Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Erta Ale (Ethiopia) Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Rincon de la Vieja (Costa Rica) Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Manam (Papua New Guinea) Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Stromboli (Italy) Strombolian activity continues at both summit crater areas, September-December 2019

Semeru (Indonesia) Ash plumes and thermal anomalies continue during September 2019-February 2020

Popocatepetl (Mexico) Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Santa Maria (Guatemala) Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

Villarrica (Chile) Brief increase in explosions, mid-September 2019; continued thermal activity through February 2020

Semisopochnoi (United States) Intermittent small explosions detected in December 2019 through mid-March 2020

Ubinas (Peru) Explosions produced ash plumes in September 2019; several lahars generated in January and February 2020

Yasur (Vanuatu) Strombolian activity continues during June 2019 through February 2020

Cleveland (United States) Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020



Erta Ale (Ethiopia) — May 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Erta Ale is a shield volcano located in Ethiopia and contains multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. Surficial lava flow activity continued within the southeastern caldera during November 2019 until early April 2020; source information was primarily from various satellite data.

The number of days that thermal anomalies were detected using MODIS data in MODVOLC and NASA VIIRS satellite data was notably higher in November and December 2019 (figure 96); the number of thermal anomalies in the Sentinel-2 thermal imagery was substantially lower due to the presence of cloud cover. Across all satellite data, thermal anomalies were identified for 29 days in November, followed by 30 days in December. After December 2019, the number of days thermal anomalies were detected decreased; hotspots were detected for 17 days in January 2020 and 20 days in February. By March, these thermal anomalies became rare until activity ceased. Thermal anomalies were identified during 1-4 March, with weak anomalies seen again during 26 March-8 April 2020.

Figure (see Caption) Figure 96. Graph comparing the number of thermal alerts using calendar dates using MODVOLC, NASA VIIRS, and Sentinel-2 satellite data for Erta Ale during November 2019-March 2020. Data courtesy of HIGP - MODVOLC Thermal Alerts System, NASA Worldview using the “Fire and Thermal Anomalies” layer, and Sentinel Hub Playground.

MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent strong thermal anomalies from 18 April through December 2019 (figure 97). Between early August 2019 and March 2020, these thermal signatures were detected at distances less than 5 km from the summit. In late December the thermal intensity dropped slightly before again increasing, while at the same time moving slightly closer to the summit. Thermal anomalies then became more intermittent and steadily decreased in power over the next two months.

Figure (see Caption) Figure 97. Two time-series plots of thermal anomalies from Erta Ale from 18 April 2019 through 18 April 2020 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently until early January 2020 when both the power and frequency visibly declined. The lower plot (B) shows these anomalies as a function of distance from the summit, including a sudden decrease in distance (measured in kilometers) in early August 2019, reflecting a change in the location of the lava flow outbreak. A smaller distance change can be identified at the end of December 2019. Courtesy of MIROVA.

Unlike the obvious distal breakouts to the NE seen previously (BGVN 44:04 and 44:11), infrared satellite imagery during November-December 2019 showed only a small area with a thermal anomaly near the NE edge of the Southeast Caldera (figure 98). A thermal alert was seen at that location using the MODVOLC system on 28 December, but the next day it had been replaced by an anomaly about 1.5 km WSW near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018 (BGVN 43:04). The thermal anomaly that was detected in the summit caldera was no longer visible after 9 January 2020, based on Sentinel-2 imagery. The exact location of lava flows shifted within the same general area during January and February 2020 and was last detected by Sentinel-2 on 4 March. After about two weeks without detectable thermal activity, weak unlocated anomalies were seen in VIIRS data on 26 March and in MODIS data on the MIROVA system four times between 26 March and 8 April. No further anomalies were noted through the rest of April 2020.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between November 2019 and March 2020 showing small lava flow outbreaks (bright yellow-orange) just NE of the southeastern calderas. A thermal anomaly can be seen in the summit crater on 15 November and very faintly on 20 December 2019. Imagery on 19 January 2020 showed a small thermal anomaly near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018. The last weak thermal hotspot was detected on 4 March (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Rincon de la Vieja (Costa Rica) — April 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Rincón de la Vieja is a remote volcanic complex in Costa Rica containing an acid lake that has regularly generated weak phreatic explosions since 2011 (BGVN 44:08). The most recent eruptive period occurred during late March-early June 2019, primarily consisting of small phreatic explosions, minor deposits on the N crater rim, and gas-and-steam emissions. The report period of August 2019-March 2020 was characterized by similar activity, including small phreatic explosions, gas-and-steam plumes, ash and lake sediment ejecta, and volcanic tremors. The most significant activity during this time occurred on 30 January, where a phreatic explosion ejected ash and lake sediment above the crater rim, resulting in a pyroclastic flow which gradually turned into a lahar. Information for this reporting period of August 2019-March 2020 comes from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins.

According to OVSICORI-UNA, a small hydrothermal eruption was recorded on 1 August 2019. The seismicity was low with a few long period (LP) earthquakes around 1 August and intermittent background tremor. No explosions or emissions were reported through 11 September; seismicity remained low with an occasional LP earthquake and discontinuous tremor. The summit’s extension that has been recorded since the beginning of June stopped, and no significant deformation was observed in August.

Starting again in September 2019 and continuing intermittently through the reporting period, some deformation was observed at the base of the volcano as well as near the summit, according to OVSICORI-UNA. On 12 September an eruption occurred that was followed by volcanic tremors that continued through 15 September. In addition to these tremors, vigorous sustained gas-and-steam plumes were observed. The 16 September weekly bulletin did not describe any ejecta produced as a result of this event.

During 1-3 October small phreatic eruptions were accompanied by volcanic tremors that had decreased by 5 October. In November, volcanism and seismicity were relatively low and stable; few LP earthquakes were reported. This period of low activity remained through December. At the end of November, horizontal extension was observed at the summit, which continued through the first half of January.

Small phreatic eruptions were recorded on 2, 28, and 29 January 2020, with an increase in seismicity occurring on 27 January. On 30 January at 1213 a phreatic explosion produced a gas column that rose 1,500-2,000 m above the crater, with ash and lake sediment ejected up to 100 m above the crater. A news article posted by the Universidad de Costa Rica (UCR) noted that this explosion generated pyroclastic flows that traveled down the N flank for more than 2 km from the crater. As the pyroclastic flows moved through tributary channels, lahars were generated in the Pénjamo river, Zanjonuda gorge, and Azufrosa, traveling N for 4-10 km and passing through Buenos Aires de Upala (figure 29). Seismicity after this event decreased, though there were still some intermittent tremors.

Figure (see Caption) Figure 29. Photo of a lahar generated from the 30 January 2020 eruption at Rincon de la Vieja. Photo taken by Mauricio Gutiérrez, courtesy of UCR.

On 17, 24, and 25 February and 11, 17, 19, 21, and 23 March, small phreatic eruptions were detected, according to OVSICORI-UNA. Geodetic measurements observed deformation consisting of horizontal extension and inflation near the summit in February-March. By the week of 30 March, the weekly bulletin reported 2-3 small eruptions accompanied by volcanic tremors occurred daily during most days of the week. None of these eruptions produced solid ejecta, pyroclastic flows, or lahars, according to the weekly OVSICORI-UNA bulletins during February-March 2020.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Luis Enrique Brenes Portuguéz, University of Costa Rica, Ciudad Universitaria Rodrigo Facio Brenes, San José, San Pedro, Costa Rica (URL: https://www.ucr.ac.cr/noticias/2020/01/30/actividad-del-volcan-rincon-de-la-vieja-es-normal-segun-experto.html).


Manam (Papua New Guinea) — May 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption, ongoing since June 2014, produced multiple large explosive eruptions during January-September 2019, including two 15-km-high ash plumes in January, repeated SO2 plumes each month, and another 15.2 km-high ash plume in June that resulted in ashfall and evacuations of several thousand people (BGVN 44:10).

This report covers continued activity during October 2019 through March 2020. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

A few modest explosions with ash emissions were reported in early October and early November 2019, and then not again until late March 2020. Although there was little explosive activity during the period, thermal anomalies were recorded intermittently, with low to moderate activity almost every month, as seen in the MODIS data from MIROVA (figure 71) and also in satellite imagery. Sulfur dioxide emissions persisted throughout the period producing emissions greater than 2.0 Dobson Units that were recorded in satellite data 3-13 days each month.

Figure (see Caption) Figure 71. MIROVA thermal anomaly data for Manam from 17 June 2019 through March 2020 indicate continued low and moderate level thermal activity each month from August 2019 through February 2020, after a period of increased activity in June and early July 2019. Courtesy of MIROVA.

The Darwin VAAC reported an ash plume in visible satellite imagery moving NW at 3.1 km altitude on 2 October 2019. Weak ash emissions were observed drifting N for the next two days along with an IR anomaly at the summit. RVO reported incandescence at night during the first week of October. Visitors to the summit on 18 October 2019 recorded steam and fumarolic activity at both of the summit craters (figure 72) and recent avalanche debris on the steep slopes (figure 73).

Figure (see Caption) Figure 72. Steam and fumarolic activity rose from Main crater at Manam on 18 October 2019 in this view to the south from a ridge north of the crater. Google Earth inset of summit shows location of photograph. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.
Figure (see Caption) Figure 73. Volcanic debris covered an avalanche chute on the NE flank of Manam when visited by hikers on 18 October 2019. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.

On 2 November, a single large explosion at 1330 local time produced a thick, dark ash plume that rose about 1,000 m above the summit and drifted NW. A shockwave from the explosion was felt at the Bogia Government station located 40 km SE on the mainland about 1 minute later. RVO reported an increase in seismicity on 6 November about 90 minutes before the start of a new eruption from the Main Crater which occurred between 1600 and 1630; it produced light to dark gray ash clouds that rose about 1,000 m above the summit and drifted NW. Incandescent ejecta was visible at the start of the explosion and continued with intermittent strong pulses after dark, reaching peak intensity around 1900. Activity ended by 2200 that evening. The Darwin VAAC reported a discrete emission observed in satellite imagery on 8 November that rose to 4.6 km altitude and drifted WNW, although ground observers confirmed that no eruption took place; emissions were only steam and gas. There were no further reports of explosive activity until the Darwin VAAC reported an ash emission in visible satellite imagery on 20 March 2020 that rose to 3.1 km altitude and drifted E for a few hours before dissipating.

Although explosive activity was minimal during the period, SO2 emissions, and evidence for continued thermal activity were recorded by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite captured evidence each month of SO2 emissions exceeding two Dobson Units (figure 74). The most SO2 activity occurred during October 2019, with 13 days of signatures over 2.0 DU. There were six days of elevated SO2 each month in November and December, and five days in January 2020. During February and March, activity was less, with smaller SO2 plumes recording more than 2.0 DU on three days each month. Sentinel-2 satellite imagery recorded thermal anomalies at least once from one or both of the summit craters each month between October 2019 and March 2020 (figure 75).

Figure (see Caption) Figure 74. SO2 emissions at Manam exceeded 2 Dobson Units multiple days each month between October 2019 and March 2020. On 3 October 2019 (top left) emissions were also measured from Ulawun located 700 km E on New Britain island. On 30 November 2019 (top middle), in addition to a plume drifting N from Manam, a small SO2 plume was detected at Bagana on Bougainville Island, 1150 km E. The plume from Manam on 2 December 2019 drifted ESE (top right). On 26 January 2020 the plume drifted over 300 km E (bottom left). The plumes measured on 29 February and 4 March 2020 (bottom middle and right) only drifted a few tens of kilometers before dissipating. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 75. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, and 8a) showed thermal anomalies at one or both of Manam’s summit craters each month during October 2019-March 2020. On 17 October 2019 (top left) a bright anomaly and weak gas plume drifted NW from South crater, while a dense steam plume and weak anomaly were present at Main crater. On 25 January 2020 (top right) the gas and steam from the two craters were drifting E; the weaker Main crater thermal anomaly is just visible at the edge of the clouds. A clear image on 5 March 2020 (bottom left) shows weak plumes and distinct thermal anomalies from both craters; on 20 March (bottom right) the anomalies are still visible through dense cloud cover that may include steam from the crater vents as well. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulkanologische Gesellschaft (URL: https://twitter.com/vulkanologen/status/1194228532219727874, https://twitter.com/vulkanologen/status/1193788836679225344); Claudio Jung, (URL: https://www.facebook.com/claudio.jung.1/posts/10220075272173895, https://www.instagram.com/jung.claudio/).


Stromboli (Italy) — April 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit crater areas, September-December 2019

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island (figure 168). Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; September-December 2019 is covered in this report.

Figure (see Caption) Figure 168. This shaded relief map of Stromboli’s crater area was created from images acquired by drone on 9 July 2019 (In collaboration with GEOMAR drone group, Helmholtz Center for Ocean Research, Kiel, Germany). Inset shows Stromboli Island, the black rectangle indicates the area of the larger image, the black curved and the red hatched lines indicate, respectively, the morphological escarpment and the crater edges. Courtesy of INGV (Rep. No. 50/2019, Stromboli, Bollettino Settimanale, 02/12/2019 - 08/12/2019, data emissione 10/12/2019).

Activity was very consistent throughout the period of September-December 2019. Explosion rates ranged from 2-36 per hour and were of low to medium-high intensity, producing material that rose from less than 80 to over 150 m above the vents on occasion (table 7). The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the Terrazza Craterica, and also down the Sciara del Fuoco towards the coast. After the explosions of early July and late August, thermal activity decreased to more moderate levels that persisted throughout the period as seen in the MIROVA Log Radiative Power data (figure 169). Sentinel-2 satellite imagery supported descriptions of the constant glow at the summit, revealing incandescence at both summit areas, each showing repeating bursts of activity throughout the period (figure 170).

Table 7. Monthly summary of activity levels at Stromboli, September-December 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2019 Explosion rates varied from 11-36 events per hour and were of low- to medium intensity (producing 80-120 m high ejecta). Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the terrace, and also down the Sciara del Fuoco towards the coast.
Oct 2019 Typical Strombolian activity and degassing continued. Explosions rates varied from 2-21 events per hour. Low intensity activity was common in the N area (ejecta less than 80 m high) and low to moderate intensity activity was typical in the CS area, with a few explosions rising over 150 m high. Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. Some of the explosions sent ejecta down the Sciara del Fuoco.
Nov 2019 Typical Strombolian activity and degassing continued. Explosion rates varied from 11-23 events per hour with ejecta rising usually 80-150 m above the vents. Occasional explosions rose 250 m high. In the N area, explosions were generally low intensity with coarse material (lapilli and bombs). In many explosions, ejecta covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. In the CS area, coarse material was mixed with fine and some explosions sent ejecta onto the upper part of the Sciara del Fuoco.
Dec 2019 Strombolian activity and degassing continued. Explosion rates varied from 12-26 per hour. In the N area, explosion intensity was mainly medium-low (less than 150 m) with coarse ejecta while in the CS area it was usually medium-high (more than 150 m) with both coarse and fine ejecta. In many explosions, debris covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. Spattering activity was noted in the southern vents of the N area.
Figure (see Caption) Figure 169. Thermal activity at Stromboli was high during July-August 2019, when two major explosions occurred. Activity continued at more moderate levels through December 2019 as seen in the MIROVA graph of Log Radiative Power from 8 June through December 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 170. Stromboli reliably produced strong thermal signals from both of the summit vents throughout September-December 2019 and has done so since long before Sentinel-2 satellite imagery was able to detect it. Image dates are (top, l to r) 5 September, 15 October, 20 October, (bottom l to r) 14 November, 14 December 2019, and 3 January 2020. Sentinel-2 imagery uses Atmospheric penetration rendering with bands 12, 11, and 8A, courtesy of Sentinel Hub Playground.

After a major explosion with a pyroclastic flow on 28 August 2019, followed by lava flows that reached the ocean in the following days (BGVN 44:09), activity diminished in early September to levels more typically seen in recent times. This included Strombolian activity from vents in both the N and CS areas that sent ejecta typically 80-150 m high. Ejecta from the N area generally consisted of lapilli and bombs, while the material from the CS area was often finer grained with significant amounts of lapilli and ash. The number of explosive events remained high in September, frequently reaching 25-30 events per hour. The ejecta periodically landed outside the craters on the Terrazza Craterica and even traveled partway down the Sciara del Fuoco. An inspection on 7 September by INGV revealed four eruptive vents in the N crater area and five in the S crater area (figure 171). The most active vents in the N area were N1 with mostly ash emissions and N2 with Strombolian explosions rich in incandescent coarse material that sometimes rose well above 150 m in height. In the S area, S1 and S2 produced jets of lava that often reached 100 m high. A small cone was observed around N2, having grown after the 28 August explosion. Between 11 and 13 September aerial surveys with drones produced detailed visual and thermal imagery of the summit (figure 172).

Figure (see Caption) Figure 171. Video of the Stromboli summit taken with a thermal camera on 7 September 2019 from the Pizzo sopra la Fossa revealed four active vents in the N area and five active vents in the S area. Images prepared by Piergiorgio Scarlato, courtesy of INGV (Rep. No. 37.2/2019, Stromboli, Bollettino Giornaliero del 10/09/2019).
Figure (see Caption) Figure 172. An aerial drone survey on 11 September 2019 at Stromboli produced a detailed view of the N and CS vent areas (left) and thermal images taken by a drone survey on 13 September (right) showed elevated temperatures down the Sciara del Fuoco in addition to the vents in the N and CS areas. Images by E. De Beni and M. Cantarero, courtesy of INGV (Rep. No. 37.5/2019, Stromboli, Bollettino Giornaliero del 13/09/2019).

Strombolian activity from the N crater on 28 September and 1 October 2019 produced blocks and debris that rolled down the Sciara del Fuoco and reached the ocean (figure 173). Explosive activity from the CS crater area sometimes produced ejecta over 150 m high (figure 174). A survey on 26 November revealed that a layer of ash 5-10 cm thick had covered the bombs and blocks that were deposited on the Pizzo Sopra la Fossa during the explosions of 3 July and 28 August (figure 175). On the morning of 27 December a lava flow emerged from the CS area and traveled a few hundred meters down the Sciara del Fuoco. The frequency of explosive events remained relatively constant from September through December 2019 after decreasing from higher levels during July and August (figure 176).

Figure (see Caption) Figure 173. Strombolian activity from vents in the N crater area of Stromboli produced ejecta that traveled all the way to the bottom of the Sciara del Fuoco and entered the ocean. Top images taken 28 September 2019 from the 290 m elevation viewpoint by Rosanna Corsaro. Bottom images captured on 1 October from the webcam at 400 m elevation. Courtesy of INGV (Rep. No. 39.0/2019 and Rep. No. 40.3, Stromboli, Bollettino Giornaliero del 29/09/2019 and 02/10/2019).
Figure (see Caption) Figure 174. Ejecta from Strombolian activity at the CS crater area of Stromboli rose over 150 m on multiple occasions. The webcam located at the 400 m elevation site captured this view of activity on 8 November 2019. Courtesy of INGV (Rep. No. 45.5/2019, Stromboli, Bollettino Giornaliero del 08/11/2019).
Figure (see Caption) Figure 175. The Pizzo Sopra la Fossa area at Stromboli was covered with large blocks and pyroclastic debris on 6 September 2019, a week after the major explosion of 28 August (top). By 26 November, 5-10 cm of finer ash covered the surface; the restored webcam can be seen at the far right edge of the Pizzo (bottom). Courtesy of INGV (Rep. No. 49/2019, Stromboli, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).
Figure (see Caption) Figure 176. The average hourly frequency of explosive events at Stromboli captured by surveillance cameras from 1 June 2019 through 5 January 2020 remained generally constant after the high levels seen during July and August. The Total value (blue) is the sum of the average daily hourly frequency of all explosive events produced by active vents.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semeru (Indonesia) — April 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes and thermal anomalies continue during September 2019-February 2020

Semeru is a stratovolcano located in East Java, Indonesia containing an active Jonggring-Seloko vent at the Mahameru summit. Common activity has consisted of ash plumes, pyroclastic flows and avalanches, and lava flows that travel down the SE flank. This report updates volcanism from September 2019 to February 2020 using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The dominant activity at Semeru for this reporting period consists of ash plumes, which were frequently reported by the Darwin VAAC. An eruption on 10 September 2019 produced an ash plume rising 4 km altitude drifting WNW, as seen in HIMAWARI-8 satellite imagery. Ash plumes continued to rise during 13-14 September. During the month of October the Darwin VAAC reported at least six ash plumes on 13, 14, 17-18, and 29-30 October rising to a maximum altitude of 4.6 km and moving primarily S and SW. Activity in November and December was relatively low, dominated mostly by strong and frequent thermal anomalies.

Volcanism increased in January 2020 starting with an eruption on 17 and 18 January that sent a gray ash plume up to 4.6 km altitude (figure 38). Eruptions continued from 20 to 26 January, producing ash plumes that rose up to 500 m above the crater that drifted in different directions. For the duration of the month and into February, ash plumes occurred intermittently. On 26 February, incandescent ejecta was ejected up to 50 m and traveled as far as 1000 m. Small sulfur dioxide emissions were detected in the Sentinel 5P/TROPOMI instrument during 25-27 February (figure 39). Lava flows during 27-29 February extended 200-1,000 m down the SE flank; gas-and-steam and SO2 emissions accompanied the flows. There were 15 shallow volcanic earthquakes detected on 29 February in addition to ash emissions rising 4.3 km altitude drifting ESE.

Figure (see Caption) Figure 38. Ash plumes rising from the summit of Semeru on 17 (left) and 18 (right) January 2020. Courtesy of MAGMA Indonesia and via Ø.L. Andersen's Twitter feed (left).
Figure (see Caption) Figure 39. Small SO2 plumes from Semeru were detected by the Sentinel 5P/TROPOMI instrument during 25 (left) and 26 (right) February 2020. Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively weak and intermittent thermal anomalies occurring during May to August 2019 (figure 40). The frequency and power of these thermal anomalies significantly increased during September to mid-December 2019 with a few hotspots occurring at distances greater than 5 km from the summit. These farther thermal anomalies to the N and NE of the volcano do not appear to be caused by volcanic activity. There was a brief break in activity during mid-December to mid-January 2020 before renewed activity was detected in early February 2020.

Figure (see Caption) Figure 40. Thermal anomalies were relatively weak at Semeru during 30 April 2019-August 2019, but significantly increased in power and frequency during September to early December 2019. There was a break in activity from mid-December through mid-January 2020 with renewed thermal anomalies around February 2020. Courtesy of MIROVA.

The MODVOLC algorithm detected 25 thermal hotspots during this reporting period, which took place during 25 September, 18 and 21 October 2019, 29 January, and 11, 14, 16, and 23 February 2020. Sentinel-2 thermal satellite imagery shows intermittent hotspots dominantly in the summit crater throughout this reporting period (figure 41).

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite imagery detected intermittent thermal anomalies (bright yellow-orange) at the summit of Semeru, which included some lava flows in late January to early February 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Popocatepetl (Mexico) — April 2020 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Frequent historical eruptions have been reported from Mexico's Popocatépetl going back to the 14th century. Activity increased in the mid-1990s after about 50 years of quiescence, and the current eruption, ongoing since January 2005, has included numerous episodes of lava-dome growth and destruction within the 500-m-wide summit caldera. Multiple emissions of steam and gas occur daily, rising generally 1-3 km above the summit at about 5,400 m elevation; many contain small amounts of ash. Larger, more explosive events with ash plumes and incandescent ejecta landing on the flanks occur frequently. Activity through August 2019 was typical of the ongoing eruption with near-constant emissions of water vapor, gas, and minor ash, as well as multiple explosions with ash plumes and incandescent blocks scattered on the flanks (BGVN 44:09). This report covers similar activity from September 2019 through February 2020. Information comes from daily reports provided by México's Centro Nacional de Prevención de Desastres (CENAPRED); ash plumes are reported by the Washington Volcanic Ash Advisory Center (VAAC). Satellite visible and thermal imagery and SO2 data also provide helpful observations of activity.

Activity summary. Activity at Popocatépetl during September 2019-February 2020 continued at the high levels that have been ongoing for many years, characterized by hundreds of daily low-intensity emissions that included steam, gas, and small amounts of ash, and periods with multiple daily minor and moderate explosions that produce kilometer-plus-high ash plumes (figure 140). The Washington VAAC issued multiple daily volcanic ash advisories with plume altitudes around 6 km for many, although some were reported as high as 8.2 km. Hundreds of minutes of daily tremor activity often produced ash emissions as well. Incandescent ejecta landed 500-1,000 m from the summit frequently. The MIROVA thermal anomaly data showed near-constant moderate to high levels of thermal energy throughout the period (figure 141).

Figure (see Caption) Figure 140. Emissions continued at a high rate from Popocatépetl throughout September 2019-February 2020. Daily low-intensity emissions numbered usually in the hundreds (blue, left axis), while less frequent minor (orange) and moderate (green) explosions, plotted on the right axis, occurred intermittently through November 2019, and increased again during February 2020. Data was compiled from CENAPRED daily reports.
Figure (see Caption) Figure 141. MIROVA log radiative power thermal data for Popocatépetl from 1 May 2019 through February 2020 showed a constant output of moderate energy the entire time. Courtesy of MIROVA.

Sulfur dioxide emissions were measured with satellite instruments many days of each month from September 2019 thru February 2020. The intensity and drift directions varied significantly; some plumes remained detectable hundreds of kilometers from the volcano (figure 142). Plumes were detected almost daily in September, and on most days in October. They were measured at lower levels but often during November, and after pulses in early and late December only small plumes were visible during January 2020. Intermittent larger pulses returned in February. Dome growth and destruction in the summit crater continued throughout the period. A small dome was observed inside the summit crater in late September. Dome 85, 210-m-wide, was observed inside the summit crater in early November. Satellite imagery captured evidence of dome growth and ash emissions throughout the period (figure 143).

Figure (see Caption) Figure 142. Sulfur dioxide emissions from Popocatépetl were frequent from September 2019 through February 2020. Plumes drifted SW on 7 September (top left), 30 October (top middle), and 21 February (bottom right). SO2 drifted N and NW on 26 November (top right). On 2 December (bottom left) a long plume of sulfur dioxide hundreds of kilometers long drifted SW over the Pacific Ocean while the drift direction changed to NW closer to the volcano. The SO2 plumes measured in January (bottom center) were generally smaller than during the other months covered in this report. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 143. Sentinel-2 satellite imagery of Popocatépetl during November 2019-February 2020 provided evidence for ongoing dome growth and explosions with ash emissions. Top left: a ring of incandescence inside the summit crater on 8 November 2019 was indicative of the growth of dome 85 observed by CENAPRED. Top middle: incandescence on 8 December inside the summit crater was typical of that observed many times during the period. Top right: a dense, narrow ash plume drifted N from the summit on 17 January 2020. Bottom left: Snow cover made ashfall on 6 February easily visible on the E flank. On 11 February, the summit crater was incandescent and nearly all the snow was covered with ash. Bottom right: a strong thermal anomaly and ash emission were captured on 21 February. Bottom left and top right images use Natural color rendering (bands 4, 3, 2); other images use Atmospheric penetration rendering to show infrared signal (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during September-November 2019. On 1 September 2019 minor ashfall was reported in the communities of Atlautla, Ozumba, Juchitepec, and Tenango del Aire in the State of Mexico. The ash plumes rose less than 2 km above the summit and incandescent ejecta traveled less than 100 m from the summit crater. Twenty-two minor and three moderate explosions were recorded on 4-5 September along with minor ashfall in Juchitepec, Tenango del Aire, Tepetlixpa, and Atlautla. During a flyover on 5 September, officials did not observe a dome within the crater, and the dimensions remained the same as during the previous visit (350 m in diameter and 150 m deep) (figure 144). Ashfall was reported in Tlalmanalco and Amecameca on 6 September. The following day incandescent ejecta was visible on the flanks near the summit and ashfall was reported in Amecameca, Ayapango, and Tenango del Aire. The five moderate explosions on 8 September produced ash plumes that rose as high as 2 km above the summit, and incandescent ejecta on the flanks. Explosions on 10 September sent ejecta 500 m from the crater. Eight explosions during 20-21 September produced ejecta that traveled up to 1.5 km down the flanks (figure 145). During an overflight on 27 September specialists from the National Center for Disaster Prevention (CENAPRED ) of the National Coordination of Civil Protection and researchers from the Institute of Geophysics of UNAM observed a new dome 30 m in diameter; the overall crater had not changed size since the overflight in early September.

Figure (see Caption) Figure 144. CENAPRED carried out overflights of Popocatépetl on 5 (left) and 27 September (right) 2019; the crater did not change in size, but a new dome 30 m in diameter was visible on 27 September. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 y 27 de septiembre).
Figure (see Caption) Figure 145. Ash plumes at Popocatépetl on 19 (left) and 20 (right) September 2019 rose over a kilometer above the summit before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19 y 20 de septiembre).

Fourteen explosions were reported on 2 October 2019. The last one produced an ash plume that rose 2 km above the summit and sent incandescent ejecta down the E slope (figure 146). Ashfall was reported in the municipalities of Atlautla Ozumba, Ayapango and Ecatzingo in the State of Mexico. Explosions on 3 and 4 October also produced ash plumes that rose between 1 and 2 km above the summit and sent ejecta onto the flanks. Additional incandescent ejecta was reported on 6, 7, 15, and 19 October. The communities of Amecameca, Tenango del Aire, Tlalmanalco, Cocotitlán, Temamatla, and Tláhuac reported ashfall on 10 October; Amecameca reported more ashfall on 12 October. On 22 October slight ashfall appeared in Amecameca, Tenango del Aire, Tlalmanalco, Ayapango, Temamatla, and Atlautla.

Figure (see Caption) Figure 146. Incandescent ejecta at Popocatépetl traveled down the E slope on 2 October 2019 (left); an ash plume two days later rose 2 km above the summit (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 2 y 4 de octubre).

During 2-3 November 2019 there was 780 minutes of tremor reported in four different episodes. The seismicity was accompanied by ash emissions that drifted W and NW and produced ashfall in numerous communities, including Amecameca, Juchitepec, Ozumba, Tepetlixpa, and Atlautla in the State of México, in Ayapango and Cuautla in the State of Morelos, and in the municipalities of Tlahuac, Tlalpan, and Xochimilco in Mexico City. A moderate explosion on 4 November sent incandescent ejecta 2 km down the slopes and produced an ash plume that rose 1.5 km and drifted NW. Minor ashfall was reported in Tlalmanalco, Amecameca, and Tenango del Aire, State of Mexico. Similar ash plumes from explosions occurred the following day. Scientists from CENAPRED and the Institute of Geophysics of UNAM observed dome number 85 during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick, with an irregular surface (figure 147). Multiple explosions on 6 and 7 November produced incandescent ejecta; a moderate explosion late on 11 November produced ejecta that traveled 1.5 km from the summit and produced an ash plume 2 km high (figure 148). A lengthy period of constant ash emission that drifted E was reported on 18 November. A moderate explosion on 28 November sent incandescent fragments 1.5 km down the slopes and ash one km above the summit.

Figure (see Caption) Figure 147. A new dome was visible inside the summit crater at Popocatépetl during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 de noviembre).
Figure (see Caption) Figure 148. Ash emissions and explosions with incandescent ejecta continued at Popocatépetl during November 2019. The ash plume on 1 November changed drift direction sharply a few hundred meters above the summit (left). Incandescent ejecta traveled 1.5 km down the flanks on 11 November (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 1 y 12 de noviembre).

Activity during December 2019-February 2020. Throughout December 2019 weak emissions of steam and gas were reported daily, sometimes with minor amounts of ash, and minor explosions were only reported on 21 and 27 December. On 21 December two new high-resolution webcams were installed around Popocatépetl, one 5 km from the crater at the Tlamacas station, and the second in San Juan Tianguismanalco, 20 km away. Ash emissions and incandescent ejecta 800 m from the summit were observed on 25 December (figure 149). Incandescence at night was reported during 27-29 December.

Figure (see Caption) Figure 149. Incandescent ejecta moved 800 m down the flanks of Popocatépetl during explosions on 25 December 2019 (left); weak emissions of steam, gas, and minor ash were visible on 27 December and throughout the month. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 25 y 27 de diciembre).

Continuous emissions of water vapor and gas with low ash content were typical daily during January 2020. A moderate explosion on 9 January produced an ash plume that rose 3 km from the summit and drifted NE. In addition, incandescent ejecta traveled 1 km from the crater rim. A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (figure 150). The first of two explosions late on 27 January produced ejecta that traveled 500 m and a 1-km-high ash plume. Constant incandescence was observed overnight on 29-30 January.

Figure (see Caption) Figure 150. Although fewer explosions were recorded at Popocatépetl during January 2020, activity continued. An ash plume on 19 January rose over a kilometer above the summit (top left). A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (top right). Smaller emissions with steam, gas, and ash were typical many days, including on 22 (bottom left) and 31 (bottom right) January 2019. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19, 21, 22 y 31 de enero).

A moderate explosion on 5 February 2020 produced an ash plume that rose 1.5 km and drifted NNE. Explosions on 10 and 13 February sent ejecta 500 m down the flanks (figure 151). During an overflight on 18 February scientists noted that the internal crater maintained a diameter of 350 m and its approximate depth was 100-150 m; the crater was covered by tephra. For most of the second half of February the volcano had a continuous emission of gases with minor amounts of ash. In addition, multiple explosions produced ash plumes that rose 400-1,200 m above the crater and drifted in several different directions.

Figure (see Caption) Figure 151. Ash emissions and explosions continued at Popocatépetl during February 2020. Dense ash drifted near the snow-covered summit on 6 February (top left). Incandescent ejecta traveled 500 m down the flanks on 13 February (top right). Ash plumes billowed from the summit on 18 and 22 February (bottom row). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 6, 15, 18 y 22 de febrero).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2020 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. Ash explosions, pyroclastic, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during September 2019-February 2020, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Constant fumarolic activity with steam and gas persisted from the Caliente dome throughout September 2019-February 2020. Explosions occurred multiple times per day, producing ash plumes that rose to altitudes of 3.1-3.5 km and usually drifted a few kilometers before dissipating. Several lahars during September and October carried volcanic blocks, ash, and debris down major drainages. Periodic ashfall was reported in communities within 10 km of the volcano. An increase in thermal activity beginning in November (figure 101) resulted in an increased number of observations of incandescence visible at night from the summit of Caliente through February 2020. Block avalanches occurred daily on the flanks of the dome, often reaching the base, stirring up small clouds of ash that drifted downwind.

Figure (see Caption) Figure 101. The MIROVA project graph of thermal activity at Santa María from 12 May 2019 through February 2020 shows a gradual increase in thermal energy beginning in November 2019. This corresponds to an increase in the number of daily observations of incandescence at the summit of the Caliente dome during this period. Courtesy of MIROVA.

Constant steam and gas fumarolic activity rose from the Caliente dome, drifting W, usually rising to 2.8-3.0 km altitude during September 2019. Multiple daily explosions with ash plumes rising to 2.9-3.4 km altitude drifted W or SW over the communities of San Marcos, Loma Linda Palajunoj, and Monte Claro (figure 102). Constant block avalanches fell to the base of the cone on the NE and SE flanks. The Washington VAAC reported an ash plume visible in satellite imagery on 10 September at 3.1 km altitude drifting W. On 14 September another plume was spotted moving WSW at 4.6 km altitude which dissipated quickly; the webcam captured another plume on 16 September. Ashfall on 27 September reached about 1 km from the volcano; it reached 1.5 km on 29 September. Lahars descended the Rio Cabello de Ángel on 2 and 24 September (figure 102). They were about 15 m wide, and 1-3 m deep, carrying blocks 1-2 m in diameter.

Figure (see Caption) Figure 102. A lahar descended the Rio Cabello de Ángel at Santa Maria and flowed into the Rio Nima 1 on 24 September 2019. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 21 al 27 de septiembre de 2019).

Througout October 2019, degassing of steam with minor gases occurred from the Caliente summit, rising to 2.9-3.0 km altitude and generally drifting SW. Weak explosions took place 1-5 times per hour, producing ash plumes that rose to 3.2-3.5 km altitude. Ashfall was reported in Monte Claro on 2 October. Nearly constant block avalanches descended the SE and S flanks, disturbing recent layers of fine ash and producing local ash clouds. Moderate explosions on 11 October produced ash plumes that rose to 3.5 km altitude and drifted W and SW about 1.5 km towards Río San Isidro (figure 103). The following day additional plumes drifted a similar distance to the SE. The Washington VAAC reported an ash emission visible in satellite imagery at 4.9 km altitude on 13 October drifting NNW. Ashfall was reported in Parcelamiento Monte Claro on 14 October. Some of the block avalanches observed on 14 October on the SE, S, and SW flanks were incandescent. Ash drifted 1.5 km W and SW on 17 October. Ashfall was reported near la finca Monte Claro on 25 and 28 October. A lahar descended the Río San Isidro, a tributary of the Río El Tambor on 7 October carrying blocks 1-2 m in diameter, tree trunks, and branches. It was about 16 m wide and 1-2 m deep. Additional lahars descended the rio Cabello de Angel on 23 and 24 October. They were about 15 m wide and 2 m deep, and carried ash and blocks 1-2 m in diameter, tree trunks, and branches.

Figure (see Caption) Figure 103. Daily ash plumes were reported from the Caliente cone at Santa María during October 2019, similar to these from 30 September (left) and 11 October 2019 (right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 28 de septiembre al 04 de octubre de 2019; Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 05 al 11 de octubre de 2019).

During November 2019, steam plumes rose to 2.9-3.0 km altitude and generally drifted E. There were 1-3 explosions per hour; the ash plumes produced rose to altitudes of 3.1-3.5 km and often drifted SW, resulting in ashfall around the volcanic complex. Block avalanches descended the S and SW flanks every day. On 4 November ashfall was reported in the fincas (ranches) of El Faro, Santa Marta, El Viejo Palmar, and Las Marías, and the odor of sulfur was reported 10 km S. Incandescence was observed at the Caliente dome during the night of 5-6 November. Ash fell again in El Viejo Palmar, fincas La Florida, El Faro, and Santa Marta (5-6 km SW) on 7 November. Sulfur odor was also reported 8-10 km S on 16, 19, and 22 November. Fine-grained ash fell on 18 November in Loma Linda and San Marcos Palajunoj. On 29 November strong block avalanches descended in the SW flank, stirring up reddish ash that had fallen on the flanks (figure 104). The ash drifted up to 20 km SW.

Figure (see Caption) Figure 104. Ash plumes rose from explosions multiple times per day at Santa Maria’s Santiaguito complex during November 2019, and block avalanches stirred up reddish clouds of ash that drifted for many kilometers. Courtesy of INSIVUMEH. Left, 11 November 2019, from Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 09 al 15 de noviembre de 2019. Right, 29 November 2019 from BOLETÍN VULCANOLÓGICO ESPECIAL BESTG# 106-2019, Guatemala 29 de noviembre de 2019, 10:50 horas (Hora Local).

White steam plumes rising to 2.9-3.0 km altitude drifted SE most days during December 2019. One to three explosions per hour produced ash plumes that rose to 3.1-3.5 km altitude and drifted W and SW producing ashfall on the flanks. Several strong block avalanches sent material down the SW flank. Ash from the explosions drifted about 1.5 km SW on 3 and 7 December. The Washington VAAC reported a small ash emission that rose to 4.9 km altitude and drifted WSW on 8 December, and another on 13 December that rose to 4.3 km altitude. Ashfall was reported up to 10 km S on 24 December. Incandescence was reported at the dome by INSIVUMEH eight times during the month, significantly more than during the recent previous months (figure 105).

Figure (see Caption) Figure 105. Strong thermal anomalies were visible in Sentinel-2 imagery at the summit of the Caliente cone at Santa María’s Santiaguito’s complex on 19 December 2019. Image uses Atmospheric Penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during January 2020 was similar to that during previous months. White plumes of steam rose from the Caliente dome to altitudes of 2.7-3.0 km and drifted SE; one to three explosions per hour produced ash plumes that rose to 3.2-3.4 km altitude and generally drifted about 1.5 km SW before dissipating. Frequent block avalanches on the SE flank caused smaller plumes that drifted SSW often over the ranches of San Marcos and Loma Linda Palajunoj. On 28 January ash plumes drifted W and SW over the communities of Calaguache, El Nuevo Palmar, and Las Marías. In addition to incandescence observed at the crater of Caliente dome at least nine times, thermal anomalies in satellite imagery were detected multiple times from the block avalanches on the S flank (figure 106).

Figure (see Caption) Figure 106. Incandescence at the summit and in the block avalanches on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was visible in Sentinel-2 satellite imagery on 8 and 13 January 2020. Atmospheric penetration rendering images (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

The Washington VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude drifting W on 3 February 2020. INSIVUMEH reported constant steam degassing that rose to 2.9-3.0 km altitude and drifted SW. In addition, 1-3 weak to moderate explosions per hour produced ash plumes to 3.1-3.5 km altitude that drifted about 1 km SW. Small amounts of ashfall around the volcano’s perimeter was common. The ash plumes on 5 February drifted NE over Santa María de Jesús. On 8 February the ash plumes drifted E and SE over the communities of Calaguache, El Nuevo Palmar, and Las Marías. Block avalanches on the S and SE flanks of Caliente dome continued, creating small ash clouds on the flank. Incandescence continued frequently at the crater and was also observed on the S flank in satellite imagery (figure 107).

Figure (see Caption) Figure 107. Incandescence at the summit and on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was frequent during February 2020, including on 2 (left) and 17 (right) February 2020 as seen in Sentinel-2 imagery. Atmostpheric Penetration rendering imagery (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Villarrica (Chile) — April 2020 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Brief increase in explosions, mid-September 2019; continued thermal activity through February 2020

Historical eruptions at Chile's Villarrica, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. An intermittently active lava lake at the summit has been the source of Strombolian activity, incandescent ejecta, and thermal anomalies for several decades; the current eruption has been ongoing since December 2014. Continuing activity during September 2019-February 2020 is covered in this report, with information provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a research group that studies volcanoes across Chile.

A brief period of heighted explosive activity in early September 2019 caused SERNAGEOMIN to raise the Alert Level from Yellow to Orange (on a four-color scale of Green-Yellow-Orange-Red) for several days. Increases in radiative power were visible in the MIROVA thermal anomaly data during September (figure 84). Although overall activity decreased after that, intermittent explosions were observed at the summit, and incandescence continued throughout September 2019-February 2020. Sentinel-2 satellite imagery indicated a strong thermal anomaly from the summit crater whenever the weather conditions permitted. In addition, ejecta periodically covered the area around the summit crater, and particulates often covered the snow beneath the narrow gas plume drifting S from the summit (figure 85).

Figure (see Caption) Figure 84. Thermal activity at Villarrica from 28 May 2019 through February 2020 was generally at a low level, except for brief periods in August and September 2019 when larger explosions were witnessed and recorded in seismic data and higher levels of thermal activity were noted by the MIROVA project. Courtesy of MIROVA.
Figure (see Caption) Figure 85. Natural-color (top) and Atmospheric penetration (bottom) renderings of three different dates during September 2019-February 2020 show typical continued activity at Villarica during the period. Dark ejecta periodically covered the snow around the summit crater, and streaks of particulate material were sometimes visible on the snow underneath the plumes of bluish gas drifting S from the volcano (top images). Persistent thermal anomalies were recorded in infrared satellite data on the same dates (bottom images). Dates recorded are (left to right) 28 September 2019, 20 December 2019, and 1 January 2020. Natural color rendering uses bands 4,3, and 2, and Atmospheric penetration rendering uses bands 12, 11, and 8a. Courtesy of Sentinel Hub Playground.

SERNAGEOMIN raised the Alert Level from Green to Yellow in early August 2019 due to the increase in activity that included incandescent ejecta and bombs reaching 200 m from the summit crater (BGVN 44:09). An increase in seismic tremor activity on 8 September was accompanied by vigorous Strombolian explosions reported by POVI. The following day, SERNAGEOMIN raised the Alert Level from Yellow to Orange. Poor weather prevented visual observations of the summit on 8 and 9 September, but high levels of incandescence were observed briefly on 10 September. Incandescent ejecta reached 200 m from the crater rim late on 10 September (figure 86). Activity increased the next day with ejecta recorded 400 m from the crater, and the explosions were felt 12 km from the summit.

Figure (see Caption) Figure 86. A new pulse of activity at Villarrica reached its maximum on 10 (left) and 11 (right) September 2019. Incandescent ejecta reached 200 m from the crater rim on 10 September and up to 400 m the following day. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).

Explosions decreased in intensity by 13 September, but avalanches of incandescent material were visible on the E flank in the early morning hours (figure 87). Small black plumes later in the day were interpreted by POVI as the result of activity from landslides within the crater. Fine ash deposited on the N and NW flanks during 16-17 September was attributed to wind moving ash from within the crater, and not to new emissions from the crater (figure 88). SERNAGEOMIN lowered the Alert Level to Yellow on 16 September as tremor activity decreased significantly. Activity continued to decrease during the second half of September; incandescence was moderate with no avalanches observed, and intermittent emissions with small amounts of material were noted. Degassing of steam plumes rose up to 120 m above the crater.

Figure (see Caption) Figure 87. By 13 September 2019, a decrease in activity at Villarrica was apparent. Incandescence (red arrow) was visible on the E flank of Villarrica early on 13 September (left). Fine ash, likely from small collapses of new material inside the vent, rose a short distance above the summit later in the day (right). Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).
Figure (see Caption) Figure 88. Fine-grained material covered the summit of Villarrica on 17 September 2019. POVI interpreted this as a result of strong winds moving fine ash-sized particles from within the crater and depositing them on the N and NW flanks. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).

Low-altitude degassing was typical activity during October-December 2019; occasionally steam and gas plumes rose 300 m above the summit, but they were generally less than 200 m high. Incandescence was visible at night when weather conditions permitted. Occasional Strombolian explosions were observed in the webcam (figure 89). During January and February 2020, similar activity was reported with steam plumes observed to heights of 300-400 m above the summit, and incandescence on nights where the summit was visible (figure 90). A drone overflight on 19 January produced a clear view into the summit crater revealing a 5-m-wide lava pit about 120 m down inside the crater (figure 91).

Figure (see Caption) Figure 89. Activity continued at a lower level at the summit of Villarrica from October-December 2019. The 30-m-wide vent at the bottom of the summit crater (120 m deep) of Villarrica (left) was emitting wisps of bluish gas on 30 October 2019. Sporadic Strombolian explosions ejected material around the crater rim on 12 December (right). Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).
Figure (see Caption) Figure 90. Small explosive events were recorded at Villarrica during January and February 2020, including these events on 4 (left) and 18 (right) January where ejecta reached about 50 m above the crater rim. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).
Figure (see Caption) Figure 91. An oblique view into the bottom of the summit crater of Villarrica on 19 January 2020 was captured by drone. The diameter of the lava pit was calculated at about 5 m and was about 120 m deep. Image copyright by Leighton M. Watson, used with permission; courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Leighton M. Watson, Department of Earth Sciences at the University of Oregon, Eugene, OR 97403-1272, USA (URL: https://earthsciences.uoregon.edu/).


Semisopochnoi (United States) — April 2020 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Intermittent small explosions detected in December 2019 through mid-March 2020

Semisopochnoi is a remote stratovolcano located in the western Aleutians dominated by an 8 km-wide caldera containing the small (100 m diameter) Fenner Lake and a three-cone cluster: a northern cone known as the North cone of Mount Cerberus, an eastern cone known as the East cone of Mount Cerberus, and a southern cone known as the South cone of Mount Cerberus. Previous volcanism has included small explosions, ash deposits, and gas-and-steam emissions. This report updates activity during September 2019 through March 2020 using information from the Alaska Volcano Observatory (AVO). A new eruptive period began on 7 December 2019 and continued until mid-March 2020 with activity primarily focused in the North cone of Mount Cerberus.

During September-November 2019, low levels of unrest were characterized by intermittent weeks of elevated seismicity and gas-and-steam plumes visible on 8 September, 7-8 October, and 24 November. On 6 October an SO2 plume was visible in satellite imagery, according to AVO.

Seismicity increased on 5 December and was described as a strong tremor through 7 December. This tremor was associated with a small eruption on 7 December; intermittent explosions occurred and continued into the night. Increased seismicity was recorded throughout the rest of the month while AVO registered small explosions during 11-19 December. On 11-12 December, a gas-and-steam plume possibly containing some of ash extended 80 km (figure 2). Two more ash plumes were observed on 14 and 17 December, the latter of which extended 15 km SE. Sentinel-2 satellite images show gas-and-steam plumes rising from the North Cerberus crater intermittently at the end of 2019 and into early 2020 (figure 3).

Figure (see Caption) Figure 2. Sentinel-2 satellite image showing a gray ash plume extending up to 17 km SE from the North Cerberus crater on 11 December 2019. Image taken by Hannah Dietterich; courtesy of AVO.
Figure (see Caption) Figure 3. Sentinel-2 satellite images of gas-and-steam plumes at Semisopochnoi from late November 2019 through mid-March 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

The month of January 2020 was characterized by low levels of unrest due to intermittent low seismicity. Small explosions were reported during 14-17 February and a gas-and-steam plume was visible on 26 February. Seismic unrest occurred between 18 February-7 March. Gas-and-steam plumes were visible on 1, 9, 14-17, 20, and 21 March (figure 4). During 15-17 March, small explosions occurred, according to AVO. Additionally, clear satellite images showed gas-and-steam emissions and minor ash deposits around North Cerberus’ crater rim. After 17 March the explosions subsided and ash emissions were no longer observed. However, intermittent gas-and-steam emissions continued and seismicity remained elevated through the end of the month.

Figure (see Caption) Figure 4. Satellite image of Semisopochnoi showing degassing within the North Cerberus crater on 22 March 2020. Image taken by Matt Loewen; courtesy of AVO.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ubinas (Peru) — March 2020 Citation iconCite this Report

Ubinas

Peru

16.355°S, 70.903°W; summit elev. 5672 m

All times are local (unless otherwise noted)


Explosions produced ash plumes in September 2019; several lahars generated in January and February 2020

Ubinas, located 70 km from the city of Arequipa in Peru, has produced frequent eruptions since 1550 characterized by ash plumes, ballistic ejecta (blocks and bombs), some pyroclastic flows, and lahars. Activity is focused at the summit crater (figure 53). A new eruptive episode began on 24 June 2019, with an ash plume reaching 12 km altitude on 19 July. This report summarizes activity during September 2019 through February 2020 and is based on agency reports and satellite data.

Figure (see Caption) Figure 53. A PlanetScope satellite image of Ubinas on 16 December 2019. Courtesy of PlanetLabs.

Prior to September 2019 the last explosion occurred on 22 July. At 2145 on 1 September moderate, continuous ash emission occurred reaching nearly 1 km above the crater. An explosion produced an ash plume at 1358 on the 3rd that reached up to 1.3 km above the summit; six minutes later ashfall and lapilli up to 1.5 cm in diameter was reported 6 km away, with ashfall reported up to 8 km away (figure 54 and 55). Three explosions produced ash plumes at 0456, 0551, and 0844 on 4 September, with the two later ash plumes reaching around 2 km above the crater. The ash plume dispersed to the south and ashfall was reported in Ubinas, Tonohaya, San Miguel, Anascapa, Huatahua, Huarina, and Matalaque, reaching a thickness of 1 mm in Ubinas.

Figure (see Caption) Figure 54. An eruption at Ubinas produced an ash plume up to 1.3 km on at 1358 on 3 September 2019. Courtesy of INGEMMET.
Figure (see Caption) Figure 55. Ash and lapilli fall up to 1.5 cm in diameter was reported 6 km away from Ubinas on 3 September 2019 (top) and an Ingemmet geologist collects ash samples from the last three explosions. Courtesy of INGEMMET.

During 8-9 September there were three explosions generating ash plumes to less than 2.5 km, with the largest occurring at 1358 and producing ashfall in the Moquegua region to the south. Following these events, gas and water vapor were continuously emitted up to 1 km above the crater. There was an increase in seismicity during the 10-11th and an explosion produced a 1.5 km high (above the crater) ash plume at 0726 on the 12th, which dispersed to the S and SE (figure 56). During 10-15 September there was continuous emission of gas (blue in color) and steam up to 1.5 km above the volcano. Gas emission, thermal anomalies, and seismicity continued during 16-29 September, but no further explosions were recorded.

Figure (see Caption) Figure 56. An explosion at Ubinas on 12 September 2019 produced an ash plume to 1.5 km above the volcano. The ash dispersed to the S and SE. Courtesy of IGP.

Throughout October activity consisted of seismicity, elevated temperatures within the crater, and gas emissions reaching 800 to 1,500 m above the crater. No explosions were recorded. Drone footage released in early October (figure 57) shows the gas emissions and provided a view of the crater floor (figure 58). On the 15th IGP reported that the likelihood of an eruption had reduced.

Figure (see Caption) Figure 57. IGP flew a fixed-wing drone over Ubinas as part of their monitoring efforts. This photograph shows gas emissions rising from the summit crater, published on 7 October 2019. Courtesy of IGP.
Figure (see Caption) Figure 58. Drone image showing gas emissions and the summit crater of Ubinas. Image taken by IGP staff and released on 7 October 2019; courtesy of IGP.

Similar activity continued through early November with no reported explosions, and the thermal anomalies were no longer detected at the end of November (figure 59), although a faint thermal anomaly was visible in Sentinel-2 data in mid-December (figure 60). A rockfall occurred at 1138 on 13 November down the Volcanmayo gorge.

Figure (see Caption) Figure 59. This MIROA Log Radiative Power plot shows increased thermal energy detected at Ubinas during August through November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 60. Sentinel-2 thermal satellite image showing elevated temperatures in the Ubinas crater on 16 December 2019. Courtesy of Sentinel Hub Playground.

There were no explosions during January or February 2020, with seismicity and reduced gas emissions continuing. There was a small- to moderate-volume lahar generated at 1620 on 4 January down the SE flank. A second moderate- to high-volume lahar was generated at 1532 on 24 February, and three more lahars at 1325 and 1500 on 29 February, and at 1601 on 1 March, moved down the Volcanmayo gorge and the Sacohaya river channel. The last three lahars were of moderate to large volume.

Geologic Background. A small, 1.4-km-wide caldera cuts the top of Ubinas, Perú's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one of Holocene age about 1,000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Yasur (Vanuatu) — March 2020 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strombolian activity continues during June 2019 through February 2020

Yasur has remained on Alert Level 2 (on a scale of 0-4) since 18 October 2016, indicating "Major Unrest; Danger Zone remains at 395 m around the eruptive vents." The summit crater contains several active vents that frequently produce Strombolian explosions and gas plumes (figure 60). This bulletin summarizes activity during June 2019 through February 2020 and is based on reports by the Vanuatu Meteorology and Geo-Hazards Department (VMGD), visitor photographs and videos, and satellite data.

Figure (see Caption) Figure 60. The crater of Yasur contains several active vents that produce gas emissions and Strombolian activity. Photo taken during 25-27 October 2019 by Justin Noonan, used with permission.

A VMGD report on 27 June described ongoing Strombolian explosions with major unrest confined to the crater. The 25 July report noted the continuation of Strombolian activity with some strong explosions, and a warning that volcanic bombs may impact outside of the crater area (figure 61).

Figure (see Caption) Figure 61. A volcanic bomb (a fluid chunk of lava greater than 64 mm in diameter) that was ejected from Yasur. The pattern on the surface shows the fluid nature of the lava before it cooled into a solid rock. Photo taken during 25-27 October 2019 by Justin Noonan, used with permission.

No VMGD report was available for August, but Strombolian activity continued with gas emissions and explosions, as documented by visitors (figure 62). The eruption continued through September and October with some strong explosions and multiple active vents visible in thermal satellite imagery (figure 63). Strombolian explosions ejecting fluid lava from rapidly expanding gas bubbles were recorded during October, and likely represented the typical activity during the surrounding months (figure 64). Along with vigorous degassing producing a persistent plume there was occasional ash content (figure 65). At some point during 20-29 October a small landslide occurred along the eastern inner wall of the crater, visible in satellite images and later confirmed to have produced ashfall at the summit (figure 66).

Figure (see Caption) Figure 62. Different views of the Yasur vents on 7-8 August 2019 taken from a video. Strombolian activity and degassing were visible. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 63. Sentinel-2 thermal satellite images show variations in detected thermal energy emitting from the active Yasur vents on 18 September and 22 December 2019. False color (bands 12, 11, 4) satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 64. Strombolian explosions at Yasur during 25-27 October 2019. Large gas bubbles rise to the top of the lava column and burst, ejecting volcanic bombs – fluid chunks of lava, out of the vent. Photos by Justin Noonan, used with permission.
Figure (see Caption) Figure 65. Gas and ash emissions rise from the active vents at Yasur between 25-27 October 2019. Photos by Justin Noonan, used with permission.
Figure (see Caption) Figure 66. Planet Scope satellite images of Yasur show a change in the crater morphology between 20 and 29 October 2019. Copyright of Planet Labs.

Continuous explosive activity continued in November-February with some stronger explosions recorded along with accompanying gas emissions. Gas plumes of sulfur dioxide were detected by satellite sensors on some days through this period (figure 67) and ash content was present at times (figure 68). Thermal anomalies continued to be detected by satellite sensors with varying intensity, and with a reduction in intensity in February, as seen in Sentinel-2 imagery and the MIROVA system (figures 69 and 70).

Figure (see Caption) Figure 67. SO2 plumes detected at Yasur by Aura/OMI on 21 December 2019 and 31 January 2020, drifting W to NW, and on 14 and 23 February 2020, drifting W and south, and NWW to NW. Courtesy of Global Sulfur Dioxide Monitoring Page, NASA.
Figure (see Caption) Figure 68. An ash plume erupts from Yasur on 20 February 2020 and drifts NW. Courtesy of Planet Labs.
Figure (see Caption) Figure 69. Sentinel-2 thermal satellite images show variations in detected thermal energy in the active Yasur vents during January and February 2020. False color (bands 12, 11, 4) satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 70. The MIROVA thermal detection system recorded persistent thermal energy emitted at Yasur with some variation from mid-May 2019 to May 2020. There was a reduction in detected energy after January. Courtesy of MIROVA.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Justin Noonan (URL: https://www.justinnoonan.com/, Instagram: https://www.instagram.com/justinnoonan_/); Doro Adventures (Twitter: https://twitter.com/DoroAdventures, URL: http://doroadventures.com/).


Cleveland (United States) — March 2020 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Cleveland is a stratovolcano located in the western portion of Chuginadak Island, a remote island part of the east central Aleutians. Common volcanism has included small lava flows, explosions, and ash clouds. Intermittent lava dome growth, small ash explosions, and thermal anomalies have characterized more recent activity (BGVN 44:02). For this reporting period during February 2019-January 2020, activity largely consisted of gas-and-steam emissions and intermittent thermal anomalies within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) and various satellite data.

Low levels of unrest occurred intermittently throughout this reporting period with gas-and-steam emissions and thermal anomalies as the dominant type of activity (figures 30 and 31). An explosion on 9 January 2019 was followed by lava dome growth observed during 12-16 January. Suomi NPP/VIIRS sensor data showed two hotspots on 8 and 14 February 2019, though there was no evidence of lava within the summit crater at that time. According to satellite imagery from AVO, the lava dome was slowly subsiding during February into early March. Elevated surface temperatures were detected on 17 and 24 March in conjunction with degassing; another gas-and-steam plume was observed rising from the summit on 30 March. Thermal anomalies were again seen on 15 and 28 April using Suomi NPP/VIIRS sensor data. Intermittent gas-and-steam emissions continued as the number of detected thermal anomalies slightly increased during the next month, occurring on 1, 7, 15, 18, and 23 May. A gas-and-steam plume was observed on 9 May.

Figure (see Caption) Figure 30. The MIROVA graph of thermal activity (log radiative power) at Cleveland during 4 February 2019 through January 2020 shows increased thermal anomalies between mid-April to late November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed intermittent thermal signatures occurring in the summit crater during March 2019 through October 2019. Some gas-and-steam plumes were observed accompanying the thermal anomaly, as seen on 17 March 2019 and 8 May 2019. Courtesy of Sentinel Hub Playground.

There were 10 thermal anomalies observed in June, and 11 each in July and August. Typical mild degassing was visible when photographed on 9 August (figure 32). On 14 August, seismicity increased, which included a swarm of a dozen local earthquakes. The lava dome emplaced in January was clearly visible in satellite imagery (figure 33). The number of thermal anomalies decreased the next month, occurring on 10, 21, and 25 September. During this month, a gas-and-steam plume was observed in a webcam image on 6, 8, 20, and 25 September. On 3-6, 10, and 21 October elevated surface temperatures were recorded as well as small gas-and-steam plumes on 4, 7, 13, and 20-25 October.

Figure (see Caption) Figure 32. Photograph of Cleveland showing mild degassing from the summit vent taken on 9 August 2019. Photo by Max Kaufman; courtesy of AVO/USGS.
Figure (see Caption) Figure 33. Satellite image of Cleveland showing faint gas-and-steam emissions rising from the summit crater. High-resolution image taken on 17 August 2019 showing the lava dome from January 2019 inside the crater (dark ring). Image created by Hannah Dietterich; courtesy of AVO/USGS and DigitalGlobe.

Four thermal anomalies were detected on 3, 6, and 8-9 November. According to a VONA report from AVO on 8 November, satellite data suggested possible slow lava effusion in the summit crater; however, by the 15th no evidence of eruptive activity had been seen in any data sources. Another thermal anomaly was observed on 14 January 2020. Gas-and-steam emissions observed in webcam images continued intermittently.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent weak thermal anomalies within 5 km of the crater summit during mid-April through November 2019 with a larger cluster of activity in early June, late July and early October (figure 30). Thermal satellite imagery from Sentinel-2 also detected weak thermal anomalies within the summit crater throughout the reporting period, occasionally accompanied by gas-and-steam plumes (figure 31).

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 23, Number 07 (July 1998)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Less vigorous eruptions but lava still escaping during July

Batur (Indonesia)

Continuous mild eruptive activity during first week of July

Fournaise, Piton de la (France)

New lava flow traverses 12 km across the E flank

Iwatesan (Japan)

Monthly seismicity increases; volcanic history

Karangetang (Indonesia)

Incandescent material ejected in early July

Langila (Papua New Guinea)

Gas and ash emissions relatively quiet during May and June

Manam (Papua New Guinea)

Mild activity; a few weak ash emissions in June

Merapi (Indonesia)

Increasing activity culminates in mid-July pyroclastic flows

Papandayan (Indonesia)

Minor phreatic explosions eject mud and gas on 23 June

Poas (Costa Rica)

Noisy degassing continues

Popocatepetl (Mexico)

Ongoing exhalations; mid-August earthquake and 4-5 km ash plume

Rabaul (Papua New Guinea)

Increase in Vulcanian activity during last week of June

Soufriere Hills (United Kingdom)

Relatively large pyroclastic flows on 3 July; ash venting

St. Helens (United States)

Earthquakes, but CO2 flux returns to normal

Turrialba (Costa Rica)

Not erupting; seismicity and fumarolic condensate chemistry



Arenal (Costa Rica) — July 1998 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Less vigorous eruptions but lava still escaping during July

Compared to recent months, during July both the number of eruptions and the quantity of material emitted decreased. The lava flow extruded in mid-June descended the NE flank and its front reached 800 m elevation. The lava flow branched at about 1,100 m elevation, forming a NW-trending arm who's front reached 850 m elevation.

Downwind rain samples collected during the dry season (January-April) often were both more acidic and higher in measured anions than those collected in the wetter intervals (figure 86). Although the seismic station was plagued by 10 days with transmission problems, during July the station registered 229 eruptions and 120 hours of tremor.

Figure (see Caption) Figure 86. Rainwater sampled downwind of Arenal, 9 January 1997 through 28 July 1998. Samples collected at station Cárava; error on the pH values was estimated at ± 0.05. Courtesy of OVSICORI-LAQAT.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, V. Barboza, M. Martinez, E. Duarte, R. Van der Laat, E. Hernández, and T. Marino, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Batur (Indonesia) — July 1998 Citation iconCite this Report

Batur

Indonesia

8.242°S, 115.375°E; summit elev. 1717 m

All times are local (unless otherwise noted)


Continuous mild eruptive activity during first week of July

During the first week of July, Batur continuously emitted a gray plume 25-300 m above the crater. Observers saw incandescent material frequently ejected. Two episodes of tremor with amplitudes of 0.3-24 mm were recorded.

Geologic Background. The historically active Batur is located at the center of two concentric calderas NW of Agung volcano. The outer 10 x 13.5 km wide caldera was formed during eruption of the Bali (or Ubud) Ignimbrite about 29,300 years ago and now contains a caldera lake on its SE side, opposite the satellitic Gunung Abang cone, the topographic high of the complex. The inner 6.4 x 9.4 km wide caldera was formed about 20,150 years ago during eruption of the Gunungkawi Ignimbrite. The SE wall of the inner caldera lies beneath Lake Batur; Batur cone has been constructed within the inner caldera to a height above the outer caldera rim. The Batur stratovolcano has produced vents over much of the inner caldera, but a NE-SW fissure system has localized the Batur I, II, and III craters along the summit ridge. Historical eruptions have been characterized by mild-to-moderate explosive activity sometimes accompanied by lava emission. Basaltic lava flows from both summit and flank vents have reached the caldera floor and the shores of Lake Batur in historical time.

Information Contacts: Volcanological Survey of Indonesia, Jalan Diponegoro No.57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Piton de la Fournaise (France) — July 1998 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


New lava flow traverses 12 km across the E flank

The eruption that began in March (BGVN 23:03) continued in August. A new lava flow crossed the Plaine des Osmondes and went down the E flank towards the sea. As of 31 July its front had reached 250 m from the new national road. By 3 August it had slowly progressed to within 100 m of the road. On 4 August the front moved forward suddenly; within a few hours it had crossed the old national road and stopped ~3 m in front of the new national road. No new movement of the lava flow was observed during the next week. The flow had reached a total length of 12 km. Some small but new lava flows were visible in the upper part of the Grand Brûlé. Tremor episodes had diminished in the past few months, but beginning on 6 August there was a sudden tenfold increase over levels of the preceding weeks. The increased activity persisted the following week.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise (OVPF), 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France.


Iwatesan (Japan) — July 1998 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Monthly seismicity increases; volcanic history

A pattern of high seismicity but low deformation that began at Iwate in March (BGVN 23:04) continued through June and July. The following also discusses Iwate's history (as reported to JMA and Tohoku University), and details of recent hazards.

Seismicity. According to reports issued by the Japan Meteorological Agency (JMA), monthly totals of volcanic earthquake events recorded at the Matsukawa observation site of Tohoku University increased progressively: 424 in March, 764 in April, 1,283 in May, and 1,806 in June. Seismicity during 1-17 July totalled 1,116 events (figure 2).

Figure (see Caption) Figure 2. Numbers of earthquakes and tremors at Iwate recorded at the Matsukawa observation site at Tohoku University, 1-17 July 1998. Data courtesy of JMA.

Low-frequency earthquakes occurred at 2124 on 23 June, and 0915 and 1037 on 24 June. A few minutes of volcanic tremor was observed at 0519 and 0701 on 24 June, and at 0754 on 25 June. Earthquake swarms below Nishi-Iwate continued to increase. (The place names Nishi- and Higashi-Iwate refer to West- and East-Iwate, respectively.) Further tremor took place at 1005 and 1642 on 27 June, and 1741 and 1759 on 28 June. Sixteen low-frequency earthquakes took place between the latter two events. Researchers at Tohoku University located these earthquakes at ~2 km SE of the summit of Higashi-Iwate at a depth of 8 km below sea level. This was close to where GPS surveys found a pressure source for crustal deformation. A swarm of low-frequency earthquake and tremor events occurred here in 1995, and it is just S of the craters of the 1732 (Yakebashiri) lava flow. Epicenters of high-frequency earthquakes were also located beneath Nishi-Iwate.

On the morning of 10 July, felt earthquakes occurred W of Iwate Volcano. Four minutes of large-amplitude tremor began at 0829 followed by a volcanic earthquake of M 2.5 at 0831. No surface phenomena were reported. Epicenters for seven earthquakes that morning were located at 3-5 km depth about 5 km west of Nishi-Iwate.

Epicenters of volcanic earthquake swarms under Nishi-Iwate migrated gradually to the W during May-June. New events occurred to the W of the swarms in July. Recent GPS measurements indicated that the source of deformation was located W of Iwate, in an area where no activity had occurred during the past 30,000 years. Although the degree of movement at stations remote from the volcano had become smaller since May, movement at stations closer to the volcano continued. Researchers believe that the source of deformation approached the surface, but they did not determine its depth.

Deformation surveys. Strain and tiltmeters at observation sites recorded little change since March. According to a field survey during 16-18 June, a fumarolic area in Nishi-Iwate seems to have been more active recently, since the fumarole temperature had increased. GPS surveys showed a steady and continuous lengthening between S and N sites of the volcano: a baseline of 9 km underwent a 5-cm extension in the last 5 months. Based on these results, volcanologists suspected a W-E dike intrusion at around 10 km below the summit of Higashi-Iwate, as opposed to just below Nishi-Iwate as indicated by earthquake swarms.

A geodetic measurement team from five Japanese national universities started a leveling survey at the E and S bases of Iwate Volcano on 17 July. The survey lines cover 19 km N-S and 15 km E-W.

History. Based on his recent field survey, Nobuo Doi, a geologist with Geothermal Engineering Co. Ltd., summarized Iwate's eruptive history. He concluded that Iwate began ~700,000 years ago. After the formation of a large cone (Nishi-Iwate), the eruption center migrated eastwards to Higashi-Iwate. Iwate collapsed to form debris avalanches seven times in the past 230,000 years; the most recent collapse took place sometime during the interval 915-1686 CE.

During a large collapse ~6,000 years ago, a mass of debris rushed NE but subsequent topographic constraints redirected debris SSE. The debris followed the Kitakami River reaching the present site of Morioka City (population 235,000). The episode left a large scar open to the NE on Higashi-Iwate's summit.

The present peak of Higashi-Iwate grew within this scar but it left part of the scar visible on its W side. During the last 6,000 years, magmatic eruptions occurred frequently; scoria eruptions have occurred more than 11 times. Lavas and pyroclastics younger than 6,000 years occur in the NE sector of Higashi-Iwate.

The 1686-87 CE eruption started with a pyroclastic surge; this was followed by scoria emission, a mudflow, a second pyroclastic surge, and it ended with a phreatic phase. In 1732, basaltic andesite lava flowed 2.5 km. Small explosions took place during 1934-35.

At Nishi-Iwate more than four phreatic eruptions have occurred in the past 7,500 years. The latest eruption here was phreatic and took place at O-Jigokudani ("large valley of hell") in 1919; an associated mudflow descended NNW.

Hazards. Authorities in two towns and villages near Iwate closed the mountain to climbers on 26 June because of the likelihood of phreatic explosions at Nishi-Iwate.

According to a local newspaper (Iwate Nippo), a new hazard map was expected to be ready for distribution on 22 July, incorporating aspects of volcanology, disaster-protection, and Sabo engineering. The scenario assumes a phreatic eruption on the W side, perhaps as large as one at Nishi-Iwate that occurred 3,200 years ago. The presumed disaster areas would be subjected to both ashfalls and lahars. A theoretical 10-cm-thick ash deposit would occur in resort areas N and S of the volcano extending to 5 km from the possible eruption site, but the researchers postulated a lack of serious damage to buildings.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Nishide Noritake, Volcanological Division, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Volcano Research Center, Earthquake Research Institute (ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan; Nobuo Doi, Geothermal Engineering Co. Ltd., Japan.


Karangetang (Indonesia) — July 1998 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent material ejected in early July

During early July observers noted incandescent materials at night. They also saw a plume emitted from the main crater rising to 25-50 m in height. Around this time, seismic events occurred less often compared to previous weeks.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Volcanological Survey of Indonesia, Jalan Diponegoro No.57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Langila (Papua New Guinea) — July 1998 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Gas and ash emissions relatively quiet during May and June

Langila remained comparatively quiet during May and June. Direct radio communication to RVO had been a persistent problem, but reports were relayed by ships operating in the area.

Crater 2 continued weak-to-moderate emissions of white vapor during both months. During 9, 13, 17, and 19-21 May a blue vapor accompanied the usual white vapor. Occasional gray ash emissions were observed on 10 May, and 16, 22-24, 27, 29-30 June. Weak glow from the crater was seen on the nights of 2 and 3 May, and 16 and 29 June.

Crater 3 only released weak white fumarolic vapors. The seismograph remained non-operational during May and June.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, RVO.


Manam (Papua New Guinea) — July 1998 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Mild activity; a few weak ash emissions in June

Mild activity prevailed at Manam in June. Both Main and South craters continued to emit weak-to-moderately thick white vapor throughout the month. However, Southern Crater's emission was briefly punctuated by a weak projection of ash at 1900 on 26 June that rose 600 m above the summit. Main Crater also showed glimpses of increased activity with weak emissions of ash on 29 and 30 June. No glow was visible at night from either crater.

Seismicity remained low: 820-1,400 daily low-frequency events of very low amplitudes. The water-tube tiltmeters at Tabele Observatory (4 km SW of the summit) showed an inflation of 1 µrad during the month.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ben Talai, RVO.


Merapi (Indonesia) — July 1998 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Increasing activity culminates in mid-July pyroclastic flows

Seismic activity and avalanches increased significantly at Merapi beginning in June, and reached a climax in mid-July. According to Xinhua News Agency reports, pyroclastic flows and ashfall near populated areas caused concern among Volcanological Survey of Indonesia (VSI) scientists and civil authorities; evacuations were considered. VSI ranks alert status as follows, in increasing level of concern: Normal, Waspada, Siap, and Awas.

Increasing eruptive activity during the last week of June prompted officials to increase the alert level to Waspada on 2 July. As activity progressed to more dangerous levels, the alert status increased to Siaga at 0500 on 8 July, eventually reaching Awas at 0438 on 11 July, before returning to Siaga at 1200 on 12 July. A solfatara plume was observed during late June and early July; gases escaped with varying pressure to form a thin (or sometimes thick) white cloud attaining maximum heights of 1,400 m above the summit in the first week of July, and 2,000 m by 11 July. Avalanches extending as long as 1.5 km coursed through the upper portions of the Senowo river, and others were seen in the Lamat, Krasak/Bebeng and Boyong rivers (figure 18). Glowing at the summit resumed in late June. During the reporting interval seismic activity showed a significant increase; specifically, the number of shallow volcanic (B-type), multi-phase (MP), low-frequency (LF), and rockfall events increased sharply (table 9).

Figure (see Caption) Figure 18. Contour map of Merapi's southern segment indicating locations referred to in the text. Courtesy of Merapi Volcano Observatory.

Table 9. The number of daily seismic events of various types at Merapi as recorded from mid-June to mid-July 1998. Data courtesy of VSI's Merapi Volcano Observatory.

Dates B-type Low-frequency Multiphase Rockfalls Tremor Tectonic
15 Jun-21 Jun 1998 4 -- 33 5 -- 4
22 Jun-28 Jun 1998 3 -- 45 15 -- 3
29 Jun-06 Jul 1998 47 3 925 142 -- 5
07 Jul-12 Jul 1998 21 1 2029 613 -- 2
17 Jul-21 Jul 1998 19 2 605 860 2 1

The amount of measured deformation also increased (although the summit tiltmeter station was rendered inoperative after 8 July). Explosions on 11 July could be heard as far away as 20 km S in the city of Yogyakarta. VSI noted, "lava was seen ejecting from the crater." In addition, and presumably with undue exaggeration, Xinhua news reporters claimed that some areas near the volcano were under 1.5 m of ash that blanketed crops and plantations.

On 19 July, Babadan Observatory located 4 km W of the summit reported three 'guguran' (pyroclastic flows resulting from dome collapse in the crater). These occurred between midnight and 0600, some reaching as far as 2,500 m down the Lamat River. VSI also noted a "thick white solfataric ash plume"; it stood 50 m in height and was observed from Kaliurang beginning at 0545. Pyroclastic flows during the remaining morning ran 5,000 m down the Lamat River valley, and an eruptive column rose up to 4,500 m above the summit. Between 0600 and 1313, seismic stations recorded 347 multiphase (MP) events. Tremor occurred between 1325 and 1503 and was accompanied by five pyroclastic flows that reached 2,000-5,000 m from the summit. At 1330 VSI ordered workers on the W sector of the volcano to leave the area. At 1501 Merapi erupted violently; several pyroclastic flows traveled 5,500 m down Lamat River and an eruptive column rose up to 6,000 m above the summit by 1507. At about 1615 ash showered the W side of the volcano, accumulating up to 2 mm in Muntilan. Ash also fell in Purworejo (42 km W of Yogyakarta) and Temanggung (35 km NW of the crater). Shallow volcanic earthquakes at 1625 were followed by small tremor. As many as 25 pyroclastic flows continued until 1800, some causing ash showers in nearby villages. There were B-type events (16), MP events ( 399 ), pyroclastic flows (119), and some glowing rockfalls throughout the afternoon.

Activity had subsided by 21 June, although fog obscured the summit area. Thick white ash rose to 460 m. Glowing rockfalls sometimes ran 1,250 m down the Lamat River valley.

This hazardous stratovolcano is located 70 km SE of Dieng and immediately N of Yogyakarta, a city of half a million people. In 32 of its 67 historical eruptions, nuées ardentes took place-more than known at any other volcano in the world-and 11 of them have caused fatalities. The volcano is carefully watched by several VSI observatories and heavily monitored instrumentally.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Mas Atje Purbawinata, Director, Merapi Volcano Observatory, Volcanological Survey of Indonesia, Jalan Cendana 15 Yogyakarta 55166 (URL: http://www.vsi.esdm.go.id/); Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong.


Papandayan (Indonesia) — July 1998 Citation iconCite this Report

Papandayan

Indonesia

7.32°S, 107.73°E; summit elev. 2665 m

All times are local (unless otherwise noted)


Minor phreatic explosions eject mud and gas on 23 June

The normal seismic activity of about ten events per day increased significantly after 20 June. Deep and shallow seismic events with large amplitudes were recorded during the last week of June and first few days of July. The increase also included events with low amplitude and long duration corresponding to gas emission from Emas Crater. Small phreatic explosions ejected gas and mud from fumarolic vents on 23 June, lofting material up to 5 m above the crater. A white plume under moderate pressure reached heights of 10-100 m in the first week of July. After 20 June there was an increased amount of A-type seismicity, but B-type, tectonic, and emission earthquakes changed little or decreased (table 1). Tremors and felt shocks began to be recorded at this time.

Table 1. Daily seismic events at Papandayan in late June and early July 1998. Data courtesy of VSI.

Date Volcanic A Volcanic B Tectonic Emission Tremor Felt Shock
22 Jun-29 Jun 1998 26 80 36 162 -- --
30 Jun-05 Jul 1998 83 39 39 15 11 1

The Volcanological Survey of Indonesia (VSI) installed four telemetric seismographs and eight temporary data-loggers around Papandayan. On 3 July they installed an infrasonic microphone on the crater to monitor the eruption.

Geologic Background. Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the north gives a twin-peaked appearance. Several episodes of collapse have created an irregular profile and produced debris avalanches that have impacted lowland areas. A sulfur-encrusted fumarole field occupies historically active Kawah Mas ("Golden Crater"). After its first historical eruption in 1772, in which collapse of the NE flank produced a catastrophic debris avalanche that destroyed 40 villages and killed nearly 3000 people, only small phreatic eruptions had occurred prior to an explosive eruption that began in November 2002.

Information Contacts: Volcanological Survey of Indonesia, Jalan Diponegoro No.57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Poas (Costa Rica) — July 1998 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Noisy degassing continues

During July, the turquoise-green crater lake at Poás had a temperature of 34°C. This temperature is close to those of the recent past, although during 1993-98 the lake's temperature varied significantly, from 25°C to 70°C. Between February and July 1998 the crater lake's surface dropped 1.6 m. As late as 30 July the lake's volume was 1.3 x 106 m3. Gases noisily escaping from the pyroclastic cone (the dominant fumarolic area), formed columns reaching 500 and 600 m in height. Fumaroles on the S flank had measured temperatures of 92°C; those on the N terrace, 93°C; and those on the lake's S and SW shores, up to 94°C.

Changes in pH, Cl, and SO4 have been measured during the past 5 years. During 1993-94 the active crater lake's pH values were near 0; during 1996 they shifted upwards, and since then pH values have remained between 1 and 2. As recently as July 1998, the trends in pH, Cl, and SO4 have remained relatively consistent and followed the moderately constrained paths established during the past several years.

Since last reported on (BGVN 23:03), seismicity decreased several-fold. February established the monthly high for 1998 for both low- and medium-frequency earthquakes (2,718 and 75 events, respectively) and tremor duration (55 hours). During June and July, respectively, low-frequency earthquakes occurred 704 and 861 times; medium-frequency earthquakes took place seven times and one time; and tremor lasted for 2 and 3.5 hours.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, V. Barboza, M. Martinez, E. Duarte, R. Van der Laat, E. Hernández, and T. Marino, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA).


Popocatepetl (Mexico) — July 1998 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Ongoing exhalations; mid-August earthquake and 4-5 km ash plume

During July 1998 Popocatépetl issued sporadic minor-to-moderate exhalations, steam plumes, and occasional minor ash. The daily log for July posted on the Internet by CENAPRED (see below) shows that activity was very similar to that reported for June (BGVN 23:06). That report also discussed the discovery of a defective calibration cell in a spectrometer used to measure SO2 at the volcano. Fortunately, the required corrections needed only to be made for low SO2 flux conditions. Although some of these uncorrected low fluxes may have been cited in previous Bulletin reports, the volcano has typically produced high SO2 fluxes.

Summary of daily activity during July. These observations and hazards were posted on the CENAPRED web site. Some of the original text has been edited.

1 July: Activity remained stable with a tendency to decrease. The number of exhalations decreased slightly; they were of low-to-moderate intensity and sometimes accompanied by steam and gases. In the morning a small plume blew SW. The recommended minimum approach distance was 4 km from the crater and the hazard status remained yellow.

2 July: Activity remained stable. The number of exhalations decreased; all of low to moderate intensity, some were accompanied by steam and gases.

3 July: Bad weather and clouds limited visibility.

4-5 July: Short exhalations of low-to-moderate intensity; some accompanied by steam and gases.

6 July: Except some isolated low intensity exhalations, the activity remained stable and at low levels. In the morning a small steam-and-gas plume blew SW.

7 July: Seismicity remained low and only small isolated exhalations were recorded. Small steam-and-gas plume.

8 July: Generally low activity. Seismic signals indicated that only a few, moderate exhalations took place. In the morning a gas and steam plume rose ~700 m above the crater and then dispersed .

9-11 July: Intense cloudiness and bad weather.

12 July: Low activity. Small and isolated exhalations, some accompanied by light steam-and-gas puffs. A small steam-and-gas plume was observed all day, blown W.

13 July: Activity increased slightly in the morning at 0931. A moderate exhalation produced a small but persistent ash emission directed to the W. Emissions and tremor continued until 0950.

14 July: Stable, low activity. Small gas plume blew W.

15 July: A few moderate exhalations were recorded seismically and were accompanied by gas-and-steam emissions. Some signals indicated rockfalls. In the morning only a small gas plume blew W .

16 July: Low seismicity and some fumarolic activity prevailed. Bad weather obstructed visibility.

17 July: Although cloudiness obscured the volcano most of the day, in the morning a steam-and-gas plume blew W.

18-21 July: In the morning on each day a dense steam-and-gas plume blew W.

22 July: Seismic signals revealed isolated, short exhalations; some contained ash. The latter was seen in the morning at 0743. The ash produced was light; it rose up to ~1 km above the summit and rapidly dispersed SW.

23-28 July: Seismic signals indicated isolated, short exhalations; some were accompanied by gas and steam. In the morning a dense steam plume blew W.

29-31 July: Activity remained stable and, in general, at low levels. Bad weather obstructed visibility.

Activity during 13-14 August. Servando De la Cruz-Reyna provided this description of a mid-August earthquake followed the next day by an eruptive outburst. At 1447 on 13 August a M 3.9 volcano-tectonic earthquake took place at a depth of ~12 km beneath the central part of the volcano (~6.5 km below sea level). During the earthquake, several tiltmeter stations recorded a step-like down-going displacement. Two smaller earthquakes occurred at various depths beneath the edifice that day. That night some low-amplitude, harmonic tremor signals were detected between 2200 and 2400; afterwards seismicity declined.

At 1850 on 14 August a moderate ash emission lasting about 15 minutes produced a column that rose to about 4-5 km over the summit. A low velocity wind (10 km/hour) distributed very light ash falls on some towns in the NW sector of the volcano about two hours later. On August 16, at 2149, a similar event produced a 2-3 km high column over the summit. The pattern of light ashfall repeated. Afterwards, Popocatepetl volcano returned to the previous low-level of activity prevailing since May 1998.

Technology versus rumors. Besides a rapidly growing web site and a broad network of seismic and tilt stations, CENAPRED has also adopted other innovative approaches. For example, a near real-time image of the N summit area is transmitted via microwave linkage and can be viewed on the CENAPRED web site at two resolutions. An infrared camera discloses thermal signatures of erupting plumes.

Still, despite these advances in monitoring technology and communication, during mid-1998 members of the lay public became increasingly concerned about rumors of doomsday scenarios involving Popocatépetl, some of which were broadcast via the media. In response, in June 1998 Roberto Meli, the Director General of CENAPRED, posted an informative note on their web site. He addressed the rumors and explained that there was an absence of scientific evidence for substantive changes in the volcano's behavior in the near future.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz-Reyna1,2, Roberto Quaas1,2 Carlos Valdés G.2, and Alicia Martinez Bringas1; 1Centro Nacional de Prevencion de Desastres (CENAPRED) Delfin Madrigal 665, Col. Pedregal de Santo Domingo,Coyoacan, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); 2Instituto de Geofisica, UNAM, Coyoacán 04510, México D.F., México.


Rabaul (Papua New Guinea) — July 1998 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Increase in Vulcanian activity during last week of June

Low-level Vulcanian eruptive activity continued at Tavurvur in June but increased somewhat during the last week of the month. During the first three weeks of June the volcano emitted small pale-gray clouds with a low ash content that rose 600-1,000 m above sea level. These emissions were usually accompanied by weak (or sometimes loud) roaring and rumbling sounds and caused light ashfalls in all but the E areas of Rabaul Town. The activity was consistent during these weeks but was interrupted by two moderately loud explosions heard at 1943 on 5 June and at 0306 on 9 June. Both explosions produced thick dark-gray ash columns rising to 3,000 m above sea level accompanied by glowing lava fragments.

The style of eruption changed in the last week of June. Beginning on 24 June, ash emissions became very small in volume but were extended over longer intervals. This period of relative quiet was followed by four weak explosions on 25-26 June that produced ash columns rising to 1,500 m. This activity persisted: dense ash-producing explosions occurred at 0408 on 27 June, 0403 on 28 June, and at 0355 and 1825 on 30 June. Ash clouds resulting from the explosions rose to 3,000 m and glowing lava fragments showered the flanks and base of Tavurvur cone.

Seismic activity was low in June according to data recorded about 2 km from Tavurvur's summit (at station KPTH). During the month a total of 1,029 low-frequency events were recorded, a significant decrease compared to 3,265 in May. Most of these events were recorded during the first three weeks of the month with an average of ~46 per day. At the end of the month daily totals decreased to only two per day. On some days throughout June, periods of short-duration tremor were recorded. Only three high-frequency earthquakes were recorded, but they were too small to be located. The sequence of arrivals at the recording stations suggested the events occurred outside the caldera.

Ground deformation data showed that the recovery (inflationary) trend observed in late May continued through June. For June, an accumulation of ~6 µrads inflation was recorded by the Sulphur Creek water tube tiltmeter, located 3.5 km NW of Tavurvur.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Soufriere Hills (United Kingdom) — July 1998 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Relatively large pyroclastic flows on 3 July; ash venting

On 3 July, after several months of reduced activity, a 2.5-hour sequence of large pyroclastic flows took place at Soufriere Hills. Ash clouds reached heights of 9-12 km before drifting N and depositing fine ash over the inhabited part of the island. New deposits extended the Tar River delta significantly, adding ~0.25 km2 to its area, but not extending it seaward. Winds carried the cloud N, disturbing previously unaffected houses in the Long Ground area. The new materials were typical block-and-ash deposits, associated with fine surge deposits and ash-cloud deposits.

The 3 July pyroclastic flows marked the first major event at Soufriere Hills since dome growth ended in mid-March (BGVN 23:04). The dome had reached a volume of 120 x 106 m3 (the maximum observed throughout the eruption) and a summit height of 1,031 m. The minor pyroclastic flows of previous months (BGVN 23:04 and 23:05) were consistent with mechanical collapse of the very large and unstable dome and were therefore of no great significance. Given the duration of low levels of activity, it was conjectured that the current volcanic crisis might be waning, with important implications for the residents of the island and its administration. Because the 3 July pyroclastic flows apparently represented a re-escalation of activity, the Montserrat Volcano Observatory (MVO) has examined the events and deposits to investigate their significance.

Precursor events. There were no obvious precursors to the eruption. However, possibly related factors included a felt earthquake at 1704 on 25 June centered under Barbuda, and a series of small-to-moderate pyroclastic flows commencing at 1229 on 30 June and lasting 30-40 minutes. It may be significant that the events of 3 July coincided with the passage of a tropical wave, a period of bad weather and heavy rain.

Observations. Abrupt onset of activity was detected by the MVO seismic network at 0302 on 3 July, so opportunities for visual observations were limited. During the first half hour, there were reports from several localities in the W and N of the island of 'stones' and ash falling. At 0400 NOAA satellites detected a large ash column reaching altitudes of 9-12 km moving ENE. As a result of wind shear, the lower part of the plume was blown NW, which resulted in significant ashfall over the N of the island. Light ashfall was also recorded on Nevis and St. Kitts.

At 0422 an observer at Jack Boy Hill reported pyroclastic flows descending the Tar River valley, with abundant lightning and with an ash cloud drifting and rising over the center of the island. Reporters on the W of the island recorded heavy ashfall in the Belham Valley (figure 41), at Salem, and at Woodlands. Thunder and lightning were observed at the front of the ash plume as it headed W over the sea. At 0450 pyroclastic flows were observed at the Tar River delta; the deposits were steaming strongly at 0518. Winds from the S deposited 0.5-1 mm of ash over the entire N end of the island.

Figure (see Caption) Figure 41. Map of the southern part of Montserrat indicating some areas referred to in the text. Courtesy of MVO.

Although residents reported falling 'stones,' examination of the deposits revealed no pumice clasts. A maximum 2-mm-thick layer of fine ash was recorded in Salem with lithics and crystals up to 3 mm in size from MVO to the S. Most of the ash fell as accretionary lapilli all over the island, reaching diameters of up to 4 mm. These large lapilli may account for the reports of 'stones'. Heavy rain following the event precluded detailed studies of the deposits.

A helicopter flight at 0700 confirmed that pyroclastic flows had reached the Tar River delta and entered the sea. In the upper Tar River valley, flows were channeled down its S side; lower down they spread out over both sides of the valley. The N slopes of Roche's Mountain and Perche's Estate were eroded and there were indications that small amounts of material, including some ballistics, had overtopped the ridge causing impact scars on steep slopes and starting small fires. Surges associated with the passage of the pyroclastic flow left significant deposits of fine ash in the area of the Tar River estate house, and for the first time since the onset of the crisis the southern parts of Long Ground village were affected. Trees and shrubs were scorched, but no houses caught fire, nor was there any evidence of high velocities associated with the surges. Surge deposits extended to about 400 m N of the Tar River delta.

Small rockfall deposits were observed on the White River flanks of the dome, but there was no activity in Tuitt's, Mosquito, or Tyer's ghauts. Ash continued to drift W during the morning. A smaller event at about 1407 produced a dark cloud about 3 km high, depositing further ash on the Woodlands, Salem, Old Towne, and Olveston areas, but not farther N. This may have been a weak explosion or a small pyroclastic flow. A further 1 mm of fine ash accumulated in the Woodlands and Salem areas.

An observation flight at 1500 on 3 July revealed a large scar on the SE flanks of the dome, with chutes leading down against the N scarp of Perche's mountain and the S edge of the Tar River valley. A large volume had been lost from the dome (later estimated visually to be 15% of total dome volume). The prominent 50-m-high spine at Galway's dome was not visible due to steam and ash in the summit region, but craggy peaks were observed on the S and NE rims of the scar left by the collapse event. There was no evidence of changes on the other flanks of the dome. Strong fumarolic activity was observed along a clearly defined NE-trending, linear fracture 50-100 m in length within the new scar. Several distinct vents along this fracture gave off white steam; one appeared to be tinged with yellow elemental sulfur. To the W of this a dark mass was intermittently visible through the steam: its dark color may have resulted from steam condensation.

An observation flight on 10 July in clear conditions showed that the collapse scar had the shape of an extremely steep sided, long canyon extending deep back into the dome: it was not possible to determine its westernmost limit, but it must have cut through most of the dome. There was no evidence of renewed dome growth.

Associated seismicity. Beginning at 1229 on 30 June signals indicating a moderate-sized pyroclastic flow lasted ~40 minutes. After this event daily rockfall signals increased from an average of 2/day for June (including 11 on 30 June) continuing with 13 and 8 signal on 1 and 2 July.

On 3 July another, much larger pyroclastic-flow signal started at 0302 and lasted ~2.5 hours. The maximum amplitude of this signal was attained immediately after the onset and lasted for 30 seconds. It was greater than that for the flow on 30 June and several times greater than the last big flows down the Tar River valley in May 1997 (BGVN 22:05).

Spectral analysis of the high amplitude signal at the onset suggests that it was not generated by an explosive event similar to those seen during August and September 1997 (BGVN 22:08). It has been suggested, however, that a phreatic explosion may have been involved.

Deposits. New block-and-ash deposits from the 3 July event covered the entire Tar River delta, and new surge deposits extended over the N of the valley into Long Ground (figure 42). Comparisons between aerial photos of the deposit taken on 24 June, 3, 4, and 6 July show a significant increase in area on the N and S of the delta, but no significant increase in the E. The N side of the delta may have extended by up to 250 m; the S side, by only 30-50 m. The maximum width of the delta (along its base) is now ~1.9 km, tapering to 1 km seaward, extending 700 m off shore. This indicates a total area for the delta of 1 km2, an increase of about 0.25 km2.

Figure (see Caption) Figure 42. Diagramatic map showing the deposits produced by the 3 July 1998 dome collapse and some vertical sections of the delta. North is to the right; heavy solid line is pre-eruption shoreline. Stratigraphic abbreviations are as follows: "BAF," block-and-ash flow; "Accr. ash," the layer of ash rich in accretionary structures probably produced by a secondary explosion when the hot mobile material reached the sea; "Alter." (in section 5), the red alteration probably due to interaction with the sea; and "Ground surge," the often reverse-graded layer of very fine ash found at the base of the block-and-ash flow. The white area on the fan corresponded to old block-and-ash flow deposits. Courtesy of MVO.

An observation flight on 3 July showed intense white and brownish steaming on the N delta and much weaker white steaming on the S. A number of different lobes of various tones and textures were interpreted as successive pulses from different parts of the dome. Overall, the S area appeared light gray and the N appeared brownish.

Deposits along the beach lines of the delta were later visited. Dry material was extremely hot, steaming from small vents locally. The upper layers consisted of very fine grained, dusty surge deposits reaching up to ~0.5 m in thickness, lacking large clasts. This material was very mobile and small jets fountained when disturbed for sampling. Bubbling mud/ash vents up to 0.4 m in diameter were also distributed irregularly over the front of the delta. Underlying the fine surge deposits was a typical block-and-ash deposit of indeterminate thickness, with clasts typically of a few centimeters diameter, though some meter-sized boulders were visible on the surface of the deposit nearby.

Sampling carried out on the delta showed a prevalence of blocks from the dome, associated with a small proportion of pumices of varying density and vessiculation. A few blocks exhibiting bread-crust structure were found in the S delta. The differences in color seen from the air were conspicuous on the ground. The N part appears much finer than the S.

Hydrothermal alteration was observed in both areas. The top of the surge deposit showed some evidence of alteration, forming a slightly more resistant crust, perhaps as a result of steam from below. In the S this alteration crust is much harder. Part of this alteration is the result of a post-depositional process (as evidenced by yellow, white, and red staining on the surface); part may be due to pre-depositional processes, evidenced by individual discolored blocks of different size located on non-altered areas.

Exploratory sections made on 9 July through the delta deposit showed that the S area consists of a new block-and-ash flow deposit ~10 cm thick on top of deposits from an older block-and-ash flow. Close to the sea a significant layer of alteration (about 6 of 13 cm) is also evident in the deposit. The N of the delta shows a surge layer ~10 cm thick on top of the new block-and-ash flow deposit of up to 50 cm. Sections 1 and 2 (close to the original coast line) also hosted a layer of accretionary ash, probably due to secondary explosions when the flow reached the sea. This is consistent with the brownish steam seen to the N of the delta a few hours after the collapse. Section 2, the most complete section observed, shows the presence of a 15 cm thick layer of very fine ash at the base. The new deposits are probably thickest in the central part of the delta, but it was not possible to obtain thickness data there. Temperatures of the deposits were taken at several places (table 30).

Table 30. Temperature measurements in 3 July 1998 deposits at Soufriere Hills. Courtesy of MVO.

Measurement Date Time Delta Area Location Depth (cm) Temperature (°C)
06 Jul 1998 1445 Northern 5 m from deposit edge 4 100
06 Jul 1998 1445 Northern 5 m from deposit edge 50 300
06 Jul 1998 1445 Northern 6 m from edge, inside fluidized area 80 298
06 Jul 1998 1445 Northern 8 m from deposit edge 4 100
06 Jul 1998 1445 Northern 8 m from deposit edge 50 255
 
07 Jul 1998 1400 Northern 5 m from deposit edge 4 65
07 Jul 1998 1400 Northern 5 m from deposit edge 50 195
07 Jul 1998 1400 Northern 5 m from deposit edge 100 319
07 Jul 1998 1400 Northern 20 m from deposit edge 4 76
07 Jul 1998 1400 Northern 20 m from deposit edge 50 193
07 Jul 1998 1400 Northern 20 m from deposit edge 70 238
 
06 Jul 1998 1445 Southern 5 m from deposit edge 4 132
06 Jul 1998 1445 Southern 5 m from deposit edge 50 360
06 Jul 1998 1445 Southern 10 m from edge 4 120
06 Jul 1998 1445 Southern 10 m from edge 50 375
 
07 Jul 1998 1400 Southern 5 m from deposit edge 4 117
07 Jul 1998 1400 Southern 5 m from deposit edge 50 337
07 Jul 1998 1400 Southern 5 m from deposit edge 70 391
07 Jul 1998 1400 Southern 10 m from deposit edge 4 115
07 Jul 1998 1400 Southern 10 m from deposit edge 50 360
07 Jul 1998 1400 Southern 10 m from deposit edge 70 238

Subsequent events. The pyroclastic flows of 3 July were followed by heightened rock-fall and volcano-tectonic earthquakes until 1407, when there was further high-amplitude seismic signal. This time the signal lasted only 10 minutes and the maximum amplitude was similar to that of the flow on 30 June. Analysis of the most recent event shows that the first 30 seconds were dominated by a 2.4-Hz harmonic signal. This, combined with observations of the color and ascent rate of the ash cloud, suggested an explosive component, which produced a low, dark ash cloud that drifted NW depositing ash on Salem and Woodlands.

On 5 July there were three episodes of ash venting, which produced weak ash plumes to about 3 km that drifted W over Plymouth. The first two occurred at about 0330 and 0500 lasting about 30 minutes each. The third event at 1030 was observed from Salem and lasted 1.75 hours with new, dense pulses of dark gray ash every 5 minutes.

The following week, there continued to be elevated numbers of rock-fall signals, volcano-tectonic earthquakes, and intervals of tremor associated with ash venting from the scar left by the large collapse.

COSPEC observations. COSPEC observations resumed on 5 July. Although the long interval since the last observations (BGVN 22:10) makes comparisons difficult, SO2 emission rates were clearly elevated, measuring 1,500-3,000 metric tons/day between 5 and 11 July. Although the high flux after the event may have been due to the effects of scattering by fine dust and aerosols in the plume (increasing the effective optical-path length), fluxes one week after the collapse were still significantly higher than during comparable periods earlier in the eruption. This may indicate a change in the magmatic source of the gas, or a change in the degassing regime caused by the depressurizing of a large part of the dome and associated changes in the underlying hydrothermal system. Reports of strong H2S odors from the volcano over previous months may also be related to a cooler, wetter hydrothermal system.

Interpretations and conclusions. Because the dome had stopped growing in mid-March, and in the absence of any clear seismic or other precursors, the 3 July event was initially interpreted as a large mechanical dome collapse- not triggered by fresh dome growth. Given the continued low level of activity, this may still be the correct interpretation. Seismic records suggested a sudden initial collapse followed by continued erosion of the scar. This inference is supported by the very long, deep collapse scar, which extends across much of the dome. Although there are no close parallels from Montserrat itself, it is possible that the high- amplitude seismic signal at the onset of the event was due to a phreatic explosion.

There is little evidence to indicate renewed dome growth. The high SO2 fluxes are problematical in the absence of fluxes taken immediately prior to the collapse. There may have been a change in the hydrothermal system, which brought about the conditions leading to collapse.

The difference in temperature, texture, and color between the new deposits in N and S areas of the delta suggests that they have been affected by different processes: the N area was affected by block-and-ash flows and surges; the S area, only by block-and-ash flows. It is likely that the large area affected by surges on the N flanks of the valley, including parts of Long Ground village, was the result of S winds during the emplacement of the pyroclastic flows.

Acknowledgments. The following scientists contributed to these studies: Costanza Bonadonna and Rob Watts, Department of Geology, University of Bristol; Peter Francis, Department of Earth Sciences, Open University; Richard Luckett and Colin Walker, Montserrat Volcano Observatory; Gill Norton and K. Rowley, British Geological Survey; Richard Robertson, Seismic Research Unit, University of the West Indies.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat, West Indies (URL: http://www.mvo.ms/).


St. Helens (United States) — July 1998 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Earthquakes, but CO2 flux returns to normal

The rate of earthquake activity, which accelerated markedly from May through mid-July, (BGVN 23:05 and 23:06) returned in August to a level similar to that of last winter. The number of well-located earthquakes in July was 445, compared to 318 in June, but most of the earthquakes that took place during July occurred during the first three weeks of the month. The average rate for the first two weeks of August was only about four well-located earthquakes per day. Several temporary increases in earthquake activity have occurred since the last dome-building eruption in October 1986. This recent episode was the most intense.

Airborne gas surveys revealed that magmatic carbon dioxide (CO2) decreased since June. However escaping CO2 was still measurable. The CO2 was probably being released from magma that entered the magma reservoir during the past few months. The reservoir's top was estimated to be about 7 km below the crater. Because CO2 is heavier than air, it can concentrate in surface depressions on the dome or crater floor, especially under calm conditions, and pose an asphyxiation hazard. Poorly ventilated cavities, such as caves in the mass of snow and ice behind the dome, could be hazardous.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: Cascades Volcano Observatory, U.S. Geological Survey, 5400 MacArthur Blvd., Vancouver, WA 98661 USA (URL: http://volcanoes.usgs.gov/); Geophysics Program, University of Washington, Seattle, WA 98195 USA (URL: http://www.geophys.washington.edu/SEIS/PNSN/HELENS/).


Turrialba (Costa Rica) — July 1998 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Not erupting; seismicity and fumarolic condensate chemistry

During July, the main crater continued to weakly emit fumarolic gases with temperatures of 90°C. These escaped along the crater's NE, N, W, and S walls, and small landslides along the crater's N and S walls have partly covered the crater floor. Also, in the central crater, new points appeared on the N side where sulfur-rich gases gently escaped; gas temperatures measured 88°C.

Condensate chemistry and fumarole temperatures taken during 1992 through July 1998 appear on figure 4. Elevated SO4 was measured in condensate sampled on 22 April 1998 (figure 4). This coincided with the appearance of high-frequency earthquakes. Although the SO4 concentration declined in the next condensate sample (22 July), there were 68 high-frequency earthquakes from April through July (table 3).

Figure (see Caption) Figure 4. Turrialba fumarolic temperature (top) and condensate chemistry (bottom) shown for the interval 14 January 1992 to 22 July 1998. The measured pH appears as a series of points; Cl and SO4 concentrations, as shaded and unshaded bars, respectively. Note that the horizontal scale ("Sample date") is non-linear and that the lower right-hand vertical axis (Cl and SO4 concentration) is broken into segments of dissimilar scale. Courtesy of OVSICORI-LAQAT (National University).

Table 3. Seismicity registered at Turrialba's seismic station VTU, January-July 1998. Courtesy of OVSICORI-UNA.

Month High-frequency Low-frequency Microseisms
Jan 1998 0 0 53
Feb 1998 1 1 83
Mar 1998 3 2 96
Apr 1998 12 1 28
May 1998 15 4 99
Jun 1998 2 3 60
Jul 1998 36 4 61

During 1998 the seismic system (station VTU, 0.5 km NE of the active crater) registered fewer than either 100 microseisms a month or five low-frequency earthquakes a month (table 3). The growth in the number of high-frequency earthquakes was thought to be related to the above-mentioned appearance of the new fumaroles in the central crater. Microseisms were generally weak, with amplitudes below 10 mm.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernández, V. Barboza, M. Martinez, E. Duarte, R. Van der Laat, E. Hernández, and T. Marino, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports