Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sangay (Ecuador) Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September

Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020

Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020

Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September

Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020

Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020

Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater

Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020



Sangay (Ecuador) — January 2021 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September

Sangay is one of the most active volcanoes in Ecuador with the current eruptive period continuing since 26 March 2019. Activity at the summit crater has been frequent since August 1934, with short quiet periods between events. Recent activity has included frequent ash plumes, lava flows, pyroclastic flows, and lahars. This report summarizes activity during July through December 2020, based on reports by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), ash advisories issued by the Washington Volcanic Ash Advisory Center (VAAC), webcam images taken by Servicio Integrado de Seguridad ECU911, and various satellite data.

Overall activity remained elevated during the report period. Recorded explosions were variable during July through December, ranging from no explosions to 294 reported on 4 December (figure 80), and dispersing mostly to the W and SW. SO2 was frequently detected using satellite data (figure 81) and was reported several times to be emitting between about 770 and 2,850 tons/day. Elevated temperatures at the crater and down the SE flank were frequently observed in satellite data (figure 82), and less frequently by visual observation of incandescence. Seismic monitoring detected lahars associated with rainfall events remobilizing deposits emplaced on the flanks throughout this period.

Figure (see Caption) Figure 80. A graph showing the daily number of explosions at Sangay recorded during July through December 2020. Several dates had no recorded explosions due to lack of seismic data. Data courtesy of IG-EPN (daily reports).
Figure (see Caption) Figure 81. Examples of stronger SO2 plumes from Sangay detected by the Sentinel 5P/TROPOMI instrument, with plumes from Nevado del Ruiz detected to the north. The image dates from left to right are 31 August 2020, 17 September 2020, 1 October 2020 (top row), 22 November 2020, 3 December 2020, 14 December 2020 (bottom row). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 82. This log radiative power MIROVA plot shows thermal output at Sangay during February through December 2020. Activity was relatively constant with increases and decreases in both energy output and the frequency of thermal anomalies detected. Courtesy of MIROVA.

Activity during July-August 2020. During July activity continued with frequent ash and gas emission recorded through observations when clouds weren’t obstructing the view of the summit, and Washington VAAC alerts. There were between one and five VAAC alerts issued most days, with ash plumes reaching 570 to 1,770 m above the crater and dispersing mostly W and SE, and NW on two days (figure 83). Lahar seismic signals were recorded on the 1st, 7th, three on the 13th, and one on the 19th.

Figure (see Caption) Figure 83. Gas and ash plumes at Sangay during July 2020, at 0717 on the 17th, at 1754 on the 18th, and at 0612 on the 25th. Bottom picture taken from the Macas ECU 911 webcam. All images courtesy of IG-EPN daily reports.

During August there were between one and five VAAC alerts issued most days, with ash plumes reaching 600 to 2,070 m above the crater and predominantly dispersing W, SW, and occasionally to the NE, S, and SE (figure 84). There were reports of ashfall in the Alausí sector on the 24th. Using seismic data analysis, lahar signals were identified after rainfall on 1, 7, 11-14, and 21 August. A lava flow was seen moving down the eastern flank on the night of the 15th, resulting in a high number of thermal alerts. A pyroclastic flow was reported descending the SE flank at 0631 on the 27th (figure 85).

Figure (see Caption) Figure 84. This 25 August 2020 PlanetScope satellite image of Sangay in Ecuador shows an example of a weak gas and ash plume dispersing to the SW. Courtesy of Planet Labs.
Figure (see Caption) Figure 85. A pyroclastic flow descends the Sangay SE flank at 0631 on 27 August 2020. Webcam by ECU911, courtesy of courtesy of IG-EPN (27 August 2020 report).

Activity during September-October 2020. Elevated activity continued through September with two significant increases on the 20th and 22nd (more information on these events below). Other than these two events, VAAC reports of ash plumes varied between 1 and 5 issued most days, with plume heights reaching between 600 and 1,500 m above the crater. Dominant ash dispersal directions were W, with some plumes traveling SE, S, SE, NE, and NW. Lahar seismic signals were recorded after rainfall on 1, 2, 5, 8-10, 21, 24, 25, 27, and 30 September. Pyroclastic flows were reported on the 19th (figure 86), and incandescent material was seen descending the SE ravine on the 29th. There was a significant increase in thermal alerts reported throughout the month compared to the July-August period, and Sentinel-2 thermal satellite images showed a lava flow down the SE flank (figure 87).

Figure (see Caption) Figure 86. Pyroclastic flows descended the flank of Sangay on 19 (top) and 20 (bottom) September 2020. Webcam images by ECU911 from the city of Macas, courtesy of IG-EPN (14 August 2018 report).
Figure (see Caption) Figure 87. The thermal signature of a lava flow is seen on SW flank of Sangay in this 8 September 2020 Sentinel-2 thermal satellite image, indicated by the white arrow. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Starting at 0420 on the morning of 20 September there was an increase in explosions and emissions recorded through seismicity, much more energetic than the activity of previous months. At 0440 satellite images show an ash plume with an estimated height of around 7 km above the crater. The top part of the plume dispersed to the E and the rest of the plume went W. Pyroclastic flows were observed descending the SE flank around 1822 (figure 88). Ash from remobilization of deposits was reported on the 21st in the Bolívar, Chimborazo, Los Ríos, Guayas and Santa Elena provinces. Ash and gas emission continued, with plumes reaching up to 1 km above the crater. There were seven VAAC reports as well as thermal alerts issued during the day.

Figure (see Caption) Figure 88. An eruption of Sangay on 22 September 2020 produced a pyroclastic flow down the SE flank and an ash plume that dispersed to the SW. PlanetScope satellite image courtesy of Planet Labs.

Ash plumes observed on 22 September reached around 1 km above the crater and dispersed W to NW. Pyroclastic flows were seen descending the SE flank (figure 89) also producing an ash plume. A BBC article reported the government saying 800 km2 of farmland had experienced ashfall, with Chimborazo and Bolívar being the worst affected areas (figure 90). Locals described the sky going dark, and the Guayaquil was temporarily closed. Ash plume heights during the 20-22 were the highest for the year so far (figure 91). Ash emission continued throughout the rest of the month with another increase in explosions on the 27th, producing observed ash plume heights reaching 1.5 km above the crater. Ashfall was reported in San Nicolas in the Chimborazo Province in the afternoon of the 30th.

Figure (see Caption) Figure 89. A pyroclastic flow descending the flank of Sangay on 22 September 2020. Webcam image by ECU911 from the city of Macas, courtesy of IG-EPN (Sangay Volcano Special Report - 2020 - No 5, 22 September 2020).
Figure (see Caption) Figure 90. Ashfall from an eruption at Sangay on 22 September 2020 affected 800 km2 of farmland and nearby communities. Images courtesy of EPA and the Police of Ecuador via Reuters (top-right), all via the BBC.
Figure (see Caption) Figure 91. Ash plume heights (left graph) at Sangay from January through to late September, with the larger ash plumes during 20-22 September indicated by the red arrow. The dominant ash dispersal direction is to the W (right plot) and the average speed is 10 m/s. Courtesy of IG-EPN (Sangay Volcano Special Report - 2020 - No 5, 22 September 2020).

Thermal alerts increased again through October, with a lava flow and/or incandescent material descending the SE flank sighted throughout the month (figure 92). Pyroclastic flows were seen traveling down the SE flank during an observation flight on the 6th (figure 93). Seismicity indicative of lahars was reported on 1, 12, 17, 19, 21, 23, 24, and 28 October associated with rainfall remobilizing deposits. The Washington VAAC released one to five ash advisories most days, noting plume heights of 570-3,000 m above the crater; prevailing winds dispersed most plumes to the W, with some plumes drifting NW, N, E to SE, and SW. Ashfall was reported in Alausí (Chimborazo Province) on the 1st and in Chunchi canton on the 10th. SO2 was recorded towards the end of the month using satellite data, varying between about 770 and 2,850 tons on the 24th, 27th, and 29th.

Figure (see Caption) Figure 92. A lava flow descends the SE flank of Sangay on 2 October 2020. Webcam images courtesy of ECU 911.
Figure (see Caption) Figure 93. A pyroclastic flow descends the Sangay SE flank was seen during an IG-EPN overflight on 6 October 2020. Photo courtesy of S. Vallejo, IG-EPN.

Activity during November-December 2020. Frequent ash emission continued through November with between one and five Washington VAAC advisories issued most days (figure 94). Reported ash and gas plume heights varied between 570 and 2,700 m above the crater, with winds dispersing plumes in all directions. Thermal anomalies were detected most days, and incandescent material from explosions was seen on the 26th. Seismicity indicating lahars was registered on nine days between 15 and 30 November, associated with rainfall events.

Figure (see Caption) Figure 94. Examples of gas and ash plumes at Sangay during November 2020. Webcam images were published in IG-EPN daily activity reports.

Lahar signals associated with rain events continued to be detected on ten out of the first 18 days of November. Ash emissions continued through December with one to five VAAC alerts issued most days. Ash plume heights varied from 600 to 1,400 m above the crater, with the prevailing wind direction dispersing most plumes W and SW (figure 95). Thermal anomalies were frequently detected and incandescent material was observed down the SE flank on the 3rd, 14th, and 30th, interpreted as a lava flow and hot material rolling down the flank. A webcam image showed a pyroclastic flow traveling down the SE flank on the 2nd (figure 96). Ashfall was reported on the 10th in Capzol, Palmira, and Cebadas parishes, and in the Chunchi and Guamote cantons.

Figure (see Caption) Figure 95. Examples of ash plumes at Sangay during ongoing persistent activity on 9, 10, and 23 December 2020. Webcam images courtesy of ECU 911.
Figure (see Caption) Figure 96. A nighttime webcam image shows a pyroclastic flow descending the SE flank of Sangay at 2308 on 2 December 2020. Image courtesy of ECU 911.

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); ECU911, Servicio Integrado de Seguridad ECU911, Calle Julio Endara s / n. Itchimbía Park Sector Quito – Ecuador. (URL: https://www.ecu911.gob.ec/; Twitter URL: https://twitter.com/Ecu911Macas/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); BBC News “In pictures: Ash covers Ecuador farming land” Published 22 September 2020 (URL: https://www.bbc.com/news/world-latin-america-54247797).


Ebeko (Russia) — December 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall; June-November 2020

Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.

Figure (see Caption) Figure 26. Photo of a dense gray ash plume rising from Ebeko on 22 June 2020. Photo by L. Kotenko (color corrected), courtesy of IVS FEB RAS, KVERT.

Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.

In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.

Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).

Figure (see Caption) Figure 27. Photos of dense ash plumes rising from Ebeko on 22 (left) and 26 (right) September 2020. Photos by S. Lakomov (color corrected), IVS FEB RAS, KVERT.

During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.

Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.

Figure (see Caption) Figure 28. Sentinel-2 satellite imagery of a gray-white gas-and-ash plume at Ebeko on 8 (left) and 11 (right) November 2020, resulting in ashfall (dark gray) to the SE of the volcano. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. Photos of continued ash explosions from Ebeko on 28 October (left) and 29 November (right) 2020. Photos by S. Lakomov (left) and L. Kotenko (right), courtesy of IVS FEB RAS, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.

