Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Ibu (Indonesia) Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Dukono (Indonesia) Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Sabancaya (Peru) Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sheveluch (Russia) Significant explosions destroyed part of the lava-dome complex during April 2023

Bezymianny (Russia) Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Chikurachki (Russia) New explosive eruption during late January-early February 2023

Marapi (Indonesia) New explosive eruption with ash emissions during January-March 2023

Kikai (Japan) Intermittent white gas-and-steam plumes, discolored water, and seismicity during May 2021-April 2023

Lewotolok (Indonesia) Strombolian eruption continues through April 2023 with intermittent ash plumes

Barren Island (India) Thermal activity during December 2022-March 2023

Villarrica (Chile) Nighttime crater incandescence, ash emissions, and seismicity during October 2022-March 2023

Fuego (Guatemala) Daily explosions, gas-and-ash plumes, avalanches, and ashfall during December 2022-March 2023



Ibu (Indonesia) — June 2023 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Persistent eruptive activity since April 2008 at Ibu, a stratovolcano on Indonesian’s Halmahera Island, has consisted of daily explosive ash emissions and plumes, along with observations of thermal anomalies (BGVN 47:04). The current eruption continued during October 2022-May 2023, described below, based on advisories issued by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), daily reports by MAGMA Indonesia (a PVMBG platform), and the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data. The Alert Level during the reporting period remained at 2 (on a scale of 1-4), except raised briefly to 3 on 27 May, and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side of the volcano.

According to MAGMA Indonesia, during October 2022-May 2023, daily gray-and-white ash plumes of variable densities rose 200-1,000 m above the summit and drifted in multiple directions. On 30 October and 11 November, plumes rose a maximum of 2 km and 1.5 km above the summit, respectively (figures 42 and 43). According to the Darwin VAAC, discrete ash emissions on 13 November rose to 2.1 km altitude, or 800 m above the summit, and drifted W, and multiple ash emissions on 15 November rose 1.4 km above the summit and drifted NE. Occasional larger ash explosions through May 2023 prompted PVMBG to issue Volcano Observatory Notice for Aviation (VONA) alerts (table 6); the Aviation Color Code remained at Orange throughout this period.

Figure (see Caption) Figure 42. Larger explosion from Ibu’s summit crater on 30 October 2022 that generated a plume that rose 2 km above the summit. Photo has been color corrected. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 43. Larger explosion from Ibu’s summit crater on 11 November 2022 that generated a plume that rose 1.5 km above the summit. Courtesy of MAGMA Indonesia.

Table 6. Volcano Observatory Notice for Aviation (VONA) ash plume alerts for Ibu issued by PVMBG during October 2022-May 2023. Maximum height above the summit was estimated by a ground observer. VONAs in January-May 2023 all described the ash plumes as dense.

Date Time (local) Max height above summit Direction
17 Oct 2022 0858 800 m SW
18 Oct 2022 1425 800 m S
19 Oct 2022 2017 600 m SW
21 Oct 2022 0916 800 m NW
16 Jan 2023 1959 600 m NE
22 Jan 2023 0942 1,000 m E
29 Jan 2023 2138 1,000 m E
10 May 2023 0940 800 m NW
10 May 2023 2035 600 m E
21 May 2023 2021 600 m W
21 May 2023 2140 1,000 m W
29 May 2023 1342 800 m N
31 May 2023 1011 1,000 m SW

Sentinel-2 L1C satellite images throughout the reporting period show two, sometimes three persistent thermal anomalies in the summit crater, with the most prominent hotspot from the top of a cone within the crater. Clear views were more common during March-April 2023, when a vent and lava flows on the NE flank of the intra-crater cone could be distinguished (figure 44). White-to-grayish emissions were also observed during brief periods when weather clouds allowed clear views.

Figure (see Caption) Figure 44. Sentinel-2 L2A satellite images of Ibu on 10 April 2023. The central cone within the summit crater (1.3 km diameter) and lava flows (gray) can be seen in the true color image (left, bands 4, 3, 2). Thermal anomalies from the small crater of the intra-crater cone, a NE-flank vent, and the end of the lava flow are apparent in the infrared image (right, bands 12, 11, 8A). Courtesy of Copernicus Browser.

The MIROVA space-based volcano hotspot detection system recorded almost daily thermal anomalies throughout the reporting period, though cloud cover often interfered with detections. Data from imaging spectroradiometers aboard NASA’s Aqua and Terra satellites and processed using the MODVOLC algorithm (MODIS-MODVOLC) recorded hotspots on one day during October 2022 and December 2022, two days in April 2023, three days in November 2022 and May 2023, and four days in March 2023.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Dukono (Indonesia) — June 2023 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Dukono, a remote volcano on Indonesia’s Halmahera Island, has been erupting continuously since 1933, with frequent ash explosions and sulfur dioxide plumes (BGVN 46:11, 47:10). This activity continued during October 2022 through May 2023, based on reports from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG; also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data. During this period, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone. The highest reported plume of the period reached 9.4 km above the summit on 14 November 2022.

According to MAGMA Indonesia (a platform developed by PVMBG), white, gray, or dark plumes of variable densities were observed almost every day during the reporting period, except when fog obscured the volcano (figure 33). Plumes generally rose 25-450 m above the summit, but rose as high as 700-800 m on several days, somewhat lower than the maximum heights reached earlier in 2022 when plumes reached as high as 1 km. However, the Darwin VAAC reported that on 14 November 2022, a discrete ash plume rose 9.4 km above the summit (10.7 km altitude), accompanied by a strong hotspot and a sulfur dioxide signal observed in satellite imagery; a continuous ash plume that day and through the 15th rose to 2.1-2.4 km altitude and drifted NE.

Figure (see Caption) Figure 33. Webcam photo of a gas-and-steam plume rising from Dukono on the morning of 28 January 2023. Courtesy of MAGMA Indonesia.

Sentinel-2 images were obscured by weather clouds almost every viewing day during the reporting period. However, the few reasonably clear images showed a hotspot and white or gray emissions and plumes. Strong SO2 plumes from Dukono were present on many days during October 2022-May 2023, as detected using the TROPOMI instrument on the Sentinel-5P satellite (figure 34).

Figure (see Caption) Figure 34. A strong SO2 signal from Dukono on 23 April 2023 was the most extensive plume detected during the reporting period. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the N-flank Gunung Mamuya cone. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — May 2023 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sabancaya is located in Peru, NE of Ampato and SE of Hualca Hualca. Eruptions date back to 1750 and have been characterized by explosions, phreatic activity, ash plumes, and ashfall. The current eruption period began in November 2016 and has more recently consisted of daily explosions, gas-and-ash plumes, and thermal activity (BGVN 47:11). This report updates activity during November 2022 through April 2023 using information from Instituto Geophysico del Peru (IGP) that use weekly activity reports and various satellite data.

Intermittent low-to-moderate power thermal anomalies were reported by the MIROVA project during November 2022 through April 2023 (figure 119). There were few short gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. According to data recorded by the MODVOLC thermal algorithm, there were a total of eight thermal hotspots: three in November 2022, three in February 2023, one in March, and one in April. On clear weather days, some of this thermal anomaly was visible in infrared satellite imagery showing the active lava dome in the summit crater (figure 120). Almost daily moderate-to-strong sulfur dioxide plumes were recorded during the reporting period by the TROPOMI instrument on the Sentinel-5P satellite (figure 121). Many of these plumes exceeded 2 Dobson Units (DU) and drifted in multiple directions.

Figure (see Caption) Figure 119. Intermittent low-to-moderate thermal anomalies were detected during November 2022 through April 2023 at Sabancaya, as shown in this MIROVA graph (Log Radiative Power). There were brief gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. Courtesy of MIROVA.
Figure (see Caption) Figure 120. Infrared (bands 12, 11, 8A) satellite images showed a constant thermal anomaly in the summit crater of Sabancaya on 14 January 2023 (top left), 28 February 2023 (top right), 5 March 2023 (bottom left), and 19 April 2023 (bottom right), represented by the active lava dome. Sometimes gas-and-steam and ash emissions also accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 121. Moderate-to-strong sulfur dioxide plumes were detected almost every day, rising from Sabancaya by the TROPOMI instrument on the Sentinel-5P satellite throughout the reporting period; the DU (Dobson Unit) density values were often greater than 2. Plumes from 23 November 2022 (top left), 26 December 2022 (top middle), 10 January 2023 (top right), 15 February 2023 (bottom left), 13 March 2023 (bottom middle), and 21 April 2023 (bottom right) that drifted SW, SW, W, SE, W, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

IGP reported that moderate activity during November and December 2022 continued; during November, an average number of explosions were reported each week: 30, 33, 36, and 35, and during December, it was 32, 40, 47, 52, and 67. Gas-and-ash plumes in November rose 3-3.5 km above the summit and drifted E, NE, SE, S, N, W, and SW. During December the gas-and-ash plumes rose 2-4 km above the summit and drifted in different directions. There were 1,259 volcanic earthquakes recorded during November and 1,693 during December. Seismicity also included volcano-tectonic-type events that indicate rock fracturing events. Slight inflation was observed in the N part of the volcano near Hualca Hualca (4 km N). Thermal activity was frequently reported in the crater at the active lava dome (figure 120).

Explosive activity continued during January and February 2023. The average number of explosions were reported each week during January (51, 50, 60, and 59) and February (43, 54, 51, and 50). Gas-and-ash plumes rose 1.6-2.9 km above the summit and drifted NW, SW, and W during January and rose 1.4-2.8 above the summit and drifted W, SW, E, SE, N, S, NW, and NE during February. IGP also detected 1,881 volcanic earthquakes during January and 1,661 during February. VT-type earthquakes were also reported. Minor inflation persisted near Hualca Hualca. Satellite imagery showed continuous thermal activity in the crater at the lava dome (figure 120).

During March, the average number of explosions each week was 46, 48, 31, 35, and 22 and during April, it was 29, 41, 31, and 27. Accompanying gas-and-ash plumes rose 1.7-2.6 km above the summit crater and drifted W, SW, NW, S, and SE during March. According to a Buenos Aires Volcano Ash Advisory Center (VAAC) notice, on 22 March at 1800 through 23 March an ash plume rose to 7 km altitude and drifted NW. By 0430 an ash plume rose to 7.6 km altitude and drifted W. On 24 and 26 March continuous ash emissions rose to 7.3 km altitude and drifted SW and on 28 March ash emissions rose to 7.6 km altitude. During April, gas-and-ash plumes rose 1.6-2.5 km above the summit and drifted W, SW, S, NW, NE, and E. Frequent volcanic earthquakes were recorded, with 1,828 in March and 1,077 in April, in addition to VT-type events. Thermal activity continued to be reported in the summit crater at the lava dome (figure 120).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Centro Vulcanológico Nacional (CENVUL), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Sheveluch (Russia) — May 2023 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Significant explosions destroyed part of the lava-dome complex during April 2023

Sheveluch (also spelled Shiveluch) in Kamchatka, has had at least 60 large eruptions during the last 10,000 years. The summit is truncated by a broad 9-km-wide caldera that is breached to the S, and many lava domes occur on the outer flanks. The lava dome complex was constructed within the large open caldera. Frequent collapses of the dome complex have produced debris avalanches; the resulting deposits cover much of the caldera floor. A major south-flank collapse during a 1964 Plinian explosion produced a scarp in which a “Young Sheveluch” dome began to form in 1980. Repeated episodes of dome formation and destruction since then have produced major and minor ash plumes, pyroclastic flows, block-and-ash flows, and “whaleback domes” of spine-like extrusions in 1993 and 2020 (BGVN 45:11). The current eruption period began in August 1999 and has more recently consisted of lava dome growth, explosions, ash plumes, and avalanches (BGVN 48:01). This report covers a significant explosive eruption during early-to-mid-April 2023 that generated a 20 km altitude ash plume, produced a strong sulfur dioxide plume, and destroyed part of the lava-dome complex; activity described during January through April 2023 use information primarily from the Kamchatka Volcanic Eruptions Response Team (KVERT) and various satellite data.

Satellite data. Activity during the majority of this reporting period was characterized by continued lava dome growth, strong fumarole activity, explosions, and hot avalanches. According to the MODVOLC Thermal Alerts System, 140 hotspots were detected through the reporting period, with 33 recorded in January 2023, 29 in February, 44 in March, and 34 in April. Frequent strong thermal activity was recorded during January 2023 through April, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph and resulted from the continuously growing lava dome (figure 94). A slightly stronger pulse in thermal activity was detected in early-to-mid-April, which represented the significant eruption that destroyed part of the lava-dome complex. Thermal anomalies were also visible in infrared satellite imagery at the summit crater (figure 95).

Figure (see Caption) Figure 94. Strong and frequent thermal activity was detected at Sheveluch during January through April 2023, according to this MIROVA graph (Log Radiative Power). These thermal anomalies represented the continuously growing lava dome and frequent hot avalanches that affected the flanks. During early-to-mid-April a slightly stronger pulse represented the notable explosive eruption. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite imagery showed persistent thermal anomalies at the lava dome of Sheveluch on 14 January 2023 (top left), 26 February 2023 (top right), and 15 March 2023 (bottom left). The true color image on 12 April 2023 (bottom right) showed a strong ash plume that drifted SW; this activity was a result of the strong explosive eruption during 11-12 April 2023. Courtesy of Copernicus Browser.

During January 2023 KVERT reported continued growth of the lava dome, accompanied by strong fumarolic activity, incandescence from the lava dome, explosions, ash plumes, and avalanches. Satellite data showed a daily thermal anomaly over the volcano. Video data showed ash plumes associated with collapses at the dome that generated avalanches that in turn produced ash plumes rising to 3.5 km altitude and drifting 40 km W on 4 January and rising to 7-7.5 km altitude and drifting 15 km SW on 5 January. A gas-and-steam plume containing some ash that was associated with avalanches rose to 5-6 km altitude and extended 52-92 km W on 7 January. Explosions that same day produced ash plumes that rose to 7-7.5 km altitude and drifted 10 km W. According to a Volcano Observatory Notice for Aviation (VONA) issued at 1344 on 19 January, explosions produced an ash cloud that was 15 x 25 km in size and rose to 9.6-10 km altitude, drifting 21-25 km W; as a result, the Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). Another VONA issued at 1635 reported that no more ash plumes were observed, and the ACC was lowered to Orange (the second highest level on a four-color scale). On 22 January an ash plume from collapses and avalanches rose to 5 km altitude and drifted 25 km NE and SW; ash plumes associated with collapses extended 70 km NE on 27 and 31 January.

Lava dome growth, fumarolic activity, dome incandescence, and occasional explosions and avalanches continued during February and March. A daily thermal anomaly was visible in satellite data. Explosions on 1 February generated ash plumes that rose to 6.3-6.5 km altitude and extended 15 km NE. Video data showed an ash cloud from avalanches rising to 5.5 km altitude and drifting 5 km SE on 2 February. Satellite data showed gas-and-steam plumes containing some ash rose to 5-5.5 km altitude and drifted 68-110 km ENE and NE on 6 February, to 4.5-5 km altitude and drifted 35 km WNW on 22 February, and to 3.7-4 km altitude and drifted 47 km NE on 28 February. Scientists from the Kamchatka Volcanological Station (KVS) went on a field excursion on 25 February to document the growing lava dome, and although it was cloudy most of the day, nighttime incandescence was visible. Satellite data showed an ash plume extending up to 118 km E during 4-5 March. Video data from 1150 showed an ash cloud from avalanches rose to 3.7-5.5 km altitude and drifted 5-10 km ENE and E on 5 March. On 11 March an ash plume drifted 62 km E. On 27 March ash plumes rose to 3.5 km altitude and drifted 100 km E. Avalanches and constant incandescence at the lava dome was focused on the E and NE slopes on 28 March. A gas-and-steam plume containing some ash rose to 3.5 km altitude and moved 40 km E on 29 March. Ash plumes on 30 March rose to 3.5-3.7 km altitude and drifted 70 km NE.

Similar activity continued during April, with lava dome growth, strong fumarolic activity, incandescence in the dome, occasional explosions, and avalanches. A thermal anomaly persisted throughout the month. During 1-4 April weak ash plumes rose to 2.5-3 km altitude and extended 13-65 km SE and E.

Activity during 11 April 2023. The Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS) reported a significant increase in seismicity around 0054 on 11 April, as reported by strong explosions detected on 11 April beginning at 0110 that sent ash plumes up to 7-10 km altitude and extended 100-435 km W, WNW, NNW, WSW, and SW. According to a Tokyo VAAC report the ash plume rose to 15.8 km altitude. By 0158 the plume extended over a 75 x 100 km area. According to an IVS FEB RAS report, the eruptive column was not vertical: the initial plume at 0120 on 11 April deviated to the NNE, at 0000 on 12 April, it drifted NW, and by 1900 it drifted SW. KVS reported that significant pulses of activity occurred at around 0200, 0320, and then a stronger phase around 0600. Levin Dmitry took a video from near Békés (3 km away) at around 0600 showing a rising plume; he also reported that a pyroclastic flow traveled across the road behind him as he left the area. According to IVS FEB RAS, the pyroclastic flow traveled several kilometers SSE, stopping a few hundred meters from a bridge on the road between Klyuchi and Petropavlovsk-Kamchatsky.

Ashfall was first observed in Klyuchi (45 km SW) at 0630, and a large, black ash plume blocked light by 0700. At 0729 KVERT issued a Volcano Observatory Notice for Aviation (VONA) raising the Aviation Color Code to Red (the highest level on a four-color scale). It also stated that a large ash plume had risen to 10 km altitude and drifted 100 km W. Near-constant lightning strikes were reported in the plume and sounds like thunderclaps were heard until about 1000. According to IVS FEB RAS the cloud was 200 km long and 76 km wide by 0830, and was spreading W at altitudes of 6-12 km. In the Klyuchi Village, the layer of both ash and snow reached 8.5 cm (figure 96); ashfall was also reported in Kozyrevsk (112 km SW) at 0930, Mayskoye, Anavgay, Atlasovo, Lazo, and Esso. Residents in Klyuchi reported continued darkness and ashfall at 1100. In some areas, ashfall was 6 cm deep and some residents reported dirty water coming from their plumbing. According to IVS FEB RAS, an ash cloud at 1150 rose to 5-20 km altitude and was 400 km long and 250 km wide, extending W. A VONA issued at 1155 reported that ash had risen to 10 km and drifted 340 km NNW and 240 km WSW. According to Simon Carn (Michigan Technological University), about 0.2 Tg of sulfur dioxide in the plume was measured in a satellite image from the TROPOMI instrument on the Sentinel-5P satellite acquired at 1343 that covered an area of about 189,000 km2 (figure 97). Satellite data at 1748 showed an ash plume that rose to 8 km altitude and drifted 430 km WSW and S, according to a VONA.

Figure (see Caption) Figure 96. Photo of ash deposited in Klyuchi village on 11 April 2023 by the eruption of Sheveluch. About 8.5 cm of ash was measured. Courtesy of Kam 24 News Agency.
Figure (see Caption) Figure 97. A strong sulfur dioxide plume from the 11 April 2023 eruption at Sheveluch was visible in satellite data from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of Simon Carn, MTU.

Activity during 12-15 April 2023. On 12 April at 0730 satellite images showed ash plumes rose to 7-8 km altitude and extended 600 km SW, 1,050 km ESE, and 1,300-3,000 km E. By 1710 that day, the explosions weakened. According to news sources, the ash-and-gas plumes drifted E toward the Aleutian Islands and reached the Gulf of Alaska by 13 April, causing flight disruptions. More than 100 flights involving Alaska airspace were cancelled due to the plume. Satellite data showed ash plumes rising to 4-5.5 km altitude and drifted 400-415 km SE and ESE on 13 April. KVS volcanologists observed the pyroclastic flow deposits and noted that steam rose from downed, smoldering trees. They also noted that the deposits were thin with very few large fragments, which differed from previous flows. The ash clouds traveled across the Pacific Ocean. Flight cancellations were also reported in NW Canada (British Columbia) during 13-14 April. During 14-15 April ash plumes rose to 6 km altitude and drifted 700 km NW.

Alaskan flight schedules were mostly back to normal by 15 April, with only minor delays and far less cancellations; a few cancellations continued to be reported in Canada. Clear weather on 15 April showed that most of the previous lava-dome complex was gone and a new crater roughly 1 km in diameter was observed (figure 98); gas-and-steam emissions were rising from this crater. Evidence suggested that there had been a directed blast to the SE, and pyroclastic flows traveled more than 20 km. An ash plume rose to 4.5-5.2 km altitude and drifted 93-870 km NW on 15 April.

Figure (see Caption) Figure 98. A comparison of the crater at Sheveluch showing the previous lava dome (top) taken on 29 November 2022 and a large crater in place of the dome (bottom) due to strong explosions during 10-13 April 2023, accompanied by gas-and-ash plumes. The bottom photo was taken on 15 April 2023. Photos has been color corrected. Both photos are courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Activity during 16-30 April 2023. Resuspended ash was lifted by the wind from the slopes and rose to 4 km altitude and drifted 224 km NW on 17 April. KVERT reported a plume of resuspended ash from the activity during 10-13 April on 19 April that rose to 3.5-4 km altitude and drifted 146-204 km WNW. During 21-22 April a plume stretched over the Scandinavian Peninsula. A gas-and-steam plume containing some ash rose to 3-3.5 km altitude and drifted 60 km SE on 30 April. A possible new lava dome was visible on the W slope of the volcano on 29-30 April (figure 99); satellite data showed two thermal anomalies, a bright one over the existing lava dome and a weaker one over the possible new one.

Figure (see Caption) Figure 99. Photo showing new lava dome growth at Sheveluch after a previous explosion destroyed much of the complex, accompanied by a white gas-and-steam plume. Photo has been color corrected. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

References. Girina, O., Loupian, E., Horvath, A., Melnikov, D., Manevich, A., Nuzhdaev, A., Bril, A., Ozerov, A., Kramareva, L., Sorokin, A., 2023, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, ??????????? ???????? ??? ?? ???????, 20(2).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Kam 24 News Agency, 683032, Kamchatka Territory, Petropavlovsk-Kamchatsky, Vysotnaya St., 2A (URL: https://kam24.ru/news/main/20230411/96657.html#.Cj5Jrky6.dpuf); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Bezymianny (Russia) — May 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Bezymianny is located on the Kamchatka Peninsula of Russia as part of the Klyuchevskoy volcano group. Historic eruptions began in 1955 and have been characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. During the 1955-56 eruption a large open crater was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. The current eruption period began in December 2016 and more recent activity has consisted of strong explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023, based on weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during November and March 2023 was relatively low and mostly consisted of gas-and-steam emissions, occasional small collapses that generated avalanches along the lava dome slopes, and a persistent thermal anomaly over the volcano that was observed in satellite data on clear weather days. According to the Tokyo VAAC and KVERT, an explosion produced an ash plume that rose to 6 km altitude and drifted 25 km NE at 1825 on 29 March.

Gas-and-steam emissions, collapses generating avalanches, and thermal activity continued during April. According to two Volcano Observatory Notice for Aviation (VONA) issued on 2 and 6 April (local time) ash plumes rose to 3 km and 3.5-3.8 km altitude and drifted 35 km E and 140 km E, respectively. Satellite data from KVERT showed weak ash plumes extending up to 550 km E on 2 and 5-6 April.

A VONA issued at 0843 on 7 April described an ash plume that rose to 4.5-5 km altitude and drifted 250 km ESE. Later that day at 1326 satellite data showed an ash plume that rose to 5.5-6 km altitude and drifted 150 km ESE. A satellite image from 1600 showed an ash plume extending as far as 230 km ESE; KVERT noted that ash emissions were intensifying, likely due to avalanches from the growing lava dome. The Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). At 1520 satellite data showed an ash plume rising to 5-5.5 km altitude and drifting 230 km ESE. That same day, Kamchatka Volcanological Station (KVS) volcanologists traveled to Ambon to collect ash; they reported that a notable eruption began at 1730, and within 20 minutes a large ash plume rose to 10 km altitude and drifted NW. KVERT reported that the strong explosive phase began at 1738. Video and satellite data taken at 1738 showed an ash plume that rose to 10-12 km altitude and drifted up to 2,800 km SE and E. Explosions were clearly audible 20 km away for 90 minutes, according to KVS. Significant amounts of ash fell at the Apakhonchich station, which turned the snow gray; ash continued to fall until the morning of 8 April. In a VONA issued at 0906 on 8 April, KVERT stated that the explosive eruption had ended; ash plumes had drifted 2,000 km E. The ACC was lowered to Orange (the third highest level on a four-color scale). The KVS team saw a lava flow on the active dome once the conditions were clear that same day (figure 53). On 20 April lava dome extrusion was reported; lava flows were noted on the flanks of the dome, and according to KVERT satellite data, a thermal anomaly was observed in the area. The ACC was lowered to Yellow (the second lowest on a four-color scale).

Figure (see Caption) Figure 53. Photo showing an active lava flow descending the SE flank of Bezymianny from the lava dome on 8 April 2023. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Satellite data showed an increase in thermal activity beginning in early April 2023. A total of 31 thermal hotspots were detected by the MODVOLC thermal algorithm on 4, 5, 7, and 12 April 2023. The elevated thermal activity resulted from an increase in explosive activity and the start of an active lava flow. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data also showed a pulse in thermal activity during the same time (figure 54). Infrared satellite imagery captured a continuous thermal anomaly at the summit crater, often accompanied by white gas-and-steam emissions (figure 55). On 4 April 2023 an active lava flow was observed descending the SE flank.

Figure (see Caption) Figure 54. Intermittent and low-power thermal anomalies were detected at Bezymianny during December 2022 through mid-March 2023, according to this MIROVA graph (Log Radiative Power). In early April 2023, an increase in explosive activity and eruption of a lava flow resulted in a marked increase in thermal activity. Courtesy of MIROVA.
Figure (see Caption) Figure 55. Infrared satellite images of Bezymianny showed a persistent thermal anomaly over the lava dome on 18 November 2022 (top left), 28 December 2022 (top right), 15 March 2023 (bottom left), and 4 April 2023 (bottom right), often accompanied by white gas-and-steam plumes. On 4 April a lava flow was active and descending the SE flank. Images using infrared (bands 12, 11, 8a). Courtesy of Copernicus Browser.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Chikurachki (Russia) — May 2023 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


New explosive eruption during late January-early February 2023

Chikurachki, located on Paramushir Island in the northern Kuriles, has had Plinian eruptions during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. Reported eruptions date back to 1690, with the most recent eruption period occurring during January through October 2022, characterized by occasional explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers a new eruptive period during January through February 2023 that consisted of ash explosions and ash plumes, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

According to reports from KVERT, an explosive eruption began around 0630 on 29 January. Explosions generated ash plumes that rose to 3-3.5 km altitude and drifted 6-75 km SE and E, based on satellite data. As a result, the Aviation Color Code (ACC) was raised to Orange (the second highest level on a four-color scale). At 1406 and 1720 ash plumes were identified in satellite images that rose to 4.3 km altitude and extended 70 km E. By 2320 the ash plume had dissipated. A thermal anomaly was visible at the volcano on 31 January, according to a satellite image, and an ash plume was observed drifting 66 km NE.

Occasional explosions and ash plumes continued during early February. At 0850 on 1 February an ash plume rose to 3.5 km altitude and drifted 35 km NE. Satellite data showed an ash plume that rose to 3.2-3.5 km altitude and drifted 50 km NE at 1222 later that day (figure 22). A thermal anomaly was detected over the volcano during 5-6 February and ash plumes drifted as far as 125 km SE, E, and NE. Explosive events were reported at 0330 on 6 February that produced ash plumes rising to 4-4.5 km altitude and drifting 72-90 km N, NE, and ENE. KVERT noted that the last gas-and steam plume that contained some ash was observed on 8 February and drifted 55 km NE before the explosive eruption ended. The ACC was lowered to Yellow and then Green (the lowest level on a four-color scale) on 18 February.

Figure (see Caption) Figure 22. Satellite image showing a true color view of a strong ash plume rising above Chikurachki on 1 February 2023. The plume drifted NE and ash deposits (dark brown-to-gray) are visible on the NE flank due to explosive activity. Courtesy of Copernicus Browser.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Marapi (Indonesia) — May 2023 Citation iconCite this Report

Marapi

Indonesia

0.38°S, 100.474°E; summit elev. 2885 m

All times are local (unless otherwise noted)


New explosive eruption with ash emissions during January-March 2023

Marapi in Sumatra, Indonesia, is a massive stratovolcano that rises 2 km above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera and trending ENE-WSW, with volcanism migrating to the west. Since the end of the 18th century, more than 50 eruptions, typically characterized by small-to-moderate explosive activity, have been recorded. The previous eruption consisted of two explosions during April-May 2018, which caused ashfall to the SE (BGVN 43:06). This report covers a new eruption during January-March 2023, which included explosive events and ash emissions, as reported by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and MAGMA Indonesia.

According to a press release issued by PVMBG and MAGMA Indonesia on 26 December, primary volcanic activity at Marapi consisted of white gas-and-steam puffs that rose 500-100 m above the summit during April-December 2022. On 25 December 2022 there was an increase in the number of deep volcanic earthquakes and summit inflation. White gas-and-steam emissions rose 80-158 m above the summit on 5 January. An explosive eruption began at 0611 on 7 January 2023, which generated white gas-and-steam emissions and gray ash emissions mixed with ejecta that rose 300 m above the summit and drifted SE (figure 10). According to ground observations, white-to-gray ash clouds during 0944-1034 rose 200-250 m above the summit and drifted SE and around 1451 emissions rose 200 m above the summit. Seismic signals indicated that eruptive events also occurred at 1135, 1144, 1230, 1715, and 1821, but no ash emissions were visually observed. On 8 January white-and-gray emissions rose 150-250 m above the summit that drifted E and SE. Seismic signals indicated eruptive events at 0447, 1038, and 1145, but again no ash emissions were visually observed on 8 January. White-to-gray ash plumes continued to be observed on clear weather days during 9-15, 18-21, 25, and 29-30 January, rising 100-1,000 m above the summit and drifted generally NE, SE, N, and E, based on ground observations (figure 11).

Figure (see Caption) Figure 10. Webcam image of the start of the explosive eruption at Marapi at 0651 on 7 January 2023. White gas-and-steam emissions are visible to the left and gray ash emissions are visible on the right, drifting SE. Distinct ejecta was also visible mixed within the ash cloud. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 11. Webcam image showing thick, gray ash emissions rising 500 m above the summit of Marapi and drifting N and NE at 0953 on 11 January 2023. Courtesy of PVMBG and MAGMA Indonesia.

White-and-gray and brown emissions persisted in February, rising 50-500 m above the summit and drifting E, S, SW, N, NE, and W, though weather sometimes prevented clear views of the summit. An eruption at 1827 on 10 February produced a black ash plume that rose 400 m above the summit and drifted NE and E (figure 12). Similar activity was reported on clear weather days, with white gas-and-steam emissions rising 50 m above the summit on 9, 11-12, 20, and 27 March and drifted E, SE, SW, NE, E, and N. On 17 March white-and-gray emissions rose 400 m above the summit and drifted N and E.

Figure (see Caption) Figure 12. Webcam image showing an eruptive event at 1829 on 10 February 2023 with an ash plume rising 400 m above the summit and drifting NE and E. Courtesy of PVMBG and MAGMA Indonesia.

Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1).


Kikai (Japan) — May 2023 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Intermittent white gas-and-steam plumes, discolored water, and seismicity during May 2021-April 2023

Kikai, located just S of the Ryukyu islands of Japan, contains a 19-km-wide mostly submarine caldera. The island of Satsuma Iwo Jima (also known as Satsuma-Iwo Jima and Tokara Iojima) is located at the NW caldera rim, as well as the island’s highest peak, Iodake. Its previous eruption period occurred on 6 October 2020 and was characterized by an explosion and thermal anomalies in the crater (BGVN 45:11). More recent activity has consisted of intermittent thermal activity and gas-and-steam plumes (BGVN 46:06). This report covers similar low-level activity including white gas-and-steam plumes, nighttime incandescence, seismicity, and discolored water during May 2021 through April 2023, using information from the Japan Meteorological Agency (JMA) and various satellite data. During this time, the Alert Level remained at a 2 (on a 5-level scale), according to JMA.

Activity was relatively low throughout the reporting period and has consisted of intermittent white gas-and-steam emissions that rose 200-1,400 m above the Iodake crater and nighttime incandescence was observed at the Iodake crater using a high-sensitivity surveillance camera. Each month, frequent volcanic earthquakes were detected, and sulfur dioxide masses were measured by the University of Tokyo Graduate School of Science, Kyoto University Disaster Prevention Research Institute, Mishima Village, and JMA (table 6).

Table 6. Summary of gas-and-steam plume heights, number of volcanic earthquakes detected, and amount of sulfur dioxide emissions in tons per day (t/d). Courtesy of JMA monthly reports.

Month Max plume height (m) Volcanic earthquakes Sulfur dioxide emissions (t/d)
May 2021 400 162 900-1,300
Jun 2021 800 117 500
Jul 2021 1,400 324 800-1,500
Aug 2021 1,000 235 700-1,000
Sep 2021 800 194 500-1,100
Oct 2021 800 223 600-800
Nov 2021 900 200 400-900
Dec 2021 1,000 161 500-1,800
Jan 2022 1,000 164 600-1,100
Feb 2022 1,000 146 500-1,600
Mar 2022 1,200 171 500-1,200
Apr 2022 1,000 144 600-1,000
May 2022 1,200 126 300-500
Jun 2022 1,000 154 400
Jul 2022 1,300 153 600-1,100
Aug 2022 1,100 109 600-1,500
Sep 2022 1,000 170 900
Oct 2022 800 249 700-1,200
Nov 2022 800 198 800-1,200
Dec 2022 700 116 600-1,500
Jan 2023 800 146 500-1,400
Feb 2023 800 135 600-800
Mar 2023 1,100 94 500-600
Apr 2023 800 82 500-700

Sentinel-2 satellite images show weak thermal anomalies at the Iodake crater on clear weather days, accompanied by white gas-and-steam emissions and occasional discolored water (figure 24). On 17 January 2022 JMA conducted an aerial overflight in cooperation with the Japan Maritime Self-Defense Force’s 1st Air Group, which confirmed a white gas-and-steam plume rising from the Iodake crater (figure 25). They also observed plumes from fumaroles rising from around the crater and on the E, SW, and N slopes. In addition, discolored water was reported near the coast around Iodake, which JMA stated was likely related to volcanic activity (figure 25). Similarly, an overflight taken on 11 January 2023 showed white gas-and-steam emissions rising from the Iodake crater, as well as discolored water that spread E from the coast around the island. On 14 February 2023 white fumaroles and discolored water were also captured during an overflight (figure 26).

Figure (see Caption) Figure 24. Sentinel-2 satellite images of Satsuma Iwo Jima (Kikai) showing sets of visual (true color) and infrared (bands 12, 11, 8a) views on 7 December 2021 (top), 23 October 2022 (middle), and 11 January 2023 (bottom). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 25. Aerial image of Satsuma Iwo Jima (Kikai) showing a white gas-and-steam plume rising above the Iodake crater at 1119 on 17 January 2022. There was also green-yellow discolored water surrounding the coast of Mt. Iodake. Courtesy of JMSDF via JMA.
Figure (see Caption) Figure 26. Aerial image of Satsuma Iwo Jima (Kikai) showing white gas-and-steam plumes rising above the Iodake crater on 14 February 2023. Green-yellow discolored water surrounded Mt. Iodake. Courtesy of JCG.

Geologic Background. Multiple eruption centers have exhibited recent activity at Kikai, a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake (or Iwo-dake) lava dome and Inamuradake scoria cone, as well as submarine lava domes. Recorded eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Satsuma-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Satsuma-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/kaiikiDB/kaiyo30-2.htm); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Lewotolok (Indonesia) — May 2023 Citation iconCite this Report

Lewotolok

Indonesia

8.274°S, 123.508°E; summit elev. 1431 m

All times are local (unless otherwise noted)


Strombolian eruption continues through April 2023 with intermittent ash plumes

The current eruption at Lewotolok, in Indonesian’s Lesser Sunda Islands, began in late November 2020 and has included Strombolian explosions, occasional ash plumes, incandescent ejecta, intermittent thermal anomalies, and persistent white and white-and-gray emissions (BGVN 47:10). Similar activity continued during October 2022-April 2023, as described in this report based on information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

During most days in October 2022 white and white-gray emissions rose as high as 200-600 m above the summit. Webcam images often showed incandescence above the crater rim. At 0351 on 14 October, an explosion produced a dense ash plume that rose about 1.2 km above the summit and drifted SW (figure 43). After this event, activity subsided and remained low through the rest of the year, but with almost daily white emissions.

Figure (see Caption) Figure 43. Webcam image of Lewotolok on 14 October 2022 showing a dense ash plume and incandescence above the crater. Courtesy of MAGMA Indonesia.

After more than two months of relative quiet, PVMBG reported that explosions at 0747 on 14 January 2023 and at 2055 on 16 January produced white-and-gray ash plumes that rose around 400 m above the summit and drifted E and SE (figure 44). During the latter half of January through April, almost daily white or white-and-gray emissions were observed rising 25-800 m above the summit, and nighttime webcam images often showed incandescent material being ejected above the summit crater. Strombolian activity was visible in webcam images at 2140 on 11 February, 0210 on 18 February, and during 22-28 March. Frequent hotspots were recorded by the MIROVA detection system starting in approximately the second week of March 2023 that progressively increased into April (figure 45).

Figure (see Caption) Figure 44. Webcam image of an explosion at Lewotolok on 14 January 2023 ejecting a small ash plume along with white emissions. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 45. MIROVA Log Radiative Power graph of thermal anomalies detected by the VIIRS satellite instrument at Lewotolok’s summit crater for the year beginning 24 July 2022. Clusters of mostly low-power hotspots occurred during August-October 2022, followed by a gap of more than four months before persistent and progressively stronger anomalies began in early March 2023. Courtesy of MIROVA.

Explosions that produced dense ash plumes as high as 750 m above the summit were described in Volcano Observatory Notices for Aviation (VONA) at 0517, 1623, and 2016 on 22 March, at 1744 on 24 March, at 0103 on 26 March, at 0845 and 1604 on 27 March (figure 46), and at 0538 on 28 March. According to the Darwin VAAC, on 6 April another ash plume rose to 1.8 km altitude (about 370 m above the summit) and drifted N.

Figure (see Caption) Figure 46. Webcam image of Lewotolok at 0847 on 27 March 2023 showing a dense ash plume from an explosion along with clouds and white emissions. Courtesy of MAGMA-Indonesia.

Sentinel-2 images over the previous year recorded thermal anomalies as well as the development of a lava flow that descended the NE flank beginning in June 2022 (figure 47). The volcano was often obscured by weather clouds, which also often hampered ground observations. Ash emissions were reported in March 2022 (BGVN 47:10), and clear imagery from 4 March 2022 showed recent lava flows confined to the crater, two thermal anomaly spots in the eastern part of the crater, and mainly white emissions from the SE. Thermal anomalies became stronger and more frequent in mid-May 2022, followed by strong Strombolian activity through June and July (BGVN 47:10); Sentinel-2 images on 2 June 2022 showed active lava flows within the crater and overflowing onto the NE flank. Clear images from 23 April 2023 (figure 47) show the extent of the cooled NE-flank lava flow, more extensive intra-crater flows, and two hotspots in slightly different locations compared to the previous March.

Figure (see Caption) Figure 47. Sentinel-2 satellite images of Lewotolok showing sets of visual (true color) and infrared (bands 12, 11, 8a) views on 4 March 2022, 2 June 2022, and 23 April 2023. Courtesy of Copernicus Browser.

Geologic Background. The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Barren Island (India) — April 2023 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Thermal activity during December 2022-March 2023

Barren Island is part of a N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic flow and surge deposits. Eruptions dating back to 1787, have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast. Previous activity was detected during mid-May 2022, consisting of intermittent thermal activity. This report covers June 2022 through March 2023, which included strong thermal activity beginning in late December 2022, based on various satellite data.

Activity was relatively quiet during June through late December 2022 and mostly consisted of low-power thermal anomalies, based on the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph. During late December, a spike in both power and frequency of thermal anomalies was detected (figure 58). There was another pulse in thermal activity in mid-March, which consisted of more frequent and relatively strong anomalies.

Figure (see Caption) Figure 58. Occasional thermal anomalies were detected during June through late December 2022 at Barren Island, but by late December through early January 2023, there was a marked increase in thermal activity, both in power and frequency, according to this MIROVA graph (Log Radiative Power). After this spike in activity, anomalies occurred at a more frequent rate. In late March, another pulse in activity was detected, although the power was not as strong as that initial spike during December-January. Courtesy of MIROVA.

The Suomi NPP/VIIRS sensor data showed five thermal alerts on 29 December 2022. The number of alerts increased to 19 on 30 December. According to the Darwin VAAC, ash plumes identified in satellite images captured at 2340 on 30 December and at 0050 on 31 December rose to 1.5 km altitude and drifted SW. The ash emissions dissipated by 0940. On 31 December, a large thermal anomaly was detected; based on a Sentinel-2 infrared satellite image, the anomaly was relatively strong and extended to the N (figure 59).

Figure (see Caption) Figure 59. Thermal anomalies of varying intensities were visible in the crater of Barren Island on 31 December 2022 (top left), 15 January 2023 (top right), 24 February 2023 (bottom left), and 31 March 2023 (bottom right), as seen in these Sentinel-2 infrared satellite images. The anomalies on 31 December and 31 March were notably strong and extended to the N and N-S, respectively. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Thermal activity continued during January through March. Sentinel-2 infrared satellite data showed some thermal anomalies of varying intensity on clear weather days on 5, 10, 15, 20, and 30 January 2023, 9, 14, 19, and 24 February 2023, and 21, 26, and 31 March (figure 59). According to Suomi NPP/VIIRS sensor data, a total of 30 thermal anomalies were detected over 18 days on 2-3, 7, 9-14, 16-17, 20, 23, 25, and 28-31 January. The sensor data showed a total of six hotspots detected over six days on 1, 4-5, and 10-12 February. During March, a total of 33 hotspots were visible over 11 days on 20-31 March. Four MODVOLC thermal alerts were issued on 25, 27, and 29 March.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Villarrica (Chile) — April 2023 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Nighttime crater incandescence, ash emissions, and seismicity during October 2022-March 2023

Villarrica, located in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago, located at the base of the presently active cone. Historical eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of ongoing seismicity, gas-and-steam emissions, and thermal activity (BGVN 47:10). This report covers activity during October 2022 through March 2023 and describes Strombolian explosions, ash emissions, and crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.

Seismicity during October consisted of discrete long-period (LP)-type events, tremor (TR), and volcano-tectonic (VT)-type events. Webcam images showed eruption plumes rising as high as 460 m above the crater rim; plumes deposited tephra on the E, S, and SW flanks within 500 m of the crater on 2, 18, 23, and 31 October. White gas-and-steam emissions rose 80-300 m above the crater accompanied by crater incandescence during 2-3 October. There was a total of 5 VT-type events, 10,625 LP-type events, and 2,232 TR-type events detected throughout the month. Sulfur dioxide data was obtained by the Differential Absorption Optical Spectroscopy Equipment (DOAS) installed 6 km in an ESE direction. The average value of the sulfur dioxide emissions was 535 ± 115 tons per day (t/d); the highest daily maximum was 1,273 t/d on 13 October. These values were within normal levels and were lower compared to September. During the night of 3-4 October Strombolian activity ejected blocks as far as 40 m toward the NW flank. Small, gray-brown ash pulses rose 60 m above the crater accompanied white gas-and-steam emissions that rose 40-300 m high during 4-5 October. In addition, crater incandescence and Strombolian explosions that ejected blocks were reported during 4-5 and 9-11 October. Based on satellite images from 12 October, ballistic ejecta traveled as far as 400 m and the resulting ash was deposited 3.2 km to the E and SE and 900 m to the NW.

Satellite images from 14 October showed an active lava lake that covered an area of 36 square meters in the E part of the crater floor. There was also evidence of a partial collapse (less than 300 square meters) at the inner SSW crater rim. POVI posted an 18 October photo that showed incandescence above the crater rim, noting that crater incandescence was visible during clear weather nights. In addition, webcam images at 1917 showed lava fountaining and Strombolian explosions; tourists also described seeing splashes of lava ejected from a depth of 80 m and hearing loud degassing sounds. Tephra deposits were visible around the crater rim and on the upper flanks on 24 October. On 25 October SERNAGEOMIN reported that both the number and amplitude of LP earthquakes had increased, and continuous tremor also increased; intense crater incandescence was visible in satellite images. On 31 October Strombolian explosions intensified and ejected material onto the upper flanks.

Activity during November consisted of above-baseline seismicity, including intensifying continuous tremor and an increase in the number of LP earthquakes. On 1 November a lava fountain was visible rising above the crater rim. Nighttime crater incandescence was captured in webcam images on clear weather days. Strombolian explosions ejected incandescent material on the NW and SW flanks during 1, 2, and 6-7 November. POVI reported that the width of the lava fountains that rose above the crater rim on 2 November suggested that the vent on the crater floor was roughly 6 m in diameter. Based on reports from observers and analyses of satellite imagery, material that was deposited on the upper flanks, primarily to the NW, consisted of clasts up to 20 cm in diameter. During an overflight on 19 November SERNAGEOMIN scientists observed a cone on the crater floor with an incandescent vent at its center that contained a lava lake. Deposits of ejecta were also visible on the flanks. That same day a 75-minute-long series of volcano-tectonic earthquakes was detected at 1940; a total of 21 events occurred 7.8 km ESE of the crater. Another overflight on 25 November showed the small cone on the crater floor with an incandescent lava lake at the center; the temperature of the lava lake was 1,043 °C, based data gathered during the overflight.

Similar seismicity, crater incandescence, and gas-and-steam emissions continued during December. On 1 December incandescent material was ejected 80-220 m above the crater rim. During an overflight on 6 December, intense gas-and-steam emissions from the lava lake was reported, in addition to tephra deposits on the S and SE flanks as far as 500 m from the crater. During 7-12 December seismicity increased slightly and white, low-altitude gas-and-steam emissions and crater incandescence were occasionally visible. On 24 December at 0845 SERNAGEOMIN reported an increase in Strombolian activity; explosions ejected material that generally rose 100 m above the crater, although one explosion ejected incandescent tephra as far as 400 m from the crater onto the SW flank. According to POVI, 11 explosions ejected incandescent material that affected the upper SW flank between 2225 on 25 December to 0519 on 26 December. POVI recorded 21 Strombolian explosions that ejected incandescent material onto the upper SW flank from 2200 on 28 December to 0540 on 29 December. More than 100 Strombolian explosions ejected material onto the upper W and NW flanks during 30-31 December. On 30 December at 2250 an explosion was detected that generated an eruptive column rising 120 m above the crater and ejecting incandescent material 300 m on the NW flank (figure 120). Explosions detected at 2356 on 31 December ejected material 480 m from the crater rim onto the NW flank and at 0219 material was deposited on the same flank as far as 150 m. Both explosions ejected material as high as 120 m above the crater rim.

Figure (see Caption) Figure 120. Webcam image of a Strombolian explosion at Villarrica on 30 December 2022 (local time) that ejected incandescent material 300 m onto the NW flank, accompanied by emissions and crater incandescence. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 30 de diciembre de 2022, 23:55 Hora local).

During January 2023, Strombolian explosions and lava fountaining continued mainly in the crater, ejecting material 100 m above the crater. Gas-and-steam emissions rose 40-260 m above the crater and drifted in different directions, and LP-type events continued. Emissions during the night of 11 January including some ash rose 80 m above the crater and as far as 250 m NE flank. POVI scientists reported about 70 lava fountaining events from 2130 on 14 January to 0600 on 15 January. At 2211 on 15 January there was an increase in frequency of Strombolian explosions that ejected incandescent material 60-150 m above the crater. Some ashfall was detected around the crater. POVI noted that on 19 January lava was ejected as high as 140 m above the crater rim and onto the W and SW flanks. Explosion noises were heard on 19 and 22 January in areas within a radius of 10 km. During 22-23 January Strombolian explosions ejected incandescent material 60-100 m above the crater that drifted SE. A seismic event at 1204 on 27 January was accompanied by an ash plume that rose 220 m above the crater and drifted E (figure 121); later that same day at 2102 an ash plume rose 180 m above the crater and drifted E.

Figure (see Caption) Figure 121. Webcam image of an ash plume at Villarrica on 27 January rising 220 m above the crater and drifting E. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 27 de enero de 2023, 12:35 Hora local).

Seismicity, primarily characterized by LP-type events, and Strombolian explosions persisted during February and March. POVI reported that three explosions were heard during 1940-1942 on 6 February, and spatter was seen rising 30 m above the crater rim hours later. On 9 February lava fountains were visible rising 50 m above the crater rim. On 17 February Strombolian explosions ejected material 100 m above the crater rim and onto the upper SW flank. Webcam images from 20 February showed two separate fountains of incandescent material, which suggested that a second vent had opened to the E of the first vent. Spatter was ejected as high as 80 m above the crater rim and onto the upper NE flank. A sequence of Strombolian explosions was visible from 2030 on 20 February to 0630 on 21 February. Material was ejected as high as 80 m above the crater rim and onto the upper E flank. LP-type earthquakes recorded 1056 and at 1301 on 27 February were associated with ash plumes that rose 300 m above the crater and drifted NE (figure 122). Crater incandescence above the crater rim was observed in webcam images on 13 March, which indicated Strombolian activity. POVI posted a webcam image from 2227 on 18 March showing Strombolian explosions that ejected material as high as 100 m above the crater rim. Explosions were heard up to 8 km away. On 19 March at 1921 an ash emission rose 340 m above the crater and drifted NE. On 21 and 26 March Strombolian explosions ejected material 100 and 110 m above the crater rim, respectively. On 21 March Strombolian explosions ejected material 100 m above the crater rim. Low-intensity nighttime crater incandescence was detected by surveillance cameras on 24 March.

Figure (see Caption) Figure 122. Photo of an ash plume rising 300 m above the crater of Villarrica and drifting NE on 27 February 2023. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 27 de febrero de 2023, 11:10 Hora local).

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) detected an increase in thermal activity during mid-November, which corresponds to sustained Strombolian explosions, lava fountaining, and crater incandescence (figure 123). This activity was also consistently captured on clear weather days throughout the reporting period in Sentinel-2 infrared satellite images (figure 124).

Figure (see Caption) Figure 123. Low-power thermal anomalies were detected during August through October 2022 at Villarrica, based on this MIROVA graph (Log Radiative Power). During mid-November, the power and frequency of the anomalies increased and remained at a consistent level through March 2023. Thermal activity consisted of Strombolian explosions, lava fountains, and crater incandescence. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Consistent bright thermal anomalies were visible at the summit crater of Villarrica in Sentinel-2 infrared satellite images throughout the reporting period, as shown here on 19 December 2022 (left) and 9 February 2023 (right). Occasional gas-and-steam emissions also accompanied the thermal activity. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2023 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Daily explosions, gas-and-ash plumes, avalanches, and ashfall during December 2022-March 2023

Fuego, one of three large stratovolcanoes overlooking the city of Antigua, Guatemala, has been vigorously erupting since January 2002, with recorded eruptions dating back to 1531 CE. Eruptive activity has included major ashfalls, pyroclastic flows, lava flows, and lahars. Frequent explosions with ash emissions, block avalanches, and lava flows have persisted since 2018. More recently, activity remained relatively consistent with daily explosions, ash plumes, ashfall, avalanches, and lahars (BGVN 48:03). This report covers similar activity during December 2022 through March 2023, based on information from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) daily reports, Coordinadora Nacional para la Reducción de Desastres (CONRED) newsletters, and various satellite data.

Daily explosions reported throughout December 2022-March 2023 generated ash plumes to 6 km altitude that drifted as far as 60 km in multiple directions. The explosions also caused rumbling sounds of varying intensities, with shock waves that vibrated the roofs and windows of homes near the volcano. Incandescent pulses of material rose 100-500 m above the crater, which caused block avalanches around the crater and toward the Santa Teresa, Taniluyá (SW), Ceniza (SSW), El Jute, Honda, Las Lajas (SE), Seca (W), and Trinidad (S) drainages. Fine ashfall was also frequently reported in nearby communities (table 27). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent, moderate thermal activity throughout the reporting period; however, there was a brief decline in both power and frequency during late-to-mid-January 2023 (figure 166). A total of 79 MODVOLC thermal alerts were issued: 16 during December 2022, 17 during January 2023, 23 during February, and 23 during March. Some of these thermal evets were also visible in Sentinel-2 infrared satellite imagery at the summit crater, which also showed occasional incandescent block avalanches descending the S, W, and NW flanks, and accompanying ash plumes that drifted W (figure 167).

Table 27. Activity at Fuego during December 2022 through March 2023 included multiple explosions every hour. Ash emissions rose as high as 6 km altitude and drifted generally W and SW as far as 60 km, causing ashfall in many communities around the volcano. Data from daily INSIVUMEH reports and CONRED newsletters.

Month Explosions per hour Ash plume altitude (max) Ash plume distance (km) and direction Drainages affected by block avalanches Communities reporting ashfall
Dec 2022 1-12 6 km WSW, W, SW, NW, S, SE, NE, and E, 10-30 km Santa Teresa, Taniluyá, Ceniza, El Jute, Honda, Las Lajas, Seca, and Trinidad Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, Yepocapa, Yucales, Sangre de Cristo, La Rochela, Ceilán, San Andrés Osuna, and Aldea La Cruz
Jan 2023 1-12 5 km W, SW, NW, S, N, NE, E, and SE, 7-60 km Ceniza, Las Lajas, Santa Teresa, Taniluyá, Trinidad, Seca, Honda, and El Jute Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Palo Verde, Yucales, Yepocapa, Sangre de Cristo, La Rochela, Ceylon, Alotenango, and San Andrés Osuna
Feb 2023 1-12 4.9 km SW, W, NW, and N, 10-30 km Santa Teresa, Taniluyá, Ceniza, Las Lajas, Seca, Trinidad, El Jute, and Honda Panimaché I and II, Morelia, Santa Sofía, Palo Verde, San Pedro Yepocapa, El Porvenir, Sangre de Cristo, La Soledad, Acatenango, El Campamento, and La Asunción
Mar 2023 3-11 5 km W, SW, NW, NE, N, S, SE, and E, 10-30 km Seca, Ceniza, Taniluyá, Las Lajas, Honda, Trinidad, El Jute, and Santa Teresa Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, La Asunción, Palo Verde, La Rochela, San Andrés Osuna, Ceilán, and Aldeas
Figure (see Caption) Figure 166. Thermal activity at Fuego shown in the MIROVA graph (Log Radiative Power) was at moderate levels during a majority of December 2022 through March 2023, with a brief decline in both power and frequency during late-to-mid-January 2023. Courtesy of MIROVA.
Figure (see Caption) Figure 167. Frequent incandescent block avalanches descended multiple drainages at Fuego during December 2022 through March 2023, as shown in these Sentinel-2 infrared satellite images on 10 December 2022 (top left), 4 January 2023 (top right), 18 February 2023 (bottom left), and 30 March 2023 (bottom right). Gray ash plumes were also occasionally visible rising above the summit crater and drifting W, as seen on 4 January and 30 March. Avalanches affected the NW and S flanks on 10 December, the SW and W flanks on 18 February, and the NW, W, and SW flanks on 30 March. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Daily explosions ranged between 1 and 12 per hour during December 2022, generating ash plumes that rose to 4.5-6 km altitude and drifted 10-30 km in multiple directions. These explosions created rumbling sounds with a shock wave that vibrated the roofs and windows of homes near the volcano. Frequent white gas-and-steam plumes rose to 4.6 km altitude. Strombolian activity resulted in incandescent pulses that generally rose 100-500 m above the crater, which generated weak-to-moderate avalanches around the crater and toward the Santa Teresa, Taniluyá, Ceniza, El Jute, Honda, Las Lajas, Seca, and Trinidad drainages, where material sometimes reached vegetation. Fine ashfall was recorded in Panimaché I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, Yepocapa (8 km NW), Yucales (12 km SW), Sangre de Cristo (8 km WSW), La Rochela, Ceilán, San Andrés Osuna, and Aldea La Cruz. INSIVUMEH reported that on 10 December a lava flow formed in the Ceniza drainage and measured 800 m long; it remained active at least through 12 December and block avalanches were reported at the front of the flow. A pyroclastic flow was reported at 1100 on 10 December, descending the Las Lajas drainage for several kilometers and reaching the base of the volcano. Pyroclastic flows were also observed in the Ceniza drainage for several kilometers, reaching the base of the volcano on 11 December. Ash plumes rose as high as 6 km altitude, according to a special bulletin from INSIVUMEH. On 31 December explosions produced incandescent pulses that rose 300 m above the crater, which covered the upper part of the cone.

Activity during January 2023 consisted of 1-12 daily explosions, which produced ash plumes that rose to 4.2-5 km altitude and drifted 7-60 km in multiple directions (figure 168). Incandescent pulses of material were observed 100-350 m above the crater, which generated avalanches around the crater and down the Ceniza, Las Lajas, Santa Teresa, Taniluyá, Trinidad, Seca, Honda, and El Jute drainages. Sometimes, the avalanches resuspended older fine material 100-500 m above the surface that drifted W and SW. Ashfall was recorded in Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Palo Verde, Yucales, Yepocapa, Sangre de Cristo, La Rochela, Ceylon, Alotenango, and San Andrés Osuna. Intermittent white gas-and-steam plumes rose to 4.5 km altitude and drifted W and NW.

Figure (see Caption) Figure 168. Webcam image showing an ash plume rising above Fuego on 15 January 2023. Courtesy of INSIVUMEH.

There were 1-12 daily explosions recorded through February, which generated ash plumes that rose to 4.2-4.9 km altitude and drifted 10-30 km SW, W, NW, and N. Intermittent white gas-and-steam emissions rose 4.5 km altitude and drifted W and SW. During the nights and early mornings, incandescent pulses were observed 100-400 m above the crater. Weak-to-moderate avalanches were also observed down the Santa Teresa, Taniluyá, Ceniza, Las Lajas, Seca, Trinidad, El Jute, and Honda drainages, sometimes reaching the edge of vegetated areas. Occasional ashfall was reported in Panimaché I and II, Morelia, Santa Sofía, Palo Verde, San Pedro Yepocapa, El Porvenir, Sangre de Cristo, La Soledad, Acatenango, El Campamento, and La Asunción. On 18 February strong winds resuspended previous ash deposits as high as 1 km above the surface that blew 12 km SW and S.

During March, daily explosions ranged from 3-11 per hour, producing ash plumes that rose to 4-5 km altitude and drifted 10-30 km W, SW, NW, NE, N, S, SE, and E. During the night and early morning, crater incandescence (figure 169) and incandescent pulses of material were observed 50-400 m above the crater. Weak-to-moderate avalanches affected the Seca, Ceniza, Taniluyá, Las Lajas, Honda, Trinidad, El Jute, and Santa Teresa drainages, sometimes reaching the edge of vegetation. Frequent ashfall was detected in Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, La Asunción, Palo Verde, La Rochela, San Andrés Osuna, Ceilán, and Aldeas. Weak ashfall was recorded in San Andrés Osuna, La Rochela, Ceylon during 8-9 March. A lahar was reported in the Ceniza drainage on 15 March, carrying fine, hot volcanic material, tree branches, trunks, and blocks from 30 cm to 1.5 m in diameter. On 18 March lahars were observed in the Las Lajas and El Jute drainages, carrying fine volcanic material, tree branches and trunks, and blocks from 30 cm to 1.5 m in diameter. As a result, there was also damage to the road infrastructure between El Rodeo and El Zapote.

Figure (see Caption) Figure 169. Sentinel-2 infrared satellite image showing Fuego’s crater incandescence accompanied by a gas-and-ash plume that drifted SW on 25 March 2023. Images use bands 12, 11, 5. Courtesy of INSIVUMEH.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Scientific Event Alert Network Bulletin - Volume 09, Number 09 (September 1984)

Managing Editor: Lindsay McClelland

Atmospheric Effects (1980-1989) (Unknown)

Two years of lidar data from Germany summarized

Campi Flegrei (Italy)

More M > 3 events with wider distribution, but seismic energy release unchanged and uplift slows

Erebus (Antarctica)

Vigorous explosions, clouds, and incandescent tephra

Etna (Italy)

Lava flows, Strombolian activity and ash emission

Home Reef (Tonga)

Pumice from March eruption found 1,300 km to the WSW

Karangetang (Indonesia)

Seismicity and minor tephra emission since January; ash column and nuées ardentes in September

Kilauea (United States)

Episode 25; highest fountains of 1983-84 eruption; tephra

Long Valley (United States)

Seismicity at relatively low level and inflation

Manam (Papua New Guinea)

Ash-laden emissions, incandescence

Mayon (Philippines)

Explosive activity reintensifies; 73,000 evacuated

Rabaul (Papua New Guinea)

Seismicity, ground deformation rates decline

St. Helens (United States)

New lobe in collapse zone on composite dome

Ulawun (Papua New Guinea)

Mild strombolian eruption

Unzendake (Japan)

Earthquake swarm

Villarrica (Chile)

Brief ash eruption; increased seismicity



Atmospheric Effects (1980-1989) (Unknown) — September 1984 Citation iconCite this Report

Atmospheric Effects (1980-1989)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Two years of lidar data from Germany summarized

Lidar and balloon data showed that aerosols from the March-April 1982 eruption of El Chichón remain in the stratosphere. Despite the 15-km eruption clouds reported during the Mayon eruption, no new aerosol layers were detected. At Mauna Loa, Hawaii, integrated backscattering values were lower in September than in August. Cirrus clouds were abundant throughout the month, masking any upper tropospheric aerosols that might have been present. A sunrise during clear weather in early October did not show any apparent aerosol layers. At Hampton, Virginia, a very broad backscattering peak and somewhat increased integrated backscatter were measured 6 September, but a profile with a narrower peak on 19 September (the last measurement of the month) yielded integrated values lower than in August. September values from Fukuoka, Japan were similar to those from the last measurement in mid-July. April-June lidar data from Garmisch-Partenkirchen, Germany show a gradual decrease in backscattering from stratospheric aerosols. A 3-dimensional representation of the structure of the aerosol profile since early 1982 is shown in figure 8. Balloon data from Laramie, Wyoming have continued to show slow decay of the El Chichón aerosols. No material from Mayon was evident during a flight 6 October.

Figure with caption Figure 8. Development and gradual decay of the El Chichón aerosol cloud over Garmisch-Partenkirchen, West Germany, January 1982-March 1984. The aerosol profile structure is represented in three dimensions. Courtesy of Reinhold Reiter.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.

Information Contacts: R. Reiter, Garmisch-Partenkirchen, W. Germany; T. DeFoor, MLO; M. Osborn, NASA; M. Fujiwara and M. Hirono, Kyushu Univ., Japan; J. Rosen, Univ. of Wyoming.


Campi Flegrei (Italy) — September 1984 Citation iconCite this Report

Campi Flegrei

Italy

40.827°N, 14.139°E; summit elev. 458 m

All times are local (unless otherwise noted)


More M > 3 events with wider distribution, but seismic energy release unchanged and uplift slows

"Activity at Campi Flegrei displayed some changes July-September. The monthly mean uplift velocity was in the range of 1.2 mm/day at Pozzuoli and

"Seismic energy release remained at the same level as in the past year. We observed a higher number of the most energetic events (M 3) than in past months (table 1). They are also no longer confined within the restricted area around Solfatara Crater, but instead occur all over the seismically active area.

Table 1. Magnitudes of the most energetic events in the Campi Flegrei area, July-September 1984.

Date Magnitude
01 Jul 1984 3.7, 3.5
11 Jul 1984 3.8
22 Aug 1984 3.6
29 Aug 1984 3.9, 3.8
12 Sep 1984 3.3
13 Sep 1984 3.2
28 Sep 1984 3.5, 3.7

"The temperatures of fumaroles in Solfatara Crater remained stable. The radon content of the water wells reached a minimum in the last year, with a slight increase again at the end of September.

"The decrease in the uplift velocity during constant seismic energy release does not support the idea that uplift velocity is closely related to the occurrence of larger earthquakes. On the contrary, in this last period we have observed higher-energy events. They often occur as double events (1 July, 29 August and 28 September; table 1). The area that was previously affected by swarms of low-energy events (1 km W of Pozzuoli) is now also affected by high-energy events. We do not know if this pattern of activity indicates a higher risk of eruption."

Geologic Background. Campi Flegrei is a 13-km-wide caldera that encompasses part of Naples and extends to the south beneath the Gulf of Pozzuoli. Episodes of significant uplift and subsidence within the dominantly trachytic caldera have occurred since Roman times. The earliest known eruptive products are dated 47,000 years BP. The caldera formed following two large explosive eruptions, the massive Campanian ignimbrite about 36,000 BP, and the over 40 km3 Neapolitan Yellow Tuff (NYT) about 15,000 BP. Following eruption of the NYT a large number of eruptions originated from widely scattered subaerial and submarine vents. Most activity occurred during three intervals: 15,000-9,500, 8,600-8,200, and 4,800-3,800 BP. The latest eruption were in 1158 CE at Solfatara and activity in 1538 CE that formed the Monte Nuovo cinder cone.

Information Contacts: G. Luongo and R. Scandone, OV; F. Barberi, Univ. di Pisa.


Erebus (Antarctica) — September 1984 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Vigorous explosions, clouds, and incandescent tephra

"Brief reports from technical staff operating seismic instruments at Scott Base and infrasonic equipment at McMurdo Sound indicate a significant change in eruptive activity at Mt. Erebus. Activity associated with the lava lake has consisted of quiet degassing with emission of ~230 t/d of SO2 and 21 t/d of aerosol particles. Two to six small Strombolian eruptions occurred per day, often ejecting bombs of anorthoclase phonolite onto the crater rim, ~220 m above the lava lake.

"The reports indicate that starting on 13 September a number of large explosions were recorded by the IMESS network situated on the volcano, by infrasonic detectors in Windless Bight (~29 km away), by the WWSSN seismograph at Scott Base (37 km distant), and by a tidal gravimeter at South Pole station (~1,400 km from Mt. Erebus). Previous Strombolian activity has generally been too weak to record except on the IMESS seismic stations.

"From 13 to 19 September, the volcano was very active with 8-19 large explosions (recorded on WWSSN, IMESS, and infrasound instruments) per day, decreasing to 2-8/day 20-25 September, then increasing again to 12-27 explosions per day 26-29 September. Numerous mushroom-shaped clouds were reported, and were estimated to rise as much as 2 km above the summit. Observers at McMurdo, 37 km SW of the volcano, reported hearing explosions on 16 September at 0459, and 26 September at 1133 and 1135. Slight earth tremors were also felt there. On 17 September at 1010, a bright summit glow was observed from McMurdo Sound. Six minutes later, incandescent bombs were ejected to ~600 m above the summit; observers at Butter Point, 70 km from the volcano, reported seeing incandescent tephra from this explosion, which produced one of the larger infrasonic and seismic signals of the eruption sequence.

"Ash covered the NW side of the volcano down to 3,400 m elevation. Fumaroles around the summit crater showed a substantial increase in activity. A 300-500-m-high very narrow plume was observed lower on the E flank (1,800 m?). Observers suggested that it might have been a geyser."

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: P. Kyle, New Mexico Inst. of Mining & Tech.; J. Kienle and C. Wilson, Univ. of Alaska.


Etna (Italy) — September 1984 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Lava flows, Strombolian activity and ash emission

Continuing strombolian activity, particularly intense at times (on the 14th and 20th) and very irregular in intensity and duration, marked the activity in September. Beginning 27 September, this activity was nearly replaced by expulsions of reddish ash at irregular intervals, rarely accompanied by the ejection of incandescent material (bombs and incandescent lava fragments). Lava flows, rarely thick (20 September), usually emerged from effusive vents on the S rim of the Southeast Crater at 3,050 m elevation, and were directed mainly SE, E, S, and ENE. A lava flow advanced S to about 100 m from the rifugio Torre del Filosofo. The flows moved across the lava field, rarely advancing below 2,700 m elevation, within the Valle del Bove.

"Strombolian activity occurred at the bottom of Bocca Nuova. The activity was particularly violent at times with ejection of incandescent lava fragments above the level of the crater rim (24 and 27 September). Generally, only gas emissions were observed. The Chasm usually remained obstructed. Rarely (11 and 24 September), incandescent gas under pressure was observed emerging from a small vent. From the Northeast Crater, isolated expulsions of reddish ash continued, but activity was usually limited to quiet gas and vapor emissions."

Michael Matson reported that a weather satellite image on 14 September at 0740 showed a plume at 4.5 km elevation or higher extending SE from Etna. Ejection of the plume was estimated to have begun 1-2 hours earlier. No plume was evident on an image at 0946.

The following report by Christopher Kilburn, is based on observations 25 August-1 October.

"Since the eruption began in late April, a cone has developed inside the upper E rim of the Southeast Crater, roughly coincident with the position of the most northerly vent active in 1979 (figure 15). On 1 October the cone was ~120 x 100 m at its base (the longer axis oriented roughly NNW) and some 30-40 m high. Until 20 September, the strombolian activity consisted of intermittent violent explosions, with peak frequencies of 14/minute and bomb trajectories ranging from subvertical to directed. Lower-angle ejections were mainly to the E and S, but occasionally to the N and W. Bombs of the order of 0.04 m3 had maximum ranges of ~300-400 m. After 20 September, the violence of the explosions markedly decreased. Weak ejections every few minutes or hours were interspersed with periods of inferred internal collapse that generated small convection columns of pale brown ash and dust. This change in explosive behaviour followed a brief period of rapid lava discharge to the E on 20 September as well as a period of heavy precipitation. Enlargement of the vent at the top of the new cone, which occurred sometime between 13 and 24 September, may have been associated with the 20 September lava discharge.

Figure (see Caption) Figure 15. Morphology of Southeast Crater before the 1984 eruption (left); contours are approximate, in meters above sea level. Morphology of Southeast Crater 11 September 1084 (center) and 1 October 1984 (right); dashed line indicates the approximate extent of ponded lava, arrows the direction of lava discharge. After Murray, J. B., 1982, Sommit del Mt. Etna, Settembre 1981, 1:5000 scale map, Ordnance Survey, Southampton, U.K. Courtesy of Christopher Kilburn.

"Lava discharge was virtually continuous from ephemeral vents S and E of the base of the new cone. Lava flowed S, SE, and E over low points in the Southeast Crater rim. Activity typically alternated between the S and E vents at intervals of one to several days. The successive aa flows, few of which were longer than 1.5 km with frontal thicknesses rarely exceeding 5 m, created a compound flow field with an estimated area that approached 1.5 km2 by 1 October (figure 16). By 23 September, ponding inside the Southeast Crater had reached a maximum accumulated thickness of more than 45 m, raising the level of its bottom to ~3,065 m above sea level. Assuming a conservative average thickness of 5 m, and including the material within the Southeast Crater, a provisional estimate of the minimum volume of the flow field on 1 October is 8.5 x 106 m3, yielding a minimum average effusion rate of ~0.64 m3/s. Estimates of the eruption rate, made near the vent 17-28 September, were 0.5-1.0 m3/s for lava discharged toward the S. The chief uncertainties in these discharge rates are the velocity profiles across the flow surface and with depth, and the thickness of the flow; for the minimum value, parabolic velocity profiles and a flow depth of 3-4 m have been assumed, the maximum (central) surface velocity and lava channel width being estimated in the field.

Figure (see Caption) Figure 16. Provisional sketch map of 1984 lava flows as of 1 October. Courtesy of Christopher Kilburn.

"The Strombolian activity at Bocca Nuova was accompanied by the emission of large quantities of SO2-rich fumes. Until at least 24 September, magma was probably roughly 100-200 m below the W rim; observations were obscured by fumes. An apparently fresh bomb was found ~20-30 m from the NW rim 24 September, while others, up to 70 cm across, were seen being expelled toward the N and NW 28-29 September to a maximum estimated range of ~100-120 m. It is not known whether ejection of material outside the crater indicated a rise in level of magma within Bocca Nuova or an increase in explosive vigour due to changes in the physical state of the magma, notably in its vesicle content."

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Romano, IIV; C. Kilburn, Univ. of London; J. Murray, D. Decobecq, and C. Delmotte, Univ. Paris Sud; P. Briole, PIRPSEV; M. Matson, NOAA.


Home Reef (Tonga) — September 1984 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Pumice from March eruption found 1,300 km to the WSW

Pumice that was probably from the March eruption of Home Reef was collected in August at Beautemps-Beaupré (northern Loyalty Islands, 20.4°S, 166.2°E) and on 3 September at Yate (southern New Caledonia, 22.15°S, 167.00°E), both roughly 1,300 km WSW of Home Reef. Fishermen reported that pumice arrived at Yate by 19 August or 1-2 days earlier during a few days of rough seas. The largest pumice fragment found was 9 cm long but the pumice averaged 1-2 cm in diameter. Small shells up to 1 cm long were frequently attached to the pumice. As of mid-September, no pumice had arrived in the Solomon Islands, roughly 2,600 km NW of Home Reef.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: P. Maillet, J. Eissen, and M. Monzier, ORSTOM, New Caledonia; D. Tuni, Ministry of Lands, Energy, and Natural Resources, Solomon Islands.


Karangetang (Indonesia) — September 1984 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Seismicity and minor tephra emission since January; ash column and nuées ardentes in September

An explosive eruption on 5 September was preceded by seismicity and nine months of minor tephra ejection. Rumblings were heard on 4 January, followed by an explosion that ejected ash. From February through April, rumbling preceded episodes of ash emission. On 31 May at 0724, an ash column rose to 1.5 km above the summit. During the night of 7-8 June, glowing lava fragments were ejected from the main crater. On 20 July, ash emission was accompanied by rumbling. The number of local seismic events increased through the first half of 1984 (table 1). Volcanic tremors were recorded 24 August, although no surface activity was seen. Ash emission occurred 3 September at 0447, producing an eruption column that rose 600 m. Glowing lava fragments were occasionally ejected. Rumbling accompanied the activity.

Table 1. Number of local earthquakes/month recorded at Karangetang. Courtesy of VSI.

Date Tectonic Earthquakes Volcanic Earthquakes
Jan 1984 62 18
May 1984 82 57
Jun 1984 200 139
Jul 1984 456 85

On 5 September at 0905, an ash column rose 4 km from the main crater. Nuées ardentes flowed 2 km S and 1 km W, with estimated volumes of 1.5 and 0.5 x 106 m3. One week later, ash emission was continuing and weak rumbling was heard. Ten volcanic and five tectonic earthquakes were recorded daily through 16 September. About 4,500 people were temporarily evacuated from the S and W sides of the danger zone but were allowed to work in their fields during the day. No casualties were reported.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: A. Sudradjat, VSI.


Kilauea (United States) — September 1984 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Episode 25; highest fountains of 1983-84 eruption; tephra

EPISODE 25

"After a 30 day repose period, the 25th episode of the 1983-84 E rift zone eruption began at about 1604 on 19 September and ended at about 0532 the next day. Brief intervals of Strombolian activity and a small pahoehoe flow across the N spillway occurred over a 10-day period preceding episode 25. The largest flow exited through the N spillway and advanced on a broad front up to 3.3 km from Pu'u O (figure 30). A small, short-lived, fissure eruption occurred ENE of Pu'u O early in the episode, producing a thin pahoehoe flow about 800 m long just N of the National Park boundary. The total volume of lava produced was approximately 11.1 x 106 m3. An unusually thick tephra mantle, estimated to have a volume of about 1 x 106 m3, fell early in this episode, accompanying the highest (460 m) fountains yet observed in the 1983-84 eruption.

Figure (see Caption) Figure 30. Lava flows erupted from Kīlauea between 3 January 1983 and 20 November 1984 on the E rift zone. Flows from episodes 25-27 are shown separately. Courtesy of HVO.

"The summit of Pu'u O increased in height by 12 m during episode 25 and, within 11 days, had collapsed about 5 m, to stand 875 m above sea level and 155 m above the pre-1983 surface. The recent basalt, like that of earlier episodes, is nearly aphyric with widely scattered small (< 1 mm) phenocrysts of olivine.

Deformation. "During the 30-day repose period prior to episode 25, the E-W tilt recorded in the Uwekahuna vault increased by 17 µrad. Summit subsidence began around 1400 on 19 September. The net deflationary tilt change recorded during episode 25 was 15 µrad. Tiltmeters near the eruption site and at a site 6.5 km uprift recorded no significant tilt change during September. By the end of the month, slow reinflation of the summit was indicated by a recovery of 6 µrad.

Seismicity. "Prior to the onset of episode 25, tiny earthquakes, registered only at the Pu'u Kamoamoa station (about 500 m uprift from Pu'u O), started to increase after about 1500 on 19 September. At 1530, the level of harmonic tremor began to increase as well. Tremor increased rapidly at 1540, and was marked by a sharper increase at 1604. At 1613 the tremor alarm at HVO was triggered. At 1615, tremor amplitude peaked and remained at a high level until 0532 on 20 September. A rapid decrease in tremor was accompanied by intermittent high-amplitude bursts. For about 6 hours following the drop in tremor, there were many tiny high-frequency shocks recorded near Pu'u O.

"From about 2000 on 19 September to 0800 on 21 September, a swarm of very small long-period earthquakes combined with intermediate-amplitude harmonic tremor, apparently related to the post-deflation adjustments of the summit storage system, was recorded in the North Pit station at the summit.

"At the end of September, the level of tremor at Pu'u O was constant and very low in amplitude. The number of microearthquakes was low in the summit region and moderate in the E rift zone."

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: G. Ulrich, A. Okamura, and R. Koyanagi, HVO.


Long Valley (United States) — September 1984 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Seismicity at relatively low level and inflation

The following is from a USGS report.

"Following decay of the January 1983 earthquake swarm activity to background levels in the spring of 1983 (SEAN 07:02, 08:01, 08:02, and 08:03), seismic activity has persisted at a relatively low level. Within the caldera, this background level typically involves several earthquakes (magnitude greater than or equal to 1) per day and an occasional locally felt M 3 event. A M 4.2 earthquake on 28 April 1984 and a M 3.8 event in a swarm that began 16 July 1984 are the largest events to occur in the caldera since the January 1983 swarm. Deformation data show evidence for only modest inflation of the resurgent dome following the January 1983 swarm. Frequently repeated trilateration measurements, however, show continued extensional deformation within the caldera at rates of several microstrain units per year.

"With the reduced rates of seismic activity and ground deformation in the caldera during the last year, the possibility of an imminent eruption appears more remote than during the previous 2 years. In a letter dated 11 July 1984, the Director of the USGS advised California officials that a volcanic eruption does not pose an immediate threat to public safety in the Long Valley region and that the Long Valley region does not satisfy the imminent threat criteria for an official Hazard Warning for volcanic activity.

"The Long Valley region had been under a Notice of Potential Volcanic Hazard since May 1982. Prior to September 1983, this was the lowest of three levels used by the USGS to express the relative urgency of a potential geologic hazard when formally notifying the public and responsible officials. In September 1983, the 3-level terminology was changed to a single-level system termed a Hazard Warning. The USGS is continuing its intensive seismic, geophysical, and geodetic monitoring of Long Valley Caldera that was initiated in mid-1982."

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS, Menlo Park, CA.


Manam (Papua New Guinea) — September 1984 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash-laden emissions, incandescence

"Following the brief intense eruption of 25 August, activity was steady at a weak-moderate level in September. Both summit craters continued to release ash-laden emissions. Incandescent activity was observed at Southern crater at the beginning and middle of the month, and Main crater incandescence was seen for a few days at mid-month. Seismic amplitudes declined slightly to levels about three times normal. Slight radial inflation of the volcano took place early in the month."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: C. McKee, RVO.


Mayon (Philippines) — September 1984 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Explosive activity reintensifies; 73,000 evacuated

Quoted material is from PHIVOLCS.

"Eruptive activity started 9 September at 1923. Initial activity was dominantly Strombolian, with incandescent spattering at the summit and production of small lava flows. A mound of solidified lava inside the crater blocked the 1968 notch at the SW rim, so the small lava flows and initial pyroclastic flows (see below) moved predominantly NW.

"A fairly strong eruption 10 September at 2300 marked the start of Vulcanian activity. Ash-laden steam clouds rose 5 km above the summit and a pyroclastic flow moved down to the NW, reaching 700 m elevation. Stronger explosions 11 September reopened the notch at the SW rim, so more of the later lava and pyroclastic flows moved SW than NW. The eruption continued to intensify, peaking 13 September. Cauliflower-shaped, ash-laden steam clouds accompanied by rumbling sounds reached a maximum height of 15 km before drifting SW, W, and NW. Continuous volcanic tremors with increasing amplitude were recorded, punctuated by explosion earthquakes. Two lava flows emerged through the SW breach. One reached 500 m elevation, adjacent to and W of the 1978 flow. The other, a little farther W, advanced to 1,400 m elevation (figure 2). The new lava is porphyritic augite-hypersthene andesite.

Figure (see Caption) Figure 2. Map of Mayon showing the extent of the 1984 lava flows, after Corpuz (1985).

"Activity gradually declined 14-21 September. A mild eruption 22 September at 0502 was accompanied by a volcanic earthquake felt at intensity II on the MRF scale at the Mayon Resthouse Observatory. A relatively quiet period followed. A very strong explosion 23 September at 0433 ejected voluminous ash-laden steam clouds that reached 10 km in height. Incandescent tephra rose 2 km above the summit and spread in all directions, covering the summit area with red-hot tephra to about 1,500 m elevation. A large notch was formed in the SE rim of the crater and a smaller one in the E rim. Subsequent pyroclastic flows were directed predominantly SE and E, although some moved in other directions along gullies. Ash fell within about 50 km SW, W, and NW of the summit. Areas E and NE of the volcano received most of the fine airfall tephra generated by pyroclastic flows. The eruption continued to intensify until the 24th. Voluminous ash emission, sometimes sustained for 5 minutes, occurred at intervals of 2-15 minutes, accompanied by strong detonations and at times by electrical discharges. Maximum height of the eruption clouds was 15 km. On 24 September at 1614, a nuée ardente [almost] reached the nearest village. A large volume of pyroclastic flow material was deposited on the SE flank. The eruption started to decline 25 September. By 5 October activity was limited to weak steaming and faint to moderate crater glow, accompanied by volcanic tremors and discrete earthquakes."

Press sources reported reintensification of the eruption 6 October. Ash-laden steam clouds rose as much as 1.7 km above the summit and lava flowed 1 km from the crater.

"Mudflows generated by rain destroyed three sections of the Legaspi-Santo Domingo highway roughly 8 km SE of the volcano. Larger mudflows on the 27th overran the same portion of highway. Two bridges were destroyed along the Malilipot-Santo Domingo highway, roughly 8 km E of Mayon."

As of 30 September, press sources reported that 6,500 hectares of farmland had been covered by mudflows.

"Implementation of the Mayon preparedness plan was fairly smooth. On 10 September, the area within 6 km of the summit was declared off-limits and all residents were recommended for evacuation. On 12 September, the danger zone was extended to 8 km from the summit on the S and SW flanks. About 26,000 people were evacuated during the first phase of the eruption. On 23 September, the danger zone was expanded again, to 10 km from the summit on the SE side and 8 km from the summit around the rest of the volcano. All residents of that area were recommended for evacuation and the number of evacuees swelled to more than 73,000 at 50 centers. No casualties were attributed directly to the eruption or mudflows."

Reference. Corpuz, E., 1985, Chronology of the September-October 1984 eruption of Mayon volcano, Philippines in Punongbayan, R.S. (ed.), 1985, Special issue on the 1984 eruption of Mayon: Philippine Journal of Volcanology, v. 2, p. 36-51 (9 papers, 205 p.).

Further Reference. Umbal, J., 1987, Recent lahars of Mayon volcano in Geologic hazards and disaster preparedness systems: National Science and Technology Authority, p. 56-76.

Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: PHIVOLCS, Quezon City; DPA; AP.


Rabaul (Papua New Guinea) — September 1984 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Seismicity, ground deformation rates decline

"Declining seismicity and rates of ground deformation were evident in September. The total number of caldera earthquakes for the month was 4048 and the seismic energy released amounted to about [8 x 1014] ergs (compared to 5,285 earthquakes and about [2.4 x 1016] ergs in August).

"Seismicity was concentrated in the N part of the caldera seismic zone. Measured vertical uplift continued to be greatest along the SE coast of Matupit Island. However, the maximum uplift in September was only 14 mm (compared to 35 mm in August). Tilt and horizontal distance measurements continued to indicate slow steady inflation and expansion in the Greet Harbour area."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: C. McKee, RVO.


St. Helens (United States) — September 1984 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


New lobe in collapse zone on composite dome

The new lobe, which began to emerge during the night of 9-10 September and had stopped growing by the 14th, partially filled an elongate E-W-trending collapse zone, about 350 m long by 250 m wide, on the dome's upper W side. The collapse, in what had been the highest part of the dome, destroyed much of the March 1984 lobe and engulfed the notch produced by explosions in May (SEAN 09:05). The SE wall of the collapse zone was defined by the zone of fissuring observed in early September. The volume of collapse was about 1.3 x 106 m3.

The new lobe was about 250 m long by 220 m wide, with an average thickness of 35 m. The USGS calculated its volume at about 2 x 106 m3. It was almost entirely confined within the collapse zone, although it protruded considerably above the rim of the collapse zone. Sublimate deposits were more extensive than on previous lobes, and a large area at the top of the new lobe was a dirty yellow color.

At least 3.4 x 106 m3 of internal expansion of the dome took place during the period of accelerating deformation prior to extrusion of the new lobe. Between the afternoon of 9 September and the next morning, targets on the NW side of the dome moved outward as much as 52 m. Displacement rates dropped sharply on the 10th, and by 11 September outward movement was occurring at only centimeters per day. Deformation remained very slow through early October.

After increasing sharply to 786 t/d on 10 September shortly after the new lobe was first observed, rates of SO2 emission declined to less than 300 t/d on the 12th, less than 200 t/d the next afternoon, and just under 100 t/d by the 15th. A period of higher SO2 emission rates occurred in late September, with measurements on the 23rd, 26th, and 28th yielding values of 190, 135, and 148 t/d, but SO2 values had dropped to less than 50 t/d on 2 October.

Seismicity gradually declined 11-12 September, from about 20 events per hour on the 11th to about 5 per hour late on the 12th, after very vigorous activity the previous two days (SEAN 09:08). Most earthquakes had stopped by 13 September, but surface events, primarily caused by rockfalls, were frequent that day and remained frequent for the next week. The number of surface events declined by the last week in September and seismic activity remained low through early October.

Geologic Background. Prior to 1980, Mount St. Helens was a conical volcano sometimes known as the Fujisan of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km breached crater now partially filled by a lava dome. There have been nine major eruptive periods beginning about 40-50,000 years ago, and it has been the most active volcano in the Cascade Range during the Holocene. Prior to 2,200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older edifice, but few lava flows extended beyond the base of the volcano. The modern edifice consists of basaltic as well as andesitic and dacitic products from summit and flank vents. Eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers.

Information Contacts: D. Swanson, C. Mullins, USGS CVO, Vancouver, WA; C. Jonientz-Trisler, University of Washington.


Ulawun (Papua New Guinea) — September 1984 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Mild strombolian eruption

"After several weeks of intensified seismicity and occasional small phreatic explosions, a mild Strombolian eruption began on 4 September and ended on 11 September.

"Previous Ulawun eruptions developed rapidly (within hours) to full-scale eruptions, including lava effusion and paroxysmal explosive activity culminating in the formation of pyroclastic flows. However, the 1984 eruption developed slowly from the first appearance of summit glow on 4 September, and no effusion or paroxysmal activity took place. The eruption reached a peak 6-9 September when mild, rhythmic, almost ash-free, Strombolian explosions took place every few seconds.

"During an aerial inspection on 7 September, a pool of fluid lava was observed in the bottom of the summit crater, about 50-100 m below the rim; explosions took place from a small circular central vent. Most ejecta were contained by the crater walls, but occasional larger explosions showered the upper flanks of the volcano with incandescent tephra. Visible shock waves were generated by the stronger explosions. A white eruption plume several tens of kilometers long was formed at the peak of the eruption. Seismic amplitudes were 30-40 times normal on 7 and 8 September, and the seismicity was characterized by irregular tremor produced by the frequent explosions.

"Regular reports and advice were transmitted by RVO to provincial government authorities throughout, and reactions to the eruption were controlled and rational, resulting in minimal disturbance to daily life."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: C. McKee, RVO.


Unzendake (Japan) — September 1984 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Earthquake swarm

Local seismic activity, which had increased since May, peaked in August when 6,370 seismic events, including 409 felt events, were recorded (figure 1). During the evening of 6 August the number of recorded earthquakes increased rapidly (table 1). Two large felt shocks and several minor felt shocks occurred within 10 minutes, causing 10 landslides and injuring two persons. Seismic activity has since declined, but remained above normal as of 26 September.

Figure (see Caption) Figure 1. Daily number of felt earthquakes at Unzen Volcano, August 1984. Courtesy of JMA.

Table 1. Earthquakes of M >= 4.0, 6 August 1984. Intensities are measured at the JMA Unzendake Weather Station, using the JMA scale (0-VII).

Time Magnitude Depth of Focus Intensity
1728 4.8 6 km IV
1730 5.7 7 km I
1735 4.0 15 km I
1738 5.0 11 km V
1841 4.1 10 km IV
1949 4.0 8 km IV

Epicenters of the swarm, determined by the JMA seismic network, were concentrated on the W coast of Shimabara Peninsula about 8 km W of Fuken-dake, the most recently active peak of the Unzen Volcano Complex (figure 2). The depth of seismic sources deepened from E to W (figure 2, inset). The characteristic hypocenter distribution coincides with previous results from the University of Kyoto and JMA. Earthquake swarms without eruption have often occurred at Unzen.

Figure (see Caption) Figure 2. Map of Shimabara Peninsula. The Unzen Volcanic Complex occupies most of the peninsula. Fuken-dake (open triangle), Maye-dake (solid triangle) and epicenters of events, 6 August, 1300-7 August, 0325 (open squares) are shown. The E-W cross-section (inset) shows a depth range from the surface to 20 km. Courtesy of JMA.

No eruptive activity has been observed since 1792, when explosions at Fuken-dake in February were followed by lava extrusion in March, and earthquakes and landslides in April and May. On 21 May an avalanche from Maye-dake (near the E coast), caused by an earthquake, created a major tsunami in Shimabara Bay that caused [15,000] fatalities and much destruction.

Further Reference. Sawada, Y., 1978, Seismic activity at Unzen-dake volcano and the unusual number of its occurrence and frequency: Papers in Meteorology & Geophysics, v. 29, p. 83-96.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA, Tokyo; Kyodo News Service, Tokyo.


Villarrica (Chile) — September 1984 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Brief ash eruption; increased seismicity

"A brief eruption from Villarrica's central crater was reported during the afternoon of 11 August. After three strong explosions and underground rumbling, a dark ash column was seen rising more than 200 m above the summit. Winds blew the ash over the snow-covered SE flank. Seismometers operated by the Universidad de la Frontera at Temuco (100 km NW of the volcano) recorded an increase in seismicity during the event."

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: H. Moreno R., Univ. de Chile, Santiago.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports