Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Yasur (Vanuatu) Strong thermal activity with incandescent ejecta continues, February-May 2019

Bagana (Papua New Guinea) Infrequent thermal anomalies, no ash emissions, February-May 2019

Ambae (Vanuatu) Declining thermal activity and no explosions during February-May 2019

Sangay (Ecuador) Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Kadovar (Papua New Guinea) Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Sarychev Peak (Russia) Brief ash emission reported on 16 May 2019

Nyiragongo (DR Congo) Lava lake remains active through May 2019; three new vents around the secondary cone

Bezymianny (Russia) Ongoing thermal anomalies, gas-and-steam plumes, and lava dome growth during February-May 2019; strong explosion in mid-March

Nevados de Chillan (Chile) Small ash explosions and dome growth during December 2018-May 2019; ballistic ejecta deposited around the crater, with a pyroclastic flow in May



Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Yasur (Vanuatu) — June 2019 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strong thermal activity with incandescent ejecta continues, February-May 2019

Yasur volcano on Tanna Island has been characterized by Strombolian activity with large incandescent bombs, frequent explosions, lava fountaining, and ash emissions for much of its known eruptive history. Melanesians from nearby islands are believed to have settled Tanna in about 400 BCE; it is now part of the nation of Vanuatu, independent since 1980. The Kwamera language (or Tannese) spoken on the SE coast of the island is thought to be the source of the name of the island. No known oral history describes volcanic activity; the first written English-language documentation of activity dates to 5 August 1774, when Captain James Cook saw "a great fire" on Tanna Island. Cook realized that it "was a Volcano which threw up vast quantities of fire and smoak and made a rumbling noise which was heard at a good distance" (The Captain Cook Society) (figure 51).

Figure (see Caption) Figure 51. Incandescence, steam, and dark ash from Yasur fill the sky in this sketch representing Captain James Cook's landing in the 'Resolution' at Tanna Island on 5 August 1774. The form of the volcano is behind the ship, the incandescence is in the upper right next to the ship's masts. "Landing at Tanna" by William Hodges, 1775-1776, National Maritime Museum, Greenwich, London. The Maritime Museum noted that this is one of a group of panel paintings produced by Hodges of encounters with islanders during the voyage, in which the European perception of each society at the time is portrayed. Image taken from Wikimedia Commons.

Based on numerous accounts from ships logs and other sources, volcanic activity has been continuous since that time. During periods of higher activity, multiple vents within the summit crater send ejecta 100 m or more above the crater rim, with large bombs occasionally landing hundreds of meters away. Continued activity during February-May 2019 is covered in this report with information provided by the Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD) which monitors the volcano and satellite data; photographs from tourists also provide valuable information about this remote location.

VMGD has maintained Alert Level 2 at Yasur since October 2016, indicating that it is in a major state of unrest. There is a permanent exclusion zone within 395 m of the eruptive vents where access is prohibited due to multiple hazards, primarily from large incandescent bombs up to 4 m in diameter which have been ejected from the vents onto the crater rim in the past, resulting in fatalities (BGVN 20:08).

Satellite and ground based information all support high levels of thermal activity during February -May 2019. MODVOLC thermal alerts were issued 11 times in February, 27 times in March, and 20 times each in April and May. The MIROVA graph also indicated the ongoing consistently high levels of thermal energy throughout the period (figure 52). Plumes of SO2 emissions are common from Vanuatu's volcanoes; newer higher resolution data available beginning in 2019 reveal a persistent stream of SO2 from Yasur on a near-daily basis (figure 53).

Figure (see Caption) Figure 52. The MIROVA graph of thermal energy at Yasur from 3 September 2018 through May 2019 indicates the ongoing activity at the volcano. Courtesy of MIROVA.
Figure (see Caption) Figure 53. The SO2 plumes from Yasur were persistent during January-May 2019 when they were visible many days of each week throughout the period. Top left: On 12 January plumes were visible drifting E from both Ambrym (top) and Yasur (bottom). Top right: Plumes drifted W from three Vanuatu volcanoes on 7 February, Gaua (top), Ambrym (middle) and Yasur (bottom). Bottom left: On 12 March N drifting plumes could be seen from Ambae (top) and Yasur (bottom). On 27 April, only Yasur had an SO2 plume drifting W. Courtesy of Goddard Space Flight Center.

Satellite imagery confirmed that the heat sources from Yasur were vents within the summit crater of the pyroclastic cone. Both northern and southern vent areas were active. On 7 March 2019 the N vent area had a strong thermal signal. Ten days later, on 17 March, similar intensity thermal anomalies were present in both the N and S vent areas (figure 54). On 6 April the S vent area had a stronger signal, and gas emissions from both vents were drifting N (figure 55). Satellite imagery from 21 May 2019 indicated a strong thermal signal inside the crater in the area of the vents, and included a weaker signal clearly visible on the inside E crater rim. Strong Strombolian activity or spatter sending large incandescent bombs as far as the crater rim are a likely explanation for the signal (figure 56), underscoring the hazardous nature of approaching the crater rim.

Figure (see Caption) Figure 54. Strong thermal anomalies from the crater of Yasur's pyroclastic cone seen in satellite images confirmed the ongoing high level of activity. Left: 7 March 2019, a strong thermal anomaly from the N vent area, shown with "Geology" rendering (bands 12, 4, 2). Right: 17 March 2019, thermal anomalies at both the N and S vent areas, shown with "Atmospheric Penetration" rendering (bands 12, 11, 8A). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Strong thermal anomalies (left) and gas emissions (right) at Yasur were captured with different bands in the same Sentinel-2 satellite image on 6 April 2019. Left: The thermal anomaly in the S vent area was stronger than in the N vent area, "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: Gas plumes drifted N from both vent areas, "Natural color" rendering (bands 4, 3, 2). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Thermal activity from the crater of Yasur on 21 May 2019 produced a strong thermal signal from the center of the crater and a weaker signal on the inside E crater rim, likely the result of hazardous incandescent bombs and ejecta, frequent products of the activity at Yasur. Left: "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: "Geology" rendering (bands 12, 4, 2). The crater is about 0.5 km in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Tourists visit Yasur on a regular basis. A former lake on the N side of Yasur has left ripples in the sand deposits over older volcanic rocks on the N side of the volcano (figure 57) since it drained in 2000 (BGVN 28:01). Visitors are allowed to approach the S rim of the crater where incandescence from both the N and S vents is usually visible (figure 58). Incandescent spatter from the convecting lava in the vents is highly dangerous and unpredictable and often covers the inner slopes of the rim as well as sending bombs outside the crater (figure 59).

Figure (see Caption) Figure 57. The pyroclastic cone of Yasur viewed from the north on 6 May 2019. Ripples in volcaniclastic sand in the foreground are remnants of a lake that was present on the N side of the volcano until a natural dam breached in 2000. Copyrighted photo by Nick Page, used with permission.
Figure (see Caption) Figure 58. Two glowing vents were visible from the south rim of Yasur on 6 May 2019. The S vent area is in the foreground, the N vent area is in the upper left. Copyrighted by Nick Page, used with permission.
Figure (see Caption) Figure 59. Incandescent spatter at Yasur on 6 May 2019 sent fragments of lava against the inside crater wall and onto the rim. The convecting lava in the vent can be seen in the lower foreground. Copyrighted photo by Nick Page, used with permission.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Captain Cook Society (URL: https://www.captaincooksociety.com/home/detail/225-years-ago-july-september-1774); Royal Museums Greenwich (URL: https://collections.rmg.co.uk/collections/objects/13383.html); Wikimedia Commons, (URL: https://commons.wikimedia.org/wiki/File:The_Landing_at_Tana_one_of_the_New_Hebrides,_by_William_Hodges.jpg); Nick Page, Australia,Flickr: (URL: https://www.flickr.com/photos/152585166@N08/).


Bagana (Papua New Guinea) — June 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Infrequent thermal anomalies, no ash emissions, February-May 2019

With historical eruptions reported back to 1842, Papua New Guinea's Bagana volcano on the island of Bougainville has been characterized by viscous andesitic lava flows down the steep flanks of its cone, along with intermittent ash plumes and pyroclastic flows. Ongoing thermal anomalies and frequent ash plumes have been typical of activity during the current eruption since it began in early 2000. Activity declined significantly in December 2018 and remained low through May 2019, the period covered in this report (figure 33). Information for this report comes primarily from satellite images and thermal data.

Figure (see Caption) Figure 33. The MIROVA plot of radiative power at Bagana from 1 September 2018 through May 2019 shows a marked decline in thermal activity during December 2018 after ash explosions and satellite observations of flows during the previous months. Courtesy of MIROVA.

The last ash emission at Bagana was reported on 1 December 2018 by the Darwin Volcanic Ash Advisory Center (VAAC). A Sentinel-2 satellite image showed a linear thermal anomaly trending NW from the summit on 14 December (BGVN 50:01). On 8 January 2019, an image contained a dense steam plume drifting E and a very faint thermal anomaly on the N flank a few hundred meters from the summit. A more distinct thermal anomaly at the summit appeared on 22 February 2019 (figure 34). A visitor to the region photographed incandescence on the flank, likely from the volcano, at dawn around 19 February 2019 (figure 35).

Figure (see Caption) Figure 34. Sentinel-2 satellite imagery revealed thermal anomalies at Bagana in January and February 2019. Left: a very faint thermal anomaly was N of the summit at the edge of the E-drifting steam plume on 8 January 2019. Right: A thermal anomaly was located at the summit, at the base of the NE-drifting steam plume on 22 February 2019. Sentinel-2 satellite images with "Atmospheric Penetration" rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A visitor near Bagana spotted incandescence on the flank at dawn, possibly from a lava flow. Posted online 19 February 2019. Courtesy of Emily Stanford.

Two faint thermal anomalies were visible at the summit in satellite imagery on 19 March; a single one appeared on 29 March 2019 (figure 36). No thermal anomalies were recorded in Sentinel-2 images during April or May, but steam plumes and gas emissions were visible through cloud cover on multiple occasions (figure 37).

Figure (see Caption) Figure 36. Faint thermal anomalies at Bagana were recorded in satellite imagery twice during March 2019. Left: 19 March, two anomalies appear right of the date label. Right: 29 March, a small anomaly appears right of the date label. Sentinel-2 image rendered with "Atmospheric Penetration" (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. Steam and gas emissions at Bagana were recorded in satellite imagery during April and May 2019. Left: A steam plume drifted NW from the summit on 23 April, visible through dense cloud cover. Right: A gas plume drifted SW from the summit on 18 May. Sentinel-2 image with "Geology" rendering (bands 12, 4, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Emily Stanford (Twitter: https://twitter.com/NerdyBatLady, image posted at https://twitter.com/NerdyBatLady/status/1098052063009792001/photo/1).


Ambae (Vanuatu) — June 2019 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Declining thermal activity and no explosions during February-May 2019

Ambae (Aoba) is a large basaltic shield volcano in the New Hebrides arc, part of the multi-island country of Vanuatu. Its periodic phreatic and pyroclastic explosions originating in the summit crater lakes have been recorded since the 16th century. A pyroclastic cone appeared in Lake Voui during November 2005-February 2006 (BGVN 31:12, figure 30); an explosive eruption from a new pyroclastic cone in the lake began in mid-September 2017 (BGVN 43:02). Activity included high-altitude ash emissions (9.1 km), lava flows, and Strombolian activity. Intermittent pulses of ash emissions during the following months resulted in extensive ashfall and evacuations; multiple communities were affected by lahars. The most recent episode of the eruption from July to September 2018 (BGVN 44:02) resulted in 11-km-altitude ash plumes and the evacuation of the entire island due to heavy ashfall and lahars. This report covers activity from February to May 2019, with information provided by the Vanuatu Geohazards Observatory of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data from multiple sources.

Activity diminished after the extensive eruptive phase of July-September 2018 when substantial ash plumes and ashfall resulted in evacuations. An explosion with an ash plume on 30 October 2018 was the last activity reported for 2018. Thermal alerts were reported by the Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC thermal alerts system through January 2019, and the Log Radiative Power graph prepared by the MIROVA project showed decreasing thermal anomalies into June 2019 (figure 92). Satellite images recorded in April and May 2019 (figure 93) showed the configuration of the summit lakes to be little changed from the previous November except for the color (BGVN 44:02, figure 89). No ash emissions or SO2 plumes were reported during the period. VMGD noted that the volcano remained at Alert Level 2 through May 2019 with a 2-km-radius exclusion zone around the summit.

Figure (see Caption) Figure 92. The MIROVA log radiative power plot for Ambae showed ongoing intermittent thermal anomalies from early September 2018 through May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Satellite imagery in April and May 2019 showed little change in the configuration of lakes at the summit of Ambae since November 2018 (see BGVN 44:02, figure 89). Left: 24 April 2019. Right: 29 May 2019. Sentinel-2 satellite imagery with "Natural Color" rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangay (Ecuador) — July 2019 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Sangay is the southernmost active volcano in Ecuador, with confirmed historical eruptions going back to 1628. The previous eruption occurred during August and December and was characterized by ash plumes reaching 2,500 m above the crater. Lava flows and pyroclastic flows descended the eastern and southern flanks. This report summarizes activity during January through July 2019 and is based on reports by Instituto Geofísico (IG-EPN), Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

After the December 2018 eruption there was a larger reduction in seismicity, down to one event per day. During January, February, and most of March there was no recorded activity and low seismicity until the Washington VAAC reported an ash plume at 0615 on 26 March. The ash plume rose to a height of around 1 km and dispersed to the SW as seen in GOES 16 satellite imagery as a dark plume within white meteorological clouds. There was no seismic data available due to technical problems with the station.

More persistent eruptive activity began on 10 May with thermal alerts (figure 30) and an ash plume at 0700 that dispersed to the W. An explosion was recorded at 1938 on 11 May, producing an ash plume and incandescent material down the flank (figure 31). Two M 2 earthquakes were detected between 3.5 and 9 km below the crater on 10 May, possibly corresponding to explosive activity. By 17 May there were two active eruptive centers, the central crater and the Ñuñurcu dome (figure 32).

Figure (see Caption) Figure 30. MIROVA log radiative power plot of MODIS thermal infrared at Sangay for the year ending June 2019. The plot shows the August to December 2018 eruption, a break in activity, and resumed activity in May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. An explosion at Sangay on 10 May 2019 sent ballistic projectiles up to 650 m above the crater at a velocity of over 400 km/hour, an ash plume that rose to over 600 m, and incandescent blocks that traveled over 1.5 km from the crater at velocities of around 150 km/hour. Screenshots are from video by IG-EPN.
Figure (see Caption) Figure 32. A photograph of the southern flank of Sangay on 17 May 2019 with the corresponding thermal infrared image in the top right corner. The letters correspond to: a) a fissure to the W of the lava flow; b) an active lava flow from the Ñuñurcu dome; c) the central crater producing a volcanic gas plume; d) a pyroclastic flow deposit produced by collapsing material from the front of the lava flow. Prepared by M. Almeida; courtesy of IG-EPN (special report No. 3 – 2019).

Activity at the central crater by 21 May was characterized by sporadic explosive eruptions that ejected hot ballistic ejecta (blocks) with velocities over 400 km/hour; after landing on the flanks the blocks travelled out to 2.5 km from the crater. Ash plumes reached heights between 0.9-2.3 km above the crater and dispersed mainly to the W and NW; gas plumes also dispersed to the W. The Ñuñurcu dome is located around 190 m SSE of the central crater and by 21 May had produced a lava flow over 470 m long with a maximum width of 175 m and an estimated minimum volume of 300,000 to 600,000 m3. Small pyroclastic flows and rockfalls resulted from collapse of the lava flow front, depositing material over a broad area on the E-SE flanks (figure 33). One pyroclastic flow reached 340 m and covered an area of 14,300 m2. During the 17 May observation flight the lava flow surface reached 277°C.

Figure (see Caption) Figure 33. A view of the ESE flanks of Sangay on 17 May 2019. The area within the black dotted line is the main area of pyroclastic flow deposition from the Ñuñurco Dome. Photo by M. Almeida; courtesy of IG-EPN (special report No. 4 – 2019).

At the end of June activity was continuing at the central crater and Ñuñurco Dome. At least three lava flows had been generated from the dome down the SE flank and pyroclastic flows continued to form from the flow fronts (figure 34). Pyroclastic material had been washed into the Upano river and steam was observed in the Volcán River possibly due to the presence of hot rocks. Ash plumes continued through June reaching heights of 800 m above the crater (figure 35), but no ashfall had been reported in nearby communities.

Figure (see Caption) Figure 34. Sentinel-2 natural color (left) and thermal (center) images (bands 12, 11, 4), and 1:50 000 scale maps (right) of Sangay with interpretation on the background of a 30 m numerical terrain model (WGS84; Zone 17S) (Prepared by B. Bernard). The dates from top to bottom are 17 May, 22 May, 27 May, 16 June, and 26 June 2019. Prepared by B. Bernard; courtesy IG-EPN (special report No. 4 – 2019).
Figure (see Caption) Figure 35. Plots giving the heights and dispersal direction of ash plumes at Sangay during May and June 2019. Top: Ash plume heights measures in meters above the crater. Bottom: A plot showing that the dominant dispersal direction of ash plumes is to the W during this time. Courtesy of IG-EPN (special report No. 4 – 2019).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — May 2019 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Steeply-sloped Kadovar Island is located about 25 km NNE from the mouth of the Sepik River on the mainland of Papua New Guinea. The first confirmed historical eruption with ash plumes and lava extrusion began in early January 2018, resulting in the evacuation of around 600 residents from the N side of the approximately 1.4-km-diameter island (BGVN 43:03); continuing activity from October 2018 through April 2019 is covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photos from visiting tourists.

Activity during March-September 2018. After the first recorded explosions with ash plumes in early January 2018, intermittent ash plumes continued through March 2018. A lava flow on the E flank extended outward from the island, extruding from a vent low on the E flank and forming a dome just offshore. The dome collapsed and regrew twice during February 2018; the growth rate slowed somewhat during March. A satellite image from 21 March 2018 was one of the first showing the new dome growing off the E flank with a thermal anomaly and sediment plumes in the water drifting N and E from the area. Thermal anomalies were visible at both the summit vent and the E-flank coastal dome in in April and May 2018, along with steam and gas rising from both locations (figure 19).

Figure (see Caption) Figure 19. Sentinel-2 satellite imagery of Kadovar provided clear evidence of thermal activity at the new E-flank coastal dome during March-May 2018. Sediment plumes were visible drifting N and E in the water adjacent to the coastal dome. The summit crater also had a persistent steam plume and thermal anomaly in April and May 2018. Left: 21 March 2018. Middle 10 April 2018. Right: 15 May 2018. Images all shown with "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

A trip to Kadovar by tourists in mid-May 2018 provided close-up views of the dense steam plumes at the summit and the growing E-flank coastal dome (figures 20 and 21). The thermal anomaly was still strong at the E-flank coastal dome in a mid-June satellite image, but appeared diminished in late July. Intermittent puffs of steam rose from both the summit and the coastal dome in mid-June; the summit plume was much denser on 29 July (figure 22). Ash emissions were reported by the Darwin VAAC and photographed by tourists during June (figure 23) and September 2018 (BGVN 43:10), but thermal activity appeared to decline during that period (figure 24).

Figure (see Caption) Figure 20. A tourist photographed Kadovar and posted it online on 19 May 2018. Steam plumes rose from both the summit and the E-flank coastal dome in this view taken from the SE. Courtesy of Tico Liu.
Figure (see Caption) Figure 21. A closeup view of the E-flank coastal dome at Kadovar posted online on 19 May 2018 showed steam rising from several places on the dome, and dead trees on the flank of the volcano from recent eruptive activity. Courtesy of Tico Liu.
Figure (see Caption) Figure 22. The thermal anomaly was still strong at the E-flank coastal dome of Kadovar in a 14 June 2018 satellite image (left), but appeared diminished on 29 July 2018 (right). Intermittent puffs of steam rose from both the summit and the coastal dome on 14 June; the summit plume was much denser on 29 July. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. An ash plume rose from the summit of Kadovar and drifted W while steam and gas rose from the E-flank coastal dome, posted online 27 June 2018. Courtesy of Shari Kalt.
Figure (see Caption) Figure 24. Thermal activity at Kadovar for the year ending on 26 April 2019 was consistent from late April 2018 through mid-June 2018; a quiet period afterwards through late September ended with renewed and increased thermal activity beginning in October 2018. All distances are actually within 1 km of the summit of Kadovar, a DEM georeferencing error makes some locations appear further away. Courtesy of MIROVA.

Multiple satellite images during August and early September 2018 showed little or no sign of thermal activity at the E-flank coastal dome, with only intermittent steam plumes from the summit. A new steam plume on the eastern slope appeared in a 22 September 2018 image (figure 25). The Rabaul Volcano Observatory (RVO) reported explosive activity on the afternoon of 21 September. Noises of explosions were accompanied by dark gray and brown ash clouds that rose several hundred meters above the summit crater and drifted NW. Local reports indicated that the activity continued through 26 September and ashfall was reported on Blupblup island during the period. Ground observers noted incandescence visible from both the summit and the E-flank coastal dome.

Figure (see Caption) Figure 25. Steam plumes were seen in satellite images of Kadovar during August and early September 2018, but no thermal anomalies. Intermittent steam plumes rose from the summit vent on 28 August (left). A new dense steam plume originating mid-way down the E flank appeared on 22 September 2018 (right). Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during October-December 2018. Evidence of both thermal and explosive activity reappeared in October 2018 (figure 24). The Darwin VAAC reported intermittent ash plumes rising to 2.7 km altitude and drifting W on 1 October 2018. Low-level continuous ash emissions rising less than a kilometer and drifting W were reported early on 3 October. A higher plume drifted WNW at 2.4 km altitude on 7 October. Intermittent discrete emissions of ash continued daily at that altitude through 16 October, drifting NW or W. Ash emissions drifting NW and thermal anomalies at the summit were visible in satellite imagery on 2 and 12 October (figure 26). A brief ash emission was reported on 21 October 2018 at 2.4 km altitude drifting NE for a few hours. Intermittent ash emissions also appeared on 29 October moving SE at 1.8 km altitude. For the following three days ash drifted SW, W, then NW at 2.1 km altitude, finally dissipating on 1 November; the thermal anomaly at the summit was large and intense in satellite images on 27 October and 1 November compared with previous images (figure 27).

Figure (see Caption) Figure 26. Ash emissions drifting NW and thermal anomalies at the summit of Kadovar were visible in satellite imagery on 2 and 12 October 2018; no thermal activity was noted at the E-flank coastal dome. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 27. Strong thermal anomalies at the summit of Kadovar on 27 October and 1 November 2018 were not concealed by the steam plumes drifting SW and NW from the summit. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

An ash explosion was photographed by tourists on a cruise ship on the afternoon of 6 November 2018 (figure 28). After the explosion, a dense steam plume rose from a large dome of lava near the summit at the top of the E flank (figure 29). Continuous ash emissions rising to 1.8 km altitude were reported by the Darwin VAAC beginning on 9 November 2018 moving WNW and lasting about 24 hours. A new ash plume clearly identifiable on satellite imagery appeared on 13 November at 2.4 km altitude moving E, again visible for about 24 hours. Another shipboard tourist photographed an ash plume on 18 November rising a few hundred meters above the summit (figure 30).

Figure (see Caption) Figure 28. An explosion at Kadovar photographed on the afternoon of 6 November 2018 sent a dense gray ash plume hundreds of meters above the summit drifting W; blocks of volcanic debris descended the flanks as well. View is from the S. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 29. Tourists on a cruise ship passed by Kadovar on 6 November 2018 and witnessed a steam plume drifting W from a large dome of lava near the summit at the top of the E flank after an ash explosion. Smaller steam plumes were visible in the middle and at the base of the E flank, but no activity was visible at the coastal dome off the E flank (lower right). View is from the SE. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 30. An ash plume rose at dusk from the summit of Kadovar and was witnessed by a cruise ship tourist on 18 November 2018. View is from the E; the E-flank coastal dome is a lighter area in the lower foreground. Courtesy of Philip Stern.

Low-level ash emissions were reported briefly on 28 November at about 1 km altitude moving SE. Intermittent puffs of ash were seen drifting WSW on 2 and 3 December at about 1.2 km altitude. They were the last VAAC reports for 2018. Two thermal anomalies were visible at the summit in satellite imagery on 26 November, they grew larger and more intense through 16 December when multiple anomalies appeared at the summit and on the E flank (figure 31).

Figure (see Caption) Figure 31. Multiple thermal anomalies near the summit of Kadovar grew larger and more intense between 26 November and 16 December 2018. Sentinel-2 images show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during January-April 2019. Multiple thermal anomalies were still visible at the summit in satellite imagery on 5 January 2019 as regular puffs of steam drifted SE from the summit, leaving a long trail in the atmosphere (figure 32). Additional imagery on 10 and 30 January showed a single anomaly at the summit, even through dense meteorologic clouds. A short-lived ash emission rose to 2.4 km altitude on 11 January 2019 and drifted E; it dissipated the next day. Multiple minor intermittent discrete ash plumes extended WNW at 3.0 km altitude on 18 January; they dissipated within six hours.

Figure (see Caption) Figure 32. Multiple thermal anomalies were visible in satellite imagery of Kadovar on 5 January 2019 as regular puffs of steam drifted SE from the summit. Sentinel-2 image shows "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

The Royal New Zealand Air Force released images of eruptive activity on 10 February 2019 (figure 33). Satellite imagery in February was largely obscured by weather; two thermal anomalies were barely visible through clouds at the summit on 14 February. The Darwin VAAC reported an ash emission at 1.8 km altitude drifting ESE on 16 February; a similar plume appeared on 21 February that also dissipated in just a few hours.

Figure (see Caption) Figure 33. The Royal New Zealand Air Force released images of an ash plume at Kadovar on 10 February 2019. Courtesy of Brad Scott.

Satellite imagery on 1 March 2019 confirmed a strong thermal anomaly from the summit and down the E flank almost to the coast. A month later on 5 April the anomaly was nearly as strong and a dense ash and steam plume drifted N from the summit (figure 34). A tourist witnessed a dense steam plume rising from the summit on 4 April (figure 35). Multiple discrete eruptions were observed in satellite imagery by the Darwin VAAC on 9 April at 1.2-1.5 km altitude drifting SE. The thermal anomaly at the summit persisted in satellite imagery taken on 15 April 2019.

Figure (see Caption) Figure 34. A strong thermal anomaly appeared from the summit down the E flank of Kadovar on 1 March 2019 (left). A month later on 5 April the strong anomaly was still present beneath a dense plume of ash and steam (right). Sentinel-2 imagery shows "Geology" rendering with bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A dense steam plume is shown here rising from the summit area of Kadovar, posted online on 4 April 2019. View is from the N. Courtesy of Chaiyasit Saengsirirak.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tico Liu, Hong Kong (Facebook: https://www.facebook.com/tico.liu. https://www.facebook.com/photo.php?fbid=10155389178192793&set=pcb.10155389178372793&type=3&theater); Shari Kalt (Instagram user LuxuryTravelAdvisor: https://www.instagram.com/luxurytraveladviser/, https://www.instagram.com/p/BkhalnuHu2j/); Coral Expeditions, Australia (URL: https://www.coralexpeditions.com/, Facebook: https://www.facebook.com/coralexpeditions); Philip Stern (Facebook: https://www.facebook.com/sternph, https://www.facebook.com/sternph/posts/2167501866616908); Brad Scott, GNS Science Volcanologist at GNS Science, New Zealand (Twitter: https://twitter.com/Eruptn); Chaiyasit Saengsirirak, Bangkok, Thailand (Facebook: https://www.facebook.com/chaiyasit.saengsirirak, https://www.facebook.com/photo.php?fbid=2197513186969355).


Sarychev Peak (Russia) — June 2019 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Brief ash emission reported on 16 May 2019

Located on Matua Island in the central Kurile Islands of Russia, Sarychev Peak has historical observations of eruptions dating back to 1765. Thermal activity in October 2017 (BGVN 43:11) was the first sign of renewed activity since a major eruption with ash plumes and pyroclastic flows in June 2009 (BGVN 34:06). The following month (November 2017) there was fresh dark material on the NW flank that appeared to be from a flow of some kind. After that, intermittent thermal anomalies were the only activity reported until explosions with ash plumes took place that lasted for about a week in mid-September 2018 (figure 24). Additional explosions in mid-October were the last reported for 2018. A single ash explosion in May 2019 was the only reported activity from November 2018 to May 2019, the period covered in this report. Information is provided by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Kamchatka Volcanic Eruptions Response Team (KVERT), members of the Far Eastern Branch, Russian Academy of Sciences (FEB RAS), and from satellite data.

Figure (see Caption) Figure 24. Multiple ash plumes were observed at Sarychev Peak during September 2018. Left: 13 September. Right: 18 September. Photos by S. A. Tatarenkov, courtesy of IMGG FEB RAS.

Satellite imagery in mid-September and early October 2018 showed gas emissions from the summit vent, and a weak thermal anomaly in October (figure 25). KVERT lowered the Aviation Color Code from Orange to Yellow on 1 November 2018, and SVERT released a VONA on 12 November 2018 lowering the Aviation Color Code from Yellow to Green after the ash emissions in October.

Figure (see Caption) Figure 25. Minor gas emissions were visible at Sarychev Peak in satellite imagery in mid-September and early October 2018; a possible weak thermal anomaly appeared in the summit vent in October. Top left: 13 September. Top right: 18 September. Bottom left: 8 October. Bottom right: 11 October. The 13 September image uses "Natural Color" rendering (bands 4, 3, 2) and the other images use "Geology" rendering (bands 12, 4, 2). Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Sentinel-2 satellite instruments in March, April, and May 2019 acquired images that showed dark streaks in the snow-covered peak radiating out from the summit vent in various directions. As the spring snows melted, more dark streaks appeared. It is unclear whether the streaks represent fresh ash, particulates from gas emissions in the snow, or concentrated material from earlier emissions that were exposed during the spring melting (figure 26). No further activity was reported until the Tokyo VAAC noted an eruption on 16 May 2019 that produced an ash plume which rose to 2.4 km altitude and drifted S. It was visible in satellite imagery for 3 or 4 hours before dissipating. SVERT reported the ash plume visible up to 50 km SE of the island. They also noted that weak thermal anomalies had been seen in satellite data on 10, 12, and 17 May 2019.

Figure (see Caption) Figure 26. Streaks of brown radiate outward from the summit vent at Sarychev Peak in Sentinel-2 satellite imagery taken during March-May 2019. The exact material and timing of deposition is unknown. Top left: 17 March. Top middle: 14 April. Top right: 19 April. Bottom left: 29 April, Bottom middle: 6 May. Bottom right: 26 May 2019. Sentinel-2 images with "Natural Color" rendering using bands 4,3, and 2. Courtesy of Sentinel Hub Playground.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, (FEB RAS IMGG), 693 022 Russia, Yuzhno-Sakhalinsk, ul. Science 1B (URL: http://imgg.ru/ru); Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyiragongo (DR Congo) — May 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake remains active through May 2019; three new vents around the secondary cone

Since at least 1971 scientists and tourists have observed a lava lake within the Nyiragongo summit crater. Lava flows have been a hazard in the past for the nearby city of Goma (15 km S). The previous report (BGVN 43:06) of activity between November 2017 and May 2018 described nearly daily record of thermal anomalies due to the active lava lake and lava fountaining, gas-and-steam plumes, and the opening of a new vent within the crater in February 2016. Monthly reports from the Observatoire Volcanologique de Goma (OVG) disseminate information regarding the volcano's activity. This report updates the activity during June 2018-May 2019.

OVG noted that the level of the lava lake changes frequently, and was lower when observed on October 2018, 12 April 2019, and 12 May 2019. According to data from the OVG, on 15 April 2019 the secondary cone that formed in February 2016 produced lava flows and ejecta. In addition, at least three other vents formed surrounding this secondary cone. During most of April 2019 the lava lake was still active; however, beginning on 12 April 2019, seismic and lava lake activity both declined.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continues to show almost daily, strong thermal anomalies every month from June 2018 through 24 May 2019 (figure 66). Similarly, the MODVOLC algorithm reports a majority of the hotspot pixels (2,406) occurring within the lava lake at the summit crater (figure 67).

Figure (see Caption) Figure 66. Thermal anomalies at Nyiragongo for June 2018 through 24 May 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 67. Map showing the number of MODVOLC hotspot pixels at Nyiragongo from 1 June 2018 to 31 May 2019. Nyiragongo (2,423 pixels) is at the bottom center; Nyamuragira volcano (342 pixels) is about 13 km NW. Courtesy of HIGP-MODVOLC Thermal Alerts System.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Goma, North Kivu, DR Congo (URL: https://www.facebook.com/Observatoire-Volcanologique-de-Goma-OVG-180016145663568/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Bezymianny (Russia) — June 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Ongoing thermal anomalies, gas-and-steam plumes, and lava dome growth during February-May 2019; strong explosion in mid-March

Volcanism at Bezymianny has been frequent since 1955. During the last reporting period, observations primarily consisted of moderate gas-and-steam emissions and thermal anomalies. Lava dome growth has been reported, as well as the effusion of several lava flows onto the dome flanks. Monitoring is the responsibility of the Kamchatka Volcano Eruptions Response Team (KVERT). Activity during February to mid-March 2019 consisted of predominantly moderate gas-and-steam emissions. Incandescent, hot avalanches from the lava dome, strong fumarolic activity, and a thermal anomaly began to occur in mid-March 2019. This reporting period includes activity from February-May 2019.

One explosion occurred during this reporting period. According to video data from KVERT and seismic data from the Kamchatka Branch of the Geophysical Service, on 15 March 2019 an explosion sent ash up to an altitude of 15 km. According to the KVERT Weekly Reports, satellite data showed large ash clouds from this eruption drifting several thousands of kilometers east from the volcano. The Volcano Observatory Notice for Aviation (VONA) issued by KVERT for this event described ash clouds to a distance of about 870 km. Ashfall was reported in Ust'-Kamchatsk (115 km E) on 15 March and Nikolskoe (350 km E) on 15-16 March 2019.

Beginning 15 March and continuing through May 2019, the number of hot avalanches from the lava dome top significantly increased, as well as the temperature of the thermal anomalies as reported by KVERT based on satellite data. Incandescent lava dome growth with extruding, viscous lava flows accompanying strong fumarolic activity and thermal anomalies continued in late April-May 2019 (figure 30).

Figure (see Caption) Figure 30. Fumarolic plume rising above at Bezymianny on 14 April 2019. Photo by A. Klimova, courtesy of the Institute of Volcanology and Seismology FEB RAS, KVERT.

MODIS infrared data processed by MIROVA showed stronger and more frequent thermal anomalies in mid-March 2019 compared to the typical thermal activity since late January and afterwards through May (figure 31). According to the MODVOLC algorithm, 11 hotspot pixels were recorded between February and May 2019.

Figure (see Caption) Figure 31. Thermal anomalies at Bezymianny for September 2018 through May 2019 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevados de Chillan (Chile) — June 2019 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Small ash explosions and dome growth during December 2018-May 2019; ballistic ejecta deposited around the crater, with a pyroclastic flow in May

The current Nevados de Chillán eruption period began on 8 January 2018 with a phreatic explosion from the new Nicanor crater, within the Nuevo crater; a new dome was observed within this crater the next day. Dome growth continues with explosions that eject ash plumes and incandescent ejecta. This bulletin summarizes activity from December 2018 through May 2019 and is based on reports by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS) and satellite imagery.

Throughout December 2018 pulsating emissions from the Nicanor crater produced white plumes predominantly composed of water vapor, with occasional ash ejections giving the plume a gray appearance. Incandescence was frequently observed during the night due to the ejection of hot ballistic ejecta emplaced around the crater during explosions. After 11 months of observations, the dacite dome in the crater maintained a semi-stable extrusion rate of around 345 m3/day. Explosions were reported on 7, 17, 28, and 29 December.

Similar background activity continued through January with pulsating gas-and-steam plumes occasionally including ash, and incandescence observed during the nights due to hot ejecta around the crater. Explosions were recorded at 0500 and 1545 on 11 January, and on 13, 21, and 31 January (figures 33 and 34). During the night explosions and incandescent ejecta were observed impacting the area around the crater.

Figure (see Caption) Figure 33. An explosion at Nevados de Chillán on 11 January 2019. The explosion ejected incandescent blocks that impacted the flanks. The timestamp is at the top left of each image; screenshots are of footage courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 34. An explosion at Nevados de Chillán on 31 January 2019 produced an ash plume from the Nicanor crater. Courtesy of SERNAGEOMIN.

Activity continued through February similar to previous months. The dome in the crater maintained a low extrusion, and activity alternated between dome growth and partial destruction during explosions. Steam-and-gas plumes with occasional ash content continued, with plumes reaching 1 km and drifting in multiple directions. Incandescence was observed during the night. Explosions were reported on 15 February.

During March through May, typical activity consisting of pulsating emission of steam plumes with occasional ash content, and incandescence at night, continued. Intermittent explosions associated with the partial destruction of the dome continued, with events reported on 1 March at 2323, and on 4, 7, and 8 March. Several explosions were reported during 8-9 and 23-30 April. Three explosions were reported on 3 May with one of them producing a 2-km-high ash plume and a pyroclastic flow on 10 May (figure 35). Additional explosions occurred on the 12 and 18 May.

Figure (see Caption) Figure 35. An explosion at Nevados de Chillán on 10 May 2019 produced an ash plume that rose to 2 km above the crater and a pyroclastic flow. The white plume in the bottom two images is steam from the interaction of the hot pyroclastic material and the snow. Screenshots are of a video courtesy of SERNAGEOMIN with timestamps indicated in the top left of each image.

Satellite data from December 2018 through May 2019 recorded intermittent thermal energy, with an increase after February 2019 (figure 36). Thermal anomalies from MODIS instruments were detected by the MODVOLC system on 29 March and 17 May 2019 (two anomalies). A thermal anomaly in the Nicanor crater was persistent in Sentinel-2 data throughout this period.

Figure (see Caption) Figure 36. Thermal anomalies at the active Nicanor crater of the Nevados de Chillán complex. Top: Sentinel-2 thermal image of showing the location of the thermal anomaly (orange). Bottom: MIROVA log radiative power plot of MODIS thermal infrared data from September 2018 through May 2019. Thermal signatures are intermittent and increase after February 2019. Note that the black lines are not from the crater and are unlikely to be related to volcanic activity. Courtesy of Sentinel Hub Playground and MIROVA.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Scientific Event Alert Network Bulletin - Volume 14, Number 11 (November 1989)

Managing Editor: Lindsay McClelland

Agung (Indonesia)

Occasional seismicity but solfatara field quiet

Aira (Japan)

Explosions eject ash

Arenal (Costa Rica)

Stronger seismicity; Strombolian explosions; lava flows

Asosan (Japan)

Frequent tephra ejection continues

Atmospheric Effects (1980-1989) (Unknown)

August balloon data show aerosols near tropopause

Bagana (Papua New Guinea)

Lava overflows summit crater; explosions

Batur (Indonesia)

Thermal activity

Ebeko (Russia)

Mild explosions eject ash to 800 m

Etna (Italy)

Summit tephra emission; strong, fluctuating SO2 emission

Galeras (Colombia)

Slight decrease in SO2 emissions; night glow; seismicity

Kanlaon (Philippines)

Ash ejections decline

Kelimutu (Indonesia)

Degassing from one of three crater lakes and flank fumaroles

Kilauea (United States)

Three ocean lava entries remain active; littoral explosions

Langila (Papua New Guinea)

Moderate vapor emission; weak glow

Lascar (Chile)

Lava dome deflates; strong SO2 emission

Long Valley (United States)

Seismic swarm gradually declines; minor inflation

Lonquimay (Chile)

Brief tephra emission increase; cone morphology changes

Manam (Papua New Guinea)

Slight vapor and ash emission; minor inflation

Merapi (Indonesia)

Large lava dome growing slowly in summit crater

Poas (Costa Rica)

Mud plumes from crater lake; more frequent earthquakes

Rabaul (Papua New Guinea)

Seismicity increases; felt earthquakes

Ranakah (Indonesia)

Dome growth apparently ended; solfatara plume

Redoubt (United States)

Repeated strong explosions eject large tephra clouds

Ruapehu (New Zealand)

Upwelling in crater lake; inflation stops

Ruiz, Nevado del (Colombia)

Small ash explosions; moderate seismicity

Slamet (Indonesia)

Increased seismicity and gas emission

St. Helens (United States)

Minor ash emission and shallow seismicity

Ulawun (Papua New Guinea)

Vapor emission and weak seismicity



Agung (Indonesia) — November 1989 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Occasional seismicity but solfatara field quiet

Observations from both Rendang (S) and Budakeling (N) Observatories revealed neither white plumes from the solfatara field nor collapses of loose material from the inner crater wall. No explosion sounds from the crater have been heard. An earthquake was felt (MM I) on 9 June; 59 tectonic and two volcanic shocks [were] recorded in November.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: VSI.


Aira (Japan) — November 1989 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions eject ash

Ten explosions . . . were recorded in November . . . . The highest November plume rose 3 km above the summit crater on the 8th. Monthly ash accumulation at the observatory was 83 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — November 1989 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Stronger seismicity; Strombolian explosions; lava flows

During the first few months of 1989, activity at Arenal remained at its normal level. A small increase in Strombolian activity occurred in March, accompanied by as many as 42 volcanic events/day (figure 24), then declined rapidly, reaching a minimal rate in June with a mean of only 3/day. A renewed moderate increase in July was marked by stronger degassing associated with characteristic (blowing) sounds and more frequent tremor at a station (FOR, Red Sismológica Nacional) 4 km E of the crater. Activity built somewhat more during the first half of August, declining slightly before the onset of a stronger phase in late September. Daily seismicity reached its highest 1-day total, 64 shocks, on 11 October. Similar activity continued in November, with a mean of 40 earthquakes daily and a maximum of 52 (on the 21st), accompanied by significant tremor throughout the month.

Figure (see Caption) Figure 24. Number of volcanic earthquakes/day at Arenal, registered at Red Sismológica Nacional station FOR, 4 km E of the crater, January-November 1989. Periods when no data were recorded are marked N.D. Courtesy of R. Barquero.

November field observations revealed small to moderate Strombolian explosions, most of which ejected ash columns to 1-1.5 km height. Winds carried most of the ash to the W, where it fell on Lake Arenal (extending from the W foot of the volcano), and on some occasions reached Tilarán (~30 km away). Block lava from the upper crater (Crater C, at 1,300 m elevation) moved down the NW and SW flanks, with blocks spalled from flow fronts reaching elevations as low as 750 m elevation in the Río Tabacón area. Geologists noted that a similar level of activity had not occurred since 1984.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: R. Barquero, ICE; G. Soto, Univ de Costa Rica.


Asosan (Japan) — November 1989 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Frequent tephra ejection continues

Eruptive episodes have been recorded on 36 days since 16 July, including 11 days in November (see table 4). Minor ash emission, without recorded explosions, occurred on most days in November, causing ashfalls around the crater. The month's ash accumulation at AWS was 1,409 g/m2. The 23 November eruptive episode, accompanied by lightning, ejected blocks to 300 m above the crater rim; blocks had begun to be thrown over the rim as recorded explosions became more frequent in mid-October. During a 24 November field survey, fist-sized blocks were seen 700 m SSW of the crater. Fieldwork on 26 November revealed that the cone on the crater floor had disappeared and the wall between craters 1 and 2 had been removed. Felt shocks of intensity I (JMA Scale) occurred on 19 and 26 November, centered under the summit crater. The number of isolated volcanic tremor episodes and the amplitude of continuous tremor, recorded by a seismograph near AWS, remained large. Rumbling was audible every day at AAWS and was strong on 4 and 25 November.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: JMA.


Atmospheric Effects (1980-1989) (Unknown) — November 1989 Citation iconCite this Report

Atmospheric Effects (1980-1989)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


August balloon data show aerosols near tropopause

Balloon data from sampling missions over Laramie, WY showed enhanced aerosols near the tropopause on 24 August, not evident a month earlier, that had a clearly volcanic character (figure 72). By the next measurements from Wyoming on 24 October, the aerosols had apparently gone. High tropopauses (15 km on 24 July, 16 km on 24 August, and 15.5 km on 24 October) suggested that air sampled on those days (and therefore the likely source of the 24 August aerosols) was from low latitudes. The background sulfate aerosol level of about 0.5/cm3 at 20 km did not seem to have been affected.

Figure with caption Figure 72. Concentrations of particles with radii greater than 0.15 µm counted from balloons launched from Laramie, WY on 24 July, 14 August, and 24 October 1989. Courtesy of David Hofmann.

Small aerosol enhancements were detected in the lower stratosphere over Garmisch-Partenkirchen, West Germany in mid-November. Stratospheric aerosols have remained at background levels at Mauna Loa, Hawaii since observations resumed there on 20 October following a period of cloudy weather.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.

Information Contacts: David Hofmann, Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 USA; Horst Jäger, Fraunhofer-Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, West Germany; Thomas DeFoor, Mauna Loa Observatory, P.O. Box 275, Hilo, HI 96720 USA.


Bagana (Papua New Guinea) — November 1989 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Lava overflows summit crater; explosions

"Mild sustained eruptive activity continued throughout November. Aerial reconnaissance on the 10th and 11th revealed that the summit, fully occupied by blocky lava, was overflowing on several sides. A main lava flow, active since 1987, extended to the foot of the volcano on the E flank (13:02). Lava also progressed slowly into the channel of the N lava flow (inactive since 1987), into the upper part of the prominent [1966-75] lava channel on the S flank, and spread over the upper NW flank. Very frequent rockfalls or avalanches occurred on all sides below the summit, producing short-lived red glow at night.

"An SO2-laden vapour plume, formed by numerous fumaroles in cracks in the lava-filled crater and the weathered upper flanks, quietly drifted as much as 20 km downwind. Slow and quiet lava effusion was only disturbed by occasional explosions (3, 16, and 25 November) which generated a black cloud above the summit. The seismicity continued to be dominated by rockfall events (2-94/day) and a few B-type events (0-4/day)."

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Batur (Indonesia) — November 1989 Citation iconCite this Report

Batur

Indonesia

8.242°S, 115.375°E; summit elev. 1717 m

All times are local (unless otherwise noted)


Thermal activity

A thin white plume rose 2-10 m from the solfatara field in the N wall of the crater. Gases emerged with a weak hissing sound and had temperatures of 40-80°C in 27° air. Other solfataras emitted 2-5-m white plumes at 90-95°C. Seismic stations recorded one local and 26 distant tectonic events, and one volcanic earthquake in November.

Geologic Background. The historically active Batur is located at the center of two concentric calderas NW of Agung volcano. The outer 10 x 13.5 km wide caldera was formed during eruption of the Bali (or Ubud) Ignimbrite about 29,300 years ago and now contains a caldera lake on its SE side, opposite the satellitic Gunung Abang cone, the topographic high of the complex. The inner 6.4 x 9.4 km wide caldera was formed about 20,150 years ago during eruption of the Gunungkawi Ignimbrite. The SE wall of the inner caldera lies beneath Lake Batur; Batur cone has been constructed within the inner caldera to a height above the outer caldera rim. The Batur stratovolcano has produced vents over much of the inner caldera, but a NE-SW fissure system has localized the Batur I, II, and III craters along the summit ridge. Historical eruptions have been characterized by mild-to-moderate explosive activity sometimes accompanied by lava emission. Basaltic lava flows from both summit and flank vents have reached the caldera floor and the shores of Lake Batur in historical time.

Information Contacts: VSI.


Ebeko (Russia) — November 1989 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Mild explosions eject ash to 800 m

Mild explosive activity from the NW portion of Ebeko's N crater was reported in August and September. . . . activity from a vent 100 m across and 50 m deep occurred at 1-3-hour intervals. Ash was ejected to 800 m. No juvenile material was found in the tephra. Volcaniclastic bombs (<=0.2 m) were ejected onto the crater slopes within 500 m of the vent. The position of the observers was not known, but the only audible explosion occurred 23 September at 1422.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: B. Ivanov, IV.


Etna (Italy) — November 1989 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Summit tephra emission; strong, fluctuating SO2 emission

The following, from IIV, summarizes the much milder activity in November.

Summit activity. (S. Calvari, M. Coltelli, and M. Pompilio.) November summit activity was limited to discontinuous tephra emission from Bocca Nuova. Tephra emission episodes were frequent during the first two weeks of the month, often associated with deep explosive activity. Tephra emission became sporadic in the second half of November, although continuous activity was observed on the 19th. No juvenile material was ejected. La Voragine and Southeast Crater remained closed, with only weak fumarolic activity on their floors. Degassing from the vent at the bottom of Northeast Crater continued from previous months.

Seismicity. (E. Privitera, C. Cardaci, O. Cocina, V. Longo, A. Montalto, D. Patané, A. Pellegrino, S. Rapisarda, S. Spampinato, and O. Torrisi.) Seismic activity was very low in November. The three most energetic events following the eruption seismicity occurred 31 Oct at 0752 (M 3.0, 9 km depth, in the S. Alfio area, ~ 13 km E of the summit), 10 November at 0319 (M 3.6, 14 km depth, S of the seismic network near Pantano di Lentini, roughly 50 km S of Etna), and 20 November at 0754 (M 2.4, 15 km depth, in the Sciara del Follone area on the N flank). Recorded tremor remained similar to the pattern observed by the end of the eruption.

Ground deformation. (A. Bonaccorso, O. Campisi, G. Falzone, B. and G. Puglisi, and R. Velardita.) No significant variation has been observed in data from a borehole tilt station (SPC) on the SE flank at ~1,600 m elevation.

SO2 flux. (T. Caltabiano and R. Romano.) SO2 flux stabilized at intermediate values (~ 5,000 t/d) at the end of October, but increased in November, reaching 12,000 t/d on the 17th. Rates then declined, to 2,000 t/d on 28 November. A similar fluctuating pattern was observed during the three months (June-August) preceding the recent eruption, and during the same period in 1988 (not followed by an eruption).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Santacroce, IIV.


Galeras (Colombia) — November 1989 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Slight decrease in SO2 emissions; night glow; seismicity

Overflights and fieldwork showed changes in the resurgent cone's activity during November. Linear zones of orange and light-yellow incandescence on the inner wall of the cone's W slope were observed on the night of 29 November, concentrated along radial and tangential fractures reported 10 September. A semicircular area of glow extended from the bottom of the crater to the top of the W wall. The sound produced by escaping gases had diminished ~30% since October. The Las Deformes fumaroles, ~50 m from the crater on the upper SSW flank (number 3 on figure 8), had increased in size and had deposited a thick crust of sulfur. Their measured temperature during the past 3 months ranged from 190 to 239°C.

SO2 flux measured by COSPEC had increased sharply in late October, exceeding 6,000 t/d during the last week in the month. Rates declined in November, remaining above 3,000 t/d until the 20th, then dropping below 1,700 t/d for the rest of the month.

Moderate seismicity was concentrated under the SW flank of the resurgent cone (2-4 km depths) and W of the cone (2.5-5 km depth) (figure 13), varying somewhat in number and magnitude. Tremor associated with surficial hydrothermal processes remained stable. There were no significant changes in the deformation measurements (EDM, dry tilt, and levelling vectors). Electronic tiltmeters continued to register variations that did not correlate with other parameters.

Figure (see Caption) Figure 13. Epicenter map (top) and E-W cross section (bottom) showing focal depths of 56 seismic events near Galeras, November 1989. No hypocenters are below 7.5 km. Courtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS, Pasto; INGEOMINAS, Manizales.


Kanlaon (Philippines) — November 1989 Citation iconCite this Report

Kanlaon

Philippines

10.412°N, 123.132°E; summit elev. 2435 m

All times are local (unless otherwise noted)


Ash ejections decline

Mild ash ejections occurred almost daily at Canlaon in the 5 weeks since eruptive activity began on 25 October at 1230. A total of 79 ash ejection episodes have been documented, the most recent on 1 December from 0515 to 0737. Plumes generally reached 200-1200 m above the summit (the highest on 3 November) and were dispersed as far as 8-10 km S. The ash plumes emitted during activity 15-17 November and 1 December covered ~80% of the crater area, compared to 100% for the larger eruptive episodes. Ground deformation measurements showed slight inflation of the edifice a few hours before ash ejections, most of which were accompanied by small-amplitude explosion earthquakes and short-duration harmonic tremor. Between eruptive episodes, moderate amounts of white steam covered ~20-40% of the crater, and seismic levels fell to 5-10 volcanic events/day. Activity remained weak and PHIVOLCS did not recommend evacuation.

As of 13 December, ash plume heights and steam volume had decreased, but not to pre-eruptive levels. Average plume dispersals had also decreased from 0.5-1 km to 50-100 m from the summit. PHIVOLCS noted that although activity appeared to be waning, the volcano's status remained abnormal.

Geologic Background. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros. The massive andesitic stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The largest debris avalanche known in the Philippines traveled 33 km SW from Kanlaon. The summit contains a 2-km-wide, elongated northern caldera with a crater lake and a smaller, but higher, historically active vent, Lugud crater, to the south. Historical eruptions, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano.

Information Contacts: PHIVOLCS.


Kelimutu (Indonesia) — November 1989 Citation iconCite this Report

Kelimutu

Indonesia

8.77°S, 121.82°E; summit elev. 1639 m

All times are local (unless otherwise noted)


Degassing from one of three crater lakes and flank fumaroles

In November, moderate degassing with a weak sulfur odor occurred from the the E crater's Tiwu Ata Polo, reddish in 1986 and dark green in 1989. No degassing was evident from the light green Tiwu Nua Muri Kooh Tai in the central crater. A small amount of sulfur was deposited around the lakeshore. In the W crater, Tiwu Ata Mbupu, dark brown in May, was greenish in November. No degassing or other activity was evident. Fumaroles on the upper flanks had temperatures of [96-97°C] in 21°C air. An earthquake was felt at MM II on 28 June at 2255. November seismicity included [three] A-type and [two] B-type events, plus [23] local and [37] distant tectonic earthquakes.

Geologic Background. Kelimutu is a small, but well-known, Indonesian compound volcano in central Flores Island with three summit crater lakes of varying colors. The western lake, Tiwi Ata Mbupu (Lake of Old People) is commonly blue. Tiwu Nua Muri Kooh Tai (Lake of Young Men and Maidens) and Tiwu Ata Polo (Bewitched, or Enchanted Lake), which share a common crater wall, are commonly colored green and red, respectively, although lake colors periodically vary. Active upwelling, probably fed by subaqueous fumaroles, occurs at the two eastern lakes. The scenic lakes are a popular tourist destination and have been the source of minor phreatic eruptions in historical time. The summit is elongated 2 km in a WNW-ESE direction; the older cones of Kelido (3 km N) and Kelibara (2 km S).

Information Contacts: VSI.


Kilauea (United States) — November 1989 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Three ocean lava entries remain active; littoral explosions

Kilauea's . . . eruption continued in November, feeding lava into the ocean through a tube system originating at Kupaianaha lava pond (figure 64). The Kailiili, Poupou, and Kupapau Point ocean entries (figure 65) remained active during the month, while former entries E of Kupapau Point were stagnant. Most lava entered the sea at the Poupou entry, where small sporadic littoral explosions ejected spatter (to ~25 m) and limu (fine thin sheets of transparent glass), building a 2-m cone. Lava slowly entered the ocean at Kupapau Point in early November, but this entry was inactive by the 26th. Several small flows extended the Kailiili bench W throughout the month. A surface flow that crossed Chain of Craters road on the 14th (covering an additional 50 m of the road) entered the ocean W of Kailiili and merged with that bench, increasing its area by ~200 m.

Figure (see Caption) Figure 64. Lava flows produced by the Kupaianaha vent, July 1986-November 1989. The active lava tube system is shown by dashed lines. Solid arrows indicate the location of persistent breakouts from the tubes in November. Courtesy of C. Heliker.
Figure (see Caption) Figure 65. Distal portion of the Kupaianaha lava field as of November 1989. Orchid Street intersects the lava at an elevation of ~100 m. Points where lava entered the ocean in November are labeled. The arrows indicate the general location of surface lava flows. Courtesy of C. Heliker.

Surface lava breakouts continued at 560 m elevation and on the fault scarp between 180 and 60 m elevation. A small pahoehoe flow that extended from 560 to 450 m elevation stagnated on the 19th. Surface lava breakouts were sporadic along the W margin of the flow field from Lower Royal Gardens to the coast near the Kailiili bench. There were two reports of activity at Pu`u `O`o (5 and 19 November), but bad visibility during the month prevented close observation.

Eruption tremor continued . . . near Pu`u `O`o and Kupaianaha, where shallow high-frequency microshocks occurred at varying rates. Intermediate-depth (~5-10 km) long-period events associated with tremor beneath the summit decreased in late October and remained low until about 15 November. The number of events steadily increased, peaking at ~100/day during the month's third week, then decreasing during its final week. An average number of shallow (<5 km) microearthquakes was recorded in the summit region and along the rift zones. Regional earthquakes were concentrated beneath the summit region and SE flank of Kilauea. Nineteen located events had magnitudes of 2.5-4.0, with depths between 1 and 40 km. The largest earthquake (M 4) occurred 9 km beneath Kilauea's S flank at 2311 on 25 November.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: C. Heliker and R. Koyanagi, HVO.


Langila (Papua New Guinea) — November 1989 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Moderate vapor emission; weak glow

"Activity remained at a moderate level in November. Vapour was released by Crater 2 in small to moderate amounts. Deep rumbling noises and a weak red glow were reported at the beginning (1st and 2nd) and end (29th and 30th) of the month. Crater 3 released weak [emissions of white vapour]."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Lascar (Chile) — November 1989 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Lava dome deflates; strong SO2 emission

Lascar has been continuously active since the September 1986 explosive eruption. The lava dome that had been growing in the active crater in March and April 1989 had deflated by 19 October (figure 2) when an Argentine-Chilean geological team (José Viramonte, Carlos Peralta, Carlos Pérez, Luís Baeza, and Sergio Espinosa) climbed the volcano. Three ring faults were associated with the collapse, the outer with a 15-m scarp, the two others with scarps of only 0.5 and 1 m. Each was marked by a succession of fumaroles with intense steam-dominated emissions that had a strong HCl odor and had deposited sulfur sublimates. A recent phreatic crater 20 m in diameter cut the outer ring fault. Fumaroles on the ESE edge of the collapsed dome made a strong jet aircraft sound. Portable 2-component seismographs were installed at three sites on the cone 16-19 October. Only a few volcanic earthquakes accompanied significant regional-related earthquake activity, but significant tremor was recorded.

Figure (see Caption) Figure 2. Sketch map showing the collapsed lava dome in the W crater of the eastern of Lascar's two andesite cones, and the ascent route of the Argentine-Chilean team. Courtesy of J. Viramonte.

Geologists from several institutions, including the Servicio Nacional de Geología y Minería, observed Lascar's activity from the ground and aircraft 21 October-17 November. The following is from their report.

"The dome, ~200 m in diameter, had deflated from the previously reported minimum volume of 1.5 x 106 m3 such that its top was at or below the crater floor (figure 3). We postulate that this may be due to magma withdrawal. We could find no evidence, either from local reports or from deposits near the crater, to suggest that any explosive activity has occurred since July 1988.

Figure (see Caption) Figure 3. Sketches made by Stephen Self from photographs taken in April 1989 by Stephen Foot (top) and November 1989 by M. Gardeweg (bottom). Both look over the S wall of Lascar's active crater. Vantage points of the two photos are similar but not identical. The diameter of the lava dome in the April view is about 200 m. Note evidence of deflation of the dome in the November photo and the positions of fumaroles in each.

"Since April, regular observations of Lascar's plume, and the times of rumbling (retumbos), local earthquakes, and night glow above the crater have been compiled by Eduardo Necul Tello, a schoolteacher in Talabre, ~20 km WNW of Lascar. His observations document higher plumes, crater glow, and more frequent rumbling during April, which may correlate with the main period of dome extrusion. Rumbling reported by Necul on 10 October at noon may have been associated with dome collapse.

"The dome had one major fumarole on the SE edge of the crater. It was venting gas at extremely high velocities, creating a jet engine-like noise similar to that reported for pre-dome fumaroles (Danny Osborne, personal communication, 1984). As in April, most of the fumaroles were around the edge of the dome, but there were a few in the interior of the dome area that did not exist in April. The jet-like fumarole released by far the largest volume of gas. The dome was crossed by NW-SE cracks that may have been extensional during its growth." Bombs, probably from the September 1986 explosive activity, were collected for chemical analysis; they appeared dacitic in hand specimen.

"More than 70 COSPEC measurements of SO2 flux were obtained from several ground-based stations on the S and SE sides of Lascar 16-17 November. Preliminary data suggest that Lascar's SO2 output is in the range of 1,100-1,500 t/d. Based on daily observations of the plume during the last eight months, these two days of measured output are typical. Moreover, this level of gas release has been semi-continuous for the last four years.

"At any particular time, fewer than 10 volcanoes have SO2 emission rates that exceed 1,000 t/d. Such high rates generally indicate an open vent condition. If the 16-17 November rates at Lascar are extrapolated over longer periods, the extruded magma volume could not account for the amount of SO2 emitted, assuming an average dacite composition. We postulate that this reflects a distillation of SO2 from a subsurface magma body.

"Significant changes in Lascar's extrusive activity over the last few months and the apparent continued degassing of a magma body at depth indicate that this volcano should be routinely monitored. Over the short term, since April 1989, the explosive hazard potential of Lascar has decreased. However, the situation could change rapidly in the future."

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg, SERNAGEOMIN, Santiago; S. Foot, MINSAL Ltda., Santiago; R. Letelier, ONEMI, Santiago; L. Glaze, JPL; R. Andres and W. Rose, Michigan Technological Univ; P. Francis and S. de Silva, Lunar and Planetary Institute, Houston; S. Self, Univ of Texas; J. Viramonte, Univ Nacional de Salta, Argentina; S. Espinoza and L. Baeza, Univ del Norte, Antofagasta.


Long Valley (United States) — November 1989 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Seismic swarm gradually declines; minor inflation

The seismic swarm...continued in October and November (figure 10). The number of earthquakes has slowly declined, from 220 in September to 137 in October and 52 in the first half of November. By 15 November, 1,564 swarm events had been recorded by the California Division of Mines and Geology NEWT system. There was no indication of any systematic depth migration during October or November. A USGS seismic station (MMP) in the epicentral area continued to record about a dozen to several dozen small (M<0.5) events/day through mid-December. Ten low-frequency events occurred in Octoer, for a total of 31 since the swarm began. Locations were similar to those of other swarm events, but the low-frequency shocks had emergent P-waves, lacked clear S-waves, and were of lower overall frequency than others of the same magnitude. Spasmodic tremor has occasionally been recorded, but only one episode occurred in October.

Figure (see Caption) Figure 10. Number of local earthquakes/day top); spasmodic tremor episodes that included more than four sub-events middle; and number of low-frequency events bottom recorded by the California Division of Mines and Geology NEWT system, 4 May-30 October, 1989. Courtesy of Stephen McNutt.

Relevelling of a line (along Rt. 203) a few kilometers N of the main epicentral area in late September yielded ~1.5 cm of relative uplift at its W end (Minaret summit) compared to summer 1988 values. New 2-color geodimeter sites on the E and N flanks of Mammoth Mountain that were surveyed in late August, late September, and about 10 November showed about four microstrain of NW-SE extension, parallel to the T axes of swarm focal mechanisms. These data were consistent with extension and uplift of the epicentral region. Preliminary data also suggest increasing dilatation across the resurgent dome in recent months, and seismic instruments have detected a few small (magnitude less than or equal to 2) earthquakes in the caldera's W moat.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: S. McNutt, California Division of Mines and Geology, Sacramento; D. Hill, USGS Menlo Park.


Lonquimay (Chile) — November 1989 Citation iconCite this Report

Lonquimay

Chile

38.379°S, 71.586°W; summit elev. 2832 m

All times are local (unless otherwise noted)


Brief tephra emission increase; cone morphology changes

The following, from J. Naranjo, is based on 2 November observations.

"Since September, Navidad cone's activity has dramatically decreased. On 2 November between 1300 and 1600, a white eruptive column reached 200 m above the crater. A light-gray ash and volcanic gas ejection appeared after weak explosions deep in the uppermost vent.

"The decreasing activity has caused a progressive and conspicuous transformation of the cone structure. The N opening of the formerly horseshoe-shaped cinder cone has been closed by the construction of a 200-m-high northern wall (figure 14). This wall has been built by the closure of the inner W and E 'terraces' nested in the original cone, through bomb and spatter fallback into the inner crater walls. The decreasing explosivity has inhibited the ballistic projection of bombs outside the crater, but has allowed the formation of the nested structure. On 9 July, W. Giggenbach and J.A. Naranjo observed what probably were the initial stages of the present structure; a small upper lava lake and another vent that abruptly opened 80 m below, from which a lava flow was extruded, draining the lake conduit. Thus, a constructive process is invoked, rather than a slumping or collapse of part of any Navidad cone wall for the present cone structure.

Figure (see Caption) Figure 14. Lonquimay's Navidad scoria cone viewed from ~500 m to the N. 3 April 1989 (A): strong explosions and lava fountaining developed in the source vent, launching spatter and ballistically projected bombs, some of which fell outside the crater's N breach. 9 July 1989 (B): Strombolian eruptions splashed lava over the inner crater walls, where most bombs fell. Lava emerged from a new vent that opened 80 m below the lava fountain. 2 November 1989 (C): a 200-m wall, built since August, closed the N breach. Lava was extruded from a vent near the base, while explosions projected bombs that rose <200 m above the crater and fell within it. Courtesy of J. Naranjo.

"Observation of the ~5-m-diameter vent from <10 m distance allowed the effusion rate to be estimated at between 400 and 1,200 m3/hour, illustrating the great decrease in the eruptive cycle, also shown by the successive drainage of the former deep lava channels. A 5-m-high orange-yellowish halo was deposited above the vent, due to chlorine and sulfur gases."

Hugo Moreno reported that on 27 November at 0900, the eruption increased notably, ejecting a cauliflower-shaped dark gray-brown ash column to 4-4.5 km asl (2-2.5 km above the crater). Vigorous activity continued the next day until at least 2000, with a well-defined brownish plume extending SE. Tephra were fine- to coarse-grained angular lithic ash, suggesting more Vulcanian-type activity.

Geologic Background. Lonquimay is a small, flat-topped, symmetrical stratovolcano of late-Pleistocene to dominantly Holocene age immediately SE of Tolguaca volcano. A glacier fills its summit crater and flows down the S flank. It is dominantly andesitic, but basalt and dacite are also found. The prominent NE-SW Cordón Fissural Oriental fissure zone cuts across the entire volcano. A series of NE-flank vents and scoria cones were built along an E-W fissure, some of which have been the source of voluminous lava flows, including those during 1887-90 and 1988-90, that extended out to 10 km.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; H. Moreno, Univ de Chile.


Manam (Papua New Guinea) — November 1989 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Slight vapor and ash emission; minor inflation

"Activity remained at a very low level in November. Weak white vapour emissions were released from both Southern and Main Craters throughout the month. There were grey emissions on a few days from Southern Crater, and a fine ashfall on the NW side of the island on the 9th. No sounds or glow were reported. The radial tilt showed a slight rising trend."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Merapi (Indonesia) — November 1989 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Large lava dome growing slowly in summit crater

The slowly growing lava dome in the summit crater reached 6.6 x 106 m3 by late 1989, a size described as "critical" for the collapse-prone dome. A white plume rose as much as 250 m from the crater's solfatara field, but under little pressure. COSPEC measurements showed an average SO2 flux of 73 t/d, up slightly from August. No lahar occurred during September, but alert status has been increased with the coming rainy season. Seismicity generally increased in September from August values (table 3). No A-type events were recorded.

Table 3. Seismicity recorded at Merapi, January-February and August-September 1989.

Month Collapse Multiphase volcanic B-type Tectonic
Jan 1989 416 11 2 70
Feb 1989 208 24 0 65
Aug 1989 430 50 2 64
Sep 1989 609 34 2 279

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: VSI.


Poas (Costa Rica) — November 1989 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Mud plumes from crater lake; more frequent earthquakes

November activity remained similar to that of previous months, with some changes in the hot crater lake. The hot areas in the N and SE parts of the lake remained as boiling mud springs. In the middle of the lake, mud plumes intermittently rose about 2 m, persisting for about 15 seconds. At the end of the month, the cones and castle-like features of mud were no longer visible, probably destroyed by the surges associated with the plumes. Activity on the remnants of the 1953-55 [dome] remained stable. Temperatures of about 66°C were measured on the top of the [dome], and about 87°C on its N flank.

Volcanic microseismicity totaled 8,366 events in 28 days, for a daily mean of 299. The largest number of events, 417, occurred on the 26th, and the smallest, about 200, on the 19th. Small increases have been recorded in each month since June. All of the seismicity was of low frequency; no A-type events were detected.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: G. Soto, Mario Fernández, and Héctor Flores, Univ de Costa Rica.


Rabaul (Papua New Guinea) — November 1989 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Seismicity increases; felt earthquakes

"There was a further increase in seismicity in November, with a total of 546 recorded events. Half of the recorded events occurred in swarms of low-frequncy earthquakes on the 12th (36 events), 17th-18th (138), 20th (39) and 24th (84). The first two swarms originated from the Greet Harbour-Beehives area (NW part of the caldera seismic zone), with 4-5 felt earthquakes on the 17th. A couple of earthquakes were felt locally on the 20th (the largest, ML 2.3), originating from the Karavia Bay and Blanche Bay areas (S and W caldera seismic zones). The swarm on the 24th also originated from the Greet Harbour area. Levelling carried out before and after the swarms of felt earthquakes showed no significant ground deformation."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Ranakah (Indonesia) — November 1989 Citation iconCite this Report

Ranakah

Indonesia

8.62°S, 120.52°E; summit elev. 2350 m

All times are local (unless otherwise noted)


Dome growth apparently ended; solfatara plume

In November 1989, a white plume rose to 25 m above the solfatara field between the new Anak Ranakah dome and the older [Gunung] Ranakah. A seismograph recorded 121 distant and 15 local tectonic earthquakes, eight A-type and two B-type shocks, and 87 collapse events.

Geologic Background. A new lava dome, named Anak Ranakah (Child of Ranakah) was formed in 1987 in an area without previous historical eruptions at the base of the large older lava dome of Gunung Ranakah. An arcuate group of lava domes extending westward from Gunung Ranakah occurs on the outer flanks of the poorly known Poco Leok caldera on western Flores Island. Pocok Mandosawa lava dome, at 2350 m the highest point on the island of Flores, lies west of Anak Ranakah.

Information Contacts: VSI.


Redoubt (United States) — November 1989 Citation iconCite this Report

Redoubt

United States

60.485°N, 152.742°W; summit elev. 3108 m

All times are local (unless otherwise noted)


Repeated strong explosions eject large tephra clouds

A series of strong explosions began 14 December after about a day of vigorous seismicity. Eruption clouds reached 12 km altitude, and airline pilots later reported ash layers in the atmosphere as far as S Texas (5,000 km from the volcano). Despite warnings from aviation authorities, several aircraft encountered the ash, and one, with 245 persons on board, lost power to all of its engines for 8 minutes before restarting and landing safely. The area immediately around the volcano is thinly populated, but the potential for eruption-induced flooding threatened an oil storage facility and forced the evacuation of most of its personnel. Redoubt was last active from early 1966 until mid-1968, with periods of repeated explosive episodes separated by as much as 8 months of quiet.

Pre-eruption seismicity and warnings. An increase in local seismicity to slightly above background level was first noticed 8 December on AVO's five-station seismic array. At about the same time, an apparent flank steam plume was observed from Anchorage, roughly 200 km NE of Redoubt. Seismicity increased somewhat during the morning of 13 December, and more strongly at about 1100 (to about 1-2 low-frequency microearthquakes/minute). AVO notified the Governor's Office, the Alaska Division of Emergency Services, the FAA, and the Drift River oil storage facility (figure 1) of the increased seismicity and expressed concern about (but did not formally forecast) an eruption. AVO's press release, issued at 1600, described the seismicity and noted that "It is impossible to state at this time whether the seismic activity is a precursor to a volcanic eruption, but that is a possibility of some concern." Steps were taken to reduce risk to the Drift River facility (including making oil storage tanks neutrally buoyant) and the FAA issued a warning of possible ash hazard.

Figure (see Caption) Figure 1. Sketch map of Redoubt and vicinity. Contour interval is 2,000 feet, about 600 m. Shading darkens with each 2000-foot interval. Courtesy of AVO.

Eruption onset, 14 December. About 0700 the next morning, seismic amplitudes on flank instruments decreased slightly, while slightly increased amplitudes were recorded at the summit. At about the same time, a magnitude 4 tectonic earthquake occurred at 80-95 km depth about 40 km S of Redoubt. Strong tremor began at about 1013, indicating the onset of the eruption. Five minutes later a MarkAir pilot reported that an ash column had reached 10.5 km altitude. Winds carried ash NE, with light dustings reported N and W of Anchorage. Within an hour, satellite images showed a plume that extended 156 km from the volcano and was as much as 90 km wide. The cloud top temperature determined from satellite data was about -47°C. Radiosonde data from Anchorage showed a similar temperature at about 9 km altitude. Jet stream winds at that altitude were blowing almost due N (from 190°) at 110-165 km/hour. At 1156, the FAA issued a Notice to Airmen (NOTAM), imposing temporary flight restrictions in the area.

During an overflight by AVO geologists that afternoon, steam was rhythmically pulsing from an upper N flank crater, in the same general area as the source of Redoubt's 1966-68 eruption. No ash was visible on the flanks. A helicopter overflight by oil facility personnel revealed evidence that about 15 m of flooding had occurred in the upper Drift River and that the flood was about 12 m high in the lower valley, a few vertical meters from facility equipment (but see 18 December overflight data). Some steaming boulders were observed in the flood debris.

That evening, two bursts of seismicity, each lasting about an hour, occurred between 1915 and 2245. The activity was not recorded at the Spurr station, 60 km N of Redoubt, and was not associated with any reported ash emission.

Large explosions and aircraft encounter with tephra cloud, 15 December. A sharp seismic pulse, about 1 hour long, was recorded 15 December at 0140. At 0330, satellite data showed an apparent eruption cloud temperature of -30°C, corresponding to an altitude of 6-6.5 km. Between 0300 and 0400, satellite images showed plume movement toward 150° at 66 km/hour, with its leading edge 146 km from Redoubt by 0400. A second sharp seismic pulse, again lasting about 1 hour, began at 0338, but weather clouds obscured satellite observations. An airplane pilot reported that the ash cloud extended from Redoubt to Talkeetna (about 250 km NE of the volcano). Both seismic episodes were slightly stronger than that associated with the previous day's eruptive episode, and were recorded at the Spurr station. As of 0900, the near-summit seismic station showed continuing moderately strong seismic noise, possibly associated with vigorous steaming or continuing minor ash emission.

A powerful explosive episode that ejected a large tephra column was marked by a vigorous pulse of seismicity between about 1017 and 1100 that was the most energetic of the eruption thus far. Airplane pilots reported ash to at least 12 km altitude. A temperature of -45°C was measured in the thickest part of the cloud using satellite data at 1030, but the plume was at the edge of the image, calibration was difficult, and no height estimate was made. Ashfalls from the plume were reported N of the Alaska Range and E to Canada.

At 1150, a Boeing 747 jetliner with 231 passengers and 14 crew members encountered the plume at 7.5 km altitude near Talkeetna, about 150 km N of Anchorage. The KLM flight, bound from Amsterdam to Tokyo with a stop at Anchorage, lost power to all 4 engines and descended 4 km before restarting at 1158 and landing safely in Anchorage at 1225. Investigations of the incident continue. Several other, less serious contacts with the plumes by aircraft included a MarkAir Boeing 737 that reportedly required replacement of 2 engines and its windshield.

Earthquake activity declined after 1100 for about 8 hours, but remained above previous background levels. Renewed eruptive activity began at about 1900 with continuous ash eruption and sustained high levels of seismicity. Eruption clouds reached about 8.5 km altitude. During the night, satellite images showed a moderate plume, moving about 60 km/hour ESE at about 4.5 km altitude. [See 14:12 for petrographic data and information from reconnaissance studies of avalanche and lahar deposits].

Sustained eruptive activity, 16-19 December. Another strong eruptive pulse was recorded on 16 December at 0620. Pilots reported ash to 9-10.5 km altitude over and W of Anchorage, and by 0900 satellite images showed a plume as much as 160 km wide with its front 660 km ESE of the volcano.

Most of the activity 16-18 December was characterized by apparently continuous low-level ash emission, generally to less than 5 km altitude, occasionally punctuated by explosions that ejected ash to 7.5-9 km. Pilots reported an eruption 17 December at 1300, with ash reaching 8.5 km altitude. Seismicity increased after 0300 on 18 December and plumes rose to 6-9 km altitude. Another eruptive pulse occurred at 0830. Pilots reported plumes at 0910 and 1037 to 6 and 5 km altitudes respectively. At 1430, Redoubt's plume was about 150 km long and its satellite-derived temperature of -22°C suggested an elevation of about 6.5 km. Another moderate eruptive pulse was seen on satellite images beginning at 1530; 30 minutes later, the plume extended 40 km to the E.

AVO geologists flew over the volcano between 1240 and 1300 on 18 December. Vigorous white to gray steam clouds, some with ash and/or rock debris, rose to 6 km before moving NE. Tephra separated from the column at low altitude and was carried SE by light winds. Eruption columns emerged from a single large vent in the summit crater at roughly 2,400-2,550 m elevation; no other active vents were evident. A curtain of steam rose from the glacier-filled valley extending N from the crater, down to ~1,350 m, and individual steam plumes were evident down the valley to 750 m elevation. The source of the steam was apparently hot water from the vent area. Flooding in the Drift River appeared to be confined to its channel.

Satellite data 19 December at 0635 showed the start of another moderately large eruptive pulse. By 0700, it extended 65 km with a maximum width of 23 km. A plume temperature of -32°C indicated a height of <=5.5 km. Another eruptive episode at 0750 had a smaller seismic trace but a pilot reported a rising ash cloud at 9 km altitude. Imagery at 1230 showed no evidence of large new eruptions, but thick low-level plumes were moving WNW, W, and WSW to 70 km from the volcano. Cloud top temperatures of -22° to -25°C suggested altitudes of 4-5 km. More diffuse plumes extended to 200 km.

During an AVO overflight between 1240 and 1330, geologists observed billowing ash at the base of a sustained steam column that rose to <5 km. The strongest plume observed by the geologists reached 5.1 km altitude at 1245. A thin, ash-free yellowish fume layer at 5 km had an SO2 odor. Seismic records during the overflight indicated continuous low-level venting. Satellite data showed additional minor eruptions at 1400 and 1630, both with cloud top temperatures of -25°C, equivalent to about 4-5 km altitude.

Emission of steam but no ash was reported 20 December. Pilots in the area reported strong sulfur smells but no ash layers.

Distant cloud observations. By 16 December, pilots were reporting ash over the NW conterminous United States. Ash clouds were reported from as far as El Paso, Texas, 5000 km from the volcano, by 19 December. Data from the TOMS instrument on the Nimbus-7 satellite showed strong SO2 signals over W Nevada and nearby areas of S California at about noon on 16 December (figure 2). Only very minor possible SO2 enhancements off the coast of Baja California were evident during the satellite's next pass 24 hours later. Detection of SO2 near the volcano was not possible because of low seasonal sun angles. Data from earlier in the eruption were not immediately available.

Figure (see Caption) Figure 2. Preliminary data from the TOMS instrument on the Nimbus-7 polar orbiting satellite, on 16 December at about local noon. Each character represents the average SO2 value within an area about 60 km across. 0 = 12-16 milliatmosphere-cm (120-160 ppm-meters), 1 = 17-21 matm-cm (170-210 ppm-m), etc., increasing by increments of 5 matm-cm. 9 is followed by A, B, C, etc. Courtesy of Scott Doiron.

Hazard mitigation efforts. In an effort to prevent aircraft encounters with volcanic clouds, NOAA and the FAA had recently concluded a formal agreement providing for detailed 24-hour monitoring of plumes by satellite specialists at SAB and forecasts of likely plume movement by NOAA's Air Resources Laboratory in support of the FAA's air safety and traffic flow responsibilities. The procedures outlined in the agreement, operating for the first time during the Redoubt eruption, yielded numerous detailed plume descriptions that prompted the issuance of frequent specific NOTAMs by the FAA. However, no air routes were formally closed. Since the onset of activity, AVO has immediately forwarded eruption data to the FAA, the Drift River oil facility, and other organizations with hazard responsibilities.

The Drift River oil facility, with a capacity of about a million barrels, serves oil platforms in the Cook Inlet. As the eruption began, 7 of its staff of 11 were evacuated, but operations, including loading of tankers, were not halted until 20 December. A shutdown of more than a few days would force production cutoffs of at least some of the Cook Inlet platforms. The facility had not been built at the time of the 1966-68 eruption, and the effects of that eruption on the facility site are not known to us.

Airline operations in Alaska were substantially reduced after the 15 December KLM incident, although some flights continued to and from Anchorage. With diminished activity 20 December, many airlines resumed at least partial service, and many of the passengers stranded by the activity were able to reach their destinations. Few people live near the volcano, but one family was evacuated from a lodge about 15 km S of the volcano. Despite occasional tephra falls, a family living at another lodge about 27 km N of the volcano elected to remain.

[Original Bulletin reports listed as Information Contacts many AVO scientists who provided news from Redoubt, but space precluded recognition of many others from AVO who made valuable contributions to the study of the eruption and mitigation of its hazards. At AVO's request, we therefore cite the "AVO Staff" for each Redoubt report.]

Geologic Background. Redoubt is a 3108-m-high glacier-covered stratovolcano with a breached summit crater in Lake Clark National Park about 170 km SW of Anchorage. Next to Mount Spurr, Redoubt has been the most active Holocene volcano in the upper Cook Inlet. The volcano was constructed beginning about 890,000 years ago over Mesozoic granitic rocks of the Alaska-Aleutian Range batholith. Collapse of the summit of Redoubt 10,500-13,000 years ago produced a major debris avalanche that reached Cook Inlet. Holocene activity has included the emplacement of a large debris avalanche and clay-rich lahars that dammed Lake Crescent on the south side and reached Cook Inlet about 3500 years ago. Eruptions during the past few centuries have affected only the Drift River drainage on the north. Historical eruptions have originated from a vent at the north end of the 1.8-km-wide breached summit crater. The 1989-90 eruption of Redoubt had severe economic impact on the Cook Inlet region and affected air traffic far beyond the volcano.

Information Contacts: AVO Staff; C. Newhall, USGS, Reston; S. Kusselson, G. Swanson, O. Karst, and M. Ruminsky, NOAA/NESDIS; S. Doiron, NASA GSFC; N. Krull, FAA; E. Miller, Air Line Pilots Association; AP; UPI; Reuters.


Ruapehu (New Zealand) — November 1989 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Upwelling in crater lake; inflation stops

When geologists visited Ruapehu on 17 November, Crater Lake temperature was 23°C, a decrease from 25°C on 19 October. Chemical concentrations in the lake remained stable, but lake color had changed from pale gray in October to pale blue green. Three small brown upwelling cells over the N vent formed yellow sulfur strands. Upwelling over the central vent formed a gray slick, which had spread over ~80% of the lake by a 22 November overflight. Only minor seismicity was observed after 20 September. Minor deflation was measured between 19 October and 17 November, reversing the inflationary trend recorded in September and October. Within the past two years, three similar inflationary pulses recorded during declining lake temperatures have been followed 3-4 months later by episodes of renewed lake heating and small eruptions (figures 7 and 9).

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: P. Otway, DSIR Wairakei.


Nevado del Ruiz (Colombia) — November 1989 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Small ash explosions; moderate seismicity

Seismicity . . . remained at moderate-low levels in November. Seismic energy was highest on the 22nd, when 694 low-frequency events released 1.8 x 108 ergs. High-frequency seismicity increased only slightly in the second half of the month, with events located N and SW of the active crater at 0.5-6 km depths. Low-frequency tremor was often recorded through the 15th. Brief tremor pulses occurred throughout the month, particularly in the second half, when the majority were associated with small explosions that deposited ash around Arenas crater. SO2 emissions averaged 1,770 t/d (corrected for wind conditions), a slight increase from last month's average. Dry and electronic tilt showed no significant changes.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Slamet (Indonesia) — November 1989 Citation iconCite this Report

Slamet

Indonesia

7.242°S, 109.208°E; summit elev. 3428 m

All times are local (unless otherwise noted)


Increased seismicity and gas emission

Increased seismicity (table 1) and gas emission have been observed at Slamet since the second week in October. A white plume rose as much as 300 m, compared to 100-150 m the previous week. Geologists noted that a small eruption could occur at any time. The alert level has been increased and local officials have been notified. Slamet's most recent activity was a weak 30-hour Strombolian eruption 12-13 July [1988], preceded by tremor that began at 1145. No casualties were reported.

Table 1. Seismicity recorded at Slamet, 7-10 October 1989. S-P of A-type events is 1.5-4 seconds. Courtesy of VSI.

Seismicity A-type B-type Degassing
07 Oct 1989 -- 1 11
08 Oct 1989 -- -- 30
09 Oct 1989 25 18 200
10 Oct 1989 200 10 11

Geologic Background. Slamet, Java's second highest volcano at 3428 m and one of its most active, has a cluster of about three dozen cinder cones on its lower SE-NE flanks and a single cinder cone on the western flank. It is composed of two overlapping edifices, an older basaltic-andesite to andesitic volcano on the west and a younger basaltic to basaltic-andesite one on the east. Gunung Malang II cinder cone on the upper E flank on the younger edifice fed a lava flow that extends 6 km E. Four craters occur at the summit of Gunung Slamet, with activity migrating to the SW over time. Historical eruptions, recorded since the 18th century, have originated from a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the summit and have consisted of explosive eruptions generally lasting a few days to a few weeks.

Information Contacts: VSI.


St. Helens (United States) — November 1989 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Minor ash emission and shallow seismicity

A small ash emission episode on 6 Decembrt was associated with ~5 hours of shallow seismicity. The activity occurred during poor weather, preventing direct observation of the volcano. The seismicity, dominated by a tremor-like signal that was punctuated by individual shallow (less than or equal to 2 km deep) earthquakes centered under the summit lava dome, was recorded between 1609 and 2122. Continuously recording tiltmeters in the crater showed small offsets during the seismicity, and a strainmeter crossing a crack on the W side of the dome measured 2 cm of contemporaneous extension.

Geologists working in the crater a few days later found a thin layer of new ash. Maximum thickness was 8 mm on the W side of the dome, rapidly thinning to a dusting on snow E and N of the dome. All of the ash appeared to be lithic material, without fresh glass shards or vesiculated magma. No new vent was evident, and geologists assumed that the ash had emerged from existing cracks near the dome's summit. Deformation measurements revealed changes of as much as 12 cm on the W side of the dome, declining to barely above noise level on its S side, since the previous fieldwork on 22 November. Deformation data had not previously shown any changes.

The last eruptive activity at Mt. St. Helens was a dome building episode in October 1986 (SEAN 11:09 and 11:10). At least nine periods of increased seismicity have been documented since late 1987 (figure 42), most recently for 10 days beginning 19 October 1989 (SEAN 14:10). Three brief swarms in late August, more energetic than the December activity but without the extended tremor-like signal, resembled seismicity associated with previous ash emission episodes. However, no eruptive activity was documented at that time (SEAN 14:08).

Figure (see Caption) Figure 42. Space-time plot showing focal depths of earthquakes at Mt. St. Helens, 1 January 1987-12 December 1989. Courtesy of C. Jonientz-Trisler.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: D. Swanson, CVO; C. Jonientz-Trisler and S. Malone, University of Washington.


Ulawun (Papua New Guinea) — November 1989 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Vapor emission and weak seismicity

"Activity continued at background level in November. The summit crater released white vapours in weak to moderate volume on most days. Seismicity remained at background level with <50 small-amplitude B-type events/day."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (SEAN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (SEAN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (SEAN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (SEAN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (SEAN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).