Figure (see Caption) Figure 30. A small pulse in thermal activity at Ebeko began in early June and continued through early August 2020, according to the MIROVA graph (Log Radiative Power). The detected thermal anomalies were of relatively low power but were persistent during this period. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 satellite imagery showed gray ash plumes rising from Ebeko on 11 June (top left) and 16 July (bottom left) 2020, accompanied by occasional thermal anomalies (yellow-orange) within the summit crater, as shown on 24 June (top right) and 25 August (bottom right). The ash plume on 11 June drifted N from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 11 June (top left) and 16 July (bottom left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — November 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and small eruptions in May and August 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).

Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.

Figure (see Caption) Figure 10. Sentinel-2 thermal satellite images showed a strong thermal anomaly (bright yellow-orange) in the Shindake crater at Kuchinoerabujima on 1 May 2020 (top left). Weaker thermal anomalies were also seen in the Shindake crater during 19 August (top right) and 3 (bottom left) and 13 (bottom right) October 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images; courtesy of Sentinel Hub Playground.

Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.

Figure (see Caption) Figure 11. Webcam images of an eruption at Kuchinoerabujima on 6 May 2020 (top), producing a gray ash plume that rose 500 m above the crater. Crater incandescence was observed from the summit crater at night on 25 May 2020 (bottom). Courtesy of JMA (Monthly bulletin report 509, May 2020).

Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.

According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).

The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Raung (Indonesia) — December 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.

Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).

Figure (see Caption) Figure 31. Little change can be seen at the summit of Raung in Google Earth images dated 19 October 2017 (left) and 28 April 2018 (right). The summit crater was full of black lava flows from the 2015 eruption. Courtesy of Google Earth.
Figure (see Caption) Figure 32. A Malaysian hiker celebrated his climbing to the summit of Raung on 30 August 2019. Weak fumarolic activity was visible from the base of the breached crater of the cone near the center of the summit crater, and many features of the lava flow that filled the crater in 2015 were still well preserved. Courtesy of MJ.

PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.

Figure (see Caption) Figure 33. An ash plume rose from the summit of Raung on 16 July 2020 at the beginning of a new eruption. The last previous eruption was in 2015. Courtesy of Volcano Discovery and PVMBG.

After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.

Figure (see Caption) Figure 34. MIROVA thermal anomaly data indicated renewed activity on 16 July 2020 at Raung as seen in this graph of activity from 13 October 2019 through September 2020. Satellite images indicated that the dark lines at the beginning of the graph are from a large area of fires that burned on the flank of Raung in October 2019. Heat flow remained high through July and began to diminish in mid-August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 35. Thermal anomalies were distinct inside the crater of the pyroclastic cone within the summit crater of Raung on 19, 24, and 29 July 2020. Data is from the Sentinel-2 satellite shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.

In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).

Figure (see Caption) Figure 36. The thermal anomaly at Raung recorded in Sentinel-2 satellite data decreased in intensity between August and October 2020. It was relatively strong on 13 August (left) but had decreased significantly by 12 September (middle) and remained at a lower level into early October (right). Data shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground
Figure (see Caption) Figure 37. A small but distinct thermal anomaly was still present within the pyroclastic cone inside the summit crater of Raung on 7 October 2020 (left) but was gone by 12 October (middle) and did not reappear in subsequent clear views of the crater through the end of October. Satellite imagery of 7 and 12 October processed with Atmospheric penetration rendering (bands 12, 11, 8A). Natural color rendering (bands 4, 3, 2) from 17 October (right) shows no clear physical changes to the summit crater during the latest eruption. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).


Nyamuragira (DR Congo) — December 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.

Figure (see Caption) Figure 91. MIROVA graph of thermal activity (log radiative power) at Nyamuragira during March 2020-January 2021. During June-November 2020, most were in the low to moderate range, with a decrease in power during November. Courtesy of MIROVA.

Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.

Figure (see Caption) Figure 92. Sentinel-2 satellite images of Nyamuragira on 26 July (left) and 28 November (right) 2020. Thermal activity is present at several locations within the summit crater (upper right of each image) and in the SW part of the caldera (lower left). SWIR rendering (bands 12, 8A, 4). Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).


Sinabung (Indonesia) — November 2020 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Explosions begin again on 8 August 2020; dome growth confirmed in late September

Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.

Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.

Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.

A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.

Figure (see Caption) Figure 77. Numerous explosions were recorded at Sinabung during August 2020. An ash plume rose to 5,000 m above the summit on 10 August (left) and drifted both NE and SE. On 14 August gray and brown ash plumes rose 1,000-4,200 m above the summit and drifted S, SW, SE and NE (right) while ashfall covered crops SE of the volcano. Courtesy of PVMBG (Sinabung Eruption Notices, 10 and 14 August 2020).

White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).

Figure (see Caption) Figure 78. On 23 August 2020 an explosion at Sinabung produced a gray ash plume that rose 1,500 m above the summit and produced pyroclastic flows that traveled 1,000 m down the E and SE flanks. Courtesy of PVMBG (Sinabung Eruption Notice, 23 August 2020).
Figure (see Caption) Figure 79. An explosion on 25 August 2020 at Sinabung produced an ash plume that rose 800 m above the peak and drifted W and NW. Courtesy of PVMBG (Sinabung Eruption Notice, 25 August 2020).
Figure (see Caption) Figure 80. Significant sulfur dioxide emissions were measured at Sinabung during August 2020 when near-daily explosions produced abundant ash emissions. A small plume was also recorded from Kerinci on 19 August 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.

The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).

Figure (see Caption) Figure 81. A new lava dome appeared at the summit of Sinabung in late September 2020. Block avalanches from the dome were first reported on 8 October. Satellite imagery indicating a thermal anomaly at the summit was very faint at the end of September and slightly stronger by the end of October. The dome grew slowly between 30 September (top) and 22 October 2020 (bottom). Photos taken by Firdaus Surbakti, courtesy of Rizal.
Figure (see Caption) Figure 82. Pyroclastic flows at Sinabung were accompanied ash emissions multiple times during the last week of October, including the event seen here on 27 October 2020. Courtesy of PVMBG and CultureVolcan.
Figure (see Caption) Figure 83. Block avalanches from the growing summit dome at Sinabung descended the SE flank on 28 October 2020. The dome is visible at the summit. Courtesy of PVMBG and MAGMA.
Figure (see Caption) Figure 84. A very faint thermal anomaly appeared at the summit of Sinabung in Sentinel 2 satellite imagery on 28 September 2020 (left). One month later on 28 October the anomaly was bigger, corroborating photographic evidence of the growing dome. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).


Heard (Australia) — November 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Persistent thermal anomalies in the summit crater from June through October 2020

The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.

Figure (see Caption) Figure 43. A small pulse in thermal activity at Heard was detected in early June and continued through July 2020, according to the MIROVA system (Log Radiative Power). Thermal anomalies appeared again starting in late August and continued intermittently through mid-October 2020. Courtesy of MIROVA.

Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).

Figure (see Caption) Figure 44. Thermal satellite images of Heard Island’s Big Ben volcano showed strong thermal signatures (bright yellow-orange) sometimes accompanied by gas-and-steam emissions drifting SE (top left) and NE (bottom right) during June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 45. Thermal satellite images of Heard Island’s Big Ben volcano showed persistent thermal anomalies (bright yellow-orange) near the summit during July through October 2020. During 14 (top left) and 17 (top right) July a second hotspot was visible NW of the summit. By 22 October (bottom right) the thermal anomaly had significantly decreased in strength in comparison to previous months. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — October 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.

Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).

Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.

Month Avg. daily explosions by week Max plume heights (km above the crater) Plume drift (km) and direction Communities reporting ashfall Minimum days with SO2 over 2 DU SO2 emissions per day (tons) by week
Jun 2020 20, 10, 9, 13 1.5-4 30 km, SE, S, SW, NE, W, E Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa 28 8,400, 2,200, 3,100, 7,600
Jul 2020 20, 15, 11, 12, 19 2-2.6 15-30 km E, NE, NW, SE, SW, S, W Achoma and Chivay 23 4,400, 6,000, 1,900, 2,100, 5,900
Aug 2020 18, 12, 9, 29 1.7-3.6 20-30 km W, SW, SE, S, E, NW - 20 2,300, 3,800, 5,300, 10,700
Sep 2020 39, 35, 33, 38, 40 1.8-3.5 25-35 km SE, S, SW, W, E, NE, N, NW, W Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta 28 9,700, 2,600, 8,800, 7,800, 4,100
Figure (see Caption) Figure 83. Sulfur dioxide plumes were captured almost daily from Sabancaya during June through September 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes occurred on 19 June (top left), 5 July (top right), 30 August (bottom left), and 10 September (bottom right) 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 84. Thermal activity at Sabancaya varied in power from 13 October 2019 through September 2020, but was consistent in frequency, according to the MIROVA graph (Log Radiative Power). A pulse in thermal activity is shown in late August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 85. Sentinel-2 thermal satellite imagery showed frequent gas-and-steam and ash plumes rising from Sabancaya, accompanied by ongoing thermal activity from the summit crater during June through September 2020. On 23 June (top left) a dense gray-white ash plume was visible drifting E from the summit. On 3 July (top right) and 27 August (bottom left) a strong thermal hotspot (bright yellow-orange) was accompanied by some degassing. On 1 September (bottom right) the thermal anomaly persisted with a dense gray-white ash plume drifting SE from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 23 June 2020 (top left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.

Figure (see Caption) Figure 86. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.5-4 km above the crater during June 2020. Images are showing 8 (left) and 27 (right) June 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-24-2020/INGEMMET Semana del 08 al 14 de junio del 2020 and RSSAB-26-2020/INGEMMET Semana del 22 al 28 de junio del 2020).

Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.

Figure (see Caption) Figure 87. Multiple daily explosions at Sabancaya produced ash plumes that rose 2-3.5 km above the crater during July 2020. Images are showing 7 (left) and 26 (right) July 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-28-2020/INGEMMET Semanal: del 06 al 12 de julio del 2020 and RSSAB-30-2020/INGEMMET Semanal: del 20 al 26 de julio del 2020).

OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.

Figure (see Caption) Figure 88. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.7-3.6 km above the crater during August 2020. Images are showing 1 (left) and 29 (right) August 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-31-2020/INGEMMET Semanal del 27 de julio al 02 de agosto del 2020 and RSSAB-35-2020/INGEMMET Semanal del 24 al 30 de agosto del 2020).

Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.

Figure (see Caption) Figure 89. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.8-2.6 km above the crater during September 2020. Images are showing 4 (left) and 27 (right) September 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-36-2020/INGEMMET Semanal del 31 de agosto al 06 de septiembre del 2020 and RSSAB-39-2020/INGEMMET Semanal del 21 al 27 de septiembre del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — October 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).

Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.

Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.

Month Minimum total days of eruptions Ash plume height (m above the crater) Notable plume drift Gas-and-steam plume height (m above the crater)
Apr 2020 16 200-1,000 - 50-1,500
May 2020 15 200-3,000 W, NW, SW 200-2,000
Jun 2020 8 100-2,000 N -
Jul 2020 10 1,000 - -
Aug 2020 18 500-1,000 - 500
Sep 2020 13 700 - 50

During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.

Figure (see Caption) Figure 30. Webcam image of small hydrothermal eruptions at Rincón de la Vieja on 19 April 2020. Image taken by the webcam in Dos Ríos de Upala; courtesy of OVSICORI-UNA.

Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.

Figure (see Caption) Figure 31. Webcam images of gray gas-and-steam and ash emissions at Rincón de la Vieja on 21 (left), and 27 (right) May 2020. Both images taken by the webcam in Dos Ríos de Upala and Sensoria; courtesy of OVSICORI-UNA.

There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.

Figure (see Caption) Figure 32. Webcam images of gray gas-and-steam and ash plumes rising from Rincón de la Vieja on 1 (top left), 2 (top right), 7 (bottom left), and 13 (bottom right) June 2020. The ash plume on 1 June rose between 1.5 and 2 km above the crater. The ash plume on 13 June rose 1 km above the crater. Courtesy of OVSICORI-UNA.

Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.

On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.

Figure (see Caption) Figure 33. Webcam image of an eruption plume rising above Rincón de la Vieja on 17 September 2020. Courtesy of OVSICORI-UNA.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Fuego (Guatemala) — December 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Daily explosions, ash emissions, and block avalanches during August-November 2020

Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.

Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.

Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.

Month Explosions per hour Ash Plume Heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Communities reporting ashfall
Aug 2020 2-15 4.3-4.8 SW, W, NW, S, N, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa
Sep 2020 3-16 4.3-4.9 W, SW, NW, N, S, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita
Oct 2020 3-19 4.1-4.8 SW, W, S, SE, N, E, 10-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde
Nov 2020 4-14 4.0-4.8 S, SW, SE, W, NW, 10-35 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia
Figure (see Caption) Figure 136. Consistent daily ash emissions produced similar looking ash plumes at Fuego during August-November 2020. Plumes usually rose to 4.5-4.8 km altitude and drifted SW. Courtesy of INSIVUMEH.

The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.

Figure (see Caption) Figure 137. The MIROVA graph of activity at Fuego for the period from 15 January through November 2020 suggested persistent moderate to high-level heat flow for much of the time. Courtesy of MIROVA.
Figure (see Caption) Figure 138. Atmospheric penetration rendering of Sentinel-2 satellite images (bands 12, 11, 8A) of Fuego during August-November 2020 showed continued thermal activity from block avalanches, explosions, and lava flows at the summit and down several different ravines. Courtesy of Sentinel Hub Playground.

Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.

The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.

Figure (see Caption) Figure 139. Avalanche blocks descended the Ceniza ravine (left) and the Las Lajas ravine (right) at Fuego on 17 September 2020. The webcam that captured this image is located at Finca La Reunión on the SE flank. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEVFGO # 76-2020, 18 de septiembre de 2020, 14:30 horas).

The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.

Figure (see Caption) Figure 140. Heavy rains on 9 October 2020 at Fuego caused lahars in all the major ravines. Debris from Las Lajas ravine overflowed highway RN-14 near the community of San Miguel on the SE flank, the area devastated by the pyroclastic flow of June 2018. Courtesy of INSIVUMEH (BEFGO #96 VOLCAN DE FUEGO- ZONA CERO RN-14, SAN MIGUEL LOS LOTES y BARRANCA LAS LAJAS, 09 de octubre de 2020).

On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Kikai (Japan) — November 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Explosion on 6 October 2020 and thermal anomalies in the crater

Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).

Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).

Figure (see Caption) Figure 17. White gas-and-steam emissions rose 1 km above the crater at Satsuma Iwo Jima (Kikai) on 25 May (top) 2020. At night, occasional incandescence could be seen in the Iodake crater, as seen on 29 May (bottom) 2020. Both images taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, May 2nd year of Reiwa [2020]).

A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).

Figure (see Caption) Figure 18. Webcam images of the eruption at Satsuma Iwo Jima (Kikai) on 6 October 2020 that produced an ash plume rising 200 m above the crater (top). Nighttime summit crater incandescence was also observed (bottom). Images were taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).
Figure (see Caption) Figure 19. Weak thermal hotspots (bright yellow-orange) were observed at Satsuma Iwo Jima (Kikai) during late September through October 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. Webcam image of a white gas-and-steam plume rising 1.1 km above the crater at Satsuma Iwo Jima (Kikai) on 27 October 2020. Image was taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Manam (Papua New Guinea) — October 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020

Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.

Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.

Figure (see Caption) Figure 76. Distinct sulfur dioxide plumes rising from Manam and drifting generally W were detected using data from the TROPOMI instrument on the Sentinel-5P satellite on 28 April (top left), 24 May (top right), 16 July (bottom left), and 12 September (bottom right) 2020. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 77. Intermittent thermal activity at Manam increased in power and frequency beginning around late July and continuing through September 2020, as shown on the MIROVA Log Radiative Power graph. Courtesy of MIROVA.
Figure (see Caption) Figure 78. Sentinel-2 thermal satellite images showing a persistent thermal anomaly (yellow-orange) at Manam’s summit craters (Main and South) each month during April through August; sometimes they were seen in both summit craters, as shown on 8 June (top right), 28 July (bottom left), and 17 August (bottom right). A particularly strong anomaly was visible on 17 August (bottom right). Occasional gas-and-steam emissions accompanied the thermal activity. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.

Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 30, Number 09 (September 2005)

Managing Editor: Richard Wunderman

Barren Island (India)

Lava emissions through September-August; high fire fountains; lava enters sea

Cleveland (United States)

Minor eruptions during June-October 2005 after 4 years of quiet

Dabbahu (Ethiopia)

First historical eruption on 26 September; ash emission and a pumice dome

Erta Ale (Ethiopia)

Agitated lava lake during time of September 2005 earthquake swarm ~ 100 km S

Galeras (Colombia)

Hazard graphics; vigorous 2004 eruptions generally quieting thus far in 2005

Montagu Island (United Kingdom)

September 2005 satellite image and infrared data portray ongoing eruption

Negra, Sierra (Ecuador)

Caldera erupts starting 22 October 2005 at fissure on caldera's inner N wall

Santa Ana (El Salvador)

Sudden eruption on 1 October 2005; thousands evacuated

Ulawun (Papua New Guinea)

Thick plumes and earthquakes during late August to mid-September 2005

Witori (Papua New Guinea)

Steaming, and few earthquakes, during field observations in September 2005



Barren Island (India) — September 2005 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Lava emissions through September-August; high fire fountains; lava enters sea

The latest eruption of Barren Island began about 28 May 2005 (BGVN 30:05 and 30:07). The following additional information regarding this eruption was provided by Dhanapati Haldar (Presidency College). A photograph (figure 11) taken on 21 July by the Indian Coast Guard indicated that the lava pouring from the main crater had cascaded down to arrive at two points on the W shore. The seawater boiled profusely.

Figure (see Caption) Figure 11. Photo taken on 21 July 2005 showing the Barren Island eruption continuing unabated. Lava cascaded down and into the sea along the island's W shore. It entered the sea at two points following the pre-existing lava routes of the 1991 and 1994-95 eruptions. Courtesy of the Indian Coast Guard.

On 28 August, a senior geologist with the Central Ground Water Board (CGWB), A. Kar, made observations from a ship (figure 12). Kar noted that Strombolian eruptive activity had increased, and was both explosive and effusive in nature. The main crater and a newly created vent on the N flank were active. Streams of hot lava flowed down the slope of the cinder cone at the main crater. This cinder cone was built during the eruption in 1787-1832 and modified during subsequent eruptive pulses in 1991, in 1994-95, and (the current episode) in 2005. Kar's observations on 28 August 2005 noted that the descending lava flows traveled to the W shore, entering the sea near the lone preexisting landing site and ~ 250 m S of it. The latter was where the lava stream had met the sea during the 1994-95 eruption. Gas columns rose to more than 2 km, and fire fountains attained a height of around 300 m.

Figure (see Caption) Figure 12. Photo taken 26 August 2005 showing Barren Island in Strombolian eruption. The main crater was active, and both explosive and effusive activity had shifted N. Hot lava (seen as incandescent strips) was flowing down the slope of the cinder cone. As before, lava entered the sea at two points on the W shore. Courtesy of A. Kar.

Kar visited the island again on 2 September and noted that eruptive activity was continuing unabated. As before, a thick gas plume hovered over the N part of the island, and hot lava still flowed down into the sea. The lava coming in contact with sea water was immediately broken into fine particles that were forcefully thrown into the air to a height of nearly 100 m. Accompanying steam rose to a height of about 300-400 m before being drawn away by the prevailing wind. The eruption column's top formed a spectacular mushroom of gas and smoke, blowing to the N. Subsequent reports received from the Indian Coast Guard indicated that the eruption was continuous until at least 25 September.

All the active vents so far observed during 2005 eruption, including the S footwall vent, lie in a zone trending almost N-S. This zone conforms with a pre-existing surficial fracture. This alignment of the active vents had been noted during the 1991 and 1994-95 eruptions, and, as previously mentioned, the lava streams of the current eruption retraced the 1991 and 1994-95 lava routes.

According to Haldar, recent lava samples show large (to 5 mm) megacrysts and phenocrysts of plagioclase (An 93-57), olivine (Fo 85-70), and diopside (Mg 47-44, Fe 16-10). The samples also included a groundmass of glass charged with microlites of plagioclase (An 50-45), augite, olivine, titanomagnetite, and rare orthopyroxene. The 2005 lavas contain relatively few olivine megacrysts, but are rich in plagioclase megacrysts, similar to the 1994-95 lavas.

The bulk chemical composition of the lava falls within the basalt field (table 2), which was comparable with the compositions of the 1994-95 lava. In comparison, the 2005 lava is slightly richer in both MgO and Na2O and slightly lower in SiO2.

Table 2. Analysis of one lava sample (number B1/05) erupted in June 2005 from Barren Island volcano. EMPA stands for electron microprobe analysis. Courtesy of Dhanapati Haldar.

Analyzed Oxide Bulk composition (%) Groundmass glass composition (EMPA) (%)
SiO2 49.80 58.31
TiO2 0.82 0.69
Al2O3 21.04 19.38
Fe2O3 (total) 8.45 --
FeO (total) -- 6.16
MnO 0.14 0.02
MgO 4.23 1.30
CaO 10.91 7.13
Na2O 3.47 5.26
K2O 0.39 0.71
P2O5 0.10 0.18

As this issue went to press Haldar noted that Barren Island continued to vigorously spew lava, gas, and ash at least as late as 10 November 2005. The eruption was unabated since the last week of May 2005.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Dhanapati Haldar, Presidency College, Kolkata, 4/3K/2 Ho-Chi-Min Sarani, Shakuntala Park, Biren Roy Road (West), Kolkata-700 061, India; Geological Survey of India, 27 Jawaharlal Nehru road, Kolkata 700 016, India (URL: https://www.gsi.gov.in/); Indian Coast Guard, National Stadium Complex, New Delhi 110 001, India (URL: http://indiancoastguard.nic.in/indiancoastguard/).


Cleveland (United States) — September 2005 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Minor eruptions during June-October 2005 after 4 years of quiet

Mount Cleveland produced significant ash plumes during March 2001 (BGVN 26:04). Volcanic unrest continued through 4 May 2001, and signals consistent with volcanic seismicity were detected by an Alaska Volcano Observatory (AVO) seismic network 230 km E. By the end of May, neither eruptive activity nor thermal anomalies were observed. Until July 2005, no alert level was assigned, and AVO monitoring produced no reports on Cleveland.

Cleveland lacks a real-time seismic network. Accordingly, even during times of perceived quiet there is an absence of definitive information that activity level is at background. AVO's policy for volcanoes without seismic networks is to not get assigned a color code of Green.

Satellite imagery of Cleveland taken during 24 June to 1 July 2005 showed increased heat flow from the volcano and a possible debris flow. AVO stated that although observations were inhibited by cloudy weather, they indicated the possibility of increased volcanic activity. AVO did not assign a Concern Color Code to Cleveland due to the lack of seismic monitoring and limited satellite observations.

Satellite images during 1-8 July showed increased heat flow, thin ash deposits, and possible debris flows extending ~ 1 km down the flanks from the summit crater. AVO assigned a Concern Color Code of Yellow on 7 July. On 18 July satellite imagery showed steam emanating from Cleveland's summit and evidence of minor ash emissions. Meteorological clouds obscured Cleveland during the third week of July. During 22-29 July satellite images showed minor steaming from the summit, possible fresh localized ash deposits, and a weak thermal anomaly.

On 4 August satellite images showed a thermal anomaly. On 27 August AVO reduced the Concern Color Code at Cleveland from Yellow to "Not Assigned" because there had been no evidence of activity since a thermal feature was observed on satellite imagery from 11 August. A thermal feature was detected on several satellite images obtained on 31 August, and one on 19 September, but there was no evidence of eruptive activity.

On 7 October, AVO raised the Concern Color Code to Orange after detecting a small drifting volcanic ash cloud. The cloud was seen in satellite data at a spot ~ 150 km ESE of Dutch Harbor at 1700 UTC. Based on data from a regional seismometer at Nikolski, AVO concluded that the ash came from a small Cleveland eruption at approximately 0145. AVO, in consultation with the National Weather Service, estimated the top of the ash cloud to be no more than 4,600 m altitude. The ash cloud dissipated and was not detected via satellite after 1800 UTC. Three days passed during which there were no new observations of eruptive activity at Cleveland from satellite data, pilots, or ground-based observers. Accordingly, on 10 October the Concern Color Code was reduced to Yellow.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 it produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Washington Volcanic Ash Advisory Center (VAAC), Washington, DC, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Dabbahu (Ethiopia) — September 2005 Citation iconCite this Report

Dabbahu

Ethiopia

12.595°N, 40.48°E; summit elev. 1401 m

All times are local (unless otherwise noted)


First historical eruption on 26 September; ash emission and a pumice dome

An eruption began on 26 September 2005 in the Afar triangle region of NW Ethiopia, near the Afar's W topographic margin, a spot ~ 330 km E of Lake Tan'a (the source of the Blue Nile river) and ~ 320 km NNW of the city of Djibouti. The venting took place on the flanks of Dabbahu (Boina), a volcano without previous historical eruptions. What follows is a brief synopsis of seismicity available from the USGS and some field observations from Gezahegn Yirgu, Dereje Ayalew, Asfawossen Asrat, and Atalay Ayele of Addis Ababa University (AAU). Shortly after the Bulletin editors received the AAU report, normal lines of communication were temporarily halted due to civil unrest. Consequently, this report was reviewed and augmented by Anthony Philpotts of the University of Connecticut, who had flown to Erta Ale and Dabbahu with them and other scientists on 16 October 2005.

Dabbahu, a stratovolcano, also goes by several other names, including Mount Dabbahu, Boina, Moina, and Boyna. The eruption occurred at least 5 km NE of Dabbahu's summit area, at a flat spot referred to by the names Da'Ure and Teru Boyna. The profusion of names and spellings for this region of Africa partly stems from widely dissimilar alphabets; the one used in the region has over 100 letters, complicating conversion into languages having only 26.

The Dabbahu eruption has been confusing. Initial news reports shed little light on the eruption's source, size, or impact. Several news reports stated that nearby earthquakes had caused an eruption at Erta Ale, which is 113 km N of Dabbahu, but that was not the critical eruption in this region during late September. (Seismicity, however, did appear associated with an elevated level of unrest at Erta Ale in October-see report in this issue.) The confusion propagated into the Smithsonian-USGS Weekly Report of 5-11 October 2005, which incorrectly attributed some details of the Dabbahu eruption to Erta Ale. A correction was issued and the report was withdrawn. Official sources and news reports also seem to have initially overstated the impact (e.g., statements like 50,000 nomads evacuated, almost 500 goats killed, etc.).

In a later, more measured report, The Ethiopian Herald posted a 6 October article on the web that noted the following.

"... the [Disaster Prevention and Preparedness Commission] has sent relief aid, household utensils and a tanker truck to areas affected by the natural disaster. A regional committee set up in charge of studying the magnitude of the disaster has already sent its report to the commission. According to the report, 1,215 quintals [121,500 kg] of food aid has been dispatched to 6,384 citizens displaced from Boya and Debawo ... and resettled in Debabo locality, 20 km from Teru. Some 18,234 various household utensils, 1,280 blankets as well as 119 roles of plastic sheets were being transported to the area."

According to faculty at Addis Ababa University, prior to the eruption and in addition to the earthquake swarm there was also volcanic tremor, as well as faulting, fracturing, and possible local landslides.

Earthquake swarm. During September-4 October 2005, an earthquake swarm consisting of 131 events occurred at and immediately surrounding Dabbahu (figure 1 and table 1). The swarm was sudden and comparatively intense, with magnitudes ranging from body-wave magnitude (mb) 3.9 to 5.2. Instruments registered earthquakes of both the highest number and magnitude during 24-26 September, just prior to the 26 September eruption. Seismicity in the area declined sharply on 27 September and stopped on 4 October. According to another data set, earthquakes occurred in the region during the 5 years prior to this swarm at an average rate of ~ 12 per year.

Figure (see Caption) Figure 1. A map showing Dabbahu volcano in the Afar triangle, along with epicenters from the earthquake swarm of 14 September to 4 October 2005 The solid triangles indicate Holocene volcanoes, although the one for Dabbahu is swamped by the pattern of epicenters. The Alayta shield volcano (labeled "A") sits 32.7 km NNE of Dabbahu's summit and erupted several times in the early 1900's. Epicenters were compiled from the U.S. Geological Survey (USGS) National Earthquake Information Center website.

Table 1. Daily number and maximum magnitude of earthquakes located in the Dabbahu region during 14 September-4 October 2005 (up to 42 per day, with a total of 131 earthquakes). Mw stands for moment magnitude; mb stands for body-wave magnitude. Data courtesy of National Earthquake Information Center, USGS.

Date Events Maximum Magnitude
14 Sep 2005 1 4.6 mb
20 Sep 2005 2 5.5 Mw
21 Sep 2005 16 4.9 mb
22 Sep 2005 12 4.9 mb
23 Sep 2005 9 4.8 mb
24 Sep 2005 29 5.6 Mw
25 Sep 2005 42 5.2 mb
26 Sep 2005 9 5.2 mb
27 Sep 2005 1 4.5 mb
28 Sep 2005 5 5.1 mb
29 Sep 2005 2 4.8 mb
01 Oct 2005 1 4.5 mb
02 Oct 2005 1 5.0 mb
04 Oct 2005 1 4.5 mb

First-hand observations. Gezahegn Yirgu of AAU submitted a preliminary description of the eruption. He reported that people in the area noted that on 26 September at about 1300 a very strong earthquake occurred. That was followed by a dark column of "smoke" that rose high into the atmosphere and spread out to form an umbrella-shaped cloud. Emissions darkened the area for 3 days and 3 nights. On their first visit, provoked by the abnormal seismicity, his team departed the site just two hours before the 26 September eruption. He went back to Dabbahu for several more visits, some of which included geologists from overseas.

The visitors found that a minor explosive eruption had taken place from a fissure-vent system, producing a light-colored ash layer that extended over 500 m from the vent (figure 2). The eruption threw out pre-existing near-surface pyroclastic deposits (sediments) and felsic lavas, and redeposited them near the vent (figure 3). Some of the rocks that were thrown 20 m from the vent measured 2-3 m across. Fine white ash fell in the surrounding region as far as Teru village, 40 km SW of the eruption site.

Figure (see Caption) Figure 2. An aerial view of the fissure vent at Da'Ure (Dabbahu) taken around 4-5 October 2005, showing the post-eruptive scene captured by a camera that was aimed down and toward the NW. The fissure vent, which extends ~500 m and trends nearly N-S, cuts across the photo diagonally (for sense of scale, see people in figure 4). The deepest part, ~100 m below the surface, lies along the vent's base at its widest point. It exposes dark material at the bottom (see figure 3). N of that wide segment lies a cauliflower-shaped pumice dome, a feature ~30 m in diameter. What appears as a short, narrow segment of the fissure vent continuing in the distance behind (to the N of) the dome is actually longer and more prominent than it appears, owing to foreshortening due to camera angle, surface topography, and perspective to the more distant location. This northernmost segment of the vent is roughly one-third as long as the segment in front of the dome. Photo taken by Asfawossen Asrat.
Figure (see Caption) Figure 3. An aerial view of the fissure vent at Da'Ure (Dabbahu) taken around 4-5 October 2005, showing the post-eruptive scene captured by a camera aimed down and approximately NE. This image presents enlarged views of both the pumice dome and the fissure vent's lower portions. (For sense of scale, see figure 4). Photo taken by Asfawossen Asrat.

Roughly two-thirds of the way from the S end of the fissure vent, a 30-m-diameter pumice dome formed. From within the fractures in this dome, the team heard a sound from below resembling the sound of a helicopter engine or a boiling liquid.

The bulk of Yirgu's report on the second visit to the eruption site, on 4-5 October, follows.

"A team of three geologists and one geophysicist (Gezahegn Yirgu, Dereje Ayalew, Asfawossen Asrat, and Atalay Ayele) revisited the Da'Ure locality (at approximately 120° 43' 37" N, 40° 32' 55" E) immediately adjacent to the NE flank of the Quaternary Boina felsic complex. This locality is the southwestern extension of the area we visited a week earlier and where we observed a number of newly opened parallel fissures and a major reactivated normal fault.

"We first investigated the area where a volcanic eruption had been reported. Here we observed the presence of a wide and elongate fissure more than 500 m long and about 60 m deep [(figures 2-4)]. The elongate fissure attains a maximum width of about 100 m where a semi-circular pit has formed and from where the explosive eruption appears to have taken place. This elongate vent is oriented almost N-S [trending N10W] and has broken through felsic pyroclastic deposits and lavas. Two smaller pits were also observed farther N along the fissure [situated] to the N of the major pit. A very fine and light grey ash has been deposited on both sides of the elongate fissure with the ash cover extending more than 500 m away from the vent. Beneath the ash deposit lies a sequence of loose layers consisting of mixed volcanic ash and ejecta from pre-existing fissure wall rocks. These layers have a total thickness of about 20 m near the large pit."

Figure (see Caption) Figure 4. A view taken from Da'Ure's (Dabbahu's) new pumice dome looking S down the fissure vent on 16 October 2005, with people for scale. Part of the outer flank of Dabbahu is visible on the right side of the photo; Dabbahu's central area lies farther to the right off the margin of the photo. Courtesy of Anthony Philpotts.

At the pumice dome Yirgu noted "... intense degassing is occurring with the production of SO2 as evidenced by its smell as far as 500 m away. Degassing is also visible along the length of the vent as well as through nearby fissures. The local people have reported that on 26 September 2005 at about 1300 local time a very strong earthquake shook the area. This was followed by a dark column of 'smoke' that rose high into the atmosphere and spread out to form a cloud, which darkened the area for three days and three nights. Our field observations were consistent with . . . [a minor ejection] of volcanic ash from a small vent or vents along the opened fissure."

"In the same locality, we also studied the newly formed second-order fractures and fissures, most of which were located on the eastern side of the main eruptive fissure/vent. Here, the [roughly N- to S-trending] fractures and fissures were all parallel to each other .... They were better developed on unconsolidated pyroclastic deposits and sediments; they affected an area nearly 700 m away from the main eruptive vent/fissure; spacing is commonly between 10 and 20 m; some extend discontinuously along strike for over 500 m, as observed from the helicopter; open fissures in the pyroclastic deposits measure up to 20 cm wide with common elliptical pits or collapse structures between fissures up to 4 m wide and up to 4 m deep.

"We have also observed a major reactivation on a N- to S-trending normal fault located some 500 m to the E of the elongate eruptive vent/opening. This fault breaks through felsic lavas and unwelded pyroclastic deposits and has a reactivated displacement (down thrown to the W) reaching half a meter in places. This reactivated fault extends . . . discontinuously for at least three kilometers as observed from the helicopter. Degassing is occurring along some parts of this fault."

Yirgu also said that, according to the AAU Geophysical Observatory, seismicity continued in early October in the area affected by the eruption, faulting, and fissuring.

Other data from a 16 October visit. Anthony Philpotts accompanied a team who, along with AAU colleagues, were helicoptered to the eruption site, which had completely ceased by this time. At the eruption site and on the helicopter trip to and from it, he saw no dead nor injured livestock. The team also visited a refugee camp for displaced nomads.

In discussions with AAU colleagues who saw the fissure vent during multiple visits, and in comparing photographs, it appeared that material exposed at depth in the wall of the vent changed to a lighter color. Presumably, these color changes were linked to water, initially present but that had evaporated in the intense heat of the Afar day. Philpotts suggested that if the vent did provide a window into the water table, groundwater may have added to the explosive activity.

Philpotts said that when they arrived, on 16 October, the pumice dome (shown in close-up in figure 5) still yielded temperatures of 400°C in cracks. The pumice dome lacked any deposits on top of its upper surfaces, and thus clearly represented the last volcanic feature to form. Some post-eruptive faulting was noticed with offsets on the order of 10 m.

Figure (see Caption) Figure 5. Curving fractures in the top of the new Da'Ure (Dabbahu) pumice dome; view looking N. Two people are visible in the photo, one immediately behind the large central fracture. It was from these fractures the boiling noise had been heard the previous week. No sound was heard during the visit on 16 October. Courtesy of Anthony Philpotts.

Philpotts made several thin sections of pumice dome samples, and found it to be almost totally aphyric. It contains a very few rounded (resorbed) sanidine phenocrysts (figure 6) and needle-shaped microlites with high refractive index (pyroxene?). He noted that "The microlites undoubtedly formed during emplacement of the dome, but the resorption of the sanidine phenocrysts must have occurred at depth prior to eruption and probably indicates heating of the source magma chamber with an influx of hotter (basaltic?) magma."

Figure (see Caption) Figure 6. A rounded, twinned phenocryst of sanidine feldspar in pumice from the Da'Ure (Dabbahu) dome in the center of the vent. Dark circles are air bubbles trapped during preparation of the thin section. The photo was taken with partly crossed polarizing filters; the width of the entire field is 1.62 mm. Courtesy of Anthony Philpotts.

Geologic Background. Dabbahu (also known as Boina, Boyna, or Moina) is a Pleistocene-to-Holocene volcanic massif forming an axial range of the Afar depression SSW of the Alayta massif. Late-stage pantelleritic obsidian flows, lava domes, and pumice cones form the summit and upper flanks. The volcano rises above the Teru Plain and was built over a volumetrically dominant base of basaltic-to-trachyandesitic lava flows of a shield volcano. Late-stage basaltic fissure eruptions also occurred at the NW base of the volcano. Abundant fumaroles are located along the crest of the volcano and extend NE towards Alayta. The first historical eruption took place from a fissure vent on the NE flank in September 2005, producing ashfall deposits and a small pumice dome. More than 6000 people were evacuated from neighboring villages.

Information Contacts: Gezahegn Yirgu, Dereje Ayalew, Asfawossen Asrat, and Atalay Ayele, Department of Earth Sciences, Addis Ababa University, PO Box: 1176, Addis Ababa, Ethiopia; Anthony Philpotts, University of Connecticut, U-45, Beach Hall, Storres, CT 06269, USA; National Earthquake Information Center (NEIC), US Geological Survey, Geologic Hazards Team Office, Colorado School of Mines, 1711 Illinois St., Golden, CO 80401, USA (URL: https://earthquake.usgs.gov/); The Ethiopian Herald, Addis Ababa, Ethiopia.


Erta Ale (Ethiopia) — September 2005 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Agitated lava lake during time of September 2005 earthquake swarm ~ 100 km S

In conjunction with their investigation of eruptive activity related to a swarm of earthquakes at Dabbahu/Boina, a team of geologists from Addis Ababa University (AAU) also undertook field observations at Erta Ale, with the aid of a military helicopter (see map in this issue of BGVN, the report on Dabbahu/Boina). What follows is their report combined with other information they gathered.

Between 21 and 24 September 2005, the local people saw, from a distance, red and glowing light shooting and rising into the air above Erta Ale. This was an indication that a Strombolian eruption probably occurred, emitting a significant volume of fresh magma within and possibly out of the pit.

The AAU team surveyed Erta Ale's craters at about 0930 on 26 September from the helicopter, as landing was not possible. Within the small southern pit crater of the main crater, they observed a new cone-shaped construct and the presence of an actively convecting lava lake in the center of the new cone. The lava lake occupied the entire lower/inner pit with hot red lava visibly overturning at the edges of the pit. Molten lava was breaking through the lake's solidified black crust. In the northern pit crater, there was a conspicuous solidified lava bulge with dark emissions along the crater walls. No incandescent lava was visible in this pit.

In addition to their direct observations, the AAU team studied videos taken by Walta Information Center of the southern pit on November 2004 and 26 September 2005. The comparison revealed significant changes, particularly in the morphology and activity of the southern pit crater. In the later videos the main crater/pit had widened significantly, with portions of the earlier crater walls having collapsed into the lava lake. There was a new cone-shaped construct within the crater in place of the previous platform that existed between the rim of the outer crater/pit and the lower pit. The new cone was estimated to be some 20 to 30 m from the top of the crater rim. The new cone apparently contained layers of basaltic scoria covered by fresh lava flows. The combined thickness of tephra and lava was estimated to be 20 to 30 m. The lava lake occupied the entire width of the inner crater/pit and was then bounded by steep sides. The lake's surface stood 20 to 30 m below the cone's top.

Anthony Philpotts accompanied Gezahegn Yirgu and colleagues from Addis Ababa University faculty on a helicopter visit to Erta Ale on 15 October. They found the lava lake incredibly active, much more so than when filmed by earlier visitors in March 2005.

A brief review of satellite thermal anomaly data from MODIS/MODVOLC revealed an absence of thermal activity between 12 October 2004 and 31 March 2005, with a renewal beginning on 31 March 2005, increasing substantially in mid-2005 and continuing vigorously through at least 2 November 2005.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: Gezahegn Yirgu, Department of Earth Sciences, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia; Walta Information Centre, Woreda Kirkos, Kebele 05, House No. 095, PO Box 12918, Addis Ababa, Ethiopia (URL: http://www.waltainfo.com/); Anthony Philpotts, University of Connecticut, U-45, Beach Hall, Storrs, CT 06269, USA; MODIS/MODVOLC Thermal Alerts Team, Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawaii, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Galeras (Colombia) — September 2005 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Hazard graphics; vigorous 2004 eruptions generally quieting thus far in 2005

In a meeting abstract Gomez and others (2004) wrote, "Following 11 years of relatively low activity, Galeras . . . produced a sequence of ash eruptions in July and August 2004. . .. Initial evidence of the activity transition appeared in the gas measurements [of] early June, followed by a strong increase in the shallow seismic activity below the active cone on 27 June. As in many cases at other volcanoes, the most clear evidence for the transition came in the form of seismic swarms and tremor. The current activity has culminated in two brief episodes of ash emission, on 16 July and 21 July, followed by two longer episodes, [during] 27 July-8 August and 11-19 August. This last episode began with a large explosion and released more ash than any individual episode from 1989 to 1993. Sudden deformation, as well as changes in the electric and magnetic [EM] fields at the crater EM station, and [in] gas parameters such as CO2 concentration and fumarole temperature accompanied the [16 and 21 July] ash emissions. Unfortunately, the EM and gas instruments were lost to ashfall shortly afterward."

The same abstract also noted that "Starting in March 1996, a multiparameter real-time monitoring system was installed at Galeras, as a part of a cooperative program between INGEOMINAS [Instituto Colombiano de Geología y Minería] (Colombia) and the BGR [Bundesanstalt f?r Geowissenschaften und Rohstoffe] (Germany). Broadband seismometers were installed first, with electromagnetic (EM) sensors, sensors for the chemistry and physics of the fumarole gases, and a weather station following later. The data from these instruments augment the short-period seismic network and tiltmeters of Observatorio Vulcanológico de Pasto (OVP). Additional spot measurements [relied upon] visual inspection from the ground or helicopter, a thermal camera[,] and regular geological forays onto Galeras' slopes."

Our previous report covered events through late July 2004 (BGVN 29:07); this report discusses events through mid-October 2005. Besides the eruptions of July through August 2004, another month with vigorous activity was November 2004. A sudden explosion on 21 November drove a plume to 9-10 km altitude. The latter portion of this report interval (June to mid-October 2005) typically involved ongoing though diminished intensity of volcanism and seismicity.

In response to the crisis, authorities produced engaging graphics, reminiscent of landscape paintings, but also containing risk assessments (figures 108 and 109), in the originals as color-coded lines. These graphics accompanied explanatory text. The authorities also produced a colorful poster. In addition, articles on Galeras hazards appeared in local papers, many along with clear graphics. The distance from the summit to central Pasto is only ~ 9 km.

Figure (see Caption) Figure 108. A hazards map prepared for Galeras. The key (upper left) shows symbols for risk zones (high, medium, and low). The settlement Genoy is also spelled Jenoy. This map is slightly modified from one by Observatorio Vulcanológico y Sismológico de Pasto, INGEOMINAS.
Figure (see Caption) Figure 109. A sample of Galeras hazards graphics available during the 2004-2005 crisis. Galeras and surroundings appear in a series of perspectives that also illustrate likely paths of destructive processes. The artwork emphasizes important geography, labels many settlements, and portrays familiar buildings and skylines. Hazard zones are shown by symbols (see key at the bottom). Views are as follows: A: NW-looking view (S-SE flanks, "Pasto"), B: NE-looking view (SW flanks, "Consaca-Yacuanquer"), C: SE-looking view, (NW flanks, "La Florida-Sandona"), and D: SW-looking view, (NE flanks, "Genoy-Nariño"). Copyrighted images courtesy of Observatorio Vulcanológico y Sismológico de Pasto, INGEOMINAS.

July-December 2004. INGEOMINAS noted that the July 2004 emissions came from El Pinta crater and from Deformes fumarolic field. Field observations on 19 July disclosed ash freshly vented from El Pinta crater, forming a deposit that ranged in thickness from 3 mm at the base of the cone to ~ 20 cm near the point of emission.

During the latter half of July 2004 INGEOMINAS noted that emissions rose ~ 600 m above the volcano's summit. Ash was not then visible on satellite imagery. On 21 July 2004 a seismic signal corresponded with a visible plume rising ~ 500 m above the volcano and seen from Pasto. According to a news report, a wide area around the volcano had been declared off limits to visitors. Several higher plumes followed.

According to the Washington VAAC, several ash plumes emitted were visible on satellite imagery during 7-10 August 2004. The highest rising plume reached ~ 6 km altitude.

INGEOMINAS reported that on 11 August at 2349 an eruption sent an ash-and-gas cloud to an unknown height and generated visible incandescence. According to the Washington VAAC, satellite imagery showed an ash plume that rose to ~ 10.7 km altitude. This plume spread in all directions, but mainly to the NE, E, and SW. Later, a thin plume reached a height of ~ 7.3 km altitude and drifted SW into northern Ecuador. A distinctly separate plume also occurred, drifting NW at an altitude of ~ 6.1 km.

Figure 110 shows a graphical depiction of the two plumes issued by the Washington VAAC, which incorporated GOES-12 satellite imagery as part of an advisory sent out at 0807 on 12 August 2004. The observations were from about an hour earlier. This following message was in the 'remarks' part of the advisory."Ash heading [NE] earlier in the night can no longer be seen in satellite imagery. A faint plume of ash is heading SW into northern Ecuador but is slowly becoming diffused in satellite imagery. The ash heading SW is estimated to FL240 [~ 7.3 km altitude]. An ash plume moving NW from the summit is estimated to FL200 [~ 6.1 km altitude]. We will continue to closely monitor and advise earlier than normal if needed."

Figure (see Caption) Figure 110. The Galeras ash plumes were distributed in a Volcanic Ash Advisory (VAA) issued at 1307 UTC on 12 August 2004. When this image was taken at 1215 UTC, the two visible plumes had separated widely; one lingering slightly N of the volcano, the other, larger, reached a higher altitude and drifted over Ecuador. Plume top altitude estimates were 'flight level' (FL) 200 and 240, equivalent to 20,000 and 24,000 feet, ~ 6.1 and ~ 7.3 km altitude. Information sources listed included the GUAYAQUIL Meteorological Watch Office (MWO) and the GOES-12 satellite. (This VAA was issued under the header FVXX20 KNES 121307). Courtesy of the Washington VAAC; analysis by Jamie Kibler.

The next advisory noted that ash had ceased to be visible in the imagery after 0715 (1215 UTC) on 12 August 2004 (in other words, after the image associated with the graphic in figure 110).

Fine ash from the 11 August eruption was deposited in villages near the volcano, including La Florida (~ 10 km NW of the volcano), Nariño, Sandoná, and Consacá, and farther afield in Ancuya, Linares, and Sotomayor (~ 40 km NW of the volcano). News articles reported that during these episodes ~ 230 families were evacuated, mainly from the volcano's N flank. The village of La Florida on the volcano's NW flank was most strongly impacted by the eruption. Ash contaminated potable water in some villages, impacted farm animal's health, and left hundreds of dead fish floating in rivers. On 16 August, ash emissions continued, depositing ash in several villages.

INGEOMINAS reported that gas-and-ash emissions continued at Galeras as of 18 August. Ash fell in villages near the volcano, including La Florida, Sandoná, El Ingenio (within 15 km of the volcano), and farther afield in Samaniego and Sotomayor (between 20 and 40 km from the volcano). During 19 August to 1 September, there was a decrease in the level of seismicity and the number of ash emissions. But, gas-and-steam emissions continued.

During September 2004, tremor associated with ash-and-gas emissions was recorded at Galeras. On the 23rd, ash deposits were seen on the upper N flank. By the 27th, the amount of tremor had decreased significantly, a change that coincided with a decrease in ash emissions. During most of October 2004, emissions of gas and fine ash continued at Galeras. Plumes rose to a maximum height of ~ 1.5 km above the volcano. Instruments recorded small-amplitude tremor associated with gas-and-ash emissions.

INGEOMINAS reported that at 1544 on 21 November 2004 Galeras erupted explosively. A resulting shock wave was felt as far away as Cimarrones (18 km N of the volcano), Chachagui (17 km N of the volcano), and Laguna de La Cocha (20 km SW of the volcano). Effects of the shock wave varied from a loud roar, to the vibration of large windows, to the vibrating sensation of an earthquake. Hot ballistic blocks fell nearly 3 km from the volcano on its eastern flank, producing short-lived forest fires. The eruption produced an ash-and-gas column that rose to an estimated 9-10 km altitude and drifted to the S and W. The Washington VAAC reported that satellite imagery of 21 November at 1815 (i.e., 22 November at 0015 UTC) revealed two separate plumes, a situation somewhat analogous to 11-12 August (figure 110). One set of plumes from the 21 November eruption were estimated to reach 9 km altitude, and they blew to the W. Other plumes interpreted as low-level ash were estimated to be near 4-5 km altitude; these remained in the vicinity of the volcano and showed little motion.

January-September 2005. During January 2005, low-level relatively shallow seismicity continued, and a small amount of deformation towards the W portion of the volcanic cone occurred. On 30 January an emission of gas and ash rose ~ 800 m above the volcano. During the first week of February 2005, small gas-and-ash emissions continued. Ash was deposited in the sectors of Consacá (~ 15 km W of the volcano) and La Florida, and in the city of Pasto (~ 10 km E). Low-level seismicity and a small amount of deformation were recorded.

According to a news article, on 24 May 2005 the Colombian government ordered the evacuation of ~ 9,000 people living near Galeras due to an increase in volcanic activity. INGEOMINAS reported that during 16-23 May, small shallow earthquakes occurred beneath the volcano. Earthquakes believed associated with fracturing within the volcano increased during the night of 21 May to the morning of 22 May. Deformation continued to be recorded at the volcano's summit. There were no ash emissions. Galeras remained at alert level II ('probable eruption in terms of days or weeks') as it has since 19 April 2005.

During early June 2005, seismicity and deformation decreased in comparison to the previous week. On 6 June the alert level was decreased from II to III ('changes in the behavior of volcanic activity have been noted'). During July and August 2005, seismicity chiefly remained low. One exception, a M 2.5 volcano-tectonic earthquake on 4 July 2005, was felt in sections of some towns near the volcano. Generally, observers also noted small amounts of deformation and low rates of gas discharge, with continued emissions from the main and secondary craters. Thirty volcano-tectonic earthquakes were recorded at Galeras during 19-21 August 2005. The earthquakes occurred 3-4 km NW of the volcano's active cone, near the towns of Santa Bárbara, Nariño, and La Florida. About five earthquakes felt by nearby populations occurred at depths of 6-8 km, with the largest (M 4.7) occurring at a depth of 6 km on 21 August.

During September 2005, minor seismicity and minor deformation continued. Seismic signals included 365 minor events near the volcano at less than 6 km depth. The larger September record consisted of 179 volcano-tectonic events, 291 long-period events, 258 hybrid events, and 96 tremor episodes. Some of these earthquakes correlated with gas and fine ash discharges. Flyovers at the end of September confirmed that gas emissions were significantly reduced compared to August 2005.

October INGEOMINAS reports noted occasional steam plumes visible from Pasto, often correlated with and presumably related to increases in rainfall and infiltration of water into hot portions of the volcano. A 5 October 2005 overflight revealed a small increase in gas emissions compared to similar flights during September 2005. Seismicity fluctuated and some instrumentally measured deformation continued.

Reference. Gomez, D., Hellweg, M., Buttkus, B., Boker, F., Calvache, M. L., Cortes, Faber, E., Gil Cruz, F., Greinwald, S., Laverde, C , Narváez, L., Ortega, A., Rademacher, H., Sandmann, Seidl, D., Silva, B., and Torres, R., 2004, A Volcano Reawakens: Multiparameter Observations of Activity Transition at Galeras Volcano (Colombia), Transactions, American Geophysical Union, Fall meeting (session entitled "Sources of Oscillatory Phenomena in Volcanic Systems I; Posters"), December 2004, San Francisco, CA

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Diego Gomez Martinez, Observatorio Vulcanológico y Sismológico de Pasto (OVSP), INGEOMINAS, Carrera 31, 1807 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html; Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); El Spectador; El Pais (URL: http://elpais-cali.terra.com.co/paisonline/); Reuters.


Montagu Island (United Kingdom) — September 2005 Citation iconCite this Report

Montagu Island

United Kingdom

58.445°S, 26.374°W; summit elev. 1370 m

All times are local (unless otherwise noted)


September 2005 satellite image and infrared data portray ongoing eruption

The first recorded eruption of Mt. Belinda volcano (Montagu Island), which began around 20 October 2001, continued (as reported in BGVN 28:02, 29:01, 29:09, 29:10) until at least the latter part of 2005. Information for the following report was prepared and submitted by Matt Patrick of the Hawai'i Institute of Geophysics and Planetology (HIGP) and John Smelie of the British Antarctic Survey, with the assistance of the HIGP Thermal Alerts Team.

This eruption was detected by the MODVOLC automated satellite detection system, which scans for anomalous thermal activity in MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data over the entire Earth approximately twice per day (Wright and others, 2004). Investigators acquired a recent, 23 Sept 2005, cloud-free ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) image (15-30 m pixel size), which provided valuable information on a new phase of activity. It revealed a larger effusive eruption than previously identified in satellite imagery of Montagu Island (figure 9).

Figure (see Caption) Figure 9. ASTER image showing Montagu Island's Mount Belinda on 23 September 2005. Courtesy of HIGP Thermal Alerts Team.

Based on frequent MODVOLC alerts (figure 10) and occasional high-resolution satellite data (ASTER, IKONOS, and Quickbird), Mount Belinda has maintained persistent activity since the start of the eruption. Activity has consisted of continuous steaming and low-intensity explosive events at the summit (presumably Strombolian), producing low-level ash plumes and ubiquitous tephra deposits on the island's ice cover, and at least three distinct effusive events. Several satellite images were posted by HIGP on the National Aeronautics and Space Administration (NASA) Earth Observer website, 13 October 2004 and 19 October 2005.

Figure (see Caption) Figure 10. (A) Chronological graph of radiant heat output from Mount Belinda measured from satellite sensors. The date range depicted along the x-axis of this graph is from late 2001 to September 2005. (B) A plot showing the distance of satellite-measured thermal anomaly pixels from the Mount Belinda vent during the period 2001 to September 2005. Courtesy of HIGP Thermal Alerts Team.

Scientists noted an intense shortwave-IR anomaly at the summit of Mt. Belinda in all cloud-free ASTER images acquired throughout the eruption. This suggested the presence of a lava lake in the summit crater (see Patrick and others, 2005, for more detailed information on the eruption).

Far from slowing down, the activity throughout 2005 marked the highest levels yet registered by MODVOLC (figure 10a). For the first time in 2005, radiant heat output exceeded 150 MW (see Wright and Flynn, 2004, and Wright and others, 2005, for calculation details).

By plotting the position of each anomalous MODVOLC pixel relative to the central vent (figure 10b) one can see that most pixels are within 1 km of the vent. This reflects the approximate scale of MODIS pixels and thus the inherent level of location ambiguity (note, however, these results fail to show the 2-km-long lava flow emplaced in mid-2003 — see BGVN 29:01).

For the first time during this eruption, anomalous pixels began appearing more than 2 km away from the central vent on the satellite image for 0100 UTC on 15 September 2005, some up to 3.3 km away (figure 10b). This suggested the presence of a ~ 3 km long lava flow. Corroborating this was the ASTER image from 23 September 2005 (figure 9), which indicated heightened activity and a 3.5-km long lava flow extending from the summit cone of Mt. Belinda into the sea. A steam plume originated in the vicinity of the ocean entry. Note that the steam plume appears to drift W from its origin (where the plume is whitest), while the ash plume from the summit of Mt. Belinda (1,370 m elev.) drifts E, indicating varying wind directions at different elevations.

The lava flow initially traveled NE from the vent, but farther on it ran into a rocky arete, which diverted its path to due N. A 90-m-wide lava channel is visible at a distance of 1 km from the summit. The flow appears to be covered (perhaps entering a tube) within its first kilometer, where no anomalous shortwave IR pixels exist. It is unlikely that the flow is subglacial in this first kilometer, as its path is coincident with emplacement of the previously mentioned lava flow of mid-2003, which was 2 km long and had already melted ice along this route.

At the request of the British Antarctic Survey, the Royal Air Force sent an airplane from the Falkland Islands on 11 October 2005. The plane encountered cloudy conditions but those on board recognized steam rising from the sea. This flight took place prior to study of the 23 September ASTER image and thus it marked the first observation that lava reached the sea.

References. Patrick, M., Smellie, J.L., Harris, A.J.L., Wright, R., Dean, K., Izbekov, P., Garbeil, H., and Pilger, E., 2005, First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands: Bulletin of Volcanology, v. 67, p. 415-422.

Wright, R., and Flynn, L.P., 2004, A space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002: Geology, v. 32, p. 189-192.

Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L., and Pilger, E., 2004, MODVOLC: near-real-time thermal monitoring of global volcanism: Journal of Volcanology and Geothermal Research, v. 135, p. 29-49.

Wright, R., Carn, S., and Flynn, L.P., 2005, A satellite chronology of the May-June 2003 eruption of Anatahan volcano: Journal of Volcanology and Geothermal Research, v. 146, p. 102-116.

Geologic Background. The largest of the South Sandwich Islands, Montagu consists of a massive shield volcano cut by a 6-km-wide ice-filled summit caldera. The summit of the 10 x 12 km wide island rises about 3000 m from the sea floor between Bristol and Saunders Islands. Around 90% of the island is ice-covered; glaciers extending to the sea typically form vertical ice cliffs. The name Mount Belinda has been applied both to the high point at the southern end of the summit caldera and to the young central cone. Mount Oceanite, an isolated 900-m-high peak with a 270-m-wide summit crater, lies at the SE tip of the island and was the source of lava flows exposed at Mathias Point and Allen Point. There was no record of Holocene or historical eruptive activity until MODIS satellite data, beginning in late 2001, revealed thermal anomalies consistent with lava lake activity that has been persistent since then. Apparent plumes and single anomalous pixels were observed intermittently on AVHRR images during the period March 1995 to February 1998, possibly indicating earlier unconfirmed and more sporadic volcanic activity.

Information Contacts: Matt Patrick, University of Hawaii, Hawaii Institute of Geophysics and Planetology (HIGP) Thermal Alerts Team, 2525 Correa Road, Honolulu, HI 96822 (URL: http://modis.higp.hawaii.edu/); John Smelie, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingly Road, Cambridge CB3 0ET, United Kingdom (URL: https://www.bas.ac.uk/); NASA Earth Observer (URL: http://earthobservatory.nasa.gov/NaturalHazards/).


Sierra Negra (Ecuador) — September 2005 Citation iconCite this Report

Sierra Negra

Ecuador

0.83°S, 91.17°W; summit elev. 1124 m

All times are local (unless otherwise noted)


Caldera erupts starting 22 October 2005 at fissure on caldera's inner N wall

At about 1730 on 22 October 2005 Sierra Negra began erupting. This shield volcano with a large oval-shaped caldera is located at the S end of Isabela Island. Circumferential fractures define the northern edge of the caldera. Volcán Chico, noted for its 1963 and 1979 eruptions, is comprised of a series of scoria cones and other vents aligned along several prominent fractures on the outer slope of the N caldera rim. The present activity is not related to the Volcán Chico fracture system, but is venting from fractures along the N inner caldera wall. The most prominent fracture can be traced westward ~3 km where it lies along the rim. This initial report was provided by a scientific team from the Instituto Geofísico.

The eruption was preceded by a seismic event at 1438 on 22 October, felt in the coastal village of Villamil (20 km SE of the caldera border) and by Park Wardens on Cerro Azul. Others reported single earthquakes on 19 October and two weeks earlier. At 1730 the eruption began with an explosion heard by many people in the Villamil area. Hikers in the area of the subsequent lava emission in the mid-afternoon of both 21 and 22 October witnessed no unusual activity. By 1745 the eruption column had reached an estimated altitude of 5 km, and the setting sun illuminated the light gray eruption column. At 1815 the team observed the column after sunset from Point (Punto) Ayora, Santa Cruz Island (80 km E) and estimated its height at 10 km. The still-rising column was 4-6 km wide, not spreading laterally, and a small lenticular cloud was beginning to form a cap over the column. As night fell, the western sky above the caldera was a burgundy red, suggesting that lava had covered an extensive area of the caldera floor. Satellite imagery of the eruption at 1745 showed an eruption cloud at an estimated altitude of at least 15 km moving SW. A very large hotspot in the multispectral imagery was also observed and continued on 27 October.

Observations at 1945 from the Santa Cruz highlands (75 km away) employing a camcorder with night vision capabilities confirmed extensive lava fountaining estimated to be 200-300 m high along a segment of the caldera rim, as well as the incandescence from a lava flow several kilometers long descending the NW outer flank. Although the complete eruption column was not visible, it may have reached an altitude close to 20 km and had spread out. Tourist boats between Isabela and Fernandina Island reported seeing two lava flows descending the N flank.

During an overflight between 0715 and 0900 on 23 October the team did not witness active lava flows or evidence of lava having entered the sea. A thin khaki-colored ash cloud layer was observed, between about 1,200 and 1,500 m altitude, that had spread out laterally and extended E as far as St. Cruz Island and N to Santiago Island. Later in the day the plume was directed NNW in agreement with satellite information. From the plane the team confirmed that the main eruption was venting from four craters along a 500-m-long fracture at the base of the NNE inner caldera wall. The highest lava fountaining (up to 200 m high) was being generated at the two middle vents, while the end vents were feeding many lava flows S onto the caldera floor. The fracture apparently extended W along the inner wall, but then climbed to the caldera rim where its trace was not obvious. However, small vents with fountaining and incandescent lava were observed on the rim along this general fracture system, implying that the active fracture extended ~ 2 km W of the main vents.

During the mid-day hours of 23 October the team ascended the S flank, followed the E rim of the caldera, and reached a point ~ 800 m from the active vents, from which the following description was made. From the four principal vents the lava flowed S with exceptional force, volume, and speed downslope in three main channels (figures 3 and 4). Based on the apparent speed of the lava, and the more than 10-m height of the waves in the stream of passing lava, the team estimated that the main lava flow was traveling nearly 20 m/second as it left its vent. The W channels, some 30-50 m wide, maintained their red incandescent color and high speeds, albeit less than that near the vent.

Figure (see Caption) Figure 3. View looking W from the NE rim of Sierra Negra's caldera (right) on 23 October 2005. The caldera floor is to the left. The four active vents are superimposed in this photo, aligned along the E-W fracture that lies at the base of the inner caldera wall. Numerous lava flows descended southwards to the left where they joined to form one single flow of a'a lava ~ 1 km wide and 7 km long that had already reached the southern inner wall of the caldera on 23 October. Courtesy of M. Hall.
Figure (see Caption) Figure 4. A 150-m-high lava fountain rises on 23 October 2005 from one of four active vents that define the active fracture system at the base of the northern inner wall of Sierra Negra's caldera. From these four principal vents lava flows moved southwards at velocities estimated at close to 20 m/second on 23 October. Courtesy of M. Hall.

By 1500 the E channel was slowing and cooling to a gray surface color; this thin solid veneer was subsequently fragmented when the flow went over the edge of the bench and cascaded to the caldera floor. On the caldera floor the incandescent lavas of all three channels disappeared under the black solidified a'a lava that already covered about 12% of the caldera. In the 22 hours since the eruption had begun, the lavas had formed one large flow 1-1.5 km wide that traveled SE along the base of the E interior caldera wall, then W along the S wall reaching a point almost halfway across the caldera. As such it had traveled a total distance of 7 km and had started small brush fires on the floor and interior walls of the caldera. With an estimated thickness of no more than 3 m, the volume of the lava ejected by 1530 on 23 October was calculated at about 25 million cubic meters.

Along the trail leading to the vent area an increasing amount of scoria fragments was observed on the rim's edge. Fragments ~ 1 cm in size were first observed ~ 4 km SE of the active vents, and they increased in size (up to 15 cm) and abundance towards the vents. Very little fine ash was in the air or on the ground along the E caldera rim. The scoria was black, exceedingly vesiculated, with vesicles from millimeter to many centimeters in diameter; it seemed comparable in density to popcorn. No crystals were observed in the glassy scoria material. At their closest approach to the vent, scoria fragments formed a deposit 3-5 cm thick.

An explosion heard at 1900 on 25 October was accompanied by a dark eruptive column and minor ashfall along the E rim of the caldera and probably elsewhere. By early 26 October the Park Wardens were reporting that one of the four principal vents had shut down. Observations made late on 26 October indicated that the a'a flow on the caldera floor had slowed and was still several kilometers from the sulfur mine area. Civil Defense officials also reported that apparently less lava was leaving the vents and that lava extrusion might have shifted to the outer N flank, possibly to the Volcán Chico fracture system.

The only inhabited areas include the small town of Villamil, located 20 km SE of the caldera's border on the S coast, plus several other small populated areas about halfway between the caldera and Villamil. There was no immediate threat to those residents, given the fact that in order to spill out of the caldera and descend the S flanks the entire 100-m depth of the caldera would have to fill with lava. The southern caldera border has not been active in the recent geologic past.

Geologic Background. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Information Contacts: Minard Hall and Patricio Ramón, Instituto Geofísico, Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Tapia and Oscar Caravajal, Parque Nacional Galápagos, Pto. Ayora, Santa Cruz Island, Ecuador.


Santa Ana (El Salvador) — September 2005 Citation iconCite this Report

Santa Ana

El Salvador

13.853°N, 89.63°W; summit elev. 2381 m

All times are local (unless otherwise noted)


Sudden eruption on 1 October 2005; thousands evacuated

This report discusses a 1 October 2005 eruption at Santa Ana (also called Ilamatepec) that sent a plume to 14 km altitude and led to initial estimates cited in the press of two deaths (perhaps from landslides), several injuries, and the evacuation of over 2,000 people. Observations of glowing fumaroles and release of magmatic gas during 2000-2001 were previously reported at Santa Ana (BGVN 26:04). Servicio Nacional de Estudios Territoriales (SNET) scientists noticed that between the summer of 2000 and April 2001 there was increased venting of a well-developed hydrothermal system through the crater lake, hot springs, and fumaroles, but these changes were not accompanied by detected seismicity, which was then taken to suggest that the increase in hydrothermal activity was not driven by the arrival of new magma beneath the crater. An ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) image from 3 February 2001 shows the volcano's setting well before the eruption (figure 1).

Figure (see Caption) Figure 1. An ASTER image of Santa Ana from 2001 featured in one of several Earth Observatory reports. N is to the top left of the image and Santa Ana is the large, blunt-topped edifice closest to the left side of the image. In the color version of this image can be seen a tiny blue spot in the center of the inner-most crater?a crater lake (often called the lagoon). Behind Santa Ana is a large (7-km-diameter) lake inside the Coatepeque caldera. In the center is Izalco volcano, with dark-colored historical lava flows. Courtesy of NASA's Earth Observatory.

SNET reported that a sudden eruption at Santa Ana took place around 0820 on 1 October 2005. They estimated that it produced an ash-and-gas plume to a height of ~ 10 km above the volcano. According to the Washington VAAC, ash was visible on satellite imagery at an altitude of ~ 14 km. The US Air Force Weather agency provided images of the plume (figure 2).

Figure (see Caption) Figure 2. Two images of a Santa Ana eruptive plume on 1 October 2005. (top) The plume at 1516 UTC; (bottom) the plume at 1650 UTC. Note that the label 'FL 460,' stands for 'flight level 460,' which is equivalent to an altitude of 46,000 feet or 14 km. Courtesy of the US Air Force Weather Agency.

Ash fell in towns W of the volcano, including in Naranjos, Nahuizalco, Juayúa, Ahuachapán (NW), and La Hachadura (at the border, ~ 40 km W, figure 3). SNET produced a graphic similar to an isopach map that showed near-source thicknesses provisionally to over 10 cm. The 10 cm isopach stretched ~ 5 km W; the 1 mm isopach, ~ 20 km W. The outermost isopach, presumably where measurable ash fell, was not closed; instead it was cut off along the Guatemalan border (~ 40 km to W of Santa Ana) and the caption said that ash would fall into valleys in Guatemala and to the sea. Volcanic blocks up to a meter in diameter fell as far as 2 km S of the volcano's crater. Lahar deposits were seen SE of the volcano. The alert level within a 4-km radius around the volcano's central crater was raised to Red, the highest level.

Figure (see Caption) Figure 3. Graphic from SNET showing ashfall distribution from Santa Ana that appeared in the newspaper, La Prensa Grafica, following the 1 October eruption. N is upwards; Santa Ana lies ~ 40 km E of the Guatemalan border. This clearly transmitted the message that the ashfall was variable and W-directed over parts of El Salvador and neighboring Guatemala. The bottom of the graphic discussed the impact of the ash fall, including damage to specialty coffee farms. Credit: Ricardo Orellana, La Prensa Grafica.

According to news reports, two people were killed by landslides (possibly caused by heavy rain in the area) in the town of Palo Campana, and thousands of residents near the volcano were evacuated. As many as 1,400 hectares of crops were damaged by ash (1 hectare = 10,000 m2). News also mentioned other processes such as a flood of boiling mud and water, and molten rocks, some the size of small automobiles, that will be discussed in later reports. A several-minute-long video from the LPG Television website appears as both a hyperlink and an active file on our website. In addition to numerous interviews with evacuees, it shows a host of features including what appear to be the swaths left by previously inflated mudflows passed down steep-sided valleys.

Prior to the eruption, no significant change in seismicity was observed. On 3 October, after the eruption, seismicity fluctuated and small explosions occasionally occurred. Earthquakes associated with explosions were recorded. In addition, there was a decrease in the amount of SO2 emitted from the volcano.

Strong degassing had been measured at the volcano since June 2004. An ash emission occurred on 16 June 2005, and a slight increase in seismicity and a significant increase in gas emission were measured from 27 July until at least 30 August. SNET also reported a significant increase in seismic activity at Santa Ana on the night of 27 August. A cluster of 17 volcano-tectonic earthquakes were recorded, with four located S of the volcano. Afterwards, continuous high-frequency tremor was recorded until at least 30 August. Observations made on 29 August revealed incandescent rocks in the fumarole field, effects attributed to hot gases heating the rocks to sufficient temperature to glow. A significant increase in SO2 emission was recorded, and gas-and-steam plumes rose 500-1,000 m above the volcano's crater. As a safety measure, access to the volcano's crater was restricted.

From 27 July until the eruption on 1 October, seismicity and gas emissions were above normal levels, and Santa Ana was at alert level yellow. During the first week of September, tremor continued to be recorded, and on 2 September a cluster of at least eight small earthquakes occurred, which were not felt by local residents. Gas plumes rose to ~ 500 m above the volcano, and the SO2 flux was over 1,000 metric tons per day during the first two weeks of September. Satellite imagery from 5 September showed a thermal anomaly.

Microseismicity increased significantly on 12 September. During a visit to the volcano on 8 September, larger areas of incandescence were visible at a field of fumaroles than during a visit on 29 August. Satellite imagery showed a thermal anomaly at the volcano on several days during the second week of September.

During 15-19 September gas plumes rose to ~ 500 m above the volcano, and the SO2 flux reached a maximum of 3,320 metric tons per day on 16 September. Microseismicity remained at relatively high levels. No significant changes were seen at the volcano's crater when observed on 19 September in comparison to 13 September. Intense degassing continued and the crater lake (lagoon) remained a dark coffee color. Incandescence was visible inside some cracks.

During a visit to the crater on 21 September, observers noted that the lagoon had become greener and small rock landslides occurred in the field of fumaroles. Gas plumes rose to ~ 1 km above the volcano on 26 September.

Following the eruption of 1 October, small explosions, degassing, and low-to-moderate seismicity occurred at Santa Ana during 5-11 October. Inclement weather prohibited ground and satellite observations, and sulfur-dioxide (SO2) measurements during much of the report period. During an aerial inspection of the volcano on 11 October, no changes were observed at the crater. Around 11 October, SO2 measurements were around 600-700 metric tons per day. The alert level within a 5-km radius around the volcano's central crater remained at Red.

Geologic Background. Santa Ana, El Salvador's highest volcano, is a massive, dominantly andesitic-to-trachyandesitic stratovolcano that rises immediately W of Coatepeque caldera. Collapse of Santa Ana (also known as Ilamatepec) during the late Pleistocene produced a voluminous debris avalanche that swept into the Pacific Ocean, forming the Acajutla Peninsula. Reconstruction of the volcano subsequently filled most of the collapse scarp. The broad summit is cut by several crescentic craters, and a series of parasitic vents and cones have formed along a 20-km-long fissure system that extends from near the town of Chalchuapa NNW of the volcano to the San Marcelino and Cerro la Olla cinder cones on the SE flank. Historical activity, largely consisting of small-to-moderate explosive eruptions from both summit and flank vents, has been documented since the 16th century. The San Marcelino cinder cone on the SE flank produced a lava flow in 1722 that traveled 13 km E.

Information Contacts: Servicio Nacional de Estudios Territoriales (SNET), Alameda Roosevelt y 55 Avenida Norte, Edificio Torre El Salvador, Quinta Planta, San Salvador, El Salvador (URL: http://www.snet.gob.sv); Washington Volcanic Ash Advisory Center (VAAC), NOAA/NESDIS Satellite Analysis Branch (SAB), 5200 Auth Road, Camp Springs, MD 20746, USA; Charles Holliday and Jenifer E. Piatt, U.S. Air Force Weather Agency (AFWA)/XOGM, Offutt Air Force Base, NE 68113, USA; NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/NaturalHazards/); La Prensa Grafica and La Prensa Grafica Television, Final bulevar Santa Elena, frente a embajada de EUA, Antiguo Cuscatlán, La Libertad, San Salvador, El Salvador.


Ulawun (Papua New Guinea) — September 2005 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Thick plumes and earthquakes during late August to mid-September 2005

During the week of 22-28 August 2005, Ulawun often remained quiet but also displayed continued restlessness. People from Tauke, on the S side of the volcano reported occasional low roaring, rumbling, and booming noises on 21-22 and 26-28 August. Emissions from the summit crater consisted of moderate volumes of thick grayish vapor released forcefully. Some traces of blue vapor were also visible, but no glow was observed. Seismicity fluctuated between low and moderate, marked by small low-frequency earthquakes and small sporadic volcanic tremors. Only one high-frequency earthquake was recorded. An earthquake was felt on 22 August by people from Tauke. Apparently the earthquake was not reported by the observer at Ulamona, NW of the volcano, suggesting it was local and focused on the S side of the volcano.

Ulawun remained quiet through mid-September 2005, with the summit crater releasing weak to moderate volumes of thick white vapor.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory, Papua New Guinea.


Witori (Papua New Guinea) — September 2005 Citation iconCite this Report

Witori

Papua New Guinea

5.576°S, 150.516°E; summit elev. 724 m

All times are local (unless otherwise noted)


Steaming, and few earthquakes, during field observations in September 2005

During the observation interval 12-18 September 2005, Pago continued to be quiet. Very small volumes of thin white vapor were released from all vents. No noises were heard and no glow was observed. Seismic activity was low, with some small, high frequency earthquakes being recorded. The highest number of high frequency events on any given day was 3, recorded on 18 September.

Geologic Background. The 5.5 x 7.5 km Witori caldera on the northern coast of central New Britain contains the young historically active cone of Pago. The Buru caldera cuts the SW flank of Witori volcano. The gently sloping outer flanks of Witori volcano consist primarily of dacitic pyroclastic-flow and airfall deposits produced during a series of five major explosive eruptions from about 5600 to 1200 years ago, many of which may have been associated with caldera formation. The post-caldera Pago cone may have formed less than 350 years ago. Pago has grown to a height above that of the Witori caldera rim, and a series of ten dacitic lava flows from it covers much of the caldera floor. The youngest of these was erupted during 2002-2003 from vents extending from the summit nearly to the NW caldera wall.

Information Contacts: Ima Itikarai and Herman Patia, Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports