol drainage. Gas plumes reached 300 m above the top of the crater during July.

Figure (see Caption) Figure 85. The Merapi dome on 30 July 2019 producing a weak plume. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 86. Incandescent rocks from the hot lava dome at the summit of Merapi form rockfalls down the Gendol drainage on 14 July 2019. Courtesy of Øystein Lund Andersen.

During the week of 5-11 August the dome volume was calculated to be 461,000 m3, a slight decrease from the week before with little morphological changes due to the continued lava extrusion collapsing into the Gendol drainage. There were five block-and-ash flows reaching a maximum of 1.2 km during 2-8 August. Two flows were observed on the 13th and 14th reaching 950 m, out to 1.9 km on the 20th and 22nd, and to 550 m on the 24th. There were 16 observed flows that reached 500-1,000 m on 25-27 August, with an additional flow out to 2 km at 1807 on the 27th (figure 87). Gas plumes reached a maximum of 350 m through the month.

Figure (see Caption) Figure 87. An incandescent rockfall from the Merapi dome that reached 2 km down the Gendol drainage on 27 August 2019. Courtesy of BPPTKG.

Brett Carr was conducting field work at Merapi during 12-26 September. During this time the lava extrusion was low (below 1 m3 per second). He observed small rockfalls with blocks a couple of meters in size, traveling about 50-200 m down the drainage every hour or so, producing small plumes as they descended and resulting in incandescence on the dome at night. Small dome collapse events produced block-and-ash flows down the drainage once or twice per day (figure 88) and slightly larger flows just over 1 km long a couple of times per week.

Figure (see Caption) Figure 88. A rockfall on the Merapi dome, towards the Gendol drainage at 0551 on 20 September 2019. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

The dome volume was 468,000 m3 by 19 September, a slight increase from the previous calculation but again with little morphological change. Two block-and-ash flows were observed out to 600 m on 9 September and seven occurred on the 9th out to 500-1,100 m. Two occurred on the 14th down to 750-900 m, three occurred on 17, 20, and 21 September to a maximum distance of 1.2 km, and three more out to 1.5 km through the 26th. A VONA (Volcano Observatory Notice for Aviation) was issued on the 22nd due to a small explosion producing an ash plume up to approximately 3.8 km altitude (about 800 m above the summit) and minor ashfall to 15 km SW. This was followed by a block-and-ash flow reaching as far as 1.2 km and lasting for 125 seconds (figure 89). Preceding the explosion there was an increase in temperature at several locations on the dome. Weak gas plumes were observed up to 100 m above the crater throughout the month.

Figure (see Caption) Figure 89. An explosion at Merapi on 22 September 2019 was followed by a block-and-ash flow that reached 1.2 km down the Gendol drainage. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA (URL: https://www.ldeo.columbia.edu/user/bcarr).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 30, Number 08 (August 2005)

Managing Editor: Richard Wunderman

Anatahan (United States)

Surge photographed on 24 August; eruption halts on 3 September

Bagana (Papua New Guinea)

Lava flows and occasional ash plumes during April-September 2005

Fuego (Guatemala)

Ongoing ash emissions, lava flows, and associated hazards into 2005

Langila (Papua New Guinea)

Increased eruptive vigor leads to ashfall damage in mid-2005

Manam (Papua New Guinea)

Comparatively mild eruptions with rare minor local ashfall

Rabaul (Papua New Guinea)

Minor ash plumes reach Rabaul Town

Reventador (Ecuador)

Generally, activity shifting from effusive towards explosive

Sheveluch (Russia)

22 September eruption generated a substantial pyroclastic flow

Soputan (Indonesia)

Sporadic explosions into mid-2005; photo of 18 July pyroclastic flow

Soufriere Hills (United Kingdom)

Through at least 5 September 2005, the lava dome continued to grow



Anatahan (United States) — August 2005 Citation iconCite this Report

Anatahan

United States

16.35°N, 145.67°E; summit elev. 790 m

All times are local (unless otherwise noted)


Surge photographed on 24 August; eruption halts on 3 September

Anatahan has erupted almost continuously since 5 January 2005, when it started a new episode of vigorous discharges. A summary of satellite images during 16 June-20 July 2005 (BGVN 30:07) showed that it was one of the most conspicuous eruptions on the planet in 2005.

Eruptions somewhat abruptly ceased on about 3 September. Significant discharges remained absent through as late as 29 September. Activity described below through early September is based on an array of material from numerous sources, including the US Geological Survey (USGS), the Washington VAAC, the U.S. Air Force Weather Agency (AFWA), the press, and the Emergency Management Office of the Commonwealth of the Northern Mariana Islands (EMO-CNMI).

Following the general discussions of activity, a report is included contributed by Setsuya Nakada from the Earthquake Research Institute (ERI), University of Tokyo, whose team of scientists made close-range observations of a distinctive eruptive phase called an ash-cloud surge from a helicopter on 24 August. On that day they documented the surge as a robust sub-horizontal plume slowly traveling over, and in contact with, the ocean surface.

Activity during August 2005. Throughout August eruptive activity continued, with plumes rising several thousand meters above the volcano. On 1 August and during 3-9 August the National Weather Service at Tiyan, Guam, issued numerous reports for the islands of Saipan and Tinian.

On 1 August a strong sulfur odor was reported by numerous residents, and ash was observed on aircraft at Saipan International Airport. According to a news article, flights leaving the airport were delayed.

A 4 August article published in the Saipan Tribune by John Ravelo was entitled "Engine trouble forces aircraft's emergency landing." What follows comes from the opening paragraphs of that article, describing events attributed to 3 August.

"An aircraft suffered engine trouble in mid-air early last night shortly after taking off from the Saipan International Airport, prompting it to return to the tarmac for emergency landing. The Ports Police said no one was injured in the incident. This happened as Saipan, Tinian and Rota remained under volcanic haze from Anatahan until last night . . ..

"The aircraft reportedly left the Saipan airport at approximately 6 pm. Minutes later, at about 6:15 pm, Ports Police on-duty airport supervisor Sgt. Greg Arriola said his office received a call that the aircraft was coming back due to 'problems with its left engine.'

"'The aircraft landed safely. Everybody was safe,' Arriola said. He refused to elaborate and name the aircraft, saying, 'we're still checking [on] the matter.'

"Arriola did not disclose the number of passengers aboard the distressed aircraft and where the plane was supposedly bound. The haze over Saipan has resulted in flight interruptions since Monday [1 August], temporarily stranding hundreds of passengers.

"According to the U.S. Geological Survey, volcanic ash threatens jets ... as it forms deposit in engines, restricts airflow, and clogs fuel nozzles. Minute particles of volcanic ash also contaminate aircraft's ventilation, lubrication, hydraulic and electronic systems. They cause erosion and pitting of leading edges of windshields and landing lights, as well as erosion of compressor blades."

The USGS and EMO noted that a seismic station on Sarigan, Anatahan's neighboring island 6.5 km to the W, recorded more than 40 earthquakes on 9 August, three of which had magnitudes of around 4. The seismic swarm began at around 0152 and occurred over the next eight hours. At around 0539, an M 4.2 earthquake occurred, and the National Earthquake Information Center traced the event to ~ 65 km NW of Anatahan.

Tremor and long-period earthquakes were recorded through 8 August. Later, an ash plume was detected on satellite imagery by the AFWA and Washington VAAC; it was at 5-5.5 km altitude extending approximately 220-400 km NW from the summit on 9 August. A Washington VAAC report that day was the 650th Anatahan report they had issued in 2005.

During the remainder of August 2005, eruptive activity continued and ash plumes rose to 6-8 km altitude. Volcanic tremor levels ranged between 20 and 65 percent of peak levels, and long-period earthquakes occurred sporadically. But, after around 0205 on 27 August, the seismic station went off-line. During 1-3 September activity continued, with ash plumes rising to a maximum of ~ 3 km altitude.

Eruptions halt on 3 September 2005. The USGS reported that based on remote-sensing data Anatahan appeared to have stopped erupting on 3 September (UTC), and initial data documenting that circumstance represented observations between 0901 and 2308 UTC. The earlier time corresponded to when AFWA last noted visible ash on a GOES 9 image. Ash could not be detected in satellite imagery through 1825 UTC due to cloud cover. A pilot report at 2308 UTC on 3 September indicated "no activity was occurring at the volcano." The Washington VAAC reported that no ash was detected in satellite imagery through 0025 UTC on 4 September under mostly clear skies. MODIS imagery at 0040 and 0345 UTC on 4 September also show no discernible ash being erupted under clear skies.

This was the first time that the USGS and the EMO reported an absence of volcanism on Anatahan since ash-bearing discharges started in early January 2005. Since then, tremor levels have been fluctuating, with occasional Strombolian explosions.

During an overflight the week of 7 September, USGS and EMO personnel did not see any ash emissions, only low-level steam-and-gas emissions. They noted that the crater floor was covered by sediment-laden water. In East Crater they saw an active geothermal system, consisting of mud pots, mini-geysers, and steam jetting from the crater walls.

Although volcanic seismicity was at low levels through at least 16 September, according to the World Data Center for Seismology (Denver, Colorado) a M 4.4 earthquake struck the Saipan region of the Northern Mariana Islands on 9 September 2005. It occurred at about 1301 local time, with the epicenter 80 km SSW of Anatahan.

Eruption observations, 24 and 26 August 2005. The following describes a 24 August helicopter visit to the vicinity of Anatahan, which included witnessing and documenting eruptive phenomena, but not landing. Photos were also taken on 26 August while passing well to windward of the island on a commercial airliner. The report was submitted by Setsuya Nakada, who was accompanied from Japan by colleagues Takeshi Matsushima (Institute of Seismology and Volcanology, Kyushu University), and Mitsuhiro Yoshimoto (Volcano Research Center, Earthquake Reserch Institute, University of Tokyo).

They had hoped to recover GPS and tiltmeter data from stations on Anatahan, and to find, exhume, inspect, and repair any ash-covered instruments. These instrumental data span the important period starting from last year, an interval that could shed light on the behavior of the volcano and the magma system during the eruption. Geological inspection and petrological sampling were also planned.

Anatahan's seismicity changed from continuous, strong signals to undergoing intermittent pulsations around the morning of 23 August, and a large (M 4.8?) LP earthquake occurred at 2045 on 23 August. Judging from this sudden seismological change and the LP event, the USGS scientists monitoring the seismicity (Andy Lockhart, Randy White, and others) suggested suspending landing on the island for at least a few weeks.

The team decided to fly over the island without landing to assess the state of burial of their geodetic observation site. They spent about an hour in the air there (about 1000 to 1100 on the 24th) viewing and photographing the scene. Besides the pilot, the helicopter carried Nakada, Matsushima, Yoshimoto, and Juan Camacho (EMO-CMI).

During the 24 August visit, dense ash clouds issued very vigorously from the active E crater. The cloud and hung over the summit calderas, their SW rims, and swept out over the sea to the SW and W of the island.

The photographs and the impressions of Camacho and his pilot from visits in July and May 2005 suggested that the activity level was higher on 24 August. The flight disclosed an island completely covered with thick layers of both wet (dark and probably very fine) ash deposits, and fresh dry ones on the island's S slopes. The dry ones lay under the ash cloud. Green areas were restricted to spots on the outer slopes. Many gullies had begun to develop on the surface of the thick ash deposit.

The observers saw a dark eruption cloud (densely ash-laden) vigorously blasting out of the active crater. A heavy ash cloud hung over the island (figures 21 and 22). The eruption cloud rose to ~ 800 m directly above the crater, and it increased up to ~ 2,000 m over the W part of the island, where it became lighter in color. Darker, vigorous emissions also came from the east crater's W side or NW side, and less frequently from its E side. Though this may have reflected the complex circulation of air within the east crater, another possibility was that the active crater had widened recently, especially to the E. Two ash emission points may have developed inside the large active crater.

Figure (see Caption) Figure 21. View of Anatahan and plumes looking NW, taken from a helicopter around 1000 on 24 August 2005. The windward area is mantled with a light-colored, low hanging plume (far right). A large dark plume emerges from the vent (east crater); as it hugged the sea surface it advanced roughly horizontally and comparatively slowly A spike of light-colored cloud rises above the darker plume, over an area over the sea but not far from the island. Courtesy of T. Matsushima.
Figure (see Caption) Figure 22. View of Anatahan looking from the S taken during the helicopter inspection around 1000 on 24 August. In addition to the eruptive clouds, this photo includes the eruptive vent area and some portions of the tephra covered island. Courtesy of T. Matsushima.

Seismic amplitudes during the flight were weaker than recorded the afternoon of 23 August. Seismic signals consisted of intermittent pulses with duration intervals from 5 to 20 minutes. Such signals could presumably have corresponded with a series of Strombolian explosions, but on the flight these were not seen. No projectiles were observed—even near the base of the eruption cloud—although the vent was obscured by a profusion of drifting clouds (figures 1 and 2). Abundant ash-laden clouds passed vigorously and continuously from the active crater, escaping in cycles of five's to ten's of minutes in duration, intervals seemingly similar to the seismicity during the flight.

Abundant ash fell from the dark ash cloud that drifted to the SW of the crater. Around 1000 a ring of ash-cloud surge expanded on the crater's southern rim. It advanced comparatively slowly, traveling SW (figures 21 to 24). Along the sea surface, many small lobes of ash cloud developed, moving slowly. These were reminiscent of lobes seen in surges observed at the Tar River Valley delta during the Soufrière Hills eruption. These eruptive scenes also appeared very similar to those observed on 29 August 2000 at Miyake-jima (Nakada and others, 2005a), where a low-temperature ash-cloud surge moved slowly from the summit crater. In the case of the ash-cloud surge seen at Anatahan, it may be that the passage across sea water had a profound influence, triggering behavior more closely phreatomagmatic than purely magmatic in character. The ash-cloud surge took place mainly as the observers approached the island. The surge was thought to correlate to an interval of elevated seismicity.

Figure (see Caption) Figure 23. A close-up photograph documenting ash-cloud complexities from the eruption at Anatahan at about 1000 on 24 August. Looking N, the photo focused on a part of the dark ash cloud above the ocean. The plume is both dropping ash and billowing upwards. Along the cloud base and adjacent the ocean surface grew a light-colored fringe of expanding clouds. Courtesy of S. Nakada.
Figure (see Caption) Figure 24. A N-looking photo of the 24 August eruption at Anatahan that is similar to the previous one, but better illustrating the rising upper portions of the dark ash cloud. Courtesy of M. Yoshimoto.

Tephra buried portions of the village ~ 7 km W of the active crater and reached 1.5 m thick. A photograph revealed that the GPS antenna, within a 50-cm-high pillar, remained distinct even though under considerable ash. The cable to the computer was also partly visible inside a collapsed hut, suggesting the prospect of still retrieving the data. The GPS end-point station ~ 1.5 km E of the crater was under a ~ 1-m-thick blanket of ash, but again the GPS antenna was seen on the edge of a small pond.

A thermal imaging camera system took an essentially simultaneous thermal (infrared) image and a visible-light photograph (figure 25). The eruption cloud was too dense to capture the temperature distribution near the floor of the crater area. Instead, the images represented only the temperature distribution of the cooler, outer portions of the clouds, where temperatures ranged from 19.5 to 27°C (figure 25).

Figure (see Caption) Figure 25. Anatahan's vent area emitting copious rising clouds as recorded in both a conventional (visible wavelength) photograph and a nearly simultaneous (infrared wavelength) thermal image. The photographer was looking northward from S of the crater around 1100 on 24 August. The shots were made with a thermal imaging camera (Thermo Tracer TH9100MV, NEC San-Kei Instruments, Ltd.) that takes the thermal and visual images in rapid succession. Courtesy of M. Yoshimoto.

As Nakada and colleagues departed from the Mariana Islands, Anatahan's eruption was seen again (figure 26), this time from a commercial air flight (Northwest Airlines' flight NW0078) traveling from Saipan to Nagoya and departing at 0930 on 26 August 2005. The plume was directed SW. In addition to the very different plume morphology seen that day, the eruptive intensity was judged to have been higher than on 24 August (figure 26).

Figure (see Caption) Figure 26. Three views of Anatahan looking SW as it discharged a large, buoyant ash plume on 26 August 2005. Photographs were taken en route from Saipan (CMI) to Nagoya (Japan). Courtesy of S. Nakada.

References. Hilton and others, 2005, Introduction to the special issue on the 2003 eruption of Anatahan Volcano, Commonwealth of the Northern Marianas Islands (CNMI): Jour. Volcanol. Geotherm. Res., v. 146, p. 1-7.

Nakada and others, 2005a, Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan: Bull. Volcanol., v. 67, p. 205-218.

Nakada and others, 2005b, Geological aspects of the 2003-2004 eruption of Anatahan Volcano, Northern Mariana Islands: Jour. Volcanol. Geothermal. Res. 146, p. 226-240.

Watanabe and others, 2005, Geodetic constraints for the mechanism of Anatahan eruption of May 2003: Jour. Volcanol. Geothermal. Res., v. 146, p. 77-85.

Geologic Background. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of a large stratovolcano with a 2.3 x 5 km compound summit caldera. The larger western portion of the caldera is 2.3 x 3 km wide, and its western rim forms the island's high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern portion of the caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. A submarine cone, named NE Anatahan, rises to within 460 m of the sea surface on the NE flank, and numerous other submarine vents are found on the NE-to-SE flanks. Sparseness of vegetation on the most recent lava flows had indicated that they were of Holocene age, but the first historical eruption did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera.

Information Contacts: Juan Takai Camacho and Ramon Chong, Emergency Management Office of the Commonwealth of the Northern Mariana Islands (EMO-CNMI), PO Box 100007, Saipan, MP 96950, USA (URL: http://www.cnmihsem.gov.mp/); Charles Holliday and Jenifer E. Piatt, U.S. Air Force Weather Agency (AFWA)/XOGM, Offutt Air Force Base, NE 68113, USA; Randy White and Frank Trusdell, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025-3591, USA (URL: https://volcanoes.usgs.gov/nmi/activity/); Andrew B. Lockhart, USGS, Cascades Volcano Observatory, 1300 SE Cardinal Court, Bldg. 10, Suite 100, Vancouver, WA 98683, USA; Saipan Tribune, PMB 34, Box 10001, Saipan, MP 96950, USA (URL: http://www.saipantribune.com/); Setsuya Nakada and Mitsuhiro Yoshimoto, Volcano Research Center, Earthquake Research Institute (ERI), University of Tokyo, Tokyo, Japan (URL: http://www.eri.u-tokyo.ac.jp/nakada/anat_hp/anat_200508/, http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Takeshi Matsushima, Institute of Seismology and Volcanology (SEVO), Graduate School of Science, Kyushu University, 2-5643-29 Shin'yama, Shimabara, Nagasaki 855-0843, Japan (URL: http://www.sevo.kyushu-u.ac.jp/).


Bagana (Papua New Guinea) — August 2005 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Lava flows and occasional ash plumes during April-September 2005

Bagana was last reported on in June 2004 (BGVN 29:06) summarizing MODIS thermal alerts during 1 January 2001-31 May 2004. Lava flows, which had erupted at an unknown time, were described in BGVN 29:05. Bagana has been in long-term eruption since 1972, but the volcano's remote location and intervals of separatist conflict on the island had restricted access by observatory staff, and subsequent reports remained infrequent. Several Rabaul Volcano Observatory (RVO) reports addressed Bagana volcanism during March-September 2005, revealing conditions seen on the ground. There were numerous MODVOLC thermal alerts posted for Bagana during the reporting interval. The rest of the reports relied on satellite-based observations of plumes produced for the purpose of aircraft safety.

RVO noted that during April 2005 Bagana continued its effusive eruption of lava. The summit crater released weak to moderate volumes of thick white vapor on most days. Occasional gray to brown ash plumes were reported. White vapor was visible in some areas of the SW flank. Summit glow was visible on most nights when it was clear, associated with the active lava flow on the upper S flanks. White vapor visible on the upper SW flank during daytime was also associated with a lava flow. Occasional loud roaring noises like jet engines and booming noises were heard on 17, 19, and 30 April. Some of the noises accompanied emission of thick, dark gray ash clouds.

According to the Darwin Volcanic Ash Advisory Centre (VAAC), on 17 March 2005 at 0726 a very small plume to ~ 2.4 km altitude and hot spot were visible on satellite imagery. Satellite imagery at 0551 on 13 May revealed a thin plume extending 28 km ESE below 3 km altitude. Similar plumes, blowing W, were identified at 0537 on 14 May and at 0634 on 15 May.

A plume from Bagana was observed in satellite imagery for 8 June. Darwin VAAC stated that the plume initially extended 65 km WSW, then W later in the day. The height of the plume was not stated. US Air Force Weather Agency analysts indicated that at 0955 local time on 8 June (2355 UTC on 7 June) the plume extended at least ~ 38 km W, rising up to ~ 3 km, and the MODIS image they provided showed four volcanoes in the region all emitting plumes (figure 7).

Figure (see Caption) Figure 7. A DMSP image highlighting a Bagana plume seen on 20 June 2005. For scale, near its broad SE end, Bougainville island is ~50 km wide (measured in the NE-SW direction). Both images provided courtesy of NASA and the US AFWA.

During 13-19 June, Bagana was relatively quiet with variable amounts of white vapor emitted from the crater. Weak projections of incandescent lava were visible until 17 June. During 8-10 June, several low-level plumes emitted from Bagana were visible on satellite imagery extending mainly to the WSW. A plume from Bagana visible on satellite imagery on 21 June extended W. The height of the plume was not reported. A thin plume emitted from Bagana was visible on satellite imagery on 30 June. The height of the plume was not reported.

During 10-16 August, the Darwin VAAC reported that satellite observations showed an ash plume from Bagana visible at a height of ~ 3 km, extending ~ 40 km SW of the summit. Ash was not visible on the image.

During 15-21 August, volcanic activity at Bagana remained at low levels. Variable amounts of thick white vapor were emitted from the summit crater. During several nights, dull-to-moderately bright incandescence was visible. Occasional low roaring noises were heard on 15 and 20 August. At night dull to moderately bright glow was visible on 16, 18, 20, and 21 August. On 20 August, lava flowed from the main crater. Incandescent lava avalanches occasionally originated from unstable areas of the lava flow.

Between 22 and 28 August 2005, Bagana was quiet. The summit crater released variable amounts of white vapor throughout. Continuous roaring noises were heard during a 30-minute period on 23 August, and bright glow was visible the nights of 23 and 24 August. There was a single expulsion of a thick dark ash plume on 24 August.

During 12-18 September 2005, occasional small volumes of ash escaped, and emissions consisted chiefly of weak to moderate volumes of white vapor. Beginning on 17 September occasional sub-continuous booming noises commenced. Some of the booming noises were accompanied by forceful emissions of whitish-brown ash clouds. This activity continued on 18 September. Ash plumes from the activity drifted to W and NW resulting in fine ashfall in downwind areas. Occasional sub-continuous jet-like noises began to occur on 18 September along with a reported lava flow. Glow was observed at night on 14 and 18 September. This could have been associated with cascading lava detached from steep portions of an active lava flow.

The seismograph remained off from 15 August onward through the reporting period due to technical problems.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea ; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Fuego (Guatemala) — August 2005 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash emissions, lava flows, and associated hazards into 2005

Fuego remained active into 2005, although this report focuses on the interval 31 December 2003 through 11 May 2004. A previous report discussed activity through the end of 2003 (BGVN 29:11); this report, based mainly on information from INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia y Hidrologia) covers the interval from end of 2003 to 11 May 2004.

Figure 7 is a map of the Fuego-Acatenango region, emphasizing drainages and settlements frequently mentioned in activity and hazard reports. Fuego is moderately close to the centers of some of Guatemala's largest cities, including the Capital (2-3.5 million inhabitants, ~ 40 km NNE of Fuego's summit) and Antigua (~ 32,000 inhabitants, ~ 18 km NNE).

Figure (see Caption) Figure 7. A sketch map of Fuego and adjacent Acatenango centered several kilometers S of these edifices. Numerous drainages emerge from the stratovolcano, their paths trending radially outward as well as in many cases curving decidedly S with distance from the volcano. Abbreviations 'R.' and 'Q.' apply to the Spanish-language terms Río (river) and Quebrada (canyon, and in this region these are often steep-sided, essentially gorges). 'F' stands for finca (farm or plantation, many of which grow the renowned Antigua coffee). A few contours are shown around these volcanoes (labeled in meters above sea level). The Fuego-Acatenango complex also contains two smaller (unlabeled) topographic highs, each one a few kilometers N of the better known peaks (i.e. N of Fuego, Meseta, and N of Acatenango, Yepocapa). Several towns off the map's margins are indicated with arrows and distances. Compiled by Bulletin editors from topographic maps.

CONRED, the Guatemalan hazards agency (Cordinadora Nacional para la Reducción de Desastres) posted hazard information on their website, in part using a map format noting conditions seen from various perspectives. For example, the map issued for 9 January 2004 (during the largest crisis of the interval), included a title, a legend, a summary of critical hazards-oriented observations. One portion of the 9 January map reported a local wind velocity, N-NW at 12-18 km/hr, and the occurrence of fine and very fine ash falling within 5 to 15 km of the crater. The map also included key radio base stations and for each, a summary of the day's message content.

Many early 2005 observations were hampered by rainfall. Table 4 summarizes numerous INSIVUMEH daily reports during February, but for the bulk of the entries, it chiefly presents Smithsonian/USGS Weekly Reports to portray longer time spans.

Table 4. Samples of Fuego activity during 31 December 2003 through 11 May 2004. Summaries based largely on Smithsonian/USGS Weekly Reports are shown as multi-day intervals (marked with an asterisk, "*"). Most of the reported eruptions in column 3 were ash bearing. Courtesy of INSIVUMEH.

Date Maximum plume height (above summit) and bearing Activity Description
31 Dec-06 Jan 2004* -- During 1-5 January, lava emitted from Fuego flowed 70-100 m from the crater. Avalanches from the lava-flow fronts traveled W toward Santa Teresa ravine and toward Trinidad ravine. Seismic stations on the volcano recorded almost continuous harmonic tremor.
07 Jan-13 Jan 2004* ~3 km Ash emission starting around 1500-1600 on 8 January (see text).
21 Jan-27 Jan 2004* ~1.5 km, SSW (22 Jan) Smaller explosions to ~700 m above the crater. Incandescent avalanches traveled a maximum distance of 1 km toward Zanjon Barranca Seca, La Trinidad, and Rio Ceniza ravines. Not ashfall in populated areas. ~1.5 km from two strong explosions (evening of 22 January); blown SSW. During the rest of the week, smaller explosions sent plumes to ~700 m above the crater.
28 Jan-03 Feb 2004* ~1.1 km Small-to-moderate explosions. The highest rising ash plume was produced from an explosion on 29 January. The plume reached above the crater and was accompanied by avalanches of volcanic material down Barranca Seca. A small amount of ash fell in Panimache village and possibly in Santa Sofia. On 31 January two small collapses in the S edge of the central crater produced small avalanches of lava blocks.
16 Feb 2004 0.3-1 km, SW Audible acoustic shock waves. Ashfall on upper edifice.
17 Feb 2004 -- Incandescent avalanches rose 200 m at night, but some traveled into the drainages of the Taniluya, Ceniza, and Zanjon Barranca Seca. A mudflow descended the Quebrada Santa Teresa (on Fuego's W-SW sides) carrying blocks up to 2 m in diameter. During 0855 to 1140 Fuego produced 10 explosions characterized as strong, resulting in warnings to civil aviation authorities. Ashfall on W- and SW-flank communities.
18 Feb 2004 1.5-1.7 km A rapid succession of 15 early morning explosions at 10- to 30-second intervals were heard up to 8 km distant from the summit. Incandescent material landed on many of the upper slopes. Judging by the quantity and weight of ash fall, INSIVUMEH inferred that the eruption caused substantial changes in the summit area. Finer ash fell for 10 to 15 minutes on Finca Sangre de Cristo and environs. Besides aviation safety, concerns included drinking-water contamination. Ashfall up to 8 km from summit.
20 Feb 2004 1.5-2 km; light to moderate S winds Loud outbursts and incandescent avalanches down the W-flank valleys of the Seca, Taniluya, and Trinidad rivers, and to lesser extent down SE-flank valleys of the Las Lajas-El Jute rivers. Ash-bearing emissions came from the central crater at 4- to 9-minute intervals. Some traces of ash noted to the N, in the Capital.
25 Feb-02 Mar 2004* ~1.7 km Weak-to-moderate explosions continued at Fuego, producing plumes above the crater. Avalanches of volcanic material traveled down several ravines, including Trinidad, Ceniza, Santa Teresa, and Taniluya (to the W). Explosions on 28 February deposited small amounts of fine ash in the village of Sangre de Cristo, and explosions on 29 February deposited ash W and SW of the volcano in the villages of Yepocapa and La Cruz.
04 Mar-08 Mar* ~1.5 km On 5, 7, and 8 March avalanches of incandescent volcanic material traveled as far as 1.5 km down several ravines, including Seca, Taniluya, Ceniza, and Trinidad. Explosions on the 7th and 8th deposited ash 6-10 km from Fuego, including in the villages of Sangre de Cristo and Panimache.
10 Mar-16 Mar 2004* ~1.7 km Explosions; incandescent avalanches as far as 600 m down ravines on the volcano's W, SW, and S flanks; ash fell in W- to SW-flank settlements from Sangre de Cristo to Panimache and Finca Morelia.
17 Mar-23 Mar 2004* ~1.3 km Volcanic material traveled down the Seca ravine; ash fell in the village of Sangre de Cristo.
24 Mar-30 Mar 2004* ~1 km Three strong explosions were recorded on 26 March; they caused incandescent avalanches in the Zanjon Barranca Seca and Trinidad ravines. On 29 March two explosions within 7 minutes produced ash plumes. A lahar occurred on 29 March in the Zanjon Barranca Seca ravine.
31 Mar-06 Apr* 2004 ~1.2 km (5 April, drifting SSE) Lahars flowed down Seca Ravine on 30 March, and passed near the village of Sangre de Cristo on 3 April. Incandescent avalanches descended several ravines, including Santa Teresa, Ceniza, and Taniluya.
07 Apr-13 Apr 2004* ~1 km Lava flowed 75-100 m from the central crater and avalanches of volcanic material traveled as far as 400 m towards Santa Teresa and Taniluya ravines.
14 Apr-20 Apr 2004* ~2.3 km (16 April, drifting S) During 18-19 April, small eruptions hurled incandescent material up to 50 m above the vent.
21 Apr-27 Apr 2004* ~1 km (steam) Weak explosions produced steam clouds above the volcano. In addition, small avalanches of volcanic material occasionally traveled W toward Santa Teresa Ravine.
28 Apr-04 May 2004* ~1.5 km Ash-bearing explosions. On 28 April, an explosion produced an ash plume above the volcano, and ash was deposited ~4 km SW of the volcano in the villages of Panimache I and Panimache II. In addition, a small volcanic avalanche traveled W toward the Santa Teresa ravine.
05 May-11 May 2004* -- Explosions chiefly produced gas-and-ash clouds. On 5 May a small lahar traveled to the W down Seca ravine.

From the table, the pattern emerges of ongoing emissions with frequent plumes to 1 km and occasional higher plumes (several to ~2 km and one to ~3 km). Similar to previous months, the reports frequently mention dislodged lava blocks and mass wasting of volcanic materials.

The highest plume found in available reports of the interval occurred on 8 January 2004, when an ash plume rose ~3 km over the summit. Traces of ash fell in the Capital during this episode.

Fuego began its 8 January eruption around 1500 to 1600, expelling thick, broad columns of gases and ash to ~3 km above the crater. There were 25-30 explosions a minute accompanied by loud rumbling noises and acoustical shock waves felt 12 km away. Although no evacuations were ordered, settlements on the upper flanks were considered at risk, including San Andrés Iztapa, Chimaltenango, Comalapa, San Martín Jilotepeque, San José Poaquil, and Yepocapa.

The Washington VAAC added these observations: "[GOES 12] satellite imagery shows two plumes moving away from the volcano. The higher plume extends approximately 75 nm [~140 km] to the [N] and is estimated to be around FL250 [shorthand for 25,000 feet altitude, ~8 km]. A lower plume extends approximately 70 nm [126 km] to the [W] and is estimated to be up to FL190 (19,000 feet altitude, ~6 km). Hot spot activity has been fairly strong and constant over the past several hours."

A 20 February report described continued vigorous activity; ash emissions from the central crater rose to heights of 1.5-2 km above the summit (table 1). Light to moderate winds again blew the ash N and some traces fell in the Capital.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), Ministero de Communicaciones, Transporto, Obras Públicas y Vivienda, 7a. Av. 14-57, zona 13, Guatemala City 01013, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala; Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (NOAA/NESDIS), 4700 Silver Hill Road, Stop 9910, Washington, DC 20233-9910, USA (URL: http://www.ssd.noaa.gov/).


Langila (Papua New Guinea) — August 2005 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Increased eruptive vigor leads to ashfall damage in mid-2005

The Darwin VAAC issued an activity report stating that the Rabaul Volcano Observatory (RVO) had noted elevated activity since 24 April 2005. Between 28 April 2005 and 4 May 2005 Langila emitted more ash than normal, and the International Federation of Red Cross And Red Crescent Societies (IFRC) determined that ~ 3,490 people had been affected by the eruption when ashfall damaged small food gardens and contaminated some water sources.

VAAC reports on 4 May and 6-7 May noted thin plumes extending NW 110 km and 75 km, respectively. Later, on 7-8 May, the identifiable plume was half as long and diminishing. Plumes and other diagnostics eventually became obscured by weather clouds. On 8 June analysts at the Darwin VAAC saw a low-altitude plume and a hot spot. The plume moved westward and remained visible into 9 June when it ceased being detectible.

During 13-19 June 2005, Langila's Crater 2 continued to erupt. At times the eruption was marked by moderate to strong emissions of thick gray-brown ash clouds occurring at irregular intervals. Ash clouds from the eruption rose variably to 700-1000 m before they were blown to the W and NW. At other times weak to moderate emissions of light gray ash clouds were observed. Considerable ash fell near the volcano and extended to the W and NW, between Warimo and Aimola. Crater 3 was quiet. Low and high frequency earthquakes and volcanic tremor were recorded.

The Darwin VAAC reported a Langila plume on 13 June to 3-4 km altitude, but cloud cover later obscured the plume. Another plume became visible on imagery on 16 June moving W at 30 km/hour at an estimated altitude of ~ 3 km; ongoing plumes became hard to see about mid-day on 17 June. Several other episodes of plume image detection were seen. One was identified by the VAAC on 21 June, with an observation of altitude to ~ 3 km and plume length reaching 300 km to the NW. The evidence of eruption only continued until the next day, when cloud cover obscured the area. A further, brief episode of plume detection occurred beginning early on 25 June but detection ended before noon. On 30 June, the Darwin VAAC repeated a US Air Force Weather Agency (AFWA) report on a Langila plume seen on imagery, blowing SW at 20 km/hr and reaching ~ 3 km altitude. By about 6 hours later that plume ceased to be visible.

Moderate levels of volcanic activity occurred at Langila's Crater 2 during 15-21 August. The activity was marked by occasional sub-continuous forceful emissions of ash clouds. The ash clouds rose as high as 1 km before drifting N and NW. Fine ash fell in villages along the coast. On the evening of 18 August projections of incandescent lava fragments were seen. Based on a pilot report, the Darwin VAAC reported that ash from Langila was visible in the vicinity of the volcano on 23 August, at 3-4.6 km altitude. A plume was seen a bit later on MODIS imagery extending 110 km to the NNW but ash was not visible in satellite imagery.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea; International Federation of Red Cross And Red Crescent Societies (IFRC) (URL: https://reliefweb.int/); U.S. Air Force Weather Agency (AFWA)/XOGM, Offutt Air Force Base, NE 68113, USA; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Manam (Papua New Guinea) — August 2005 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Comparatively mild eruptions with rare minor local ashfall

Manam erupted several times during October-December 2004 and January 2005 (BGVN 29:10, 29:11). The eruption on the evening of 27 January 2005 (BGVN 30:02) was more severe than the previous ones during the current eruption period; there were 14 people injured and one person killed at Warisi village. During April and May 2005, mild eruptive activity continued. Manam remained at Alert Level 2 from February 2005 through late May.

Throughout April 2005, both summit craters released occasional pale gray to brown ash clouds to a few hundred meters above the summit before being blown SW, W, and NW, resulting in fine ashfall. Occasional low rumbling and roaring noises from Southern Crater were heard on 23 April and 29 April. A weak to moderate glow accompanied by projections of incandescent lava fragments was visible on 28 April and 30 April. There were no audible noises and no night-time glow from the Main Crater.

April seismicity was at low-moderate level. Occasional weak volcanic tremors were recorded during the month. The daily number of low frequency earthquakes range between 700 and 1350.

A pilot reported an eruption on 13 June at 0445 UTC. The Darwin Volcanic Ash Advisory Centre (VAAC) reported that ash plumes from Manam were visible on satellite imagery on 16-17 June, 30 June, and 1-2 July. On 19 July ash from Manam was visible extending SW on satellite imagery. Ash was also visible on satellite imagery on 20 July. In all instances, the heights of the plumes were not reported.

According to the Rabaul Volcanological Observatory (RVO), during 15-21 August low-level volcanic activity continued at Manam, and the alert level was reduced to level 1. On 15 August, ash was emitted from Southern Crater. The Darwin VAAC reported that a low-level plume from Manam was visible on satellite imagery on 22 August. Mild eruptive activity continued during 22-28 August, with occasional emissions of weak-to-moderate ash plumes on several days. Ash clouds emitted on 22 and 26 August rose several hundred meters above the volcano's crater and drifted NW, depositing ash in areas between the towns of Jogari and Kuluguma, and beyond to Boisa Island.

During September, the Main Crater continued to release weak emissions of thin white-gray ash clouds. On 17 September, the ash clouds increased slightly in volume and were blown to the NW part of the island. No glow was observed at night and technical problems thwarted seismic recording. Manam remained at Alert Level 1, indicating low levels of activity, through 19 September.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea; Andrew Tupper, Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Rabaul (Papua New Guinea) — August 2005 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Minor ash plumes reach Rabaul Town

The February 2005 eruption from the Tarvurvur cone at Rabaul and its aftermath were previously described (BGVN 30:07). In late August and September 2005 Tavurvur continued to produce discrete light to pale gray ash emissions. Emissions occurred at irregular intervals and with varying frequency. Discrete explosions also occurred. Ash plumes rose between 800 and 1500 m before they were blown to the N and NW, resulting in some ashfall on the eastern half of Rabaul Town. Areas further downwind were also affected. Roaring and rumbling noises accompanied the activity. Projections of incandescent lava fragments were visible at night but were less conspicuous compared to previous weeks.

Seismicity was at moderate to high levels, with most earthquakes associated with ash emissions and explosions. Small low frequency earthquakes not associated with ash emissions were also recorded. Ground deformation measurements from global positioning system (GPS) and tide gauge instruments fluctuated but the general trend showed a very slow rate of uplift.

One high frequency earthquake occurred on 12 September NE of Tavurvur. Prevailing SE winds during the last several months caused the ash plumes to drift to the N and NW. During 12-18 September there were some brief periods of NW winds that could mark the beginning of gradual wind transition from SE to NW winds, directions that would blow ash plumes away from Rabaul Town.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Reventador (Ecuador) — August 2005 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Generally, activity shifting from effusive towards explosive

Reventador ceased extruding significant new lava flows in early July 2005. Subsequent activity through this report interval, late September, was manifested as intermittent explosive eruptions. These were characterized alternately as Strombolian activity and short-duration Vulcanian events.

After the post-effusive phase and during the explosive phase a significant Vulcanian event took place at 2058 on 12 September, producing an ash column more than 5 km above the summit. Large bombs were ejected more than 2 km from the vent and small pyroclastic flows were evident in gullies descending from the cone. This event was preceded by more than a week of relative quiescence, indicating that future Vulcanian eruptions may occur with little warning.

This report was submitted by Jeffrey B. Johnson (University of New Hampshire), who collaborated with colleagues including Patricio Ramón, Liliana Troncoso, Guillermo Viracucha, Jaime Lozada, Daniel Andrade, David Rivero, Gorky Ruiz, Pete Hall, and Wilson Enriquez (Geophysical Institute, Escuela Politécnica Nacional, IG-EPN). They adhered to the practice of numerically naming lava flows, for example Lava ##5.

End of significant lava effusions. BGVN 30:05 provided a detailed overview of recent active lavas erupted by Reventador between April 2005 and the end of June 2005. Visits to the caldera on 1 July revealed dramatic diminution in the advance rate of Lava ##5 along the southern caldera margin. Within the first few days of July, Lava ##5 had stagnated. Its furthest extent was ~ 4.5 km from the vent and about 50 m short of the furthest extent of Lava ##4 (erupted in May 2005), which it was overriding.

Since the first few days in July, major lava extrusion had terminated. Despite intermittent MODIS thermal alerts (~ 1 per week from University of Hawaii (HIGP)), no significant lava flows have been directly observed by IG-EPN personnel or reported by the local populace. During July, it is likely that small lava flow(s) (under 1 km in length) were extruded from the southern breach of the cone during short-lived events lasting a few days or less. For instance, a photo taken on 1 August (figure 23) indicates a short, fresh lobe (named Lava ##6), which was no longer incandescent during a night-time visit on 3 August.

Figure (see Caption) Figure 23. Photograph of a fresh lava flow at Reventador on 1 August 2005. The flow, which appears as a white lobe, was stagnant. Courtesy of J. Johnson and the Geophysical Institute.

Explosive activity. Pyroclastic explosions, which first occurred in early June 2005, continued intermittently until 25 September 2005. Significant Strombolian activity was noted at night by the local populace in the first few days of July, coincident with the decline of Lava ##5 extrusion. In mid-July, explosive activity was minimal, but increased towards the end of the month and during August. Between explosions, voluminous vapor plumes were often observed and loud degassing sounds were often audible, but at times the volcano was also completely silent. Incandescence was also often visible in the cone, suggesting an open-vent configuration. Periods of quiescence separated explosive activity and generally lasted hours to days. Typical eruptive events, which occurred as many as 26 times a day (i.e., on 15 September), are identified clearly by seismic records. These emissions tend to alternate between discrete pyroclastic-laden, ash-rich explosions and extended-duration Strombolian-type fountaining (figure 24). Both types of events were capable of erupting large blocks up and over the crater rim (~ 200 m above the vent), which were often sufficiently massive to be visible from the highway ~ 7.5 km distant.

Figure (see Caption) Figure 24. Strombolian activity at Reventador depicted in a sequence of still images taken at one-minute intervals along with accompanying infrasonic and seismic traces (signals recorded ~ 1.8 km from the vent). Courtesy of J. Johnson and the Geophysical Institute.

A period of relative quiescence, marked by an absence of large ash-generating plumes, was evident at the end of August and during first days of September. Vent incandescence was also notably absent during several days up until the large explosion at ~ 2058 on 12 September.

Preceded by a swarm of small volcano-tectonic events, the explosion was manifested by very short-duration transient signals, with arriving infrasonic and seismic waves lasting less than ~ 1 minute. However, peak-to-peak amplitudes the respective signals (~ 211 Pa and 4.9 mm/s) were substantially greater than other explosive events occurring at the volcano during recent months.

As previously mentioned, this short-duration explosion generated a more than 5 km-high ash-cloud and ejected large bombs aerially to more than 2 km. Small pyroclastic flows were confined to gullies on the cone and reached at least 1.5 km from the vent (figure 25).

Figure (see Caption) Figure 25. Photos of Reventador cone taken 12 days apart (13 and 25 September 2005, from different angles) show the channels and deposits of small pyroclastic flows. Arrow connects same location on cone in both frames. Courtesy of J. Johnson and the Geophysical Institute.

Since this large event, incandescence has been routinely present in the crater and explosions have occurred with greater frequency (figure 26). Further large explosions occurring in the morning of 24 September were likely responsible for more pyroclastic deposits evident on the upper cone and in upper-flank gullies (figure 25, right-hand photo).

Figure (see Caption) Figure 26. Summary of explosion counts at Reventador as identified by the IG-EPN seismic network between 1 June and 23 September 2005. Courtesy of J. Johnson and the Geophysical Institute.

Monitoring. Reventador continues to be closely monitored by the IG-EPN (figure 27). A telemetered seismic network, consisting of three local short-period seismometers, is used to quantify the eruptive chronology of the volcano, including the quantities of volcano-tectonic events (VT), long-period events (LP), hybrid events, and harmonic and spasmodic tremor, and explosion events. Three temporary stand-alone dataloggers with broad-band seismometers and infrasonic microphones, installed with collaboration from the University of New Hampshire and the University of North Carolina, have supplemented this network throughout the summer.

Figure (see Caption) Figure 27. Summary of Reventador seismicity since 1 June 2005. Many of the tremor events were associated with vigorous degassing at the vent. Courtesy of J. Johnson and the Geophysical Institute.

Additionally, field visits by IG-EPN personnel have been conducted regularly. During an expedition on August 28, Differential Optical Absorption Spectroscopy (DOAS) and Forward Looking Infrared (FLIR) measurements were made to assess gas and thermal flux, respectively. DOAS measurements revealed a continuing flux of SO2 estimated at ~ 850 tons/day. The FLIR measurements confirmed near-magmatic temperatures at the vent. It also confirmed stagnation of all lava flows on the volcano since their maximum surface temperatures had cooled into the range of ~ 50°C.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Jeffrey B. Johnson, Dept. of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA; Patricio Ramón, Liliana Troncoso, Guillermo Viracucha, Jaime Lozada, Daniel Andrade, David Rivero, Gorky Ruiz, Pete Hall, and Wilson Enriquez, Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/).


Sheveluch (Russia) — August 2005 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


22 September eruption generated a substantial pyroclastic flow

From March 2005 until July 2005, the lava dome at Shiveluch continued to grow and ash-and-gas plumes and gas-and-steam plumes were frequent (BGVN 30:06). The alert level was at Orange.

On 7 July, the Russian News and Information Agency (RIA Novosti) reported that Shiveluch was producing pyroclastic flows and ash plumes rising to 5 km altitude. On 8 July, Kamchatka Volcanic Eruptions Response Team (KVERT) raised the alert level from Orange to Red, the highest level. Video footage taken the same day showed weak gas-and-steam plumes rising to ~ 5 km altitude. On 9 July, ash-and-gas plumes rose to 3 km altitude and the alert level was reduced to Orange. Ash plumes extended 27 km SW of the volcano during July 11-12.

Through July and August, the lava dome continued to grow and Shiveluch remained at alert level Orange. On 15 July, RIA Novosti reported that "[m]assive ash emissions from Shiveluch...are posing danger to nearby towns and villages. The Federal Earthquake Prediction Center's Kamchatka branch said ash storms, as well as mudflows from Shiveluch's slopes, could be dangerous for nearby settlements . . .. [T]he volcano began emitting massive ash clouds. Gas, ash, and magmatic material . . . are barreling down the slope . . .. The ash cloud has spread more than 700 kilometers to the [W] of the volcano, covering the peninsula and the nearby Sea of Okhotsk with a nearly 150-kilometer-wide strip."

On 19 July KVERT reported that a gas-steam plume extended 30 km SW from the volcano on 18 July and a gas-steam plume up to 3.5 km altitude was observed on 19 July. On 19 July, 23 July, and during 5-12 August, satellite data from the USA and Russia indicated a persistent 1 to 7 pixel thermal anomaly at the dome. On 23 July and 6 August, incandescence was observed at the lava dome. Fumarolic activity was visible on 6 August.

During 19-26 August, about ten shallow earthquakes were recorded, and a larger thermal anomaly was visible on satellite imagery. On 19 August a new viscous lava flow was emitted from the lava dome and continued to flow during 26 August to 9 September. Several ash plumes reached ~ 5.5 km altitude.

On 5 September, an ash plume rose to ~ 4 km altitude. On 8 September, a hot avalanche was accompanied by an ash plume that rose to a height of ~ 3.5 km altitude. The large thermal anomaly continued during the first week of September. On 7 September RIA Novosti reported that Shiveluch "is spewing gas and ash to heights of up to 5,000 feet [1.5 km]". On 16 September KVERT reported that the dome was continuing to grow and that viscous lava continued to flow from the dome. Incandescence at the lava dome was observed on 13 September. Gas-steam plumes up to 3.5 km altitude and a large thermal anomaly were registered all week.

On 22 September KVERT raised the alert level to Red, the highest level, and reported that according to seismic data, at 05:15 UTC on 22 September, a paroxysmal eruption began. Ash plumes reached a height about 7.5 km altitude, and ash fall was noted from 06:00 until 08:00 UTC on 22 September by seismologists working about 9 km SW of the volcano.

KVERT reported, based on US and Russian satellite data, an ash cloud with a diameter of ~ 20 km located ~ 90 km to the NW of the volcano and, based on Russian satellite data, an ash cloud with a diameter of ~ 15 km located ~ 20 km to the SSE at about 3 km altitude. Ash fall was observed in Klyuchi on the night of 22 September. According to visual data, a new pyroclastic flow extended 10-15 km.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga A. Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soputan (Indonesia) — August 2005 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Sporadic explosions into mid-2005; photo of 18 July pyroclastic flow

On 18 October 2004 Soputan exploded, releasing a column of white-to-gray ash floating as high as 600 m above the crater rim and drifting E (BGVN 29:12).

On 12 December an eruption around 0050 produced an E-drifting ash cloud to ~ 1 km above the volcano. It was followed by a "hot cloud" that traveled about 200 m E towards Aeseput and a lava flow that traveled SW. The eruption was preceded by increased tremor on 11 December and visible incandescence in the crater. The Directorate of Volcanology and Geological Hazard Mitigation increased the Alert Level to 2 (on a scale of 1-4). According to the Darwin Volcanic Ash Advisory Centre an eruption cloud was visible on satellite imagery on 12 December at 0925 at an altitude of ~ 10.7 km.

On 1 February 2005 white vapor rose 50-75 m above the summit. Soputan began to erupt again at 0630 on 20 April, with a plume reaching ~ 1 km above the summit and drifting SE. In addition, lava fountains rose ~ 200 m above the volcano. From 1720 on 20 April until 0900 on 21 April, lava fountains rose 75-100 m. Rapid dome growth occurred and by 21 April the lava dome had spread about 250 m E and 200 m SW. On 22 April a "white ash plume" rose ~ 100 m, and on 23 April a dark gray ash plume rose to ~ 150 m and drifted NE. Ash eruptions through 24 April produced plumes to ~ 300 m above the volcano.

On 9 May a plume of white vapor rose 75 m above the summit. Soputan remained at Alert Level 2 through 9 May.

Further activities came to light as a result of a photograph taken during a violent eruption (figure 2). According to Syamsul Rizal, the photo was taken from Soputan volcano observatory, Maliku, ~ 12 km NW, on 18 July 2005. The eruption initially vented at the usual source on the NE flank. The pyroclastic flow that resulted was described from visible observations as less dense than those from collapses at Merapi and similar to those from Karangetang.

Figure (see Caption) Figure 2. A photo of Soputan on 18 July 2005 showing the pyroclastic flow that occurred as a result of dome collapse. Photo courtesy of DVGHM and taken by Farid Bina.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Directorate of Volcanology and Geological Hazard Mitigation (DVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Andrew Tupper, Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/soputan.shtml).


Soufriere Hills (United Kingdom) — August 2005 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Through at least 5 September 2005, the lava dome continued to grow

Soufrière Hills was relatively quiet through April and early May 2005, with activity increasing somewhat through June and several explosive events in late June and in July (BGVN 30:06). Table 61 summarizes activity during 8 July thorough 26 August 2005. Further text brings this report through 5 September, with the comment that slow dome growth continued.

Table 61. A summary of the weekly number of earthquakes (EQs), rockfalls, and averaged spot measurements of SO2 flux at Soufriere Hills during July and August 2005. Cases of "mixed earthquakes" were unreported during the reporting interval. Date ranges go from noon on the starting day to noon on the end day. Courtesy of MVO.

Date Hybrid EQ's Volcano-tectonic EQ's Long-period EQ's Rockfalls SO2 Flux (metric tons/day)
08 Jul-15 Jul 2005 10 2 -- -- 660
15 Jul-22 Jul 2005 16 19 13 11 608
22 Jul-29 Jul 2005 4 29 5 23 510
29 Jul-05 Aug 2005 4 8 9 33 986
05 Aug-12 Aug 2005 3 3 5 14 770
12 Aug-19 Aug 2005 8 5 13 12 570
19 Aug-26 Aug 2005 6 5 13 15 900

On 6 August a vigorous eruption sent a plume to ~ 1.8 km above the volcano. Evidence of uplift and fracturing were observed on the crater floor, and an area of blocky lava resembling a small lava dome was observed. Due to poor visibility further observations will be necessary to determine if the feature is a new dome or was caused by the collapse, or uplift, of old dome rock.

Volcanic and seismic activity remained at elevated levels at Soufrière Hills during 12-19 August. Periodic ash venting continued, with a vigorous episode occurring on 18 August at 1800. On 16 August, the presence of a small blocky lava dome with talus slopes was confirmed. There was some ash venting from the dome, but no significant rockfalls were seen. Activity at Soufrière Hills remained at elevated levels during 2-9 September, the end of this reporting period. Observations made on 5 September suggested that slow lava-dome growth continued.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Fleming, Montserrat, West Indies (URL: http://www.mvo.ms/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).