Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kavachi (Solomon Islands) Discolored water plumes observed in satellite imagery during early September 2020

Krakatau (Indonesia) Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Raung (Indonesia) Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

Klyuchevskoy (Russia) Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Fuego (Guatemala) Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Nishinoshima (Japan) Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Turrialba (Costa Rica) New eruptive period on 18 June 2020 consisted of ash eruptions

Etna (Italy) Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Ol Doinyo Lengai (Tanzania) Multiple lava flows within the summit crater; September 2019-August 2020

Yasur (Vanuatu) Ash and gas explosions continue through August 2020

Villarrica (Chile) Continued summit incandescence February-August 2020 with larger explosions in July and August

Stromboli (Italy) Strombolian activity continues at both summit craters during May-August 2020



Kavachi (Solomon Islands) — October 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes observed in satellite imagery during early September 2020

Kavachi is an active submarine volcano in the SW Pacific, located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism has been characterized by phreatomagmatic explosions that ejected steam, ash, and incandescent bombs. The previous report described discolored water plumes extending from a single point during early 2018 and April 2020 (BGVN 45:05); similar activity was recorded for this current reporting period covering May through September 2020 and primarily using satellite data.

Activity at Kavachi is most frequently observed through satellite images and typically consists of discolored submarine plumes. On 2 September 2020 a slight yellow discoloration in the water was observed extending E from a specific point (figure 22). Similar faint plumes continued to be recorded on 5, 7, 12, and 17 September, each of which seemed to be drifting generally E from a point source above the summit where previous activity has occurred. On 7 September the discolored plume was accompanied by white degassing and possibly agitated water on the surface at the origin point (figure 22).

Figure (see Caption) Figure 22. Sentinel-2 satellite images of a discolored plume (light yellow) at Kavachi beginning on 2 September (top left) and continuing through 17 September 2020 (bottom right). The light blue circle on the 7 September image highlights the surface degassing and source of the discolored water plume. The white arrow on the bottom right image is pointing to the faint discolored plume. Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — October 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. Presently, the caldera is underwater, except for three surrounding islands (Verlaten, Lang, and Rakata) and the active Anak Krakatau that was constructed within the 1883 caldera and has been the site of frequent eruptions since 1927. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). The previous report (BGVN 45:06) described activity that included Strombolian explosions, ash plumes, and crater incandescence. This report updates information from June through September 2020 using information primarily from Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and satellite data.

A VONA notice from PVMBG reported that the last eruptive event at Krakatau was reported on 17 April 2020, though the eruptive column was not observed. Activity after that was relatively low through September 2020, primarily intermittent diffuse white gas-and-steam emissions, according to PVMBG. No activity was reported during June-August, except for minor seismicity. During 11-13, 16, and 18 September, the CCTV Lava93 webcam showed intermittent white gas-and-steam emissions rising 25-50 m above the crater.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent hotspots within 5 km of the crater from May through September (figure 113). Some of these thermal hotspots were also detected in Suomi NPP/VIIRS sensor data. Sentinel-2 thermal satellite imagery showed faint thermal anomalies in the crater during June; no thermal activity was detected after June (figure 114).

Figure (see Caption) Figure 113. Intermittent thermal activity at Anak Krakatau from 13 October 2019-September 2020 shown on a MIROVA Low Radiative Power graph. The power of the thermal anomalies decreased after activity in April but continued intermittently through September. Courtesy of MIROVA.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images showing a faint thermal anomaly in the crater during 1 (left) and 11 (right) June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Raung (Indonesia) — September 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Visual reports of activity have often come from commercial airline flights that pass near the summit; Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption in 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. Confirmation and details of eruptions in 2012, 2013, and 2014-2015 are covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), several sources of satellite data, and visitors to the volcano.

Newly available visual and satellite information confirm eruptions at Raung during October 2012-January 2013, June-July 2013, and extend the beginning of the 2015 eruption back to November 2014. The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor. Raung was quiet after the 2015 eruption ended in August of that year until July 2020.

Eruption during October 2012-January 2013. A MODVOLC thermal alert appeared inside the summit crater of Raung on 14 October 2012, followed by another four alerts on 16 October. Multiple daily alerts were reported on many days through 8 November, most within the main crater. Single alerts appeared on 29 November and 1 December 2012 (figure 9). PVMBG raised the Alert Level on 17 October from 1 to 2 due to increased seismicity and raised it further to Level 3 on 22 October. A local news report by Aris Yanto indicted that a minor Strombolian eruption occurred inside the crater on 19 October. Strombolian activity was also observed inside the inner crater on 5 November 2012 by visitors (figure 10); they reported loud rumbling sounds that could be heard up to 15 km from the crater.

Figure (see Caption) Figure 9. Thermal activity at Raung during October and November 2012 included multiple days of multi-pixel anomalies, with almost all activity concentrated within the summit crater. Strombolian activity was observed on 5 November. Image shows all pixels from 23 September-1 December 2012. Courtesy of MODVOLC.
Figure (see Caption) Figure 10. Strombolian activity was observed inside the inner crater of Raung on 5 November 2012 by visitors. They reported loud rumbling sounds that could be heard up to 15 km from the crater. Photo by Galih, courtesy of Volcano Discovery.

The Darwin VAAC issued an advisory of an eruption plume to 9.1 km altitude reported at 0237 UTC on 8 November 2012. In a second advisory about two hours later they noted that an ash plume was not visible in satellite imagery. A press article released by the Center for Volcanology and Geological Hazard Mitigation (PVMBG) indicated that gray ash plumes were observed on 6 January 2013 that rose 300 m above the summit crater rim. Incandescence was observed around the crater and thundering explosions were heard by nearby residents.

Eruption during June-July 2013. Two MODVOLC thermal alerts were measured inside the summit crater on 29 June 2013. A photo taken on 21 July showed minor Strombolian activity at the inner crater (figure 11). A weak SO2 anomaly was detected in the vicinity of Raung by the OMI instrument on the Aura satellite on 27 July. Thermal alerts were recorded on 29 and 31 July. When Google Earth imageryrom 14 March 2011 created by Maxar Technologies is compared with imagery from 29 July 2013 captured by Landsat/Copernicus, dark tephra is filling the inner crater in the 2013 image; it was not present in 2011 (figure 12).

Figure (see Caption) Figure 11. Strombolian activity was observed inside the inner crater at the summit of Raung on 21 July 2013. Photo by Agus Kurniawan, courtesy of Volcano Discovery.
Figure (see Caption) Figure 12. Satellite imagery from Google Earth showing the eroded pyroclastic cone inside the summit crater of Raung on 14 March 2011 (left) and 29 July 2013 (right). Dark tephra deposits filling the inner crater in the 2013 image were not present in 2011. The crater of the pyroclastic cone is 200 m wide; N is to the top of the images. Courtesy of Google Earth.

Eruption during November 2014-August 2015. Information about this eruption was previously reported (BGVN 41:12), but additional details are provided here. Landsat-8 imagery from 28 October 2014 indicated clear skies and little activity within the summit crater. Local observers reported steam plumes beginning in mid-November (figure 13). MODVOLC thermal alerts within the summit crater were issued on 28 and 30 November, and then 15 alerts were issued on seven days in December. Thermal Landsat-8 imagery from cloudy days on 29 November and 15 December indicated an anomaly over the area of the pyroclastic cone inside the summit crater (figure 14).

Figure (see Caption) Figure 13. Local observers reported steam plumes at Raung beginning in mid-November 2014; this one was photographed on 17 November 2014. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 14. Satellite evidence of new eruptive activity at Raung first appeared on 29 November 2014. The true color-pansharpened Landsat-8 image of Raung from 28 October 2014 (left) shows the summit crater and an eroded pyroclastic cone with its own crater (the inner crater) with no apparent activity. Although dense meteoric clouds on 29 November (center) and 15 December 2014 (right) blocked true color imagery, thermal imagery indicated a thermal anomaly from the center of the pyroclastic cone on both dates. Courtesy of Sentinel Hub Playground.

In January 2015 the MODVOLC system identified 25 thermal anomalies in MODIS data, with a peak of eight alerts on 8 January. Visitors to the summit crater on 6 January witnessed explosions from the inner crater approximately every 40 minutes that produced gas and small amounts of ash and tephra. They reported lava flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was seen at night (figure 15). Landsat-8 images from 16 January showed a strong thermal anomaly covering an area of fresh lava (figure 16).

Figure (see Caption) Figure 15. Visitors to the summit crater of Raung on 6 January 2015 witnessed explosions from the inner crater approximately every 40 minutes that produced abundant gas and small amounts of ash and tephra. Lava was flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was observed at night. Photos by Sofya Klimova, courtesy of Volcano Discovery.
Figure (see Caption) Figure 16. On a clear 16 January 2015, Landsat-8 satellite imagery revealed fresh lava flows NW of the pyroclastic cone within the summit crater at Raung. A strong thermal anomaly matches up with the dark material, suggesting that it flowed NW from within the pyroclastic cone. Left image is true color-pansharpened rendering, right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Satellite images were obscured by meteoric clouds during February 2015, but PVMBG reported gray and brown plumes rising 300 m multiple times and incandescence and rumbling on 14 February. Visitors to the summit crater during the second half of February reported Strombolian activity with lava fountains from the inner crater, at times as frequently as every 15 minutes (figure 17). Loud explosions and rumbling were heard 10-15 km away. MODVOLC thermal alerts stopped on 25 February and did not reappear until late June.

Figure (see Caption) Figure 17. A report issued on 25 February 2015 from visitors to the summit of Ruang noted large Strombolian explosions with incandescent ejecta and lava flowing across the crater floor. The fresh lava on the crater floor covered a noticeably larger area than that shown in early January (figure 15). Photo by Andi, courtesy of Volcano Discovery.

PVMBG raised the Alert Level to 2 in mid-March 2015. Weak thermal anomalies located inside and NW of the pyroclastic cone were present in satellite imagery on 21 March. PVMBG reported gray and brown emissions during March, April, and May rising as high as 300 m above the crater. Landsat imagery from 22 April showed a small emission inside the pyroclastic cone, and on 8 May showed a clearer view of the fresh black lava NW and SW of the pyroclastic cone (figure 18).

Figure (see Caption) Figure 18. Fresh lava was visible in Landsat-8 satellite imagery in April and May 2015 at Raung. A small emission was present inside the pyroclastic cone at the summit of Raung on 22 April 2015 (left). Fresh dark material is also evident in the SW quadrant of the summit crater that was not visible on 16 January 2015. A clear view on 8 May 2015 also shows the extent of the fresh black material around the pyroclastic cone (right). The summit crater is 2 km wide. Courtesy of Sentinel Hub Playground.

Nine MODVOLC thermal alerts appeared inside the summit crater on 21 June 2015 after no alerts since late February, suggesting an increase in activity. The Darwin VAAC issued the first ash advisory for 2015 on 24 June noting an aviation report of recent ash. The following day the Ujung Pandang Meteorological Weather Office (MWO) reported an ash emission drifting W at 3.7 km altitude. The same day, 25 June, Landsat-8 imagery clearly showed a new lava flow on the W side of the crater and a strong thermal anomaly. The thermal data showed a point source of heat widening SW from the center of the crater and a second point source of heat that appeared to be inside the pyroclastic cone. A small ash plume was visible over the cone (figure 19). Strombolian activity and ash plumes were reported by BNPB and PVMBG in the following days. On 26 June the Darwin VAAC noted the hotspot had remained visible in infrared imagery for several days. PVMBG reported an ash emission to 3 km altitude on 29 June.

Figure (see Caption) Figure 19. A new lava flow and strong thermal anomaly appeared inside the summit crater of Raung on 25 June 2015 in Landsat-8 imagery. The new flow was visible on the W side of the crater. The darker area extending SW from the rising ash plume is a shadow. The thermal data showed a point source of heat widening SW from the center of the crater and spreading out in the SW quadrant and a second point source of heat on the flank of the pyroclastic cone. Left image is True color-pansharpened rendering, and right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Activity increased significantly during July 2015 (BGVN 41:12). Ash plumes rose as high as 6.7 km altitude and drifted hundreds of kilometers in multiple directions, forcing multiple shutdowns at airports on Bali and Lombok, as well as Banyuwangi and Jember in East Java. The Darwin VAAC issued 152 ash advisories during the month. Ashfall was reported up to 20 km W during July and 20-40 km SE during early August. Visitors to the summit in early July observed a new pyroclastic cone growing inside the inner crater from incandescent ejecta and dense ash emissions (figure 20). Landsat-8 imagery from 11 July showed a dense ash plume drifting SE, fresh black lava covering the 2-km-wide summit caldera floor, and a very strong thermal anomaly most intense at the center near the pyroclastic cone and cooler around the inner edges of the crater (figure 21). On 12 July, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a view of an ash-and-gas plume drifting hundreds of kilometers SE from Raung (figure 22).

Figure (see Caption) Figure 20. A new pyroclastic cone was growing inside the inner crater at the summit of Raung when photographed by Aris Yanto in early July 2015. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 21. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and a large thermal anomaly caused by fresh lava. On 11 July a dense ash plume drifted SE and a strong thermal anomaly was centered inside the summit crater. The 2-km-wide crater floor was covered with fresh lava (compare with 25 June image in figure 19). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 22. On 12 July 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a natural-color view of a plume of ash and volcanic gases drifting hundreds of kilometers SE from Raung. Courtesy of NASA Earth Observatory.

A satellite image on 20 July showed fresh incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit (figure 23). Incandescent ejecta emerged from two vents on the new pyroclastic cone inside the inner crater on 26 July (figure 24). On 27 July a dense ash plume was visible again in satellite imagery drifting NW and the hottest part of the thermal anomaly was in the SE quadrant of the crater (figure 25). Substantial SO2 plumes were recorded by the OMI instrument on the Aura satellite during July and early August 2015 (figure 26).

Figure (see Caption) Figure 23. A satellite image of the summit of Raung on 20 July 2015 showed fresh, incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit. Thermal activity on the NE flank was likely the result of incandescent ejecta from the crater causing a fire. Image created by DigitalGlobe, captured by WorldView3, courtesy of Volcano Discovery.
Figure (see Caption) Figure 24. Incandescent ejecta emerged from two vents on the new pyroclastic cone growing inside the inner crater of Raung on 26 July 2015. Photo by Vianney Tricou, used with permission, courtesy of Volcano Discovery.
Figure (see Caption) Figure 25. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and large thermal anomalies from fresh lava. The 2-km-wide crater floor was fully covered with fresh lava by 11 July. On 27 July the dense ash plume was drifting NW and the highest heat was concentrated in the SE quadrant of the crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 26. Substantial plumes of sulfur dioxide from Raung were measured by the OMI instrument on the AURA satellite during July and August 2015. The first plumes were measured in mid-June; they intensified during the second half of July and the first week of August, but had decreased by mid-August. Wind directions were highly variable throughout the period. The date is recorded above each image. Courtesy of NASA Global Sulfur Dioxide Page.

Significant ash emissions continued into early August 2015 with numerous flight cancellations. The Darwin VAAC reported ash plumes rising to 5.2 km altitude and extending as far as 750 km SE during the first two weeks in August (figure 27). Satellite imagery indicated a small ash plume drifting W from the center of the crater on 12 August and weak thermal anomalies along the E and S rim of the floor of the crater (figure 28). The summit crater was covered with fresh lava on 14 August when viewed by visitors, and ash emissions rose a few hundred meters above the crater rim from a vent in the SW side of the pyroclastic cone (figure 29). The visitors observed pulsating ash emissions rising from the SW vent on the large double-crater new cinder cone. The larger vent to the NE was almost entirely inactive except for two small, weakly effusive vents on its inner walls.

Figure (see Caption) Figure 27. A dense ash plume drifted many kilometers S from Raung on 2 August 2015 in this view from nearly 100 km W. Incandescence at the summit indicated ongoing activity from the major 2015 eruption. In the foreground is Lamongan volcano whose last known eruption occurred in 1898. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 28. Landsat-8 satellite imagery of Raung indicated a small ash plume drifting W from the center of the crater on 12 August 2015. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. The summit crater of Raung on 14 August 2015 was filled with fresh lava from an eruption that began in November 2014. Ash emissions from a vent in the side of the newly grown pyroclastic cone within the crater rose a few hundred meters above the crater rim. Courtesy of Volcano Discovery.

The lengthy sequence of multiple daily VAAC reports that began in late June ended on 16 August 2015 with reports becoming more intermittent and ash plume heights rising to only 3.7-3.9 km altitude. Multiple discontinuous eruptions to 3.9 km altitude were reported on 18 August. The plumes extended about 100 km NW. The last report of an ash plume was from an airline on 22 August noting a low-level plume 50 km NW. Two MODVOLC alerts were issued that day. By 28 August only a very small steam plume was present at the center of the crater; the southern half of the edge of the crater floor still had small thermal anomalies (figure 30). The last single MODVOLC thermal alerts were on 29 August and 7 September. The Alert Level was lowered to 2 on 24 August 2015, and further lowered to 1 on 20 October 2016.

Figure (see Caption) Figure 30. By 28 August 2015 only a very small steam plume was present at the center of the summit crater of Raung, and the southern half of the edge of the crater floor only had weak thermal anomalies from cooling lava. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/);Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/, https://earthobservatory.nasa.gov/images/86213/eruption-of-raung-volcano); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Aris Yanto (URL: https://www.exploredesa.com/2012/11/mount-raung-produce-of-vulcanic-ash-plume-and-continue-eruption/); DigitalGlobe (URL: https://www.maxar.com/, https://twitter.com/Maxar/status/875449111398547457); Øystein Lund Andersen (URL: https://twitter.com/OysteinVolcano/status/1194879946042142726, http://www.oysteinlundandersen.com).


Klyuchevskoy (Russia) — September 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Klyuchevskoy is a frequently active stratovolcano located in northern Kamchatka. Historical eruptions dating back 3,000 years have included more than 100 flank eruptions with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks. The previous report (BGVN 45:06) described ash plumes, nighttime incandescence, and Strombolian activity. Strombolian activity, ash plumes, and a strong lava flow continued. This report updates activity from June through August 2020 using weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.

Moderate explosive-effusive activity continued in June 2020, with Strombolian explosions, frequent gas-and-steam emissions that contained some amount of ash, and an active lava flow. On 1 June a gas-and-steam plume containing some ash extended up to 465 km SE and E. The lava flow descended the SE flank down the Apakhonchich chute (figure 43). Occasionally, phreatic explosions accompanied the lava flow as it interacted with snow. Intermittent ash plumes, reported throughout the month by KVERT using video and satellite data and the Tokyo VAAC using HIMAWARI-8 imagery, rose to 5.5-6.7 km altitude and drifted in different directions up to 34 km from the volcano. On 12 and 30 June ash plumes rose to a maximum altitude of 6.7 km. On 19 June, 28-30 June, and 1-3 July some collapses were detected alongside the lava flow as it continued to advance down the SE flank.

Figure (see Caption) Figure 43. Gray ash plumes (left) and a lava flow descending the Apakhonchich chute on the SE flank, accompanied by a dark ash plume and Strombolian activity (right) were observed at the summit of Klyuchevskoy on 10 June 2020. Courtesy of E. Saphonova, IVS FEB RAS, KVERT.

During 1-3 July moderate Strombolian activity was observed, accompanied by gas-and-steam emissions containing ash and a continuous lava flow traveling down the Apakhonchich chute on the SE flank. On 1 July a Tokyo VAAC advisory reported an ash plume rising to 6 km altitude and extending SE. On 3 July the activity sharply decreased. KVERT reported there was some residual heat leftover from the lava flow and Strombolian activity that continued to cool through at least 13 July; KVERT also reported frequent gas-and-steam emissions, which contained a small amount of ash through 5 July, rising from the summit crater (figure 44). The weekly KVERT report on 16 July stated that the eruption had ended on 3 July 2020.

Figure (see Caption) Figure 44. Fumarolic activity continued in the summit crater of Klyuchevskoy on 7 July 2020. Courtesy of KSRS ME, Russia, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity within 5 km of the summit crater from March through June followed by a sharp and sudden decline in early July (figures 45). A total of six weak thermal anomalies were detected between July and August. According to the MODVOLC thermal algorithm, a total of 111 thermal alerts were detected at or near the summit crater from 1 June to 1 July, a majority of which were due to the active lava flow on the SE flank and Strombolian explosions in the crater. Sentinel-2 thermal satellite imagery frequently showed the active lava flow descending the SE flank as a strong thermal anomaly, sometimes even through weather clouds (figure 46). These thermal anomalies were also recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data on a MIROVA graph, showing a strong cluster during June to early July, followed by a sharp decrease and then a hiatus in activity (figure 47).

Figure (see Caption) Figure 45. Thermal activity at Klyuchevskoy was frequent and strong during February through June 2020, according to the MIROVA graph (Log Radiative Power). Activity sharply decreased during July through August with six low-power thermal anomalies. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 thermal satellite images show the strong and persistent lava flow (bright yellow-orange) originating from the summit crater at Klyuchevskoy from 1 June through 1 July 2020. The lava flow was active in the Apakhonchich chute on the SE flank. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 47. Strong clusters of thermal anomalies were detected in the summit at Klyuchevskoy (red dots) during January through June 2020, as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Activity sharply decreased during July through August with few low-power thermal anomalies. Courtesy of MIROVA.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — September 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Fuego, located in Guatemala, is a stratovolcano that has been erupting since 2002 with historical eruptions dating back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 45:04) described recent activity that included multiple ash explosions, block avalanches, and intermittent lava flows. This report updates activity from April through July 2020 that consisted of daily explosions, ash plumes, block avalanches ashfall, intermittent lava flows, and lahars. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity during April-July 2020. Daily activity throughout April-July 2020 was characterized by multiple hourly explosions, ash plumes that rose to a maximum of 4.9 km altitude, incandescent pulses that reached 600 m above the crater, block avalanches into multiple drainages, and ashfall affecting nearby communities (table 21). The highest rate of explosions occurred on 2 and 3 April and 2 May with up to 16 explosions per hour. White degassing occurred frequently during the reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 132); the number of flows decreased in June through July, which is represented in the MIROVA analysis of MODIS satellite data, where the strength and frequency of thermal activity slightly decreased (figure 133). Occasional lahars were detected descending several drainages on the W and SE flanks, sometimes carrying tree branches and large blocks up to 1 m in diameter.

Table 21. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Number of explosions per hour Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Villages reporting ashfall
Apr 2020 5-16 4.3-4.9 km 8-20 km E, NE, SE, W, NW, SW, S, N Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, Honda, and Santa Teresa Morelia, Panimaché I and II, Sangre de Cristo, Santa Sofía, Finca Palo Verde, San Pedro Yepocapa, Las Cruces Quisache, La Rochela, Ceylan, and Osuna
May 2020 4-16 4.3-4.9 km 10-17 km S, SW, W, N, NE, E, SE Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala
Jun 2020 3-15 4.2-4.9 km 10-25.9 km E, SE, S, N, NE, W, SW, NW Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa and Honda San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir, Yucales, Santa Emilia, Santa Sofía
Jul 2020 1-15 4-4.9 km 10-24 km W, NW, SW, S, NE Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir
Figure (see Caption) Figure 132. Sentinel-2 thermal satellite images of Fuego between 9 April 2020 and 13 July 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the summit crater. Some lava flows were accompanied by gas emissions (9 April, 9 May, and 24 May 2020). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 133. Thermal activity at Fuego was persistent and strong from 16 September through late May 2020, according to the MIROVA graph (Log Radiative Power). From early to mid-June activity seemed to stop briefly before resuming again at a lower rate. Courtesy of MIROVA.

Activity during April-May 2020. Activity in April 2020 consisted of 5-16 explosions per hour, generating ash plumes that rose 4.3-4.9 km altitude and drifted 8-20 km in multiple directions. Ashfall was reported in Morelia (9 km SW), Panimaché I and II (8 km SW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Las Cruces Quisache (8 km NW), La Rochela, Ceylan, Osuna (12 km SW). The Washington VAAC issued multiple aviation advisories for a total of six days in April. Intermittent white gas-and-steam emissions reached 4.1-4.5 km altitude drifting in multiple directions. Incandescent ejecta was frequently observed rising 75-400 m above the crater; material ejected up to 600 m above the crater on 11 April. These constant explosions produced block avalanches that traveled down the Taniluyá (SW), Ceniza (SSW), Las Lajas (SE), Trinidad (S), Seca (W), Honda, and Santa Teresa (W) drainages. Effusive activity was reported on 6-13 and 15 April from the summit vent, traveling 150-800 m down the Ceniza drainage, accompanied by block avalanches in the front of the flow up to 1 km. Crater incandescence was also observed.

On 19-20 April a new lava flow descended the Ceniza drainage measuring 200-400 long, generating incandescent block avalanches at the front of the flow that moved up to 1 km. On 22 April lahars descended the Honda, Las Lajas, El Juté (SE), Trinidad, Ceniza, Taniluyá, Mineral, and Seca drainages and tributaries in Guacalate, Achiguate, and Pantaleón. During the evening of 23 April the rate of effusive activity increased; observatory staff observed a second lava flow in the Seca drainage was 170 m long and incandescent blocks from the flow traveled up to 600 m. Two lava flows in the Ceniza (130-400 m) and Seca (150-800 m) drainages continued from 23-28 April and had stopped by 30 April. On 30 April weak and moderate explosions produced ash plumes that rose 4.5-4.7 km altitude drifting S and SE, resulting in fine ashfall in Panimaché I, Morelia, Santa Sofía (figure 134).

Figure (see Caption) Figure 134. Photo of a small ash plume rising from Fuego on 30 April 2020. Photo has been slightly color corrected. Courtesy of William Chigna, CONRED.

During May 2020, the rate of explosion remained similar, with 4-16 explosions per hour, which generated gray ash plumes that rose 4.3-4.9 km altitude and drifted 10-17 km generally W and E. Ashfall was observed in Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango (8 km ENE), Ciudad Vieja (13.5 km NE), San Miguel Dueñas (10 km NE), and Antigua Guatemala (18 km NE). The Washington VAAC issued volcanic ash advisory notices on six days in May. White gas-and-steam emissions continued, rising 4-4.5 km altitude drifting in multiple directions. Incandescent ejecta rose 100-400 m above the crater, accompanied by some crater incandescence and block avalanches in the Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda drainages that moved up to 1 km and sometimes reached vegetated areas.

During 8-11 May a new 400 m long lava flow was detected in the Ceniza drainage, accompanied by constant crater incandescence and block avalanches traveling up to 1 km, according to INSIVUMEH. On 8 and 17 May moderate to strong lahars descended the Santa Teresa and Mineral drainages on the W flank and on 21 May they descended the Las Lajas drainage on the E flank and the Ceniza drainage on the SW flank. During 20-24 May a 100-400 m long lava flow was reported in the Ceniza drainage alongside degassing and avalanches moving up to 1 km and during 25-26 May a 150 m long lava flow was reported in the Seca drainage.

Activity during June-July 2020. The rate of explosions in June 2020 decreased slightly to 3-15 per hour, generating gray ash plumes that rose 4.2-4.9 km altitude and drifted 10-26 km in multiple directions (figure 135). As a result, intermittent ashfall was reported in San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir (8 km ENE), Yucales (12 km SW), Santa Emilia, Santa Sofia, according to INSIVUMEH. VAAC advisories were published on eight days in June. Degassing persisted in the summit crater that rose 4.1-4.5 km altitude extending in different directions. Crater incandescence was observed occasionally, as well as incandescent pulses that rose 100-300 m above the crater. Block avalanches were observed descending the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa, and Honda drainages, which could sometimes carry blocks up to 1 km in diameter.

On 2 June at 1050 a weak to moderate lahar was observed in the Las Lajas drainage on the SE flank. On 5 June, more lahars were detected in the Seca and Mineral drainages on the W flanks. A new lava flow was detected on 12 June, traveling 250 m down the Seca drainage on the NW flank, and accompanied by constant summit crater incandescence and gas emissions. The flow continued into 14 June, lengthening up to 300 m long. On 24 June weak and moderate explosions produced ash plumes that rose 4.3-4.7 km altitude drifting W and SW (figure 135). On 29 June at 1300 a weak lahar was reported in the Seca, Santa Teresa, and Mineral drainages on the W flank.

Figure (see Caption) Figure 135. Examples of small ash plumes at Fuego on 15 (left) and 24 (right) June 2020. Courtesy of William Chigna, CONRED.

Daily explosions and ash plumes continued through July 2020, with 1-15 explosions per hour and producing consistent ash plumes 4-4.9 km altitude drifting generally W for 10-24 km. These explosions resulted in block avalanches that descended the Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa drainages. The number of white gas emissions decrease slightly compared to previous months and 4-4.4 km altitude. VAAC advisories were distributed on twenty different days in July. Incandescent ejecta was observed rising 100-350 m above the crater. Occasional ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir, according to INSIVUMEH.

On 4 July in the early morning, a lava flow began in the Seca drainage, which also produced some fine ash particles that drifted W. The lava flow continued into 5 July, measuring 150 m long. On the same day, weak to moderate lahars traveled only 20 m, carrying tree branches and blocks measuring 30 cm to 1 m. On 14, 24, and 29 July more lahars were generated in the Las Lajas drainages on the former date and both the Las Lajas and El Jute drainages on the two latter dates.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Nishinoshima (Japan) — September 2020 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted through November 2015 and returned during mid-2017, continuing the growth of the island with ash plumes, ejecta, and lava flows. A short eruptive event in July 2018 produced a small lava flow and vent on the side of the pyroclastic cone. The next eruption of ash plumes, incandescent ejecta, and lava flows began in early December 2019, resulting in significant growth of the island. This report covers the ongoing activity from March-August 2020 when activity decreased. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular overflights to make observations.

Renewed eruptive activity that began on 5 December 2019 continued during March-August 2020 but appeared to wane by the end of August. Major lava flows covered all sides of the island, with higher levels of activity during late June and early July. Ash emissions increased significantly during June and produced dense black ash plumes that rose up to 6 km altitude in early July. Explosive activity produced lightning and incandescent jets that rose 200 m and large bombs that fell to the base of the pyroclastic cone. Lava flow activity diminished at the end of July. Ash emissions decreased throughout August and appeared to cease after 27 August 2020. The MIROVA plot clearly reflects the high levels of thermal activity between December 2019 and August 2020 (figure 80); this event was reported by JMA as the largest eruption recorded to date. Sulfur dioxide emissions were very high during late June through early August, producing emissions that drifted across much of the western Pacific region.

Figure (see Caption) Figure 80. The MIROVA plot of thermal activity at Nishinoshima from 14 October 2019 through August 2020 indicates the high levels between early December 2019 and late July 2020 that resulted from the eruption of numerous lava flows on all flanks of the pyroclastic cone, significantly enlarging the island. Courtesy of MIROVA.

The Japan Coast Guard (JCG) conducted overflights of Nishinoshima on 9 and 15 March 2020 (figure 81). During both visits they observed eruptive activity from the summit crater, including ash emissions that rose to an altitude of approximately 1,000 m and lava flowing down the N and SE flanks (figure 82). Large ejecta was scattered around the base of the pyroclastic cone. The lava flowing north had reached the coast and was producing vigorous steam as it entered the water on 9 March; whitish gas emissions were visible on the N flank of the cone at the source of the lava flow (figure 83). On 9 March yellow-green discolored water was noted off the NE shore. The lava flow on the SE coast produced a small amount of steam at the ocean entry point and a strong signal in thermal imagery on 15 March (figure 84). Multiple daily MODVOLC thermal alerts were issued during 1-10, 17-24, and 27-30 March. Landsat-8 visual and thermal imagery on 30 March 2020 confirmed that thermal anomalies on the N and SE flanks of the volcano continued.

Figure (see Caption) Figure 81. The Japan Coast Guard conducted an overflight of Nishinoshima on 9 March 2020 and observed ash emissions rising 1,000 m above the summit and lava flowing into the ocean off the N flank of the island. Courtesy of Japan Coast Guard (JCG) and JMA.
Figure (see Caption) Figure 82. Lava flows at Nishinoshima during February and March 2020 were concentrated on the N and SE flanks. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. The growth of the SE-flank flow decreased during March while the N-flank flow rate increased significantly. Left image shows changes between 14 and 28 February and right image shows the differences between 28 February and 13 March. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the Japan National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, March 2020).
Figure (see Caption) Figure 83. Vigorous steam emissions on the N flank of Nishinoshima on 9 March 2020 were caused by the active flow on the N flank. Whitish steam and gas midway up the flank indicated the outlet of the flow. Ash emissions rose from the summit crater and drifted E. Courtesy of Japan Coast Guard and JMA.
Figure (see Caption) Figure 84. Infrared imagery from 15 March 2020 at Nishinoshima showed the incandescent lava flow on the SE flank (foreground), blocks of ejecta scattered around the summit and flanks of the pyroclastic cone, and the active N-flank flow (left). Courtesy of Japan Coast Guard and JMA.

Ash emissions were not observed at Nishinoshima during JCG overflights on 6, 16, and 19 April 2020, but gas-and-steam emissions were noted from the summit crater, and a yellow discoloration interpreted by JMA to be sulfur precipitation was observed near the top of the pyroclastic cone. The summit crater was larger than during previous visits. Steam plumes seen each of those days on the N and NE coasts suggested active ocean entry of lava flows (figure 85). A lava flow was observed emerging from the E flank of the cone and entering the ocean on the E coast on 19 and 29 April (figure 86). During the overflight on 29 April observers noted lava flowing southward from a vent on the E flank of the pyroclastic cone. A narrow, brown, ash plume was visible on 29 April at the summit crater rising to an altitude of about 1,500 m. Thermal observations indicated continued flow activity throughout the month. Multiple daily MODVOLC thermal alerts were recorded during 2-6, 10-11, 17-23, and 28-30 April. Significant growth of the pyroclastic cone occurred between early February and late April 2020 (figure 87).

Figure (see Caption) Figure 85. Multiple entry points of lava flowed into the ocean producing jets of steam along the N flank of Nishinoshima on 6 April 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 86. Lava flowed down the E flank of Nishinoshima from a vent below the summit on 19 April 2020. The ocean entry produced a vigorous steam plume (left). Courtesy of JCG.
Figure (see Caption) Figure 87. The pyroclastic cone at Nishinoshima grew significantly in size between 4 February (left), 9 March (middle), and 19 April 2020 (right). View is to the E. Courtesy of JMA and JCG.

Infrared satellite imagery from 17 May 2020 showed a strong thermal anomaly at the summit and hot spots on the NW flank indicative of flows. Visible imagery confirmed emissions at the summit and steam plumes on the NW flank (figure 88). Gray ash plumes rose to about 1,800 m altitude on 18 May during the only overflight of the month made by the Japan Coast Guard. In addition, white gas emissions rose from around the summit area and large blocks of ejecta were scattered around the base of the pyroclastic cone (figure 89). Steam from ocean-entry lava on the N flank was reduced from previous months, but a new flow moving NW into the ocean was generating a steam plume and a strong thermal signature. Multi-pixel thermal alerts were measured by the MODVOLC system on 1-3, 9-10, 13-15, 18, and 26-30 May. Sulfur dioxide emissions had been weak and intermittent from March through early May 2020 but became more persistent during the second half of May. Although modest in size, the plumes were detectible hundreds of kilometers away from the volcano (figure 90).

Figure (see Caption) Figure 88. Landsat-8 satellite imagery of Nishinoshima from 17 May 2020 confirmed continued eruptive activity. Visible imagery showed emissions at the summit and steam plumes on the NW flank (left) and infrared imagery showed a strong thermal anomaly at the summit and anomalies on the NW flank indicative of lava flows (right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Lava continued to enter the ocean at Nishinoshima during May 2020. A new lava flow on the NW flank produced a strong steam plume at an ocean entry (left) on 18 May 2020. In addition to a light gray plume of gas and ash, steaming blocks of ejecta were visible on the flanks of the pyroclastic cone. The strong thermal signature of the NW-flank flow in infrared imagery that same day showed multiple new lobes flowing to the ocean (right). Courtesy of JCG and JMA.
Figure (see Caption) Figure 90. Small but distinct SO2 emissions from Nishinoshima were recorded by the TROPOMI instrument on the Sentinel-5P satellite during the second half of May 2020. The plumes drifted tens to hundreds of kilometers away from the volcano in multiple directions as the wind directions changed. Nishinoshima is about 1,000 kilometers S of Tokyo. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity increased significantly during June 2020. Satellite imagery from 2 June revealed two intense thermal anomalies at the summit indicating a new crater, and lava flows active on the NW and NE flanks, all showing gas or steam emissions (figure 91). Dense brown and gray ash emissions were observed rising from the summit crater during JCG overflights on 7 and 15 June (figure 92). Plumes reached at least 1,500 m altitude, and ejecta reached the base of the pyroclastic cone. Between 5 and 19 June the lava flow on the WNW coast slowed significantly, while the flows to the N and E became significantly more active (figure 93). The Tokyo VAAC reported the first ash plume since mid-February on 12 June rose to 2.1 km and drifted NE. On 14 June they reported an ash plume extending E at 2.7 km altitude. Dense emissions continued to drift N and E at 2.1-2.7 km altitude until the last week of the month. The JCG overflight on 19 June observed darker ash emissions than two weeks earlier that drifted at least 180 km NE (figure 94) and incandescent tephra that exploded from the enlarged summit area where three overlapping craters trending E-W had formed.

Figure (see Caption) Figure 91. Landsat-8 satellite imagery on 2 June 2020 confirmed ongoing activity at Nishinoshima. Lava produced ocean-entry steam on the NE coast; a weak plume on the NW coast suggested reduced activity in that area (left). In addition, a dense steam plume drifted E from the summit, while a fainter plume adjacent to it also drifted E. The infrared image (right) indicated two intense anomalies at the summit, and weaker anomalies from lava flows on the NW and NE flanks. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 92. Lava flows at Nishinoshima entered the ocean on the N and NE coasts (left) on 7 June 2020, and dense, gray ash emissions rose to at least 1,500 m altitude. Courtesy of JCG.
Figure (see Caption) Figure 93. The lava flow on the WNW coast of Nishinoshima slowed significantly in early June 2020, while the flows to the N and E covered large areas of those flanks between 5 and 19 June. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows the differences between 22 May and 5 June and right image shows changes between 5 and 19 June. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 94. Ash emissions and explosive activity at Nishinoshima increased significantly during the second half of June. Dense black ash rose to 2.4 km altitude and drifted at least 180 km to the NE on 19 June 2020. Vigorous white steam plumes rose from the ocean on the E flank where a lava flow entered the ocean. Courtesy of JCG.

The Tokyo VAAC reported ash emissions that rose to 4.6 km altitude and drifted NE on 25 June. For the remainder of the month they rose to 2.7-3.9 km altitude and drifted N and NE. By the time of the JCG overflight on 29 June, the new crater that had opened on the SW flank had merged with the summit crater (figure 95). Dense black ash emissions rose to 3.4 km altitude and drifted NE, lava flowed down the SW flank into the ocean producing violent steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity (figure 96). Multiple layers of recent flow activity were visible along the SW coast (figure 97). Yellow-green discolored water encircled the entire island with a width of 1,000 m.

Figure (see Caption) Figure 95. The new crater on the SW flank of Nishinoshima had merged with the summit crater by 29 June 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 96. Dense black ash emissions rose to 3.4 km altitude and drifted NE from the summit of Nishinoshima on 29 June 2020. Lava flowed down the SW flank into the ocean producing steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity at the summit (inset). Courtesy of JCG.
Figure (see Caption) Figure 97. Different textures of lava flows were visible along the SW flank of Nishinoshima on 29 June 2020. The active flow appeared dark brown and blocky, and produced steam explosions at the ocean entry site (right). Slightly older, brownish-red lava (center) still produced steam along the coastline. Courtesy of JCG.

MODVOLC thermal alerts reached their highest levels of the period during June 2020 with multi-pixel alerts recorded on most days of the month. Sulfur dioxide emissions increased steadily throughout June to the highest levels recorded for Nishinoshima; by the end of the month plumes of SO2 were drifting thousands of kilometers across the Pacific Ocean and being captured in complex atmospheric circulation currents (figure 98).

Figure (see Caption) Figure 98. Sulfur dioxide emissions at Nishinoshima increased noticeably during the second half of June 2020 as measured by the TROPOMI instrument on the Sentinel-5P satellite. Atmospheric circulation currents produced long-lived plumes that drifted thousands of kilometers from the volcano. Nishinoshima is 1,000 km S of Tokyo. Courtesy of NASA Sulfur Dioxide Monitoring Page.

By early July 2020, satellite data indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank, creating fans extending into the ocean (figure 99). The Tokyo VAAC reported ash emissions that rose to 3.7-4.9 km altitude and drifted N during 1-6 July. The altitude increased to 6.1 km during 8 and 9 July, and ranged from 4.6-6.1 km during 10-14 July while the drift direction changed to NE. The marine meteorological observation ship "Ryofu Maru" reported on 11 July that dense black ash was continuously erupting from the summit crater and drifting W at 1,700 m altitude or higher. They observed large volcanic blocks scattered around the base of the pyroclastic cone, and ash falling from the drifting plume. During the night of 11 July incandescent lava and volcanic lightning rose to about 200 m above the crater rim (figure 100).

Figure (see Caption) Figure 99. By early July 2020, satellite data from Nishinoshima indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank creating fans extending into the ocean. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows differences between 5 and 19 June and the right image shows changes between 19 June and 3 July that included abundant ashfall on the NE flank. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 100. High levels of activity were observed at Nishinoshima by crew members aboard the marine meteorological observation ship "Ryofu Maru” on 11 July 2020. Abundant ash emissions filled the sky and tephra fell out of the ash cloud for several kilometers downwind (left, seen from 6 km NE). Incandescent explosions rose as much as 200 m into the night sky (right, seen from 4 km E). Courtesy of JMA.

During 16-26 July 2020 the Tokyo VAAC reported ash emissions at 3.7-5.2 km altitude that drifted primarily N and NE. The vessel "Keifu Maru" passed Nishinoshima on 20 July and crewmembers observed continuing emissions from the summit of dense, black ash. JCG observed an ash plume rising to at least 2.7 km altitude during their overflight of 20 July. A large dome of fresh lava was visible on the SW flank of the island (figure 101). Lower ash emissions from 2.4-3.7 km altitude were reported by the Tokyo VAAC during 27-29 July, but the altitude increased to 5.5-5.8 km during the last two days of the month. During an overflight on 30 July by the National Research Institute for Earth Science and Disaster Prevention, dark and light gray ash emissions rose to 3.0 km altitude, but no flowing lava or large bombs were observed. They also noted thick deposits of brownish-gray ash on the N side of the island (figure 102).

Figure (see Caption) Figure 101. JCG observed an ash plume at Nishinoshima rising to at least 2.7 km altitude during their overflight of 20 July 2020. A large dome of fresh lava was visible on the SW flank of the island. Courtesy of JCG.
Figure (see Caption) Figure 102. Ash emissions changed from dark to light gray on 30 July 2020 at Nishinoshima as seen during an overflight by the National Research Institute for Earth Science and Disaster Prevention. Thick brownish-gray ash was deposited over the lava on the N side of the island. Courtesy of JMA (Information on volcanic activity in Nishinoshima, July 2020).

JMA reported a sharp decrease in the lava eruption rate during July with thermal anomalies decreasing significantly mid-month. Multiple daily MODVOLC thermal alerts were recorded during the first half of the month but were reduced to two or three per day during the last third of July. Throughout July, SO2 emissions were the highest recorded in modern times for Nishinoshima. High levels of emissions were measured daily, producing streams with high concentrations of SO2 that were caught up in rotating wind currents and drifted thousands of kilometers across the Pacific Ocean (figure 103).

Figure (see Caption) Figure 103. Complex atmospheric wind patterns carried the largest SO2 plumes recorded from Nishinoshima thousands of kilometers around the western Pacific Ocean during July 2020. Nishinoshima is about 1,000 km S of Tokyo. Top and bottom left images both show 6 July but at different scales. Courtesy of NASA Sulfur Dioxide Monitoring Page.

Thermal activity was greatly reduced during August 2020. Only one or two MODVOLC alerts were issued on 11, 18, 20, 21, 29, and 30 August, and no fresh lava flows were observed. The Tokyo VAAC reported ash emissions daily from 1-20 August. Plume heights were 4.9-5.8 km altitude during 1-4 August after which they dropped to 3.9 km altitude through 15 August. A brief pulse to 4.6 km altitude was recorded on 16 August, but then they dropped to 3.0 km or lower through the end of the month and became intermittent. The last ash emission was reported at 2.7 km altitude drifting W on 27 August.

No eruptive activity was observed during the Japan Coast Guard overflights on 19 and 23 August. High temperatures were measured on the inner wall of the summit crater on 19 August (figure 104). Steam plumes rose from the summit crater to about 2.5 km altitude during both visits (figure 105). Yellow-green discolored water was present on 23 August around the NW and SW coasts. No lava flows were observed, and infrared cameras did not measure any surface thermal anomalies outside of the crater. Very high levels of SO2 emissions were measured through 12 August when they began to noticeably decrease (figure 106). By the end of the month, only small amounts of SO2 were measured in satellite data.

Figure (see Caption) Figure 104. A strong thermal anomaly was still present inside the newly enlarged summit crater at Nishinoshima on 19 August 2020. Courtesy of JCG.
Figure (see Caption) Figure 105. Only steam plumes were observed rising from the summit crater of Nishinoshima during the 23 August 2020 overflight by the Japan Coast Guard. Courtesy of JCG.
Figure (see Caption) Figure 106. Sulfur dioxide emissions remained very high at Nishinoshima until 12 August 2020 when they declined sharply. Circulating air currents carried SO2 thousands of kilometers around the western Pacific region. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG), Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan (URL: http://www.eorc.jaxa.jp/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Turrialba (Costa Rica) — September 2020 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


New eruptive period on 18 June 2020 consisted of ash eruptions

Turrialba is a stratovolcano located in Costa Rica that overlooks the city of Cartago. Three well-defined craters occur at the upper SW end of a broad 800 x 2,200 m summit depression that is breached to the NE. Activity described in the previous report primarily included weak ash explosions and minor ash emissions (BGVN 44:11). This reporting period updates information from November 2019-August 2020; volcanism dominantly consists of ash emissions during June-August, based on information from daily and weekly reports by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) and satellite data.

Volcanism during November 2019 through mid-June was relatively low, dominated by low SO2 emissions (100-300 tons/day) and typical low seismic tremors. A single explosion was recorded at 1850 on 7 December 2019, and two gas-and-steam plumes rose 800 m and 300 m above the crater on 25 and 27 December, respectively. An explosion was detected on 29 January 2020 but did not result in any ejecta. An overflight during the week of 10 February measured the depth of the crater (140 m); since the previous measurements made in February 2019 (220 m), the crater has filled with 80 m of debris due to frequent collapses of the NW and SE internal crater walls. Beginning around February and into at least early May 2020 the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system detected a small cluster of thermal anomalies (figure 52). Some of these anomalies were faintly registered in Sentinel-2 thermal satellite imagery during 10 and 25 April, with a more distinct anomaly occurring on 15 May (figure 53).

Figure (see Caption) Figure 52. A small cluster of thermal anomalies were detected in the summit area of Turrialba (red dots) during February-May 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.
Figure (see Caption) Figure 53. Sentinel-2 thermal satellite imagery detected minor gas-and-steam emissions (left) and a weak thermal anomaly (right) in the summit crater at Turrialba on 11 January and 15 May 2020, respectively. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

On 18 June activity increased, which marked the start of a new eruptive period that produced ash emissions rising 100 m above the crater rim at 1714, 1723, and 1818. The next morning, 19 June, two more events at 1023 and 1039 resulted in ash emissions rising 100 m above the crater. During 23-26 June small ash emissions continued to occur each day, rising no higher than 100 m above the crater. A series of small ash eruptions that rose 100 m above the crater occurred during 28 and 29 June; four events were recorded at 0821, 1348, 1739, and 2303 on 28 June and five more were recorded at 0107, 0232, 0306, 0412, and 0818 on 29 June. The two events at 0107 and 0412 were accompanied by ballistics ejected onto the N wall of the crater, according to OVSICORI-UNA.

Almost daily ash emissions continued during 1-7 July, rising less than 100 m above the crater; no ash emissions were observed on 3 July. On 6 July, gas-and-steam and ash emissions rose hundreds of meters above the crater at 0900, resulting in local ashfall. Passive gas-and-steam emissions with minor amounts of ash were occasionally visible during 9-10 July. On 14 July an eruptive pulse was observed, generating brief incandescence at 2328, which was likely associated with a small ash emission. Dilute ash emissions at 1028 on 16 July preceded an eruption at 1209 that resulted in an ash plume rising 200 m above the crater. Ash emissions of variable densities continued through 20 July rising as high as 200 m above the crater; on 20 July incandescence was observed on the W wall of the crater. An eruptive event at 0946 on 29 July produced an ash plume that rose 200-300 m above the crater rim. During 30-31 July a series of at least ten ash eruptions were detected, rising no higher than 200 m above the crater, each lasting less than ten minutes. Some incandescence was visible on the SW wall of the crater during this time.

On 1 August at 0746 an ash plume rose 500 m above the crater. During 4-5 August a total of 19 minor ash emissions occurred, accompanied by ash plumes that rose no higher than 200 m above the crater. OVSICORI-UNA reported on 21 August that the SW wall of the crater had fractured; some incandescence in the fracture zone had been observed the previous month. Two final eruptions were detected on 22 and 24 August at 1253 and 2023, respectively. The eruption on 24 August resulted in an ash plume that rose to a maximum height of 1 km above the crater.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — September 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Etna, located on the island of Sicily, Italy, is a stratovolcano that has had historical eruptions dating back 3,500 years. Its most recent eruptive period began in September 2013 and has continued through July 2020, characterized by Strombolian explosions, lava flows, and ash plumes. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. Volcanism during this reporting period from April through July 2020 includes frequent Strombolian explosions primarily in the Voragine and NSEC craters, ash emissions, some lava effusions, and gas-and-steam emissions. Information primarily comes from weekly reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during April-July 2020. Degassing of variable intensity is typical activity from all summit vents at Etna during the reporting period. Intra-crater Strombolian explosions and ash emissions that rose to a maximum altitude of 5 km on 19 April primarily originated from the Voragine (VOR) and New Southeast Crater (NSEC) craters. At night, summit crater incandescence was occasionally visible in conjunction with explosions and degassing. During 18-19 April small lava flows were observed in the VOR and NSEC craters that descended toward the BN from the VOR Crater and the upper E and S flanks of the NSEC. On 19 April a significant eruptive event began with Strombolian explosions that gradually evolved into lava fountaining activity, ejecting hot material and spatter from the NSEC. Ash plumes that were produced during this event resulted in ashfall to the E of Etna. The flows had stopped by the end of April; activity during May consisted of Strombolian explosions in both the VOR and NSEC craters and intermittent ash plumes rising 4.5 km altitude. On 22 May Strombolian explosions in the NSEC produced multiple ash plumes, which resulted in ashfall to the S. INGV reported that the pit crater at the bottom of BN had widened and was accompanied by degassing. Explosions with intermittent ash emissions continued during June and July and were primarily focused in the VOR and NSEC craters; mild Strombolian activity in the SEC was reported in mid-July.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity throughout the reporting period (figure 296). In early April, the frequency and power of the thermal anomalies began to decrease through mid-June; in July, they had increased in power again but remained less frequent compared to activity in January through March. According to the MODVOLC thermal algorithm, a total of seven alerts were detected in the summit craters during 10 April (1), 17 April (1), 24 April (2), 10 July (1), 13 July (1), and 29 July (1) 2020. These thermal hotspots were typically registered during or after a Strombolian event. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in different directions (figure 297).

Figure (see Caption) Figure 296. Multiple episodes of varying thermal activity at Etna from 14 October 2019 through July 2020 were reflected in the MIROVA data (Log Radiative Power). In early April, the frequency and power of the thermal anomalies decreased through mid-June. In July, the thermal anomalies increased in power, but did not increase in frequency. Courtesy of MIROVA.
Figure (see Caption) Figure 297. Distinct SO2 plumes from Etna were detected on multiple days during April to July 2020 due to frequent Strombolian explosions, including, 24 April (top left), 9 May (top right), 25 June (bottom left), and 21 July (bottom right) 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during April-May 2020. During April, INGV reported Strombolian explosions that produced some ash emissions and intra-crater effusive activity within the Voragine Crater (VOR) and abundant degassing from the New Southeast Crater (NSEC), Northeast Crater (NEC), and from two vents on the cono della sella (saddle cone) that were sometimes accompanied by a modest amount of ash (figure 298). At night, summit crater incandescence was observed in the cono della salla. The Strombolian activity in the VOR built intra-crater scoria cones while lava flows traveled down the S flank of the largest, main cone. On 18 April effusive activity from the main cone in the VOR Crater traveled 30 m toward the Bocca Nuova (BN) Crater; the pit crater at the bottom of the BN crater had widened compared to previous observations. A brief episode of Strombolian explosions that started around 0830 on 19 April in the NSEC gradually evolved into modest lava fountaining activity by 0915, rising to 3 km altitude and ejecting bombs up to 100 m (figure 299). A large spatter deposit was found 50 m from the vent and 3-4 small lava flows were descending the NSEC crater rim; two of these summit lava flows were observed at 1006, confined to the upper E and S flanks of the cone. Around 1030, one or two vents in the cono della sella produced a gas-and-steam and ash plume that rose 5 km altitude and drifted E, resulting in ashfall on the E flank of Etna in the Valle del Bove, as well as between the towns of Zafferana Etnea (10 km SE) and Linguaglossa (17 km NE). At night, flashes of incandescence were visible at the summit. By 1155, the lava fountaining had gradually slowed, stopping completely around 1300. The NEC continued to produce gas-and-steam emissions with some intra-crater explosive activity. During the week of 20-26 April, Strombolian activity in the VOR intra-crater scoria cone ejected pyroclastic material several hundred meters above the crater rim while the lava flows had significantly decreased, though continued to travel on the E flank of the main cone. Weak, intra-crater Strombolian activity with occasional ash emissions and nightly summit incandescence were observed in the NSEC (figure 300). By 30 April there were no longer any active lava flows; the entire flow field had begun cooling. The mass of the SO2 emissions varied in April from 5,000-15,000 tons per day.

Figure (see Caption) Figure 298. Photos of Strombolian explosions at Etna in the Voragine Crater (top left), strong degassing at the Northeast Crater (NEC) (top right), and incandescent flashes and Strombolian activity in the New Southeast Crater (NSEC) seen from Tremestieri Etneo (bottom row) on 10 April 2020. Photos by Francesco Ciancitto (top row) and Boris Behncke (bottom row), courtesy of INGV.
Figure (see Caption) Figure 299. Strombolian activity at Etna’s “cono della sella” of the NSEC crater on 19 April 2020 included (a-b) lava fountaining that rose 3 km altitude, ejecting bomb-sized material and a spatter deposit captured by the Montagnola (EMOV) thermal camera. (c-d) An eruptive column and increased white gas-and-steam and ash emissions were captured by the Montagnola (EMOV) visible camera and (e-f) were also seen from Tremestieri Etneo captured by Boris Behncke. Courtesy of INGV (Report 17/2020, ETNA, Bollettino Settimanale, 13/04/2020 – 19/04/2020, data emissione 21/04/2020).
Figure (see Caption) Figure 300. Webcam images showing intra-crater explosive activity at Etna in the Voragine (VOR) and New Southeast Crater (NSEC) on 24 April 2020 captured by the (a-b) Montagnola and (c) Monte Cagliato cameras. At night, summit incandescence was visible and accompanied by strong degassing. Courtesy of INGV (Report 18/2020, ETNA, Bollettino Settimanale, 20/04/2020 – 26/04/2020, data emissione 28/04/2020).

Strombolian explosions produced periodic ash emissions and ejected mild, discontinuous incandescent material in the VOR Crater; the coarse material was deposited onto the S flank of BN (figure 301). Pulsating degassing continued from the summit craters, some of which were accompanied by incandescent flashes at night. The Strombolian activity in the cono della sella occasionally produced reddish ash during 3-4 May. During 5 and 8 May, there was an increase in ash emissions at the NSEC that drifted SSE. A strong explosive event in the VOR Crater located E of the main cone produced a significant amount of ash and ejected coarse material, which included blocks and bombs measuring 15-20 cm, that fell on the W edge of the crater, as well as on the S terrace of the BN Crater (figure 302).

Figure (see Caption) Figure 301. Photos of Strombolian explosions and summit incandescence at Etna on 4 May (left) and during the night of 11-12 May. Photos by Gianni Pennisi (left) and Boris Behncke (right, seen from Tremestieri Etneo). Courtesy of INGV.
Figure (see Caption) Figure 302. A photo on 5 May (left) and thermal image on 8 May (right) of Strombolian explosions at Etna in the Voragine Crater accompanied by a dense, gray ash plume. Photo by Daniele Andronico. Courtesy of INGV (Report 20/2020, ETNA, Bollettino Settimanale, 04/05/2020 – 10/05/2020, data emissione 12/05/2020).

On 10 May degassing continued in the NSEC while Strombolian activity fluctuated in both the VOR and NSEC Craters, ejecting ballistics beyond the crater rim; in the latter, some of the blocks fell back in, accumulated on the edge, and rolled down the slopes (figure 303). During the week of 11-17 May, eruptive activity at the VOR Crater was the lowest observed since early March; there were 4-5 weak, low intensity pulses not accompanied by bombs or ashfall in the VOR Crater. Degassing continued in the BN Crater. The crater of the cono della sella had widened further N following collapses due to the Strombolian activity, which exposed the internal wall.

Figure (see Caption) Figure 303. Map of the summit craters of Etna showing the active vents, the area of cooled lava flows (light green), and the location of the widening pit crater in the Bocca Nuova (BN) Crater (light blue circle) updated on 9 May 2020. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).

On 18 May an ash plume from the NSEC rose 4.5 km altitude and drifted NE. Strombolian explosions on 22 May at the NSEC produced multiple ash plumes that rose 4.5 km altitude and drifted S and SW (figure 304), depositing a thin layer of ash on the S slope, and resulting in ashfall in Catania (27 km S). Explosions from the VOR Crater had ejected a deposit of large clasts (greater than 30 cm) on the NE flank, between the VOR Crater and NEC on 23 May. INGV reported that the pit crater in the BN continued to widen and degassing was observed in the NSEC, VOR Crater, and NEC. During the week of 25-31 May persistent visible flashes of incandescence at night were observed, which suggested there was intra-crater Strombolian activity in the SEC and NSEC. The mass of the SO2 plumes varied between 5,000-9,000 tons per day.

Figure (see Caption) Figure 304. Photo of repeated Strombolian activity and ash emissions rising from Etna above the New Southeast Crater (NSEC) on 22 May 2020 seen from Zafferana Etnea on the SE flank at 0955 local time. Photo by Boris Behncke, INGV.

Activity during June-July 2020. During June, moderate intra-crater Strombolian activity with intermittent ash emissions continued in the NSEC and occurred more sporadically in the VOR Crater; at night, incandescence of variable intensity was observed at the summit. During the week of 8-14 June, Strombolian explosions in the cono della sella generated some incandescence and rare jets of incandescent material above the crater rim, though no ash emissions were reported. On the morning of 14 June a sequence of ten small explosions in the VOR Crater ejected incandescent material just above the crater rim and produced small ash emissions. On 25 June an overflight showed the developing pit crater in the center of the BN, accompanied by degassing along the S edge of the wall; degassing continued from the NEC, VOR Crater, SEC, and NSEC (figure 305). The mass of the SO2 plumes measured 5,000-7,000 tons per day, according to INGV.

Figure (see Caption) Figure 305. Aerial photo of Etna from the NE during an overflight on 25 June 2020 by the Catania Coast Guard (2 Nucleo Aereo della Guardia Costiera di Catania) showing degassing of the summit craters. Photo captured from the Aw139 helicopter by Stefano Branca. Courtesy of INGV (Report 27/2020, ETNA, Bollettino Settimanale, 22/06/2020 – 28/06/2020, data emissione 30/06/2020).

Similar modest, intra-crater Strombolian explosions in the NSEC, sporadic explosions in the VOR Crater, and degassing in the BN, VOR Crater, and NEC persisted into July. On 2 July degassing in the NEC was accompanied by weak intra-crater Strombolian activity. Intermittent weak ash emissions and ejecta from the NSEC and VOR Crater were observed during the month. During the week of 6-12 July INGV reported gas-and-steam emissions continued to rise from the vent in the pit crater at the bottom of BN (figure 306). On 11 July mild Strombolian activity, nighttime incandescence, and degassing was visible in the SEC (figure 307). By 15 July there was a modest increase in activity in the NSEC and VOR Craters, generating ash emissions and ejecting material over the crater rims while the other summit craters were dominantly characterized by degassing. On 31 July an explosion in the NSEC produced an ash plume that rose 4.5 km altitude.

Figure (see Caption) Figure 306. Photos of the bottom of the Bocca Nuova (BN) crater at Etna on 8 July 2020 showing the developing pit crater (left) and degassing. Minor ash emissions were visible in the background at the Voragine Crater (right). Both photos by Daniele Andronico. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).
Figure (see Caption) Figure 307. Mild Strombolian activity and summit incandescence in the “cono della sella” (saddle vent) at the Southeast crater (SEC) of Etna on 11 July 2020, seen from Piano del Vescovo (left) and Piano Vetore (right). Photo by Boris Behncke, INGV.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy.


Ol Doinyo Lengai (Tanzania) — September 2020 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Multiple lava flows within the summit crater; September 2019-August 2020

Ol Doinyo Lengai, located near the southern end of the East African Rift in Tanzania, is a stratovolcano known for its unique low-temperature carbonatitic lava. Frequent eruptions have been recorded since the late 19th century. Activity primarily occurs in the crater offset to the N about 100 m below the summit where hornitos (small cones) and pit craters produce lava flows and spattering. Lava began overflowing various flanks of the crater in 1993. The eruption transitioned to significant explosive activity in September 2007, which formed a new pyroclastic cone inside the crater. Repeated ash emissions reached altitudes greater than 10 km during March 2008. By mid-April 2008 explosive activity had decreased. In September new hornitos with small lava flows formed on the crater floor. The most recent eruptive period began in April 2017 and has been characterized by spattering confined to the crater, effusive activity in the summit crater, and multiple lava flows (BGVN 44:09). Effusive activity continued in the summit crater during this reporting period from September 2019 through August 2020, based on data and images from satellite information.

Throughout September 2019 to August 2020, evidence for repeated small lava flows was recorded in thermal data and satellite imagery. A total of seven low-level pulses of thermal activity were detected within 5 km from the summit in MIROVA data during September 2019 (1), February (2), March (2), and August (2) 2020 (figure 207). Sentinel-2 satellite imagery also provided evidence of multiple lava flows within the summit crater throughout the reporting period. On clear weather days, intermittent thermal anomalies were observed in thermal satellite imagery within the summit crater; new lava flows were detected due to the change in shape, volume, and location of the hotspot (figure 208). During a majority of the reporting period, the thermal anomaly dominantly appeared in the center of the crater, though occasionally it would also migrate to the SE wall, as seen on 3 February, the E wall on 12 July, or the NE wall on 31 August. In Natural Color rendering, fresh lava flows appear black within the crater that quickly cools to a white-brown color. These satellite images showed the migration of new lava flows between February, March, and June (figure 209). The flow on 8 February occurs in the center and along the W wall of the crater; the flow on 9 March is slightly thinner and is observed in the center and along the E wall of the crater; finally, the flow on 17 June is located in the center and along the N wall of the crater.

Figure (see Caption) Figure 207. Seven low-level pulses of thermal activity within 5 km of the summit of Ol Doinyo Lengai were recorded in the MIROVA thermal data between September 2019 to August 2020; one in early September 2019, two in February, two in March, and two in August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 208. Sentinel-2 thermal satellite images of Ol Doinyo Lengai from November 2019 to August 2020 show intermittent thermal anomalies (bright yellow-orange) within the summit crater. The location of these anomalies occasionally changes, indicating new lava flows. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 209. Sentinel-2 satellite images of new lava flows within the summit crater at Ol Doinyo Lengai during 8 February (left), 9 March (middle), and 17 June (right) 2020. Lava flows appear black in the center of the crater that changes in volume and location from February to June. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

During August, multiple lava flows were detected in Sentinel-2 satellite imagery. On relatively clear days, lava flows were visible in the middle of the summit crater, occasionally branching out to one side of the crater (figure 210). On 6 August, a thin lava flow branched to the E flank, which became thicker by 11 August. On 16 and 21 August, the lava remained mostly in the center of the crater. A large pulse of fresh lava occurred on 31 August, extending to the NW and SE sides of the crater.

Figure (see Caption) Figure 210. Sentinel-2 images of multiple new lava flows at Ol Doinyo Lengai during August 2020. When visible in the first half of August, dark lava is concentrated in the center and E side of the crater; by the end of August the lava flows had reached the NW side of the crater. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Yasur (Vanuatu) — September 2020 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Ash and gas explosions continue through August 2020

Recent activity at Yasur, which has been erupting since July 1774, includes frequent Strombolian explosions, along with ash and gas plumes from several vents in the summit crater (BGVN 44:02, 45:03). This report summarizes activity during March through August 2020, using information from monthly bulletins of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and various satellite data. The volcano has remained on Alert Level 2 (major unrest state, on a scale of 0-5), where it has been since 18 October 2016, according to VMGD.

During the current reporting period, VMGD reported that explosive activity continued at an elevated level, with ongoing ash and gas emissions (figure 71). Some of the more intense explosions ejected bombs outside the summit crater. During 2-3, 13, and 17 March, 2-3 April, and 19 July, the Wellington Volcanic Ash Advisory Center (VAAC) identified low-level ash plumes that reached an altitude of 1.5 km and drifted in multiple directions; the ash plume during 2-3 April resulted in ashfall on the SSW part of the island. On 19 May an ash plume rose to a maximum altitude of 2.1 km and drifted SE.

Figure (see Caption) Figure 71. Webcam photos of ash emissions from Yasur on 18 March (left)and gas-and-steam emissions on 2 April (right) 2020. Courtesy of VMGD.

During the reporting period, the MODVOLC thermal algorithm using MODIS satellite data detected a total of 55 thermal hotspots during three days in April, nine days in May, six days in June and August, and four days in July. A maximum of four pixels were recorded on a single day during 26 May, 6 June, and 20 July. The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected numerous hotspots from 16 September 2019 through August 2020, with a slight increase in power and frequency during May (figure 72). Satellite images from Sentinel-2 detected a strong thermal anomaly within the summit crater on 10 May, accompanied by ash and gas emissions (figure 73).

Figure (see Caption) Figure 72. Persistent low to moderate thermal activity at Yasur occurred from the summit area from 16 September 2019 through August 2020, as shown in this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 73. Sentinel-2 images of Yasur on 10 May 2020 showing a strong thermal anomaly from the summit crater (left) and a gas emission that appears to contain some ash (right). The thermal anomaly in the S vent area was stronger than in the N vent, an observation also noted in March and April 2019 (BGVN 44:06). The volcano was usually obscured by clouds during March through August. The left image is in false color (bands 12, 11, 4) rendering, the right image is in natural color (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

High-resolution satellite sensors commonly recorded moderate sulfur dioxide levels drifting in multiple directions from the volcano. High sulfur dioxide levels were also occasionally observed, especially during March (figure 74).

Figure (see Caption) Figure 74. High-density SO2 emissions streaming from Yasur during 8 (left) and 13 (middle) March and 21 April (right) 2020, were observed using the TROPOMI imaging spectrometer on the Sentinel-5P satellite. The plume drifted W on 8 March and E on both 13 March and 21 April. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://vaac.metservice.com/index.html); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Villarrica (Chile) — September 2020 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Continued summit incandescence February-August 2020 with larger explosions in July and August

Historical eruptions at Chile's Villarrica, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. An intermittently active lava lake at the summit has been the source of Strombolian activity, incandescent ejecta, and thermal anomalies for several decades; the current eruption has been ongoing since December 2014. Continuing activity during February-August 2020 is covered in this report, with information provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a private research group that studies volcanoes across Chile. Sentinel satellite imagery also provided valuable data.

Intermittent incandescence was observed at the summit throughout February-August 2020, which was reflected in the MIROVA thermal anomaly data for the period (figure 92). Continuous steam and gas emissions with occasional ash plumes rose 100-520 m above the summit. Every clear satellite image of Villarrica from February -August 2020 showed either a strong thermal anomaly within the summit crater or a dense cloud within the crater that prevented the heat signal from being measured. Sentinel-2 captured on average twelve images of Villarrica each month (figure 93). Larger explosions on 25 July and 7 August produced ejecta and ash emissions.

Figure (see Caption) Figure 92. Thermal anomaly data for Villarrica from 13 October 2019 through August 2020 showed intermittent periods of activity. Incandescence was intermittently reported from the summit and satellite imagery showed a persistent hot spot inside the summit crater throughout the period. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Examples of strong thermal anomalies inside the summit crater of Villarrica each month from March-August 2020 are shown with dates on the image. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, 8A) showed thermal anomalies at the summit in all clear satellite images during the period. Courtesy of Sentinel Hub Playground.

Primarily white gas emissions rose up to 400 m above the summit during the first half of February 2020 and to 320 m during the second half. Incandescence was observed on clear nights. Incandescent ejecta was captured in the POVI webcam on 7 February (figure 94). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 5, 8, 10, 13, 18, 20, 23, 25, and 28 February, nine of the eleven days that images were taken; the other days were cloudy.

Figure (see Caption) Figure 94. Incandescent ejecta at the summit of Villarrica was captured in the POVI webcam late on 7 February 2020. Time sequence runs from top to bottom, then left to right. Courtesy of POVI.

Villarrica remained at Alert Level Yellow (on a four-level Green-Yellow-Orange-Red scale) in March 2020. Plumes of gas rose 350 m above the crater during the first half of March. The POVI webcam captured incandescent ejecta on 1 March (figure 95). SERNAGEOMIN reported continuous white emissions and incandescence at night when the weather permitted. During the second half of March emissions rose 300 m above the crater; they were mostly white but occasionally gray and drifted N, S, and SE. Nighttime incandescence could be observed from communities that were tens of kilometers away on multiple occasions (figure 96). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 1, 3, 4, 6, 9, 11, 14, 16, 19, 26, 29, and 31 March, twelve of the fourteen days images were taken. The other days were cloudy.

Figure (see Caption) Figure 95. Incandescent ejecta rose from the summit of Villarrica in the early morning of 1 March 2020. Courtesy of POVI.
Figure (see Caption) Figure 96. Nighttime incandescence was observed on 24 March 2020 tens of kilometers away from Villarrica. Courtesy of Luis Orlando.

During the first half of April 2020 plumes of gas rose 300 m above the crater, mostly as continuous degassing of steam. Incandescence continued to be seen on clear nights throughout the month. Steam plumes rose 150 m high during the second half of the month. A series of Strombolian explosions on 28-29 April ejected material up to 30 m above the crater rim (figure 97). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 3, 8, 10, 13, 20, and 30 April, six of the twelve days images were taken; other days were cloudy.

Figure (see Caption) Figure 97. A series of Strombolian explosions on 28-29 April 2020 at Villarrica ejected material up to 30 m above the crater rim. Courtesy of POVI.

Daily plumes of steam rose 160 m above the summit crater during the first half of May 2020; incandescence was visible on clear nights throughout the month. During 5-7 May webcams captured episodes of dark gray emissions with minor ash that, according to SERNAGEOMIN, was related to collapses of the interior crater walls. Plumes rose as high as 360 m above the crater during the second half of May. The continuous degassing was gray and white with periodic ash emissions. Pyroclastic deposits were noted in a radius of 50 m around the crater rim associated with minor explosive activity from the lava lake. The POVI infrared camera captured a strong thermal signal rising from the summit on 29 May (figure 98), although no visual incandescence was reported. Residents of Coñaripe (17 km SSW) could see steam plumes at the snow-covered summit on 31 May (figure 99). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 5, 13, 20, 23, 25 and 30 May, six of the twelve days images were taken. The other days were cloudy.

Figure (see Caption) Figure 98. The POVI infrared camera captured a strong thermal signal rising from the summit of Villarrica on 29 May 2020; no visual incandescence was noted. Courtesy of POVI.
Figure (see Caption) Figure 99. Residents of Coñaripe (17 km SSW) could see steam plumes at the snow-covered summit of Villarrica on 31 May 2020. Courtesy of Laura Angarita.

For most of the first half of June, white steam emissions rose as high as 480 m above the crater rim. A few times, emissions were gray, attributed to ash emissions from collapses of the inner wall of the crater by SERNAGEOMIN. Incandescence was visible on clear nights throughout the month. Vertical inflation of 1.5 cm was noted during the first half of June. Skies were cloudy for much of the second half of June; webcams only captured images of the summit on 21 and 27 June with 100-m-high steam plumes. Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 4, 7, and 14 June, three of the twelve days images were taken. The other days were cloudy.

Atmospheric clouds prevented most observations of the summit during the first half of July (figure 100); during brief periods it was possible to detect incandescence and emissions rising to 320 m above the crater. Continuous degassing was observed during the second half of July; the highest plume rose to 360 m above the crater on 23 July. On 25 July, monitoring stations in the vicinity of Villarrica registered a large-period (LP) seismic event associated with a moderate explosion at the crater. It was accompanied by a 14.7 Pa infrasound signal measured 1 km away. Meteorological conditions did not permit views of any surface activity that day, but a clear view of the summit on 28 July showed dark tephra on the snow around the summit crater (figure 101). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 2 and 29 July, two of the twelve days images were taken. The other days were either cloudy or had steam obscuring the summit crater.

Figure (see Caption) Figure 100. Although a multi-layer cap cloud formed over the summit of Villarrica on 15 July 2020, steam emissions could be seen close to the summit drifting down the slope. Cap clouds form when a stable airstream rises to pass over a peak and cools, condensing moisture into clouds. Photograph by Sebastián Campos, courtesy of Geography Fans.
Figure (see Caption) Figure 101. Dark tephra appeared near the summit of Villarrica on 28 July 2020; an explosion had been measured seismically on 25 July but clouds obscured visual observations. Image taken from Coñaripe, courtesy of Laura Angarita.

An explosion on 7 August at 1522 local time (1922 UTC) produced an LP seismic signal and a 10 Pa infrasound signal. Webcams were able to capture an image of the explosion which produced a dense plume of steam and ash that rose 370 m above the summit and drifted SE (figure 102). The highest plumes in the first half of August reached 520 m above the summit on 7 August. Sporadic emissions near the summit level were reported by the Buenos Aires VAAC the following day but were not observed in satellite imagery. When weather permitted during the second half of the month, continuous degassing to 200 m above the crater was visible on the webcams. SERNAGEOMIN participated in a webinar on 20 August 2020 discussing safety at Villarrica and showed an image of the summit crater taken during an overflight on 19 August (figure 103). Sentinel-2 satellite imagery showed bright thermal anomalies at the summit on 6, 21, and 31 August, three of the thirteen days images were taken. The other days were cloudy.

Figure (see Caption) Figure 102. An explosion at Villarrica on 7 August 2020 at 1522 local time (1922 UTC) produced an LP seismic signal and 10 Pa infrasound signal. Webcams were able to capture an image of the explosion which produced a dense plume of steam and ash that rose 370 m above the summit and drifted SE Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, volcan Villarrica, 7 de Agosto de 2020, 16:15 Hora local).
Figure (see Caption) Figure 103. SERNAGEOMIN participated in a webinar on 20 August 2020 discussing safety at Villarrica and showed an image of the summit crater taken during an overflight on 19 August. Courtesy of Turismo Integral.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Proyecto Observación Villarrica Internet (POVI), (URL: http://www.povi.cl/, https://twitter.com/povi_cl/status/1237541250825248768); Luis Orlando (URL: https://twitter.com/valepizzas/status/1242657625495539712); Laura Angarita (URL: https://twitter.com/AngaritaV/status/1267275374947377152, https://twitter.com/AngaritaV/status/1288086614422573057); Geography Fans (URL: https://twitter.com/Geografia_Afic/status/1284520850499092480); Turismo Integral (URL: https://turismointegral.net/expertos-entregan-recomendaciones-por-actividad-registrada-en-volcan-villarrica/).


Stromboli (Italy) — September 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit craters during May-August 2020

Stromboli, located in northeastern-most part of the Aeolian Islands, is composed of two active summit vents: the Northern (N) Crater and the Central-South (CS) Crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano. The current eruption period began in 1934, continuing to the present with volcanism characterized by consistent Strombolian explosions in both summit craters, ash plumes, pyroclastic flows, and occasional lava flows (BGVN 45:08). This report updates activity consisting of dominantly Strombolian explosions and ash plumes from May to August 2020 with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Activity was consistent during this reporting period. Explosion rates ranged from 1-23 events per hour and were of variable intensity, producing material that typically rose from less than 80 to over 300 m above the crater. One ash plume on 19 July rose 1 km above the crater and high energy ballistics were ejected 500 m above the crater during the week of 20-26 July (table 9). Strombolian explosions were often accompanied by gas-and-steam emissions and spattering that has occasionally resulted in material deposited on the slopes of the Sciara del Fuoco. According to INGV, the average SO2 emissions measured 250-300 tons/day.

Table 9. Summary of activity at Stromboli during May-August 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
May 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 1-17 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. The average SO2 emissions measured 300 tons/day.
Jun 2020 Strombolian activity and degassing continued with spattering. Explosion rates varied from 2-14 per hour. Ejected material rose 80-200 m above the N crater and 150 m above the CS crater. Spattering was primarily focused in the CS crater. The average SO2 emissions measured 300 tons/day.
Jul 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 1-12 per hour. Ejected material rose 80-1,000 m above the N crater. Spattering was primarily focused in the CS crater. The average SO2 emissions measured 300 tons/day.
Aug 2020 Strombolian activity continued with discontinuous spattering. Explosion rates varied from 1-23 per hour. Ejected material rose at least 200 m above the N crater and at least 250 m above the CS crater.

Explosive activity was relatively consistent during May 2020 and was mainly produced in 3-4 eruptive vents in the N crater and at least two eruptive vents in the CS crater. As a result of some explosions fallout covered the slopes of the Sciara del Fuoco. Explosion rates varied from 1-17 per hour in the N crater and 1-8 per hour in the CS crater; ejected material rose 80-250 m above the craters.

During June, explosions originated from 2-3 eruptive vents in the N crater and at least 2-3 localized vents in the CS crater. The Strombolian explosions ejected material 80-200 m above the craters, some of which fell back onto the Sciara (figure 182). Explosion rates varied from 5-14 per hour in the N crater and 2-9 per hour in the CS crater. Spattering was typically observed in the CS crater.

Figure (see Caption) Figure 182. An explosion at Stromboli produced gas-and-steam and ash emissions on 18 June 2020 was observed in the CS crater in the Sciara del Fuoco. Courtesy of INGV (Rep. No. 26/2020, Stromboli, Bollettino Settimanale, 15/06/2020 - 21/06/2020, data emissione 23/06/2020).

Ongoing explosive activity continued into July, originating from 2-3 eruptive vents in the N crater and 3-4 eruptive vents in the CS crater. Explosions varied from 3-12 per hour in the N crater and 1-11 per hour in the CS crater; ejected lapilli and bombs rose 80-1,000 m above the craters (figure 183). On 19 July a high-energy explosion between 0500 and 0504 produced an ash plume containing ejecta more than 50 cm that rose to a maximum of 1 km above the crater, with fallout reaching the Pizzo sopra la Fossa and resulting in ashfall on the Sciara and the towns of Liscione and Roccette. During the week of 20-26 July explosions in the E portion of the volcano ejected ballistics 500 m above the crater; the size and shape of these varied between slag bombs to clasts greater than 50 cm.

Figure (see Caption) Figure 183. Webcam (left column) and thermal (right column) images of explosive activity at Stromboli on 29 July (top row) and 2 August (bottom row) 2020 originated from the N and CS craters, producing spatter and ash plumes. Courtesy of INGV (Rep. No. 32/2020, Stromboli, Bollettino Settimanale, 27/07/2020 - 02/08/2020, data emissione 04/08/2020).

Strombolian activity accompanied by discontinuous spattering continued during August. Total daily explosions varied from 3-23 per hour ejecting material that up to 200-250 m above the craters. During the first half of the month the explosions were low-intensity and consisted of fine material. On 13 August the intensity of the explosions increased, producing an ash plume that rose 300 m above the crater drifting SE and resulting in a significant amount of ashfall on the Sciara. During the week of 17-23, explosions in the N1 crater ejected material 200 m above the crater while explosions in the CS crater ejected material 250 m above the crater, predominantly during 22 August in the S2 crater (figure 184).

Figure (see Caption) Figure 184. Images of gas-and-steam and ash plumes rising from the N2 (left), S2 (middle), and CS craters (right) at Stromboli on 22 August 2020. Courtesy of INGV (Rep. No. 35/2020, Stromboli, Bollettino Settimanale, 17/08/2020 - 23/08/2020, data emissione 25/08/2020).

Moderate thermal activity was relatively consistent from October 2019 through mid-April 2020; during May-August thermal activity became less frequent and anomalies were lower in power based on the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 185). Though there were no detected MODVOLC thermal alerts during this reporting period, many thermal hotspots were observed in Sentinel-2 thermal satellite imagery in both summit craters (figure 186).

Figure (see Caption) Figure 185. Low to moderate thermal activity at Stromboli occurred frequently from 16 September to mid-April 2020 as shown in the MIROVA graph (Log Radiative Power). During May-August thermal activity decreased and was less frequent compared to the previous months. Courtesy of MIROVA.
Figure (see Caption) Figure 186. Weak thermal anomalies (bright yellow-orange) at Stromboli were observed in thermal satellite imagery from both of the summit vents throughout May-August 2020. Images with atmospheric penetration (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 10 (October 1995)

Managing Editor: Richard Wunderman

Adatarayama (Japan)

First tremor since 1965

Aira (Japan)

Explosive activity continues

Akan (Japan)

Continued elevated seismicity

Asosan (Japan)

Isolated tremor; ejections of mud and water

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Germany and Virginia

Dukono (Indonesia)

Pilot report of plume on 25 September

Etna (Italy)

Frequent Strombolian explosions and ash emissions from Northeast Crater and Bocca Nuova

Galeras (Colombia)

Minor seismicity and fumarolic emissions

Iwatesan (Japan)

Short tremor episode

Izu-Oshima (Japan)

Minor tremor and 48 earthquakes

Izu-Tobu (Japan)

Tremor observed again

Kozushima (Japan)

Earthquake swarm ends in mid-October

Kujusan (Japan)

Additional data on the sudden aseismic eruption of 11 October

Langila (Papua New Guinea)

Ash-bearing eruption columns rise hundreds of meters

Lengai, Ol Doinyo (Tanzania)

New hornitos and lava flows observed in July

Llaima (Chile)

Minor eruption just after a M 4.0 earthquake 160 km to the east

Manam (Papua New Guinea)

Passive degassing

Merapi (Indonesia)

Pyroclastic flows travel down two river drainages

Poas (Costa Rica)

High seismicity

Rabaul (Papua New Guinea)

Minor seismicity and vapor emission

Raung (Indonesia)

Aviation report of a plume, but not seen on satellite imagery

Rincon de la Vieja (Costa Rica)

New eruption; lahars damage a bridge and lead to evacuations

Rinjani (Indonesia)

Small ash plume seen on 12 September

Ruapehu (New Zealand)

Late September-early October eruptions rival those in 1945

Ruby (United States)

Submarine eruption

Semeru (Indonesia)

Explosions and pyroclastic flows continue

Soufriere Hills (United Kingdom)

Small ash explosions continue; three new vents form; September dome grows

Tengger Caldera (Indonesia)

Eruption from Bromo sends dark ash plume 700 m above the rim

Vulcano (Italy)

Fumarolic activity notably diminished from previous years

Yellowstone (United States)

New mud volcano, minor mud flow, and associated thermal features



Adatarayama (Japan) — October 1995 Citation iconCite this Report

Adatarayama

Japan

37.647°N, 140.281°E; summit elev. 1728 m

All times are local (unless otherwise noted)


First tremor since 1965

During 27 October, volcanic tremor of about 3-minutes duration was recorded at a site 4.8 km NE of Adatara's summit (station A). This was the first case of tremor since the local observatory began observations in 1965.

Geologic Background. The broad forested massif of Adatarayama volcano is located E of Bandai volcano, about 15 km SW of Fukushima city. It consists of a group of dominantly andesitic stratovolcanoes and lava domes that rise above Tertiary rocks on the south and abut Azumayama volcano on the north. Construction took place in three main stages that began about 550,000, 350,000, and 200,000 years ago. The high point of the complex is 1728-m-high Minowasan, a dome-shaped stratovolcano north of Tetsuzan, the currently active stratovolcano. Numanotaira, the active summit crater, is surrounded by hot springs and fumaroles and is breached by the Iogawa river ("Sulfur River") on the west. Seventy-two workers of a sulfur mine in the summit crater were killed during an eruption in 1900. Historical eruptions have been restricted to the 1.2-km-wide, 350-m-deep Numonotaira crater.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Aira (Japan) — October 1995 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive activity continues

Activity at Minami-dake crater became high during both early and late October. On 28 October, 9 explosive eruptions occurred and significant volcanic ash fell in Kagoshima City. During October, seismic station B (2.3 km NE of Minami-dake crater) recorded 720 earthquakes and 1,206 tremors. On 27-28 October there were seismic swarms. During October the volcano produced 31 eruptions, 23 of them explosive; the highest ash plume, on 28 October, rose 3 km above the summit crater. October ashfall (measured 10 km W at the Kagoshima Meteorological Observatory) was 117 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Akan (Japan) — October 1995 Citation iconCite this Report

Akan

Japan

43.384°N, 144.013°E; summit elev. 1499 m

All times are local (unless otherwise noted)


Continued elevated seismicity

Seismicity during October, and thus far in 1995, remained slightly higher than was typical for the past several years (figure 6). The highest daily number of earthquakes during the month took place on 2 October and consisted of 33 events (recorded at Station A, 2.3 km from Ponmachineshiri Crater). The monthly total for October consisted of 395 events.

Figure (see Caption) Figure 6. The number of daily earthquakes at Akan's station A, 1 January 1987 through October 1995. Courtesy of JMA.

Geologic Background. Akan is a 13 x 24 km caldera located immediately SW of Kussharo caldera. The elongated, irregular outline of the caldera rim reflects its incremental formation during major explosive eruptions from the early to mid-Pleistocene. Growth of four post-caldera stratovolcanoes, three at the SW end of the caldera and the other at the NE side, has restricted the size of the caldera lake. Conical Oakandake was frequently active during the Holocene. The 1-km-wide Nakamachineshiri crater of Meakandake was formed during a major pumice-and-scoria eruption about 13,500 years ago. Within the Akan volcanic complex, only the Meakandake group, east of Lake Akan, has been historically active, producing mild phreatic eruptions since the beginning of the 19th century. Meakandake is composed of nine overlapping cones. The main cone of Meakandake proper has a triple crater at its summit. Historical eruptions at Meakandake have consisted of minor phreatic explosions, but four major magmatic eruptions including pyroclastic flows have occurred during the Holocene.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Asosan (Japan) — October 1995 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Isolated tremor; ejections of mud and water

During October the floor of Aso's active crater (Naka-dake Crater 1) remained covered by a pond of hot water. The pond's surface was disrupted by occasional fountaining up to 5-m high. Elevated tremor continued since last month, and some October days had over 200 earthquakes; the daily mean amplitude of continuous tremors sometimes reached over 0.5 þm. Personnel 800 m W of the crater (at Aso Weather Station) felt earthquakes at 1829 and 1909 on 11 and 22 October, respectively.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Atmospheric Effects (1995-2001) (Unknown) — October 1995 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Germany and Virginia

Lidar data from Germany for July and August (table 4) again revealed the presence of a volcanic aerosol layer centered at 17-19 km altitude. Backscattering ratios have decreased since the last reports (Bulletin v. 20, nos. 2 and 7). October lidar data from Hampton, Virginia, showed an aerosol layer at 18-19 km altitude; these values are similar to the previous report (Bulletin v. 19, no. 11). Backscatter data declined to the range of 1.22-1.25 from 1.38-1.50.

Table 4. Lidar data from Germany and Virginia, USA, showing altitudes of aerosol layers. Backscattering ratios are for the ruby wavelength of 0.69 microns. The integrated value shows total backscatter, expressed in steradians^-1, integrated over 300-m intervals from the tropopause to 30 km.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
07 Jul 1995 11-27 (19.7) 1.12 (1.3) --
19 Jul 1995 12-26 (19.8) 1.13 (1.3) --
21 Jul 1995 13-29 (18.0) 1.12 (1.3) --
26 Jul 1995 11-28 (19.1) 1.13 (1.3) --
31 Jul 1995 13-24 (18.8) 1.09 (1.2) --
03 Aug 1995 12-27 (17.5) 1.12 (1.3) --
Hampton, Virginia (37.1°N, 76.3°W)
23 Mar 1995 12-25 (17.8) 1.36 0.135 x 10-3
04 May 1995 12-25 (18.7) 1.3 0.104 x 10-3
19 Oct 1995 15-30 (18.1) 1.22 0.059 x 10-3
23 Oct 1995 15-30 (18.8) 1.25 0.065 x 10-3

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Horst Jager, Fraunhofer -- Institut fur Atmospharische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany; Mary Osborn, NASA Langley Research Center (LaRC), Hampton VA 23665, USA.


Dukono (Indonesia) — October 1995 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Pilot report of plume on 25 September

A pilot report from a Qantas flight on the morning of 25 September described a plume to 6 km altitude that was drifting ESE. Visible satellite imagery failed to detect volcanic ash, but weather clouds in the SE sector were identified with infrared imagery.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: BOM Darwin, Australia.


Etna (Italy) — October 1995 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Frequent Strombolian explosions and ash emissions from Northeast Crater and Bocca Nuova

The Istituto Internazionale di Vulcanologia (IIV) report below provides an overview of activity during October. IIV reports generally summarize the temporal evolution of volcanic phenomena during the whole month, skipping some trivial details, and frame the ongoing activity in the context of phenomena over a period of years.

Reports detailing activity during short visits made by visiting volcanologists provide a different perspective on the volcanism. One such report for some days in October was provided by a team led by Open University (OU) volcanologists conducting routine deformation measurements during 9 September-14 October. Short visits to the summit craters on 7, 12, and 14 October were also made by Boris Behncke, with additional observations from Carmelo Monaco and Marcello Bianca (University of Catania), Maria Felicia Monaco (Bari University), and others.

Review of July-September 1995 activity. Strombolian activity resumed at Bocca Nuova on 30 July and in Northeast Crater on 2 August (BGVN 20:08). On 30 July spatter was observed inside Bocca Nuova from a new pit crater on the N part of the crater floor. The activity climaxed on 2 and 3 August, when lava jets rose above the crater rim, then stopped on the night of 4 August. Strombolian explosions during 2-3 August issued from a small vent in the lowest part of the crater. Two more Strombolian episodes occurred on 18 and 29 August. A strong explosion from Northeast Crater on 13 September sent an ash plume 100 m above the rim. Ash emissions from Bocca Nuova and Northeast Crater continued until about 20 September, but explosions were heard throughout the month (BGVN 20:09). The OU team noted light ashfall 2-3 km away in the third week of September, and heavier ashfall 50 m from the Bocca Nuova rim on 27 September.

Overview of October 1995 activity from IIV. After a short period of Strombolian activity at Bocca Nuova and Northeast Crater at the beginning of October, alternating mild Strombolian activity and ash emission characterized their activity for the rest of the month. On 8 October almost continuous rumbling noises (like roaring jets) were heard from both craters. On the morning of 12 October intense ash emissions took place from both craters. Bocca Nuova displayed small short-lived ash puffs (5-7/hour), while from the Northeast Crater a dense ash column rising as high as 900 m developed repeatedly (2/hour). IIV field parties working in the summit area reported that the ash emission were accompanied by falling rock noises. However, successive surveys observed neither juvenile nor lithic blocks on the crater rims.

After 12 October Strombolian activity progressively resumed at Northeast Crater and continued with variable intensity until the end of the month. On 19 October Strombolian activity was relatively vigorous and the scoria ejections, up to few tens of meters from the crater rim, were almost continuous. A survey on 25 October revealed an appreciable decrease of the explosion frequency. Bocca Nuova exhibited intermittent ash emissions after 12 October. As during previous activity, they originated in a depressed area of the NW crater floor. Explosions observed on 19 October were accompanied by ejection of a black (lithic?) block to a few tens of meters above the crater floor, but neither glowing at the vent or ejection of incandescent bombs were observed. After 19 October intermittent ash emission progressively decreased, and in the last week of the month weak Strombolian activity resumed at Bocca Nuova. Significant eruptions on 9 and 14 November will be reported in the next Bulletin.

Deformation measurements. Preliminary results from the OU team indicate little ground deformation since October 1994 over most of the network. Summit levelling showed insignificant movement (-5 mm near the summit, +7 mm on the N flank) apart from the area above the 1991-93 dike, which between the W side of Cisternazza and Belvedere showed a fairly consistent subsidence of 17-24 mm. Preliminary GPS computations suggested a radial expansion about the summit of ~15 mm. Dry-tilt stations showed no large tilts.

Details of 1-7 October activity. Observations from the Northeast Crater rim on the afternoon of 1 October by the OU team revealed two faintly glowing vents, ~3-5 m across, on the crater floor. The following night, bright summit glow was seen from Nicolosi (15 km S), and on the morning of 3 October loud explosions from Northeast Crater were heard from the trail 800 m W, which had been covered with a thin layer of red ash overnight. Explosions were again heard late in the afternoon from ~7 km away, and light ash fell near Monte Corbara (5 km NW). While approaching the crater at 1815 on 3 October, two guides and an Italian TV camera crew returning from the rim warned of bombs falling outside the crater. As the OU team moved towards the high ground behind the crater, a large explosion sent brightly-glowing juvenile bombs just over the rim, rolling toward them. A few seconds later a single bomb ~20 cm across landed 10 m away, 100-200 m from the rim. Similar bomb ejections to smaller distances occurred about every 2 minutes until the team descended at 1845. On 7 October, Behncke noted a dense steam-and-gas plume from Northeast Crater. Most of the plume and occasionally some ash rose from the SSE part of the crater floor; falling stones were frequently heard.

Detonations from within Bocca Nuova heard by the OU team on 1 October were only audible from the rim. One vent on 4 October was explosively exhaling gas, and the other was collapsing, producing brownish ash clouds. Behncke observed small Strombolian explosions from Bocca Nuova on 6 October, but only ash emissions the next day. On the 7 October visit, Behncke observed frequent ash plumes from Bocca Nuova accompanied by rumbling noises and the sound of falling stones; Strombolian explosions were frequent.

The Chasm (La Voragine) quietly emitted fumes on 1 October. On 4 October the OU team climbed into Southeast Crater to the edge of the vents, which emitted gas quietly and not under pressure, apart from one area just below the S rim. On 7 October, Behncke heard small explosions, but no ejections or incandescence were seen after sunset.

Details of 12-14 October activity. Between 0800 and 0900 on 12 October a series of collapses within Northeast Crater generated a thick ash cloud. Pulses of rapidly rising ash plumes resulted in a vertical column 800-1,000 m above the summit. After 0900, a dilute gas plume rose from Northeast Crater while Bocca Nuova sent frequent ash emissions 200-300 m above the summit. When Behncke reached the crater rim shortly after 1230, there were vigorous steam emission and explosions from Northeast Crater.

Behncke saw incandescent spots in the central Northeast Crater floor that gradually increased in number and intensity. Pyroclastic ejections became more frequent and vigorous, and soon the incandescent areas were hidden by gas and dilute ash plumes. The ash plumes first rose slowly to ~100 m above the crater floor, but gradually rose higher and became more heavily ash-laden. About 5 minutes after the onset of ash venting, dense convoluting ash clouds began to rise above the rim. Bomb and ash emission steadily increased. The high-pressure gas emission noise at the beginning of this activity changed to a dull rumbling connected with the ash emission. Short pulses of bomb emissions every 5-10 seconds were followed by a dark ash puff. After ~10 minutes, the ash puffs merged into a continuous column that rose hundreds of meters above the rim. Around 1345 vigorous emissions ejected black ash plumes ~1 km above the summit. Periodic ash emissions from Northeast Crater gradually became less vigorous before ceasing that evening.

On 12 October (0800-0900), the OU team heard detonations from Bocca Nuova, mainly from a vent on the E side of the floor, but the larger vent on the NW side occasionally threw 20-cm-diameter lithic blocks 30-50 m high. Ash emissions seen by Behncke after 1230 occurred every 2-5 minutes from the pit on the NW crater floor. Each emission began with block and/or bomb ejections followed by a dense ash plume. The bombs and blocks rose out of the ~50-m-deep pit but remained ~100 m below the rim, whereas the ash plumes rose 100-500 m above the summit. An open vent in the SE crater floor displayed continuous gas emission with occasional explosions that ejected dense gas clouds.

Shortly after 1700 on 14 October Behncke saw a central glowing vent in Northeast Crater. Vigorous high-pressure gas emission produced a roaring noise, and the plume was almost vapor-free. During the first 30 minutes of the visit, glowing spatter was occasionally ejected from the vent. As degassing increased, numerous incandescent spots became visible, aligned more or less concentrically around the vent. After the first half hour, Strombolian bursts became more vigorous, ejecting bombs ~50 m above the pit. About 10 minutes later, the explosions again intensified, and the crater floor around the vent, which appeared more funnel-shaped, was covered with incandescent bombs. Ejections rose ~100 m above the vent but remained far below the crater rim.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Massimo Pompilio, CNR Istituto Internazionale di Vulcanologia, Piazza Roma 2, 95123 Catania, Italy; John B. Murray and Fiona McGibbon, Dept. of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Nicki Stevens, NUTIS, Reading University, Whiteknights, P.O. Box 227, Reading RG6 2AB, United Kingdom; Phil. Sargent, Sue Elwell, and Sarah Cooper, Civil Engineering Dept., Nottingham Trent University, Burton Street, Nottingham NG1 4BU, United Kingdom; Boris Behncke, Dept. of Volcanology and Petrology, GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany.


Galeras (Colombia) — October 1995 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Minor seismicity and fumarolic emissions

Activity during August-October remained low. Fumarolic emissions continued from areas near the active cone, with a concentration of fumaroles on the W part of the summit. SO2 concentrations, obtained by the COSPEC method, remained generally low at 53-170 metric tons/day in August and < 100 t/d in September. No deformation was detected by electronic tiltmeters during August-October. Temperature measurements at La Joya and Chavas fumaroles, as well as radon measurements, have begun in order to improve the surveillance.

High-frequency seismicity during August was centered NNE of the active crater, and consisted of events of M < 2.2 Seismic activity in September was characterized by volcano-tectonic events, located mainly in three seismogenic regions: W, SW, and NNE of the active crater. Most active was the NNE source, which has shown signs of reactivation since last March. Most earthquakes had magnitudes < 1.5. Four events during September were felt by local residents, on 3, 12, 15, and 16 September, with magnitudes of 2.5, 2.0, 2.7, and 2.7, and depths of 12, 5, 8, and 8 km, respectively. The 16 September earthquake occurred in the SW region and the other three events in the NNE region.

The most significant October seismicity consisted of high-frequency events NNE of the active cone at depths of 3-7 km; magnitudes were < 3. The largest earthquake, on the morning of 15 October, was centered ~3 km NNE of the cone at 7 km depth. It had a magnitude of 3 and was felt in Pasto, Jenoy, Narino, and in other local towns.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Pablo Chamorro and Diego Gomez, INGEOMINAS - Observatorio Vulcanologico y Sismologico de Pasto, A.A. 1795, San Juan de Pasto, Narino, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Iwatesan (Japan) — October 1995 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Short tremor episode

Tohoku University seismometers near Iwate volcano continued to register tremor (BGVN 20:09). Beginning at 0009 on 20th October, the tremor lasted ~25 minutes.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Izu-Oshima (Japan) — October 1995 Citation iconCite this Report

Izu-Oshima

Japan

34.724°N, 139.394°E; summit elev. 758 m

All times are local (unless otherwise noted)


Minor tremor and 48 earthquakes

On 4 October, local instruments recorded volcanic tremor of short duration and small amplitude. Throughout the month a significant but undisclosed number of earthquakes occurred in the adjacent N and W coastal areas. During October there were 48 earthquakes beneath the cone.

Geologic Background. Izu-Oshima volcano in Sagami Bay, east of the Izu Peninsula, is the northernmost of the Izu Islands. The broad, low stratovolcano forms an 11 x 13 km island and was constructed over the remnants of three dissected stratovolcanoes. It is capped by a 4-km-wide caldera with a central cone, Miharayama, that has been the site of numerous historical eruptions. More than 40 cones are located within the caldera and along two parallel rift zones trending NNW-SSE. Although it is a dominantly basaltic volcano, strong explosive activity has occurred at intervals of 100-150 years throughout the past few thousand years. Historical activity dates back to the 7th century CE. A major eruption in 1986 produced spectacular lava fountains up to 1600 m height and a 16-km-high eruption column; more than 12,000 people were evacuated from the island.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Izu-Tobu (Japan) — October 1995 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Tremor observed again

Mid- and late-September micro-earthquake swarms occurred offshore near Capes Kawana-zaki and Shiofuki-zaki (BGVN 20:09), an area adjacent Ito City on the E coast of the Izu Peninsula. In late September and early October pulses of seismicity continued off these Capes, trailing off toward mid-October (figure 16). Located ~5 km SW of the epicenters, Kamala Seismic Station recorded 5,881 October earthquakes. The largest earthquake struck at 1142 on 1 October with M 4.8; nearby Into City sustained a JMA-scale intensity of IV. Small-amplitude tremors occurred on both 4 October (four times), and 12 October (one time); low-frequency earthquakes took place on 4 October (four times) and 6 October (one time). Volumetric strain at Higashi-Izu and Ajiro acted in the sense of compression.

Figure (see Caption) Figure 16. Hourly earthquakes at Izu-Tobu recorded ~5 km SW of the seismic sources, September-October 1995. Courtesy of JMA.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kozushima (Japan) — October 1995 Citation iconCite this Report

Kozushima

Japan

34.219°N, 139.153°E; summit elev. 572 m

All times are local (unless otherwise noted)


Earthquake swarm ends in mid-October

As reported in BGVN 20:09, on 6 October a M 5.6 earthquake occurred adjacent to Kozu-shima and a seismic swarm followed for the next few days. After that, seismic events continued but decreased toward the end of October; in total, during October there were 246 felt earthquakes.

Geologic Background. A cluster of rhyolitic lava domes and associated pyroclastic deposits form the small 4 x 6 km island of Kozushima in the northern Izu Islands. Kozushima lies along the Zenisu Ridge, one of several en-echelon ridges oriented NE-SW, transverse to the trend of the northern Izu arc. The youngest and largest of the 18 lava domes, 574-m-high Tenjoyama, occupies the central portion of the island. Most of the older domes, some of which are Holocene in age, flank Tenjoyama to the north, although late-Pleistocene domes are also found at the southern end of the island. Only two possible historical eruptions, from the 9th century, are known. A lava flow may have reached the sea during an eruption in 832 CE. Tenjosan lava dome was formed during a major eruption in 838 CE that also produced pyroclastic flows and surges. Earthquake swarms took place during the 20th century.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kujusan (Japan) — October 1995 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Additional data on the sudden aseismic eruption of 11 October

On 11 October, aseismic phreatic eruptions started within the Kuju volcanic group, on Hosho (Hosyo) dome's E side (BGVN 20:09). On 12 October observers found an E-W trending line of vents ~300-m long; also, at that time an ash-bearing plume rose to ~1 km above the crater.

The eruption deposited a 100 m2 blanket of fist-sized volcanic clasts; it also emitted mud that flowed down an adjacent valley. After that, the volume and height of the plume gradually decreased until finally ash-bearing eruptions ceased at the month's end. Seismicity stayed low during October.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Langila (Papua New Guinea) — October 1995 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash-bearing eruption columns rise hundreds of meters

The increased eruptive activity at Crater 2 that began during late September continued throughout October. The activity was marked by intermittent audible explosions. The bigger explosions developed plumes that rose several hundred meters above the summit crater, resulting in ashfalls on the volcano's N-NW side. Langila produced steady but weak crater glow on most nights during October; it threw incandescent lava fragments on 23-24, 26, and 31 October. Crater 3 was quiet, only giving off weak white emissions towards late October. Seismic recording restarted on 5 October after both seismographs had been inoperative since January 1995. October seismic activity was moderate.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, RVO.


Ol Doinyo Lengai (Tanzania) — October 1995 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


New hornitos and lava flows observed in July

Intermittent explosive activity and extrusion of carbonititic lava on the crater floor began in January 1983 and continued for over ten years. Vigorous effusive and explosive activity in June 1993, perhaps the strongest of that eruptive episode, covered most of the crater floor and upper W flank with fresh lava flows and deposited ash on the flanks (BGVN 18:07-18:10). In September 1994 a deep central depression contained a hornito from which highly vesicular brown lava was erupting (BGVN 19:09).

Activity observed in mid-July 1995 was the first reported since September 1994, although the appearance of the recent flows indicated that they were a few months old. Members of the Societe de Volcanologie Geneve (SVG) visited the summit on 15 July 1995. A visit to the summit crater was also made by Celia Nyamweru on 19 July.

Activity on 15 July 1995. SVG observers reported a new active hornito (T36), ~4 m high, close to the S foot of T20 (figure 35). Fluid carbonatitic lava flows were emitted from its base through a channel in the direction of a rounded collapsed new opening ~15 m in diameter, close to T5/T9. The lava in the channel was pale brown and frothy, with a velocity estimated at 1.5 m/second; temperature was ~550 degrees C. At the end of the channel, the flow moved N through different tubes. Lava breakouts from some downstream openings were still very fluid and completely black. Both small pahoehoe and aa lava fronts were observed. Ejecta were rare from the summit vent of T36. The new lava field was mainly directed N, with one branch passing W of T20 and the other going through and filling the oval-shaped depression first noted in October 1993 (see BGVN 19:04).

Figure (see Caption) Figure 35. Sketch of the Ol Doinyo Lengai crater (~300 m wide) looking SW from the NE rim, 19 July 1995. Courtesy of Celia Nyamweru.

Activity on 19 July. At 1000 the crater was full of cloud, hiding features on the crater floor, but frequent sharp cracks, bangs, and thumps were heard, as well as bubbling noises. Conditions improved so that activity could be observed after 1115. White to brown steam was escaping continuously from the top of T20, and a little from T5T9. Sulfurous fumes were emitted from cracks on the E crater rim and wall. The lower slopes of T23 were made up of many small parallel pahoehoe flows, now soft and pale brown; T23 was not emitting steam. The new cones, T34 to T37, lay W of the depression that had been virtually filled by lava flows from these centers. T34 was a double cone, pale gray, with an open vent on its upper slope from which no steam or heat was being emitted. T35 was light brown to white, with no sign of fresh lava. T37 was a shallow circular crater W of and close to the base of T5/T9; it appeared fresh but showed no activity on 19 July.

T36 was a compound cone of which T36A was the largest component; it was composed of cascades of pahoehoe lava, some whitened and others black and very fresh. T36B was a rounded dome with a small vent at its base from which lava was emitted. T36C appeared to have a crack along its crest that emitted gas-rich lava. T36B and T36C were ~5 m apart and very close in elevation. Activity from hornito cluster T36 (figure 36) consisted of clots of lava thrown ~1 m above T36B, gas-rich lava escaping from the top of hornito T36C and flowing down its N slope, and very fluid, black shiny lava escaping from a small crack (T36E) on the lower slopes of this feature and flowing N across very recent pahoehoe. At 1137 a small spray of gas-rich lava escaped from hornito T36D, on the W side of T36. Warm pahoehoe flows on the W slope of T36,

Figure (see Caption) Figure 36. Details of hornito cluster at Ol Doinyo Lengai. 19 July 1995. Asterisks indicate areas of active lava emission. Courtesy of Celia Nyamweru.

Crater morphology. Features from June 1993 and earlier (see map in BGVN 19:04) were still visible, but major new cones had formed in the area between T5/T9, T20, and T23 (figure 35). T5/T9 remained a very prominent feature, and the tops of the T8, T14, and T15 cones remained visible, although all were surrounded by many younger lava flows. T24, T26, and T30 were not inspected closely, but there seemed to be no change in these large features in the S part of the crater; they were gray and white, with no sign of recent activity. West of T36 were two low lava domes with pale brown open craters, now inactive. To the W of them, on the edge of F34, was a low wide feature, possibly a collapsed cone, probably the features identified as T22, T31, and T32 in September 1993 (BGVN 18:09). There was also a rather new hornito in this area.

Recent pahoehoe flows ~10 cm thick had reached the base of the E, N, and NW walls. Crater walls appeared lowest to the NW. The rugged F34 and F35 lava flows of June 1993 were heavily weathered and beginning to soften and crumble. They were quite dark gray; a great contrast to the flows that had formed over the last several months (thin pahoehoe flows that whiten within a few weeks of eruption). No recent ash was observed on the outer slopes of the cone, the crater rim, or the inner walls; the vegetation was green and healthy. Brown vegetation was observed in a few areas near the base of the inner wall, probably due to contact with hot lava reaching the wall, and on part of the S wall below the summit.

This symmetrical stratovolcano in the African Rift Valley rises abruptly above the plain S of Lake Natron. It is the only volcano known to have erupted carbonatite tephra and lavas in historical time. The cone-building stage of Ol Doinyo Lengai ended about 15,000 years ago and was followed by periodic Holocene ejections. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatite lava flows on the floor of the summit crater.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton NY 13617, USA; M. Vigny and P. Vetsch, Societe de Volcanologie Geneve, B.P. 298, CH-1225 Chenebourg, Switzerland.


Llaima (Chile) — October 1995 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Minor eruption just after a M 4.0 earthquake 160 km to the east

Beginning on 13 October 1995 Llaima started emitting gases and occasional ash; in addition, during the night the northern principal crater glowed a rose color. Dominant winds dispersed the eruptive columns toward the SE on 13 October. Three days later, Llaima started emitting a continuous, strong blast of steam that occasionally also contained dark-gray scrolls bearing fine-grained ash. The resulting plume blew NE.

On the night of 20-21 October, the principal crater discharged a strong explosion. Wind carried ash toward the SW, depositing it on the alpine ice. Some ash fell over the Trufultruful valley and the valley's most eastern flanking hills, forming a band or stripe up to 12 km in length.

On 21 October between 1600 and 1800 the volcano gave off a continuous, intense column of vapor and ash. That night, between 2300 and 0100 in the town of Conguillio, residents heard an explosion accompanied by subterranean noises. The following night, observers saw a "ring of fire" over the principal crater, an effect thought to indicate the presence of lava within the crater.

The Servicio Sismologico de la Universidad de Chile reported that seismic activity one day before the eruption, on 12 October, included a M 4.0 earthquake that struck the region; its depth was 70 km; its epicenter fell at the extreme S end of Lake Lieulleu in the Cordillera de Nahuelbuta (38.28°S, 73.408°W), a spot about 160 km E of Llaima. During 20 and 22 October, portable seismometers picked up 1.0-1.5 Hz tremor; on 20 October the tremor appeared about 15-20 seconds before the above-mentioned explosion. It should be noted that such sub-continuous episodes of 1.0-1.5 Hz tremor are relatively rare at Llaima.

The 13-22 October eruptions followed fumarolic activity (BGVN 20:02) and, before that, an outbreak of ash-bearing eruptions in late August 1994 (BGVN 19:08). On the basis of the above behavior, the 24 October SERNAGEOMIN report stated that the volcano had been assigned an alert status of yellow. Llaima, an ice- and snow-covered stratovolcano, is one of the largest and most active in Chile; it erupted in 1990, 1992, and 1994.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: Hugo Moreno1, Gustavo Fuentealba, and Paola Pena, Observatorio Volcanologico de los Andes del Sur, SERNAGEOMIN, Temuco, Chile.


Manam (Papua New Guinea) — October 1995 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Passive degassing

Activity was low during October. During the month, both summit craters released only white vapors at low to moderate rates and both audible sounds and summit-crater night glow were absent. During the first three weeks of October, the daily totals of low-frequency earthquakes were at 200-500, but by month's end they increased to 800-1,300. Coincident with the increase, earthquake amplitudes also rose by ~50%. No visual changes accompanied the increase in seismicity. However, data from tiltmeters (4 km SW of the summit) showed a deflation of approximately 1.5 m µrad beginning around the second half of the month.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ben Talai, RVO.


Merapi (Indonesia) — October 1995 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Pyroclastic flows travel down two river drainages

During August-October 1995 pyroclastic flows ("glowing avalanches") continued flowing down the Boyong River; others entered the Krasak River and reached ~1-1.5 km from the source. Seismic activity was dominated by multiphase and lava-avalanche (rockfall) earthquakes. The number of multiphase earthquakes increased in October to 793 events, compared to 186 in September. Earthquakes associated with lava avalanches or rock falls gradually decreased from 1,195 events in August to 806 in September and 605 in October (figure 16). Shallow volcanic (B-type) earthquakes (~1 km depth) were recorded on 25 October and a deep volcanic (A-type) earthquake (2.7 km depth) was detected on 30 October. Observations in October indicated an inflation associated with 40 µrad of tilt. Measurement of SO2 by COSPEC indicated that the emission rate during October fluctuated between 18 and 112 t/d (average 63).

Figure (see Caption) Figure 16. Seismicity at Merapi, June-October 1995. Courtesy of VSI.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: W. Tjetjep, VSI.


Poas (Costa Rica) — October 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


High seismicity

During October, tremor at Poás reached 101 hours; the last time tremor rose over 12 hours/month was May-September 1994, an interval when tremor ranged between 49 and 307 hours/month. The number of minor earthquakes, which were predominantly of low frequency, continued to climb during the month of October, reaching 9,838 events. This was a value ~8% larger than the total for September, the previous month with the most seismic activity in 1995.

The crater lake has risen consistently: by ~5 m during June-October (ICE), and by ~30 cm in the last month (OVSICORI-UNA). During October 1995, the fumarole on the W terrace appeared to have decreased its emissions compared to recent months (< 50-m-high steam plumes), and others on the lake's NW and SW sides also had diminished output. Fumaroles on the S and SW crater wall produced steam columns reaching 100 m tall. During October, bubbling in the lake still continued. During October OVSICORI-UNA scientists measured the temperatures at several sites: pyroclastic cone, 93°C; fumaroles on the S and SW sides of the crater, 95-97°C; the lake in the inactive crater (Lake Botos), 15°C; and the lake in the active crater, 30°C.

Head scarps of landslides that emanate from the dome and flow toward the lake displayed ongoing mass wasting; ICE workers mentioned that this mass wasting may have been triggered by recent heavy rains. In addition, ICE reported that on 17 September (at 0548) a M 3.9 earthquake struck; it had a depth of 5 km and an epicenter 1.6 km SW of the main crater. At the summit, the earthquake's intensity was MM III-IV.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, E. Duarte, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA); Mauricio Mora, Escuela Centroamericana de Geologia, Universidad de Costa Rica; G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles: OSIVAM, Instituto Costarricense de Electricidad (ICE).


Rabaul (Papua New Guinea) — October 1995 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Minor seismicity and vapor emission

The volcanoes at Rabaul Caldera continued to remain quiet in October. Tavurvur's summit area released bluish white vapors at very low rates; however, the emission rates rose during rainy days at the end of the month. No emissions came from Vulcan.

Only 19 earthquakes were recorded in October. Two of the 13 low-frequency earthquakes originated from Tavurvur while the rest came from either within or just outside the caldera's N sector. The six high-frequency earthquakes took place on the 20th (2 earthquakes), 23rd (2), 26th (1), and 29th (1). Most of these high-frequency earthquakes occurred in the caldera's NE sector (Namanula area). One high-frequency earthquake (ML 1.9, on the 23rd) originated near Tavurvur at about 1 km depth. October ground deformation remained very low.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, RVO.


Raung (Indonesia) — October 1995 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Aviation report of a plume, but not seen on satellite imagery

An aviation report stated that at 1705 on 15 August "smoke" from Raung at an altitude of 6 km was drifting W. Following this report, aviation notices were posted in Indonesia, New Zealand, and Australia for the next 24 hours. No plume was observed by Australian meteorologists on satellite imagery from 1800 on 15 August through 2050 the next day.

The last reported eruption, which occurred sometime between January and June 1993, generated an ash column 600 m above the rim and caused ashfall in the surrounding area.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: BOM Darwin, Australia.


Rincon de la Vieja (Costa Rica) — October 1995 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


New eruption; lahars damage a bridge and lead to evacuations

A new phreatomagmatic eruption followed three months of declining seismicity. During 1995 the number of local earthquakes peaked in July and then progressively decreased (figure 10). Prior to the eruption, during October, OVSICORI-UNA reported that park rangers who ascended to the main summit saw increased degassing and noted the appearance of fumaroles along cracks at the E and NE crater margins. Rangers described the crater lake's color as green and the smell as strong and sulfurous.

Figure (see Caption) Figure 10. The number of monthly earthquakes at Rincón de la Vieja volcanic complex recorded 5 km SW of the active crater (station RIN3), January-October 1995. The seismic system failed to operate on 29 October; the three events recorded during the rest of the month were all of low frequency (

ICE described the eruption as phreatomagmatic, beginning at 1504 on 6 November, and climaxing on 8 November with 25 explosions. They noted the ash-bearing and steam-rich columns rose to 1 and 4 km, respectively, above the crater. Ash blew WSW; medium- to fine-grained ash reached up to 30 km from the volcano (Santa Rosa National Park).

According to ICE, on 9 November the eruption entered a steam-rich phase. Columns typically rose 200 m, but sometimes as much as 1.5 km after some steam explosions.

During the course of the eruption, ballistic ejecta were thrown over a zone extending to ~1 km N. Ejecta formed lahars that followed two key rivers (Penjamo and Azul rivers) and their tributaries. Heavy rains beginning on 10 and continuing on 11 November triggered secondary lahars and associated floods; a bridge 7 km N of the crater (Penjamo bridge) was damaged but not destroyed, interrupting traffic flow. During this episode, lahars along a tributary of the Penjamo river produced a gully 8-m deep and 25-m wide, isolating some inhabitants.

Initial inspections of ash and the lahar matrix indicated that they mainly consisted of hydrothermally altered fragments, lake-sediment mud, and vesiculated glassy andesite fragments.

Some residents living near the volcano were evacuated to a safe village 9 km NW of the crater. News reports on 8 November by both Associated Press and Deutsche Presse-Agentur stated that about 100 families were evacuated. Two days later Enrique Coen reported relocation of 300 families.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, E. Duarte, and V. Barboza, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles: OSIVAM, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica; Enrique Coen, Departamento de Fisica, University Nacional, Heredia, Costa Rica; Associated Press; Deutsche Presse-Agentur.


Rinjani (Indonesia) — October 1995 Citation iconCite this Report

Rinjani

Indonesia

8.42°S, 116.47°E; summit elev. 3726 m

All times are local (unless otherwise noted)


Small ash plume seen on 12 September

A NOTAM about volcanic activity from Rinjani was issued by the Bali Flight Information Region on the morning of 12 September. An ash cloud was reportedly drifting SW with the cloud top around 4 km altitude. As of 1200 that day, Australian meteorologists had not observed a significant plume on satellite imagery. Synoptic Analysis Branch analysts detected no ash cloud on either visible or infrared GMS imagery. However, at 1600 the Bureau of Meteorology in Darwin advised aviators that a weak low-level plume was intermittently evident on satellite imagery as far as 28 km SW of the volcano.

Geologic Background. Rinjani volcano on the island of Lombok rises to 3726 m, second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the west side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak (Samalas) caldera. The caldera formed during one of the largest Holocene eruptions globally in 1257 CE, which truncated Samalas stratovolcano. The western half of the caldera contains a 230-m-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the east end of the caldera. Historical eruptions dating back to 1847 have been restricted to Barujari cone and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.

Information Contacts: BOM Darwin, Australia; SAB.


Ruapehu (New Zealand) — October 1995 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Late September-early October eruptions rival those in 1945

Ruapehu's current eruptive period began with a vent-clearing blast on 29 June 1995 and a series of larger eruptions began on 23 September (BGVN 20:09). More recently available information (in Immediate Report RUA 95/06) highlighted 18 and 20 September observations summarized below. These are followed by brief comments on eruptions during October.

Activity during 18-20 September. An eruption at 0805 on 18 September was accompanied by a ML 3.6 earthquake; the eruption produced the largest lahar down the ESE flank since 1975. The ESE drainage is called the Whangaehu River. Two days later, at 0122 on 20 September, another eruption associated with a smaller earthquake (ML 3.2) also sent a smaller lahar down the Whangaehu River.

At roughly 0800 on 18 September the ski field manager heard what he initially thought was wind noise while he was inside a ski lodge building on Ruapehu's flanks, a spot 400 m N of the Whangaehu channel (Aorangi lodge at Tukino). He went closer to the river and saw a 12-18 m deep lahar in the narrow channel.

Later that day, a flood warning gauge 27 km downstream was triggered at 1123, suggesting the lahar moved at an average speed of roughly 2.3 m/s (8.3 km/hour). By around noon at Tukino the lahar was 40-m wide and had covered the snow up to 20-30 m above the Whangaehu valley floor. The lahar's surface rose about 11 m on the outside of one turn. A preliminary estimate of peak flow was >1,000 m3/s; the local velocity, 15 m/s. An early phase of the lahar had cut out 2-3 m of ice and snow formerly filling the valley.

The 18 September lahar arrived at a point 57 km downstream from Crater Lake (Karioi) at 1515, 7 hours after the eruption. Volume of the lahar at this point was estimated (by groups identified as NUWA Wanganui and ECNZ) at ~2 x 105 m3; the peak flow, at ~34 m3/s. The lahar destroyed a hiking bridge, leaving only its 0.2-m-high concrete abutments on either side of the river.

The smaller 20 September lahar arrived at 57 km downstream (Karioi) 8 hours after the eruption; its size there was estimated at ~0.9 x 105 m3; its peak flow, at ~21 m3/s. In an area above ~2,000 m elevation, the 18 and 20 September lahar deposits were separated by an intervening snow layer. Still higher, above ~2,400 m elevation, both lahars had emerged from the upper Whangaehu valley's snow and ice tunnel system. Lahars passing through and over the uppermost part of this system had produced considerable new crevasses and collapse features in the snow and ice. On 20 September, collapsed holes downstream of the large ice cave (located below the crater lake's drainage point at Outlet, figure 19) were filled with non-steaming water that had apparently cooled. The ice cave itself appeared largely intact.

Figure (see Caption) Figure 19. (above) Survey points for deformation studies at Ruapehu (prior to the disappearance of Crater Lake). (below) Summary of deformation between stated stations and given time intervals. Courtesy of IGNS.

A helicopter was used to visit the crater on 20 September. A large column of steam rose from the waterfall immediately below Outlet. A large volume of lake water continued to spill over the waterfall even though recent eruptions through the lake had expelled substantial lahar-forming discharges. Ash from the 18 September eruption was plastered on some steep slopes. Ash from the 20 September eruption was plastered on the new snow around the lake margins. On the E side of the lake there was a N-trending, 100-m-long lobe of ash on the glacier surface. Scoria clasts found near Outlet (the largest, 20-50 cm across) formed a continuous layer trapped behind a low lava ridge. Their distribution suggested they were deposited by a passing surge rather than as impacting ballistics. Absence of snow on the surface of the scoria indicated they had probably arrived during the 20 September eruption and some clasts still had warm interiors. Sampled clasts were black in color, and consisted of an unaltered plagioclase-, augite-, orthopyroxene-bearing andesite. The lack of Fe-Ti oxides makes them similar to 1966 ejecta; in contrast, ejecta from 1971 and 1975 did contain minor amounts of Fe-Ti oxides. Three ash samples collected from within the crater contained lapilli up to 25 mm in diameter and composed of angular lithic material. Ash finer than 2-mm diameter was dominated by gray shiny spheroids and globules of sulfur with lesser amounts of gray comminuted lake bed material.

In the interval 15 August-20 September the deformation of the area about Crater lake was significant and indicated moderate inflation (figures 19 and 20). The deformation survey was hampered by snow and ice, which deeply buried most survey stations. Survey mark D had been bent 70 mm out of position immediately prior to the August survey, but eccentricity corrections enable a valid comparison with all former observations at D. Maximum changes took place in the E-W direction. These changes were similar to those computed by comparing the mean of the five surveys made earlier this year to the September survey (first column, bottom of figure 19).

Non-elastic inflation of the style seen was previously noted as much as 2 weeks prior to eruptions on 8 May 1971 and 24 April 1975. This short-term inflation (lasting weeks) was also seen on 12 occasions during 1980-91; these occasions were tentatively correlated with intense heating and minor eruptions. Still, the relation between inflation magnitude and the corresponding eruption remains uncertain.

The 20 September crater visit yielded the following lake observations. The lake's temperature was 48.5°C (on 15 August it had been roughly 20 degrees C cooler, figure 20). There was a strong smell of SO2. The volume of water escaping at Outlet was estimated visually at 1 m3/s (on 15 August it was only ~50 l/s). This exceptional output was the largest seen in 24 years.

Figure (see Caption) Figure 20. Plots of Ruapehu's cross-crater deformation, crater lake temperature, and Mg/Cl ratio for 1976 through late-1995. The cross-crater deformation is approximately E-W (between stations I and J, figure 19). Courtesy of IGNS.

Lake water sampled on 20 September showed clear increases in the concentrations of Mg, Cl, and SO4 ions, and in the ratio of Mg/Cl (figure 20). The observed concentrations for 15 August and 20 September, respectively, were as follows: Mg, 584 and 713 ppm; Cl, 8,154 and 8,619 ppm; and SO4, 26,600 and 30,600 ppm. Increases in Mg began in May and pointed to dissolution of fresh andesitic material into the hydrothermal system. Although previously it was not clear if the source of Mg was juvenile or older andesites, the increased amounts of Cl and SO4 firmly established the input of fresh magmatic material.

SO4 concentrations stand at the highest levels ever recorded at Ruapehu. In the absence of synchronous increases in K, and noting that Ca continues to be controlled by gypsum solubility, it is clear that the increases in SO4 were not attributable to dissolution of secondary hydrothermal minerals. Instead the SO4 increases indicated greater SO2 flux into the lake. Assuming a lake of 9 x 106 m3, the increase in SO4 from 15 August to 20 September equates to a minimum input of ~700 metric tons/day of SO2 into the lake. This behavior differs from that observed prior to the 1971 eruptions: The indication is that the quantity of magma involved in the current activity is larger than in the 1971. Taken with the rather moderate degree of cross-crater deformation seen, the quantity of SO2 discharged into the lake indicates connection to larger volumes of degassing magma at depth.

Volcanic tremor remained at background from early July until early September; its amplitude was ~1 µm/s for signals centered around 7 Hz, and at this value or slightly lower for signals centered around 2 Hz. During a five day interval starting on 6 September, the amplitude of 2-Hz tremor increased. During the 24 hours prior to the 18 September eruption and earthquake (BGVN 20:09), predominantly 7-Hz tremor occurred, at one point doubling in amplitude. Later, ~80 minutes prior to the eruption and earthquake, tremor again increased by a factor of 2-3, with 2-Hz tremor becoming dominant. Although dramatic, Ruapehu often displays wide-ranging shifts in tremor amplitude and, in retrospect, the increased amplitudes seen would not have been a useful way to predict the eruption.

The 18 September earthquake took place at 0805, continuing for 6 minutes. Analog seismograms from the three local stations (Dome, Chateau, and Ngauruhoe) were pegged, and the M 3.6 estimate was made based on amplitude recorded by the tremor-monitoring system. After the earthquake, predominantly 2-Hz tremor prevailed, remaining at or above the pre-earthquake amplitude. Later the same day (18 September), strong 1-Hz tremor occurred--for the first time at Ruapehu since the early 1970s.

Further minor earthquakes were recorded during the next few days. On 19 September seismometers registered a ML 2.2 earthquakes as well as four other discrete earthquakes; on 20 September there were ML 3.1 and 3.2 earthquakes followed by another interval of strong 1-Hz tremor until 0900.

October eruptions. At the time of this writing, IGNS reports for October are incomplete, but a brief survey of available "Science Alert Bulletins" and aviation reports suggested that minor eruptions continued and in mid-October moderate ash-rich eruptions took place. On 11 October a plume was seen in satellite imagery; on 12 and 14 October, pilot and associated aviation reports indicated ash to at least ~10 km altitude.

The 11 October eruption was described as near-continuous moderate eruptive activity that included hot ballistic blocks and lightning. Subsequent lower intensity eruptions presumably fed the plume so that its proximal end remained attached to the volcano. The eruption deposited ash in a blanket with a tentative volume between 0.01 and 0.05 km3. Thus, the steam-rich plumes seen in the 3 weeks prior to 11 October gave way to more ash-rich plumes during this eruption. A thin blanket of ash was also deposited during the 14 October eruption.

The absence of a crater lake was confirmed on 14 October. By 17 October, partly impeded views into the crater revealed steam and ash emitted from at least three vents, and a still-dry crater floor. COSPEC measurements around this time suggested the SO2 flux was over 10,000 metric tons/day. A COSPEC flight on 21 October gave viewers their first look at a possible new lava dome, however, there were no subsequent confirmations of the dome in available reports.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake (Te Wai a-moe), is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3,000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: C.J.N. Wilson, B.J. Scott, P.M. Otway, and I.A. Nairn, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand; Bureau of Meteorology, Northern Territory Regional Office, P.O. Box 735, Darwin, NT 0801, Australia.

Correction: The most recent analysis indicates that there were 18 hydrothermal eruptions recorded between 0600 and 1640 on 20 September. Table 7 indicated "15 small phreatic eruptions witnessed."


Ruby (United States) — October 1995 Citation iconCite this Report

Ruby

United States

15.62°N, 145.57°E; summit elev. -230 m

All times are local (unless otherwise noted)


Submarine eruption

Ruby is a prominent, active submarine volcano in the Mariana Arc (2,300 km S of Tokyo) located NW of the Island of Saipan (figure 1). Although signs of an eruption were first noted by fishermen about 11 October, initial attempts to confirm their early observations failed. On 23 October fishermen reported that they could hear submarine explosions in that vicinity. A vessel from the Wildlife and Emergency Management Office of the Commonwealth of the Northern Mariana Islands confirmed these reports. An Associated Press news report stated that early on 25 October observers had seen dead fish and bubbles, and had smelled a sulfurous odor. On 27 October the Pacific Daily News reported the eruption site as 15°36'22"N, 145°34'33"E (15.6061°N, 145.5758°E). This spot clearly lies on the edifice identified by Bloomer and others (1985, p. 215) as Ruby (only ~1.7 km from the point specified in this report's heading).

Figure (see Caption) Figure 1. Index map and bathymetric map (depths in meters) showing seamounts near Saipan Island, including the known active centers Esmeralda Bank and Ruby (after Bloomer and others, 1989).

Prior to the eruption, published estimates of the summit elevation suggested a 230-m depth, a refinement an earlier estimate of 549 m (Bloomer and others, 1985, p. 215). On 6 October 1995, the Pacific Daily News report stated the summit was measured at 185-m depth. This newly reported depth remains unconfirmed. According to Mike Blackford, on 23 October a marine depth finder reportedly measured a depth of ~60 m. Although this could be a reflection off the eruptive plume, in the absence of any discussion of instrument type and calibration, this depth remains equivocal.

According to Koyanagi and others (1993), the two seismic stations nearest the eruption were on Saipan (~50 km SE of Ruby) and Pagan islands (~130 km N of Saipan), both too distant to detect subtle seismic effects. Despite the lack of a nearby seismic station, tremor appeared on seismic records at the time of the eruption and the next day. Given the temporal coincidence between the eruption and the tremor, the two were probably associated.

A fish recovered at the eruption site was found to have small particles of ash in its gills and HVO researchers planned to analyze this ash. News of the eruption caused concern about a possible local tsunami and on 25 October, the Commonwealth of the Northern Mariana Islands issued an alert.

Evidence for Ruby's active status came from 1966 hydrophone data, followed later by dredging of extremely fresh volcanic rocks bearing plagioclase, clinopyroxene, and olivine (Bloomer and others, 1985).

References. Bloomer, S.H., Stern, R.J., and Smoot, N.C., 1989, Physical volcanology of the submarine Mariana and Volcano arcs: Bull. Volcanol., no. 51, p. 210-234.

Koyanagi, R., Kojima, G., Chong, F., and Chong, R., 1993, Seismic monitoring of earthquakes and volcanoes in the Northern Mariana Islands: 1993 summary report: Prepared for the Office of the Governor, Commonwealth of the Northern Mariana Islands, Capitol Hill, Saipan MP 96950 (revised 21 February 1993), 34 p.

Geologic Background. Ruby, a basaltic submarine volcano that rises to within 230 m of the sea surface near the southern end of the Mariana arc NW of Saipan, was detected in eruption in 1966 by sonar signals (Norris and Johnson, 1969). In 1995 submarine explosions were heard, accompanied by a fish kill, sulfurous odors, bubbling water, and the detection of volcanic tremor.

Information Contacts: Robert J. Stern, Center for Lithospheric Studies, University of Texas at Dallas, Box 830688, Dallas, TX 75083-0688 USA; Robert Koyanagi, USGS Hawaiian Volcano Observatory, Hawaii Volcanoes National Park, HI 96718, USA; Ramon C. Chong, Commonwealth of the Northern Mariana Islands (CNMI), Disaster Control Office, Capitol Hill, Saipan, MP 96950 USA; Mike Blackford, Pacific Tsunami Warning Center, 91-270 Fort Weaver Road, Ewa Beach HI 96706, USA; Associated Press; Pacific Daily News.


Semeru (Indonesia) — October 1995 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue

The VSI reported that by 3 August a tongue of glowing lava had reached 300 m long; at 1932 that evening the lava collapsed to feed lava avalanches. Qantas airlines reported additional activity at 1510 on 8 August, describing volcanic "smoke" near Semeru to above 4 km. Two days later, around 1530 on 10 August, a Qantas flight reported an ash cloud to 9 km altitude with a SW drift.

VSI noted that during August-October small-to-moderate explosions and avalanches continued from the Jonggring Seloko summit crater. Plumes rose to a maximum of 600 m above the summit; the average plume height was 300-500 m. In August and September, pyroclastic flows often traveled down the Kember River, then descended the Kobokan River, reaching a distance of 1-3 km. The frequency of lava avalanches increased in September, extending along the Kember River for up to 500 m from the summit.

Earthquakes associated with the pyroclastic flows were variable, with 1-16 events/day through early October; after that the frequency of earthquakes decreased. Increasing numbers of volcanic earthquakes (both A-and B-type) started on 11 October and continued until the end of the month, fluctuating at 1-14 events/day (figure 8). The number of explosion earthquakes was typically 45-109/day (figure 8), except on 26 and 27 September, when there were only 33 and 24 events, respectively.

Figure (see Caption) Figure 8. Eruptive activity at Semeru as detected by seismograph, August-October 1995: pyroclastic flows and volcanic earthquakes (top), explosions and avalanche events (bottom). Courtesy of VSI.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: W. Tjetjep, VSI; BOM Darwin, Australia.


Soufriere Hills (United Kingdom) — October 1995 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Small ash explosions continue; three new vents form; September dome grows

The observatory was moved on 1 October from the Vue Pointe Hotel to Eifel House on Bishop View Road in Old Towne. A phreatic eruption that day deposited ash across a large area, including the capital city of Plymouth. This eruption was followed by a volcano-tectonic (VT) earthquake swarm, with 70 events located beneath the volcano at depths of 1-6 km. Two of the earthquakes, at 2257 and 2319, had magnitudes of ~2.5 and were felt at the observatory; several were felt in the Long Ground area. After about 0500 on 2 October, the number of located earthquakes dropped to ~5/day. Two episodes of low-amplitude broadband tremor recorded during 1-3 October were related to steam emission. Electronic tiltmeter and EDM observations during that time revealed no significant deformation.

EDM measurements at Tar River completed on 3-4 October continued to show a shortening trend, signaling minor inflation. Shallow VT (12 located events) and long-period (2 events) seismicity continued. Moderate levels of seismicity prevailed during 4-8 October, with 30-40 shallow (< 6 km depth) VT earthquakes each day, rare felt events (M 2-2.5), and a few long-period events. No deformation was detected by electronic tiltmeter.

An explosion around 2355 on 5 October caused heavy ashfall in Plymouth and in the SW part of the island. On 5 October the government announced that over the next two days they would evacuate Plymouth's home for elderly people and the hospital, sending residents to the N part of the island.

Two eruption signals were recorded at 0235 and 0347 on 8 October, and the EDM line at Tar River continued to show minor inflation. Seismicity began decreasing on 8-9 October, when 24 earthquakes were located beneath the volcano, with a few in the Centre Hills area. A small eruption at 1356 on 9 October generated light ashfall in Amersham and Upper Gages. Vent 2 was emitting a small amount of steam again during 7-9 October. Several episodes of broadband tremor may have been caused by increased steam emission. There were only 6 located earthquakes during 9-10 October, but several episodes of broadband tremor. Another minor eruption around 0012 on 10 October caused light ashfall in Plymouth. Visual helicopter inspection of the crater revealed significant steam emission and an increase in the size of the 25 September dome (20:9).

Formation of Vent 5 on 11 October. An ash eruption at 0021 on 11 October came from a new vent on the Tar River side of the Castle Peak dome, and damaged the EDM reflector at Tar River. A small earthquake swarm accompanied this vent formation. There were two more small ash eruptions later that day at 1540 and 1700. Although no significant changes to the dome were noted, steaming continued from its top; Vent 1 was also steaming, and appeared to be larger and deeper. Scientists noted that steam emissions from the crater had generally increased.

Three more ash eruptions occurred on 12 October, at 0901, 0955, and 1114. Continuous steam emission came from several areas in the crater and Vent 5. Two episodes of broadband tremor during 12-13 October were attributed to increased steam emission. Seismicity was low, with only 22 events during 11-13 October. No deformation was detected following this latest series of explosions.

Formation of Vent 6 on 14 October. An eruption at 0708 on 14 October created another vent on the NE flank of Castle Peak dome, generated a significant amount of ash, and ejected blocks as far as the edge of Long Ground, ~1 km E of the vent. A pilot reported that the plume may have reached ~2 km altitude. Another eruption at 1058 caused no reported ashfall. Two gas venting episodes at 2200 and 2345 on the 14th were associated with a small earthquake swarm and broadband tremor episodes. Vent 2 again emitted moderate amounts of steam, accompanied by a loud roaring sound, and Vent 5 continued to emit small amounts of steam. Seismicity decreased from 18 events on 13-14 October to five events accompanied by broadband tremor on 15-16 October.

Seismicity increased again on 16-17 October with 22 events clustered in two areas: one beneath the volcano and the other just E of Windy Hill. Steam-and-ash eruptions were recorded by the seismic network at 1757 and 2245 on 16 October, and at 1150 and 1522 on the 17th. There were also several episodes of broadband tremor and ~30 minutes of low-frequency harmonic tremor starting around 0414 on 17 October. Later that morning an aerial inspection of the crater showed no significant changes and little steaming. During a second flight at 1145, a large mudflow originating within the crater moat beyond Vent 2 was seen running rapidly down the Hot River and reaching the sea. This was probably the largest mudflow (in terms of volume of material) since the current activity began.

During 17-18 October there were 12 scattered earthquakes, several periods of broadband tremor, and some intermediate-frequency tremor. Ash eruptions were recorded at 1739 on the 17th and at 0530 on the 18th. The dome area continued to emit steam, but did not increase in size.

Formation of Vent 7 on 18 October. The 31 earthquakes during 18-19 October were clustered beneath the volcano. Several broadband tremor episodes and one period of low-frequency tremor were also detected. An eruption at 1621 on the 18th was associated with the formation of a new vent within the moat area of English's Crater, just SW of Vent 1. Another eruption was recorded at 2207 on the 18th. An explosive event around 1516 on 19 October generated a mudflow down the Hot River. During 19-20 October there were 28 earthquakes located; the events were scattered throughout S Montserrat, with some clustered beneath Soufriere Hills and St. Georges Hill.

There were 15 VT earthquakes on 20-21 October concentrated around the Long Ground/Soufriere Hills area. Several eruption episodes on 21 October resulted in ashfall that affected villages in the E. Ash fell at the airport for the first time, closing it briefly. No deformation was detected at the Tar River EDM or Long Ground tilt stations. Helicopter observations revealed that Vent 1 had extended E and was responsible for the previous ashfall. There was a small mud flow down the Tar River.

An average of 35 earthquakes/day occurred during 21-23 October. They were scattered throughout S Montserrat with some concentrations in the Long Ground-Tar River area and beneath the volcano. Some broadband tremor was also recorded. Visual observation of English's Crater both from helicopter and Tar River on 22 October revealed light steam emission from vents 2 and 5. When observed on the morning of 23 October, the September dome continued to steam, and was covered with sulfur deposits; it may also have grown since last observed on 20 October. Only one other small area SE of the dome was steaming. An eruption at 1337 on 23 October produced ash deposits within the summit crater and at Tar River. Steam emission increased after this eruption.

Seismicity decreased following this eruption to 10-14 events/day through 29 October, except for 22 events on the 27th. Locations were mainly beneath the volcano, although some were centered in the Windy Hill area and other parts of S Montserrat. An eruption at 1325 on 25 October caused ashfall in the Tar River area. Eruption signals were again recorded at 2314, 2321, and 2347 on 25 October, and at 0447 on the 26th; no ashfall was reported. Several episodes of low-amplitude broadband tremor were recorded during 25-26 October. EDM measurements at Tar River on 26 October indicated a continuation of the minor inflation observed during the past several weeks.

A steam-and-ash eruption at 1317 on 27 October from Vent 1 was followed by more than 30 minutes of low-frequency tremor. Eruption signals were recorded at 0855 and 2018 on 28 October, but no ashfall was reported. Steam emission from Vent 2 was observed that afternoon. Eruptions occurred again at 0326 and 0857 on the 29th, both followed by broadband tremor. An ash-and-steam plume was seen from the observatory following the 0857 event. Steam was seen coming from Vent 1 during a helicopter flight, but no major changes were noted.

Seismicity increased on 29-30 October to 55 events; most were clustered in a region just W of Windy Hill, with some scattered in the Centre Hills and Soufriere Hills areas. Eruption signals were recorded at 2110 on the 29th, and at 0244 and 1310 on the 30th. Two small long-period events were recorded after the first eruption. Ash from the first two of these eruptions was observed in English's Crater by helicopter. The third eruption, witnessed by scientists at the Tar River EDM site, produced a high column that caused ashfall over a wide area. This ashfall was the most significant since 21 August, and was accompanied by a density current of ash in the Gages valley. The morning of 31 October visual observations revealed a significant increase in Vent 1's size, but the 25 September dome appeared unchanged.

Seismicity decreased again the next day to 23 events, but they were located in clusters in the Tar River-Long Ground area and W of Windy Hill. There were also four long-period events and several episodes of broadband tremor. One eruption at 1118 on 31 October had no reported associated ashfall. EDM measurements at Tar River again showed a slight shortening, associated with continued slow inflation of the upper part of the volcanic edifice.

Only 14 seismic events were recorded during 31 October-1 November; most were located beneath the volcano with a few in the Windy Hill and Fox's Bay area. There were three long-period events and several episodes of broadband tremor. A small eruption at 1129 on 1 November caused ashfall within the summit crater.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Olde Towne.


Tengger Caldera (Indonesia) — October 1995 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Eruption from Bromo sends dark ash plume 700 m above the rim

On 9 September, dark gray emissions were observed reaching a height of 70 m above the rim of Bromo Crater. Volcanic tremor associated with the emission events (maximum amplitude of 1-3 mm) was recorded continuously beginning on 8 September, using a PS-2 seismograph installed 750 m from the active crater. After 10 September the plume was denser than during the March-May 1995 activity (20:03). An international Notice to Airmen (NOTAM) on the morning of 22 September reported an ash cloud with a top at ~3 km altitude and a SW drift. The height of the ash column gradually increased, peaking at 700 m (~3 km altitude) on 25 September (figure 2); during the emission, maximum tremor amplitude was 49 mm. A thick dark gray ash cloud caused ashfall in nearby villages, reported as far away as ~20 km E (around the area of Sukapura). The eruption vent, with a diameter of ~25 m, was located on the N part of the crater floor, similar to the last eruption. Ash eruptions were continuing at the end of October, but the activity was gradually decreasing. In October the maximum plume height was 200-450 m above the crater rim; the maximum tremor amplitude was 8-40 mm.

Figure (see Caption) Figure 2. Height of ash plume and maximum tremor amplitude at Bromo, Tengger Caldera, September-October 1995. Courtesy of VSI.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: W. Tjetjep, VSI; BOM Darwin, Australia.


Vulcano (Italy) — October 1995 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


Fumarolic activity notably diminished from previous years

Fumarolic activity, vigorous in the late 1980s and through 1994, notably diminished in 1995 (BGVN 20:04 and 20:06). During observations in September, the steam and gas output of the most conspicuous fumaroles, at the N rim of the Fossa Grande crater, was back to pre-1985 levels, and no longer formed sizeable gas plumes. Some of the formerly most vigorous fumaroles and steaming cracks were no longer active. Strong gas emission still occurred from fumaroles in the oversteepened and unstable Forgia Vecchia area, below the N rim of the Fossa Grande, and hydrothermal alteration continued to weaken the rock. Several blocks of strongly altered rock with volumes of ~100-500 m3 each had already detached and subsided by 10-20 cm, and may fall. However, it was uncertain whether they would reach the S margin of the village below the Fossa cone. Fumarolic activity also continued from numerous places on the beach N of the "Faraglione" and on the low isthmus connecting Vulcanello to the main body of Vulcano island. During a visit to the western-most (and most recent) crater of Vulcanello on 13 September, no evidence of recent fumarolic activity was found in its NE part where intense fumarolic activity took place until the mid-19th century.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages during the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated to the north over time. La Fossa cone, active throughout the Holocene and the location of most of the historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform forms a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning in 183 BCE and was connected to Vulcano in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. The latest eruption from Vulcano consisted of explosive activity from the Fossa cone from 1898 to 1900.

Information Contacts: Boris Behncke and Giada Giuntoli, Department of Volcanology and Petrology, GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany.


Yellowstone (United States) — October 1995 Citation iconCite this Report

Yellowstone

United States

44.43°N, 110.67°W; summit elev. 2805 m

All times are local (unless otherwise noted)


New mud volcano, minor mud flow, and associated thermal features

On the SW flank of Sour Creek resurgent dome W of Astringent Creek in the 0.6 Ma Yellowstone caldera, is an extensive, unnamed acid sulfate hydrothermal system (figures 2 and 3). Surface expression of the ~3 km2 thermal area consists of discontinuous high temperature altered ground, turbid springs, pools, seeps, fumaroles, mud pots, a large gas- and sulfur-rich acid lake, and numerous sublimated sulfur mound deposits interspersed among low-temperature forest-covered ground.

Figure (see Caption) Figure 2. Index map of the western United States showing the location of Yellowstone Caldera.
Figure (see Caption) Figure 3. Sketch map of Yellowstone Caldera indicating the location of the recent thermal features described in this and an earlier report.

During early 1990, a significant rise in temperature in the upper NW end of the hydrothermal system began killing old-growth pine trees. Within a year, a new super-heated fumarole emerged, blanketing the downed trees and roots with a layer of hydrothermally altered coarse sand from a directed blast to the N.

The temperature and volume of dry steam venting from the deep "shaft-like" vent steadily increased over the next three years, with the temperature reaching a maximum of 104.3°C on 8 October 1994, ~11°C higher than the local boiling point. The dynamic activity of the fumarole and surrounding hot ground was only monitored about twice a year over the three years following its 1990 inception due to its remote location and restricted access.

A similar progression was previously seen during 1985 in an area ~4.5 km to the E. This area, the upper E margin of the Mushpots thermal area, sits on the W flanks of Pelican Cone (BGVN 17:03). The progression went from new hot ground and dying mature forests, to the vigorous breakout of a dry, super-heated fumarole with progressively hotter temperatures over time, followed by sudden emergence of a large and violent mud volcano. Both the 1985 and recent thermal features had similar fluid compositions.

During 1992-94 the unnamed thermal area W of Astringent Creek developed a series of seven large craters that evolved as the Mushpots thermal area did in 1985. The craters were progressively younger towards the SW, ending at the site of the current new hot ground and fumarole (figure 4). In December 1993, National Park Service research geologist R. Hutchinson predicted that the newest superheated fumarole would soon evolve into a large mud volcano.

Figure (see Caption) Figure 4. Sketch map (scale approximate) showing the surface expression of an unnamed thermal area W of Astringent Creek in Yellowstone Caldera. Coordinates for map's center are at about 44°38'06"N, 110°16'44"W. Courtesy of R. Hutchinson.

As a part of routine monitoring, the thermal area W of Astringent Creek was inspected on 7 June 1995. The former 104.3°C fumarole was replaced by a large vigorous mud pot with ejecta extensively scattered around it. In addition, two new smaller roaring fumaroles at or slightly above boiling point, three new moderate-sized churning caldrons (pits containing hot, agitated aqueous fluids), numerous smaller muddy pools, collapse pits, and frying-pan springs (audibly degassing springs) were apparent then. Extensive areas of unstable quicksand-like saturated ground made up of scalding mud were found under the fallen trees. Some regions were heavily encrusted with sulfate minerals or sulfur crystals; others were covered by baked organic matter on the pine forest's floor.

Extending NW from the largest parasitic churning caldron, below the new mud volcano crater, was a spectacular white kaoline clay mud flow (figure 4, dark shading and arrow showing flow direction). It spread rapidly to reach an average width of 13.8 m in the first 55 meters of its length in dead forest grove and eventually terminated 114 m from its source on the open, acid thermal-basin floor.

The relative freshness of the ejected mud and incorporated semi-coarse sandy material indicated that the super-heated fumarole transformed into the powerful mud volcano between mid-April and mid-May. The distribution of large mud bombs suggested that their trajectories reached 20-30 m above the crater rim. Ejecta were seen along the following compass bearings with the stated maximum distances from the crater: N, 13.6 m; E, 30.2 m; S, 25.4 m; and W, 12.1 m.

When visited on both 7 June and 9 September, the mud volcano still continued to throw mud 0.5-1.5 m high from dozens of points around the crater floor. The mud volcano crater was 13.5-m long, 11.3-m wide, and 3.9-4.9 m deep. A conservative estimate of the crater volume was 315 m3. The total area covered by the ejecta and crater was ~2,100 m2. In the SW quarter of the crater a large, slightly elevated projection was visible with an arcuate line of dry, white, probably super-heated fumarole vents.

The largest parasitic caldron had numerous points of ebullition in its irregularly shaped pool (maximum dimensions of 10.8 x 7.9 m), with a water level 0.7-1.4 m below the former forest floor. The churning water was near boiling, opaque, light tan in color, and partially covered with brown organic-rich foam derived from cooked plant material.

Each of the caldrons were interpreted as being parasitic to the mud volcano crater because they appeared to have evolved shortly after the initial fumarole collapse and then subsequently drained much of its fluids. This relationship seems to have rapidly lowered the crater floor, preventing the accumulation of a thick ejecta cone on the crater rim.

The mud volcano crater, parasitic features, vents, and the associated hot ground remain extremely dangerous and unstable. Additional alterations in the creation of new or enlarged springs, and perhaps even another mud volcano crater are anticipated. With respect to geologic hazards, the acid sulfate thermal area should be checked again in the near future. Photographs were taken on 7 June.

The Yellowstone Plateau volcanic field developed through three volcanic cycles spanning two million years and included some of the world's largest known eruptions. Eruption of the > 2,500 km3 Huckleberry Ridge Tuff ~2.1 million years ago (Ma) created a caldera more than 75 km long. The Mesa Falls Tuff erupted around 1.3 Ma, forming the 25-km-wide Island Park Caldera at the first caldera's W end. A 0.6 Ma eruption deposited the 1,000 km3 Lava Creek Tuff and associated caldera collapse created the rest of the present 45 x 75 km caldera (figure 3). Resurgent doming then occurred; voluminous (1,000 km3) intercaldera rhyolitic lava flows were erupted between 150,000 and 70,000 years ago. Phreatic eruptions produced local tephra layers during the early Holocene. Distinctive geysers, mud pots, hot springs, and other hydrothermal features within Yellowstone caldera helped lead to the establishment of the National Park in 1872.

Geologic Background. The Yellowstone Plateau volcanic field developed through three volcanic cycles spanning two million years that included some of the world's largest known eruptions. Eruption of the over 2450 km3 Huckleberry Ridge Tuff about 2.1 million years ago created the more than 75-km-long Island Park caldera. The second cycle concluded with the eruption of the Mesa Falls Tuff around 1.3 million years ago, forming the 16-km-wide Henrys Fork caldera at the western end of the first caldera. Activity subsequently shifted to the present Yellowstone Plateau and culminated 640,000 years ago with the eruption of the over 1000 km3 Lava Creek Tuff and the formation of the present 45 x 85 km caldera. Resurgent doming subsequently occurred at both the NE and SW sides of the caldera and voluminous (1000 km3) intracaldera rhyolitic lava flows were erupted between 150,000 and 70,000 years ago. No magmatic eruptions have occurred since the late Pleistocene, but large hydrothermal eruptions took place near Yellowstone Lake during the Holocene. Yellowstone is presently the site of one of the world's largest hydrothermal systems including Earth's largest concentration of geysers.

Information Contacts: Roderick A. Hutchinson, National Park Service, P.O. Box 168, Yellowstone National Park, Wyoming 82190, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports