Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Erta Ale (Ethiopia) Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Rincon de la Vieja (Costa Rica) Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Manam (Papua New Guinea) Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Stromboli (Italy) Strombolian activity continues at both summit crater areas, September-December 2019

Semeru (Indonesia) Ash plumes and thermal anomalies continue during September 2019-February 2020

Popocatepetl (Mexico) Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Santa Maria (Guatemala) Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020



Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).


Erta Ale (Ethiopia) — May 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Erta Ale is a shield volcano located in Ethiopia and contains multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. Surficial lava flow activity continued within the southeastern caldera during November 2019 until early April 2020; source information was primarily from various satellite data.

The number of days that thermal anomalies were detected using MODIS data in MODVOLC and NASA VIIRS satellite data was notably higher in November and December 2019 (figure 96); the number of thermal anomalies in the Sentinel-2 thermal imagery was substantially lower due to the presence of cloud cover. Across all satellite data, thermal anomalies were identified for 29 days in November, followed by 30 days in December. After December 2019, the number of days thermal anomalies were detected decreased; hotspots were detected for 17 days in January 2020 and 20 days in February. By March, these thermal anomalies became rare until activity ceased. Thermal anomalies were identified during 1-4 March, with weak anomalies seen again during 26 March-8 April 2020.

Figure (see Caption) Figure 96. Graph comparing the number of thermal alerts using calendar dates using MODVOLC, NASA VIIRS, and Sentinel-2 satellite data for Erta Ale during November 2019-March 2020. Data courtesy of HIGP - MODVOLC Thermal Alerts System, NASA Worldview using the “Fire and Thermal Anomalies” layer, and Sentinel Hub Playground.

MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent strong thermal anomalies from 18 April through December 2019 (figure 97). Between early August 2019 and March 2020, these thermal signatures were detected at distances less than 5 km from the summit. In late December the thermal intensity dropped slightly before again increasing, while at the same time moving slightly closer to the summit. Thermal anomalies then became more intermittent and steadily decreased in power over the next two months.

Figure (see Caption) Figure 97. Two time-series plots of thermal anomalies from Erta Ale from 18 April 2019 through 18 April 2020 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently until early January 2020 when both the power and frequency visibly declined. The lower plot (B) shows these anomalies as a function of distance from the summit, including a sudden decrease in distance (measured in kilometers) in early August 2019, reflecting a change in the location of the lava flow outbreak. A smaller distance change can be identified at the end of December 2019. Courtesy of MIROVA.

Unlike the obvious distal breakouts to the NE seen previously (BGVN 44:04 and 44:11), infrared satellite imagery during November-December 2019 showed only a small area with a thermal anomaly near the NE edge of the Southeast Caldera (figure 98). A thermal alert was seen at that location using the MODVOLC system on 28 December, but the next day it had been replaced by an anomaly about 1.5 km WSW near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018 (BGVN 43:04). The thermal anomaly that was detected in the summit caldera was no longer visible after 9 January 2020, based on Sentinel-2 imagery. The exact location of lava flows shifted within the same general area during January and February 2020 and was last detected by Sentinel-2 on 4 March. After about two weeks without detectable thermal activity, weak unlocated anomalies were seen in VIIRS data on 26 March and in MODIS data on the MIROVA system four times between 26 March and 8 April. No further anomalies were noted through the rest of April 2020.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between November 2019 and March 2020 showing small lava flow outbreaks (bright yellow-orange) just NE of the southeastern calderas. A thermal anomaly can be seen in the summit crater on 15 November and very faintly on 20 December 2019. Imagery on 19 January 2020 showed a small thermal anomaly near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018. The last weak thermal hotspot was detected on 4 March (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Rincon de la Vieja (Costa Rica) — April 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Rincón de la Vieja is a remote volcanic complex in Costa Rica containing an acid lake that has regularly generated weak phreatic explosions since 2011 (BGVN 44:08). The most recent eruptive period occurred during late March-early June 2019, primarily consisting of small phreatic explosions, minor deposits on the N crater rim, and gas-and-steam emissions. The report period of August 2019-March 2020 was characterized by similar activity, including small phreatic explosions, gas-and-steam plumes, ash and lake sediment ejecta, and volcanic tremors. The most significant activity during this time occurred on 30 January, where a phreatic explosion ejected ash and lake sediment above the crater rim, resulting in a pyroclastic flow which gradually turned into a lahar. Information for this reporting period of August 2019-March 2020 comes from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins.

According to OVSICORI-UNA, a small hydrothermal eruption was recorded on 1 August 2019. The seismicity was low with a few long period (LP) earthquakes around 1 August and intermittent background tremor. No explosions or emissions were reported through 11 September; seismicity remained low with an occasional LP earthquake and discontinuous tremor. The summit’s extension that has been recorded since the beginning of June stopped, and no significant deformation was observed in August.

Starting again in September 2019 and continuing intermittently through the reporting period, some deformation was observed at the base of the volcano as well as near the summit, according to OVSICORI-UNA. On 12 September an eruption occurred that was followed by volcanic tremors that continued through 15 September. In addition to these tremors, vigorous sustained gas-and-steam plumes were observed. The 16 September weekly bulletin did not describe any ejecta produced as a result of this event.

During 1-3 October small phreatic eruptions were accompanied by volcanic tremors that had decreased by 5 October. In November, volcanism and seismicity were relatively low and stable; few LP earthquakes were reported. This period of low activity remained through December. At the end of November, horizontal extension was observed at the summit, which continued through the first half of January.

Small phreatic eruptions were recorded on 2, 28, and 29 January 2020, with an increase in seismicity occurring on 27 January. On 30 January at 1213 a phreatic explosion produced a gas column that rose 1,500-2,000 m above the crater, with ash and lake sediment ejected up to 100 m above the crater. A news article posted by the Universidad de Costa Rica (UCR) noted that this explosion generated pyroclastic flows that traveled down the N flank for more than 2 km from the crater. As the pyroclastic flows moved through tributary channels, lahars were generated in the Pénjamo river, Zanjonuda gorge, and Azufrosa, traveling N for 4-10 km and passing through Buenos Aires de Upala (figure 29). Seismicity after this event decreased, though there were still some intermittent tremors.

Figure (see Caption) Figure 29. Photo of a lahar generated from the 30 January 2020 eruption at Rincon de la Vieja. Photo taken by Mauricio Gutiérrez, courtesy of UCR.

On 17, 24, and 25 February and 11, 17, 19, 21, and 23 March, small phreatic eruptions were detected, according to OVSICORI-UNA. Geodetic measurements observed deformation consisting of horizontal extension and inflation near the summit in February-March. By the week of 30 March, the weekly bulletin reported 2-3 small eruptions accompanied by volcanic tremors occurred daily during most days of the week. None of these eruptions produced solid ejecta, pyroclastic flows, or lahars, according to the weekly OVSICORI-UNA bulletins during February-March 2020.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Luis Enrique Brenes Portuguéz, University of Costa Rica, Ciudad Universitaria Rodrigo Facio Brenes, San José, San Pedro, Costa Rica (URL: https://www.ucr.ac.cr/noticias/2020/01/30/actividad-del-volcan-rincon-de-la-vieja-es-normal-segun-experto.html).


Manam (Papua New Guinea) — May 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption, ongoing since June 2014, produced multiple large explosive eruptions during January-September 2019, including two 15-km-high ash plumes in January, repeated SO2 plumes each month, and another 15.2 km-high ash plume in June that resulted in ashfall and evacuations of several thousand people (BGVN 44:10).

This report covers continued activity during October 2019 through March 2020. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

A few modest explosions with ash emissions were reported in early October and early November 2019, and then not again until late March 2020. Although there was little explosive activity during the period, thermal anomalies were recorded intermittently, with low to moderate activity almost every month, as seen in the MODIS data from MIROVA (figure 71) and also in satellite imagery. Sulfur dioxide emissions persisted throughout the period producing emissions greater than 2.0 Dobson Units that were recorded in satellite data 3-13 days each month.

Figure (see Caption) Figure 71. MIROVA thermal anomaly data for Manam from 17 June 2019 through March 2020 indicate continued low and moderate level thermal activity each month from August 2019 through February 2020, after a period of increased activity in June and early July 2019. Courtesy of MIROVA.

The Darwin VAAC reported an ash plume in visible satellite imagery moving NW at 3.1 km altitude on 2 October 2019. Weak ash emissions were observed drifting N for the next two days along with an IR anomaly at the summit. RVO reported incandescence at night during the first week of October. Visitors to the summit on 18 October 2019 recorded steam and fumarolic activity at both of the summit craters (figure 72) and recent avalanche debris on the steep slopes (figure 73).

Figure (see Caption) Figure 72. Steam and fumarolic activity rose from Main crater at Manam on 18 October 2019 in this view to the south from a ridge north of the crater. Google Earth inset of summit shows location of photograph. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.
Figure (see Caption) Figure 73. Volcanic debris covered an avalanche chute on the NE flank of Manam when visited by hikers on 18 October 2019. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.

On 2 November, a single large explosion at 1330 local time produced a thick, dark ash plume that rose about 1,000 m above the summit and drifted NW. A shockwave from the explosion was felt at the Bogia Government station located 40 km SE on the mainland about 1 minute later. RVO reported an increase in seismicity on 6 November about 90 minutes before the start of a new eruption from the Main Crater which occurred between 1600 and 1630; it produced light to dark gray ash clouds that rose about 1,000 m above the summit and drifted NW. Incandescent ejecta was visible at the start of the explosion and continued with intermittent strong pulses after dark, reaching peak intensity around 1900. Activity ended by 2200 that evening. The Darwin VAAC reported a discrete emission observed in satellite imagery on 8 November that rose to 4.6 km altitude and drifted WNW, although ground observers confirmed that no eruption took place; emissions were only steam and gas. There were no further reports of explosive activity until the Darwin VAAC reported an ash emission in visible satellite imagery on 20 March 2020 that rose to 3.1 km altitude and drifted E for a few hours before dissipating.

Although explosive activity was minimal during the period, SO2 emissions, and evidence for continued thermal activity were recorded by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite captured evidence each month of SO2 emissions exceeding two Dobson Units (figure 74). The most SO2 activity occurred during October 2019, with 13 days of signatures over 2.0 DU. There were six days of elevated SO2 each month in November and December, and five days in January 2020. During February and March, activity was less, with smaller SO2 plumes recording more than 2.0 DU on three days each month. Sentinel-2 satellite imagery recorded thermal anomalies at least once from one or both of the summit craters each month between October 2019 and March 2020 (figure 75).

Figure (see Caption) Figure 74. SO2 emissions at Manam exceeded 2 Dobson Units multiple days each month between October 2019 and March 2020. On 3 October 2019 (top left) emissions were also measured from Ulawun located 700 km E on New Britain island. On 30 November 2019 (top middle), in addition to a plume drifting N from Manam, a small SO2 plume was detected at Bagana on Bougainville Island, 1150 km E. The plume from Manam on 2 December 2019 drifted ESE (top right). On 26 January 2020 the plume drifted over 300 km E (bottom left). The plumes measured on 29 February and 4 March 2020 (bottom middle and right) only drifted a few tens of kilometers before dissipating. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 75. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, and 8a) showed thermal anomalies at one or both of Manam’s summit craters each month during October 2019-March 2020. On 17 October 2019 (top left) a bright anomaly and weak gas plume drifted NW from South crater, while a dense steam plume and weak anomaly were present at Main crater. On 25 January 2020 (top right) the gas and steam from the two craters were drifting E; the weaker Main crater thermal anomaly is just visible at the edge of the clouds. A clear image on 5 March 2020 (bottom left) shows weak plumes and distinct thermal anomalies from both craters; on 20 March (bottom right) the anomalies are still visible through dense cloud cover that may include steam from the crater vents as well. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulkanologische Gesellschaft (URL: https://twitter.com/vulkanologen/status/1194228532219727874, https://twitter.com/vulkanologen/status/1193788836679225344); Claudio Jung, (URL: https://www.facebook.com/claudio.jung.1/posts/10220075272173895, https://www.instagram.com/jung.claudio/).


Stromboli (Italy) — April 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit crater areas, September-December 2019

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island (figure 168). Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; September-December 2019 is covered in this report.

Figure (see Caption) Figure 168. This shaded relief map of Stromboli’s crater area was created from images acquired by drone on 9 July 2019 (In collaboration with GEOMAR drone group, Helmholtz Center for Ocean Research, Kiel, Germany). Inset shows Stromboli Island, the black rectangle indicates the area of the larger image, the black curved and the red hatched lines indicate, respectively, the morphological escarpment and the crater edges. Courtesy of INGV (Rep. No. 50/2019, Stromboli, Bollettino Settimanale, 02/12/2019 - 08/12/2019, data emissione 10/12/2019).

Activity was very consistent throughout the period of September-December 2019. Explosion rates ranged from 2-36 per hour and were of low to medium-high intensity, producing material that rose from less than 80 to over 150 m above the vents on occasion (table 7). The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the Terrazza Craterica, and also down the Sciara del Fuoco towards the coast. After the explosions of early July and late August, thermal activity decreased to more moderate levels that persisted throughout the period as seen in the MIROVA Log Radiative Power data (figure 169). Sentinel-2 satellite imagery supported descriptions of the constant glow at the summit, revealing incandescence at both summit areas, each showing repeating bursts of activity throughout the period (figure 170).

Table 7. Monthly summary of activity levels at Stromboli, September-December 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2019 Explosion rates varied from 11-36 events per hour and were of low- to medium intensity (producing 80-120 m high ejecta). Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the terrace, and also down the Sciara del Fuoco towards the coast.
Oct 2019 Typical Strombolian activity and degassing continued. Explosions rates varied from 2-21 events per hour. Low intensity activity was common in the N area (ejecta less than 80 m high) and low to moderate intensity activity was typical in the CS area, with a few explosions rising over 150 m high. Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. Some of the explosions sent ejecta down the Sciara del Fuoco.
Nov 2019 Typical Strombolian activity and degassing continued. Explosion rates varied from 11-23 events per hour with ejecta rising usually 80-150 m above the vents. Occasional explosions rose 250 m high. In the N area, explosions were generally low intensity with coarse material (lapilli and bombs). In many explosions, ejecta covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. In the CS area, coarse material was mixed with fine and some explosions sent ejecta onto the upper part of the Sciara del Fuoco.
Dec 2019 Strombolian activity and degassing continued. Explosion rates varied from 12-26 per hour. In the N area, explosion intensity was mainly medium-low (less than 150 m) with coarse ejecta while in the CS area it was usually medium-high (more than 150 m) with both coarse and fine ejecta. In many explosions, debris covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. Spattering activity was noted in the southern vents of the N area.
Figure (see Caption) Figure 169. Thermal activity at Stromboli was high during July-August 2019, when two major explosions occurred. Activity continued at more moderate levels through December 2019 as seen in the MIROVA graph of Log Radiative Power from 8 June through December 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 170. Stromboli reliably produced strong thermal signals from both of the summit vents throughout September-December 2019 and has done so since long before Sentinel-2 satellite imagery was able to detect it. Image dates are (top, l to r) 5 September, 15 October, 20 October, (bottom l to r) 14 November, 14 December 2019, and 3 January 2020. Sentinel-2 imagery uses Atmospheric penetration rendering with bands 12, 11, and 8A, courtesy of Sentinel Hub Playground.

After a major explosion with a pyroclastic flow on 28 August 2019, followed by lava flows that reached the ocean in the following days (BGVN 44:09), activity diminished in early September to levels more typically seen in recent times. This included Strombolian activity from vents in both the N and CS areas that sent ejecta typically 80-150 m high. Ejecta from the N area generally consisted of lapilli and bombs, while the material from the CS area was often finer grained with significant amounts of lapilli and ash. The number of explosive events remained high in September, frequently reaching 25-30 events per hour. The ejecta periodically landed outside the craters on the Terrazza Craterica and even traveled partway down the Sciara del Fuoco. An inspection on 7 September by INGV revealed four eruptive vents in the N crater area and five in the S crater area (figure 171). The most active vents in the N area were N1 with mostly ash emissions and N2 with Strombolian explosions rich in incandescent coarse material that sometimes rose well above 150 m in height. In the S area, S1 and S2 produced jets of lava that often reached 100 m high. A small cone was observed around N2, having grown after the 28 August explosion. Between 11 and 13 September aerial surveys with drones produced detailed visual and thermal imagery of the summit (figure 172).

Figure (see Caption) Figure 171. Video of the Stromboli summit taken with a thermal camera on 7 September 2019 from the Pizzo sopra la Fossa revealed four active vents in the N area and five active vents in the S area. Images prepared by Piergiorgio Scarlato, courtesy of INGV (Rep. No. 37.2/2019, Stromboli, Bollettino Giornaliero del 10/09/2019).
Figure (see Caption) Figure 172. An aerial drone survey on 11 September 2019 at Stromboli produced a detailed view of the N and CS vent areas (left) and thermal images taken by a drone survey on 13 September (right) showed elevated temperatures down the Sciara del Fuoco in addition to the vents in the N and CS areas. Images by E. De Beni and M. Cantarero, courtesy of INGV (Rep. No. 37.5/2019, Stromboli, Bollettino Giornaliero del 13/09/2019).

Strombolian activity from the N crater on 28 September and 1 October 2019 produced blocks and debris that rolled down the Sciara del Fuoco and reached the ocean (figure 173). Explosive activity from the CS crater area sometimes produced ejecta over 150 m high (figure 174). A survey on 26 November revealed that a layer of ash 5-10 cm thick had covered the bombs and blocks that were deposited on the Pizzo Sopra la Fossa during the explosions of 3 July and 28 August (figure 175). On the morning of 27 December a lava flow emerged from the CS area and traveled a few hundred meters down the Sciara del Fuoco. The frequency of explosive events remained relatively constant from September through December 2019 after decreasing from higher levels during July and August (figure 176).

Figure (see Caption) Figure 173. Strombolian activity from vents in the N crater area of Stromboli produced ejecta that traveled all the way to the bottom of the Sciara del Fuoco and entered the ocean. Top images taken 28 September 2019 from the 290 m elevation viewpoint by Rosanna Corsaro. Bottom images captured on 1 October from the webcam at 400 m elevation. Courtesy of INGV (Rep. No. 39.0/2019 and Rep. No. 40.3, Stromboli, Bollettino Giornaliero del 29/09/2019 and 02/10/2019).
Figure (see Caption) Figure 174. Ejecta from Strombolian activity at the CS crater area of Stromboli rose over 150 m on multiple occasions. The webcam located at the 400 m elevation site captured this view of activity on 8 November 2019. Courtesy of INGV (Rep. No. 45.5/2019, Stromboli, Bollettino Giornaliero del 08/11/2019).
Figure (see Caption) Figure 175. The Pizzo Sopra la Fossa area at Stromboli was covered with large blocks and pyroclastic debris on 6 September 2019, a week after the major explosion of 28 August (top). By 26 November, 5-10 cm of finer ash covered the surface; the restored webcam can be seen at the far right edge of the Pizzo (bottom). Courtesy of INGV (Rep. No. 49/2019, Stromboli, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).
Figure (see Caption) Figure 176. The average hourly frequency of explosive events at Stromboli captured by surveillance cameras from 1 June 2019 through 5 January 2020 remained generally constant after the high levels seen during July and August. The Total value (blue) is the sum of the average daily hourly frequency of all explosive events produced by active vents.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semeru (Indonesia) — April 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes and thermal anomalies continue during September 2019-February 2020

Semeru is a stratovolcano located in East Java, Indonesia containing an active Jonggring-Seloko vent at the Mahameru summit. Common activity has consisted of ash plumes, pyroclastic flows and avalanches, and lava flows that travel down the SE flank. This report updates volcanism from September 2019 to February 2020 using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The dominant activity at Semeru for this reporting period consists of ash plumes, which were frequently reported by the Darwin VAAC. An eruption on 10 September 2019 produced an ash plume rising 4 km altitude drifting WNW, as seen in HIMAWARI-8 satellite imagery. Ash plumes continued to rise during 13-14 September. During the month of October the Darwin VAAC reported at least six ash plumes on 13, 14, 17-18, and 29-30 October rising to a maximum altitude of 4.6 km and moving primarily S and SW. Activity in November and December was relatively low, dominated mostly by strong and frequent thermal anomalies.

Volcanism increased in January 2020 starting with an eruption on 17 and 18 January that sent a gray ash plume up to 4.6 km altitude (figure 38). Eruptions continued from 20 to 26 January, producing ash plumes that rose up to 500 m above the crater that drifted in different directions. For the duration of the month and into February, ash plumes occurred intermittently. On 26 February, incandescent ejecta was ejected up to 50 m and traveled as far as 1000 m. Small sulfur dioxide emissions were detected in the Sentinel 5P/TROPOMI instrument during 25-27 February (figure 39). Lava flows during 27-29 February extended 200-1,000 m down the SE flank; gas-and-steam and SO2 emissions accompanied the flows. There were 15 shallow volcanic earthquakes detected on 29 February in addition to ash emissions rising 4.3 km altitude drifting ESE.

Figure (see Caption) Figure 38. Ash plumes rising from the summit of Semeru on 17 (left) and 18 (right) January 2020. Courtesy of MAGMA Indonesia and via Ø.L. Andersen's Twitter feed (left).
Figure (see Caption) Figure 39. Small SO2 plumes from Semeru were detected by the Sentinel 5P/TROPOMI instrument during 25 (left) and 26 (right) February 2020. Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively weak and intermittent thermal anomalies occurring during May to August 2019 (figure 40). The frequency and power of these thermal anomalies significantly increased during September to mid-December 2019 with a few hotspots occurring at distances greater than 5 km from the summit. These farther thermal anomalies to the N and NE of the volcano do not appear to be caused by volcanic activity. There was a brief break in activity during mid-December to mid-January 2020 before renewed activity was detected in early February 2020.

Figure (see Caption) Figure 40. Thermal anomalies were relatively weak at Semeru during 30 April 2019-August 2019, but significantly increased in power and frequency during September to early December 2019. There was a break in activity from mid-December through mid-January 2020 with renewed thermal anomalies around February 2020. Courtesy of MIROVA.

The MODVOLC algorithm detected 25 thermal hotspots during this reporting period, which took place during 25 September, 18 and 21 October 2019, 29 January, and 11, 14, 16, and 23 February 2020. Sentinel-2 thermal satellite imagery shows intermittent hotspots dominantly in the summit crater throughout this reporting period (figure 41).

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite imagery detected intermittent thermal anomalies (bright yellow-orange) at the summit of Semeru, which included some lava flows in late January to early February 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Popocatepetl (Mexico) — April 2020 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Frequent historical eruptions have been reported from Mexico's Popocatépetl going back to the 14th century. Activity increased in the mid-1990s after about 50 years of quiescence, and the current eruption, ongoing since January 2005, has included numerous episodes of lava-dome growth and destruction within the 500-m-wide summit caldera. Multiple emissions of steam and gas occur daily, rising generally 1-3 km above the summit at about 5,400 m elevation; many contain small amounts of ash. Larger, more explosive events with ash plumes and incandescent ejecta landing on the flanks occur frequently. Activity through August 2019 was typical of the ongoing eruption with near-constant emissions of water vapor, gas, and minor ash, as well as multiple explosions with ash plumes and incandescent blocks scattered on the flanks (BGVN 44:09). This report covers similar activity from September 2019 through February 2020. Information comes from daily reports provided by México's Centro Nacional de Prevención de Desastres (CENAPRED); ash plumes are reported by the Washington Volcanic Ash Advisory Center (VAAC). Satellite visible and thermal imagery and SO2 data also provide helpful observations of activity.

Activity summary. Activity at Popocatépetl during September 2019-February 2020 continued at the high levels that have been ongoing for many years, characterized by hundreds of daily low-intensity emissions that included steam, gas, and small amounts of ash, and periods with multiple daily minor and moderate explosions that produce kilometer-plus-high ash plumes (figure 140). The Washington VAAC issued multiple daily volcanic ash advisories with plume altitudes around 6 km for many, although some were reported as high as 8.2 km. Hundreds of minutes of daily tremor activity often produced ash emissions as well. Incandescent ejecta landed 500-1,000 m from the summit frequently. The MIROVA thermal anomaly data showed near-constant moderate to high levels of thermal energy throughout the period (figure 141).

Figure (see Caption) Figure 140. Emissions continued at a high rate from Popocatépetl throughout September 2019-February 2020. Daily low-intensity emissions numbered usually in the hundreds (blue, left axis), while less frequent minor (orange) and moderate (green) explosions, plotted on the right axis, occurred intermittently through November 2019, and increased again during February 2020. Data was compiled from CENAPRED daily reports.
Figure (see Caption) Figure 141. MIROVA log radiative power thermal data for Popocatépetl from 1 May 2019 through February 2020 showed a constant output of moderate energy the entire time. Courtesy of MIROVA.

Sulfur dioxide emissions were measured with satellite instruments many days of each month from September 2019 thru February 2020. The intensity and drift directions varied significantly; some plumes remained detectable hundreds of kilometers from the volcano (figure 142). Plumes were detected almost daily in September, and on most days in October. They were measured at lower levels but often during November, and after pulses in early and late December only small plumes were visible during January 2020. Intermittent larger pulses returned in February. Dome growth and destruction in the summit crater continued throughout the period. A small dome was observed inside the summit crater in late September. Dome 85, 210-m-wide, was observed inside the summit crater in early November. Satellite imagery captured evidence of dome growth and ash emissions throughout the period (figure 143).

Figure (see Caption) Figure 142. Sulfur dioxide emissions from Popocatépetl were frequent from September 2019 through February 2020. Plumes drifted SW on 7 September (top left), 30 October (top middle), and 21 February (bottom right). SO2 drifted N and NW on 26 November (top right). On 2 December (bottom left) a long plume of sulfur dioxide hundreds of kilometers long drifted SW over the Pacific Ocean while the drift direction changed to NW closer to the volcano. The SO2 plumes measured in January (bottom center) were generally smaller than during the other months covered in this report. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 143. Sentinel-2 satellite imagery of Popocatépetl during November 2019-February 2020 provided evidence for ongoing dome growth and explosions with ash emissions. Top left: a ring of incandescence inside the summit crater on 8 November 2019 was indicative of the growth of dome 85 observed by CENAPRED. Top middle: incandescence on 8 December inside the summit crater was typical of that observed many times during the period. Top right: a dense, narrow ash plume drifted N from the summit on 17 January 2020. Bottom left: Snow cover made ashfall on 6 February easily visible on the E flank. On 11 February, the summit crater was incandescent and nearly all the snow was covered with ash. Bottom right: a strong thermal anomaly and ash emission were captured on 21 February. Bottom left and top right images use Natural color rendering (bands 4, 3, 2); other images use Atmospheric penetration rendering to show infrared signal (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during September-November 2019. On 1 September 2019 minor ashfall was reported in the communities of Atlautla, Ozumba, Juchitepec, and Tenango del Aire in the State of Mexico. The ash plumes rose less than 2 km above the summit and incandescent ejecta traveled less than 100 m from the summit crater. Twenty-two minor and three moderate explosions were recorded on 4-5 September along with minor ashfall in Juchitepec, Tenango del Aire, Tepetlixpa, and Atlautla. During a flyover on 5 September, officials did not observe a dome within the crater, and the dimensions remained the same as during the previous visit (350 m in diameter and 150 m deep) (figure 144). Ashfall was reported in Tlalmanalco and Amecameca on 6 September. The following day incandescent ejecta was visible on the flanks near the summit and ashfall was reported in Amecameca, Ayapango, and Tenango del Aire. The five moderate explosions on 8 September produced ash plumes that rose as high as 2 km above the summit, and incandescent ejecta on the flanks. Explosions on 10 September sent ejecta 500 m from the crater. Eight explosions during 20-21 September produced ejecta that traveled up to 1.5 km down the flanks (figure 145). During an overflight on 27 September specialists from the National Center for Disaster Prevention (CENAPRED ) of the National Coordination of Civil Protection and researchers from the Institute of Geophysics of UNAM observed a new dome 30 m in diameter; the overall crater had not changed size since the overflight in early September.

Figure (see Caption) Figure 144. CENAPRED carried out overflights of Popocatépetl on 5 (left) and 27 September (right) 2019; the crater did not change in size, but a new dome 30 m in diameter was visible on 27 September. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 y 27 de septiembre).
Figure (see Caption) Figure 145. Ash plumes at Popocatépetl on 19 (left) and 20 (right) September 2019 rose over a kilometer above the summit before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19 y 20 de septiembre).

Fourteen explosions were reported on 2 October 2019. The last one produced an ash plume that rose 2 km above the summit and sent incandescent ejecta down the E slope (figure 146). Ashfall was reported in the municipalities of Atlautla Ozumba, Ayapango and Ecatzingo in the State of Mexico. Explosions on 3 and 4 October also produced ash plumes that rose between 1 and 2 km above the summit and sent ejecta onto the flanks. Additional incandescent ejecta was reported on 6, 7, 15, and 19 October. The communities of Amecameca, Tenango del Aire, Tlalmanalco, Cocotitlán, Temamatla, and Tláhuac reported ashfall on 10 October; Amecameca reported more ashfall on 12 October. On 22 October slight ashfall appeared in Amecameca, Tenango del Aire, Tlalmanalco, Ayapango, Temamatla, and Atlautla.

Figure (see Caption) Figure 146. Incandescent ejecta at Popocatépetl traveled down the E slope on 2 October 2019 (left); an ash plume two days later rose 2 km above the summit (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 2 y 4 de octubre).

During 2-3 November 2019 there was 780 minutes of tremor reported in four different episodes. The seismicity was accompanied by ash emissions that drifted W and NW and produced ashfall in numerous communities, including Amecameca, Juchitepec, Ozumba, Tepetlixpa, and Atlautla in the State of México, in Ayapango and Cuautla in the State of Morelos, and in the municipalities of Tlahuac, Tlalpan, and Xochimilco in Mexico City. A moderate explosion on 4 November sent incandescent ejecta 2 km down the slopes and produced an ash plume that rose 1.5 km and drifted NW. Minor ashfall was reported in Tlalmanalco, Amecameca, and Tenango del Aire, State of Mexico. Similar ash plumes from explosions occurred the following day. Scientists from CENAPRED and the Institute of Geophysics of UNAM observed dome number 85 during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick, with an irregular surface (figure 147). Multiple explosions on 6 and 7 November produced incandescent ejecta; a moderate explosion late on 11 November produced ejecta that traveled 1.5 km from the summit and produced an ash plume 2 km high (figure 148). A lengthy period of constant ash emission that drifted E was reported on 18 November. A moderate explosion on 28 November sent incandescent fragments 1.5 km down the slopes and ash one km above the summit.

Figure (see Caption) Figure 147. A new dome was visible inside the summit crater at Popocatépetl during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 de noviembre).
Figure (see Caption) Figure 148. Ash emissions and explosions with incandescent ejecta continued at Popocatépetl during November 2019. The ash plume on 1 November changed drift direction sharply a few hundred meters above the summit (left). Incandescent ejecta traveled 1.5 km down the flanks on 11 November (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 1 y 12 de noviembre).

Activity during December 2019-February 2020. Throughout December 2019 weak emissions of steam and gas were reported daily, sometimes with minor amounts of ash, and minor explosions were only reported on 21 and 27 December. On 21 December two new high-resolution webcams were installed around Popocatépetl, one 5 km from the crater at the Tlamacas station, and the second in San Juan Tianguismanalco, 20 km away. Ash emissions and incandescent ejecta 800 m from the summit were observed on 25 December (figure 149). Incandescence at night was reported during 27-29 December.

Figure (see Caption) Figure 149. Incandescent ejecta moved 800 m down the flanks of Popocatépetl during explosions on 25 December 2019 (left); weak emissions of steam, gas, and minor ash were visible on 27 December and throughout the month. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 25 y 27 de diciembre).

Continuous emissions of water vapor and gas with low ash content were typical daily during January 2020. A moderate explosion on 9 January produced an ash plume that rose 3 km from the summit and drifted NE. In addition, incandescent ejecta traveled 1 km from the crater rim. A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (figure 150). The first of two explosions late on 27 January produced ejecta that traveled 500 m and a 1-km-high ash plume. Constant incandescence was observed overnight on 29-30 January.

Figure (see Caption) Figure 150. Although fewer explosions were recorded at Popocatépetl during January 2020, activity continued. An ash plume on 19 January rose over a kilometer above the summit (top left). A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (top right). Smaller emissions with steam, gas, and ash were typical many days, including on 22 (bottom left) and 31 (bottom right) January 2019. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19, 21, 22 y 31 de enero).

A moderate explosion on 5 February 2020 produced an ash plume that rose 1.5 km and drifted NNE. Explosions on 10 and 13 February sent ejecta 500 m down the flanks (figure 151). During an overflight on 18 February scientists noted that the internal crater maintained a diameter of 350 m and its approximate depth was 100-150 m; the crater was covered by tephra. For most of the second half of February the volcano had a continuous emission of gases with minor amounts of ash. In addition, multiple explosions produced ash plumes that rose 400-1,200 m above the crater and drifted in several different directions.

Figure (see Caption) Figure 151. Ash emissions and explosions continued at Popocatépetl during February 2020. Dense ash drifted near the snow-covered summit on 6 February (top left). Incandescent ejecta traveled 500 m down the flanks on 13 February (top right). Ash plumes billowed from the summit on 18 and 22 February (bottom row). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 6, 15, 18 y 22 de febrero).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2020 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. Ash explosions, pyroclastic, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during September 2019-February 2020, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Constant fumarolic activity with steam and gas persisted from the Caliente dome throughout September 2019-February 2020. Explosions occurred multiple times per day, producing ash plumes that rose to altitudes of 3.1-3.5 km and usually drifted a few kilometers before dissipating. Several lahars during September and October carried volcanic blocks, ash, and debris down major drainages. Periodic ashfall was reported in communities within 10 km of the volcano. An increase in thermal activity beginning in November (figure 101) resulted in an increased number of observations of incandescence visible at night from the summit of Caliente through February 2020. Block avalanches occurred daily on the flanks of the dome, often reaching the base, stirring up small clouds of ash that drifted downwind.

Figure (see Caption) Figure 101. The MIROVA project graph of thermal activity at Santa María from 12 May 2019 through February 2020 shows a gradual increase in thermal energy beginning in November 2019. This corresponds to an increase in the number of daily observations of incandescence at the summit of the Caliente dome during this period. Courtesy of MIROVA.

Constant steam and gas fumarolic activity rose from the Caliente dome, drifting W, usually rising to 2.8-3.0 km altitude during September 2019. Multiple daily explosions with ash plumes rising to 2.9-3.4 km altitude drifted W or SW over the communities of San Marcos, Loma Linda Palajunoj, and Monte Claro (figure 102). Constant block avalanches fell to the base of the cone on the NE and SE flanks. The Washington VAAC reported an ash plume visible in satellite imagery on 10 September at 3.1 km altitude drifting W. On 14 September another plume was spotted moving WSW at 4.6 km altitude which dissipated quickly; the webcam captured another plume on 16 September. Ashfall on 27 September reached about 1 km from the volcano; it reached 1.5 km on 29 September. Lahars descended the Rio Cabello de Ángel on 2 and 24 September (figure 102). They were about 15 m wide, and 1-3 m deep, carrying blocks 1-2 m in diameter.

Figure (see Caption) Figure 102. A lahar descended the Rio Cabello de Ángel at Santa Maria and flowed into the Rio Nima 1 on 24 September 2019. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 21 al 27 de septiembre de 2019).

Througout October 2019, degassing of steam with minor gases occurred from the Caliente summit, rising to 2.9-3.0 km altitude and generally drifting SW. Weak explosions took place 1-5 times per hour, producing ash plumes that rose to 3.2-3.5 km altitude. Ashfall was reported in Monte Claro on 2 October. Nearly constant block avalanches descended the SE and S flanks, disturbing recent layers of fine ash and producing local ash clouds. Moderate explosions on 11 October produced ash plumes that rose to 3.5 km altitude and drifted W and SW about 1.5 km towards Río San Isidro (figure 103). The following day additional plumes drifted a similar distance to the SE. The Washington VAAC reported an ash emission visible in satellite imagery at 4.9 km altitude on 13 October drifting NNW. Ashfall was reported in Parcelamiento Monte Claro on 14 October. Some of the block avalanches observed on 14 October on the SE, S, and SW flanks were incandescent. Ash drifted 1.5 km W and SW on 17 October. Ashfall was reported near la finca Monte Claro on 25 and 28 October. A lahar descended the Río San Isidro, a tributary of the Río El Tambor on 7 October carrying blocks 1-2 m in diameter, tree trunks, and branches. It was about 16 m wide and 1-2 m deep. Additional lahars descended the rio Cabello de Angel on 23 and 24 October. They were about 15 m wide and 2 m deep, and carried ash and blocks 1-2 m in diameter, tree trunks, and branches.

Figure (see Caption) Figure 103. Daily ash plumes were reported from the Caliente cone at Santa María during October 2019, similar to these from 30 September (left) and 11 October 2019 (right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 28 de septiembre al 04 de octubre de 2019; Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 05 al 11 de octubre de 2019).

During November 2019, steam plumes rose to 2.9-3.0 km altitude and generally drifted E. There were 1-3 explosions per hour; the ash plumes produced rose to altitudes of 3.1-3.5 km and often drifted SW, resulting in ashfall around the volcanic complex. Block avalanches descended the S and SW flanks every day. On 4 November ashfall was reported in the fincas (ranches) of El Faro, Santa Marta, El Viejo Palmar, and Las Marías, and the odor of sulfur was reported 10 km S. Incandescence was observed at the Caliente dome during the night of 5-6 November. Ash fell again in El Viejo Palmar, fincas La Florida, El Faro, and Santa Marta (5-6 km SW) on 7 November. Sulfur odor was also reported 8-10 km S on 16, 19, and 22 November. Fine-grained ash fell on 18 November in Loma Linda and San Marcos Palajunoj. On 29 November strong block avalanches descended in the SW flank, stirring up reddish ash that had fallen on the flanks (figure 104). The ash drifted up to 20 km SW.

Figure (see Caption) Figure 104. Ash plumes rose from explosions multiple times per day at Santa Maria’s Santiaguito complex during November 2019, and block avalanches stirred up reddish clouds of ash that drifted for many kilometers. Courtesy of INSIVUMEH. Left, 11 November 2019, from Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 09 al 15 de noviembre de 2019. Right, 29 November 2019 from BOLETÍN VULCANOLÓGICO ESPECIAL BESTG# 106-2019, Guatemala 29 de noviembre de 2019, 10:50 horas (Hora Local).

White steam plumes rising to 2.9-3.0 km altitude drifted SE most days during December 2019. One to three explosions per hour produced ash plumes that rose to 3.1-3.5 km altitude and drifted W and SW producing ashfall on the flanks. Several strong block avalanches sent material down the SW flank. Ash from the explosions drifted about 1.5 km SW on 3 and 7 December. The Washington VAAC reported a small ash emission that rose to 4.9 km altitude and drifted WSW on 8 December, and another on 13 December that rose to 4.3 km altitude. Ashfall was reported up to 10 km S on 24 December. Incandescence was reported at the dome by INSIVUMEH eight times during the month, significantly more than during the recent previous months (figure 105).

Figure (see Caption) Figure 105. Strong thermal anomalies were visible in Sentinel-2 imagery at the summit of the Caliente cone at Santa María’s Santiaguito’s complex on 19 December 2019. Image uses Atmospheric Penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during January 2020 was similar to that during previous months. White plumes of steam rose from the Caliente dome to altitudes of 2.7-3.0 km and drifted SE; one to three explosions per hour produced ash plumes that rose to 3.2-3.4 km altitude and generally drifted about 1.5 km SW before dissipating. Frequent block avalanches on the SE flank caused smaller plumes that drifted SSW often over the ranches of San Marcos and Loma Linda Palajunoj. On 28 January ash plumes drifted W and SW over the communities of Calaguache, El Nuevo Palmar, and Las Marías. In addition to incandescence observed at the crater of Caliente dome at least nine times, thermal anomalies in satellite imagery were detected multiple times from the block avalanches on the S flank (figure 106).

Figure (see Caption) Figure 106. Incandescence at the summit and in the block avalanches on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was visible in Sentinel-2 satellite imagery on 8 and 13 January 2020. Atmospheric penetration rendering images (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

The Washington VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude drifting W on 3 February 2020. INSIVUMEH reported constant steam degassing that rose to 2.9-3.0 km altitude and drifted SW. In addition, 1-3 weak to moderate explosions per hour produced ash plumes to 3.1-3.5 km altitude that drifted about 1 km SW. Small amounts of ashfall around the volcano’s perimeter was common. The ash plumes on 5 February drifted NE over Santa María de Jesús. On 8 February the ash plumes drifted E and SE over the communities of Calaguache, El Nuevo Palmar, and Las Marías. Block avalanches on the S and SE flanks of Caliente dome continued, creating small ash clouds on the flank. Incandescence continued frequently at the crater and was also observed on the S flank in satellite imagery (figure 107).

Figure (see Caption) Figure 107. Incandescence at the summit and on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was frequent during February 2020, including on 2 (left) and 17 (right) February 2020 as seen in Sentinel-2 imagery. Atmostpheric Penetration rendering imagery (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 23, Number 11 (November 1998)

Managing Editor: Richard Wunderman

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Hampton, Virginia, USA

Avachinsky (Russia)

Distinct change in seismic activity

Colima (Mexico)

Lava flows and block-and-ash flows down flanks from growing lava dome

Etna (Italy)

Summary of eruptive activity from summit craters during June-September 1998

Galeras (Colombia)

Fracture-related seismicity continues

Grimsvotn (Iceland)

Subglacial eruption near site of 1996 outburst flood

Ijen (Indonesia)

Recent measurements of acid crater lake

Karymsky (Russia)

Strombolian eruptions continue, ash column seen on 24 November

Kilauea (United States)

Continuing flow from Pu`u `O`o; major bench collapse

Manam (Papua New Guinea)

Energetic outbursts lead to pyroclastic flows, lava flows

Plat Pays, Morne (Dominica)

Strong earthquake swarms, tremor

Popocatepetl (Mexico)

Growing lava body in crater leads to larger explosions

Rabaul (Papua New Guinea)

Intermittent emissions continue during October

Sheveluch (Russia)

Steam-and-gas plumes, tremor episodes

Soufriere Hills (United Kingdom)

Small dome collapses, pyroclastic flows, and ash venting

Ushkovsky (Russia)

Earthquakes form distinctive group

Villarrica (Chile)

Summary of February-November activity; intermittent lava pond pulses, phreatic explosions

Whakaari/White Island (New Zealand)

Minor eruptive activity continues; alert level raised



Atmospheric Effects (1995-2001) (Unknown) — November 1998 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Hampton, Virginia, USA

Table 15 lists the ground-based 48-inch lidar measurements at 0.69 µm taken with a ruby laser in Hampton, Virginia (37.1°N, 76.3°W) during 1998. The lowest levels of aerosol loading ever reported in the 24-year lidar record at Hampton were measured during the summer of 1998.

Table 15. Lidar data from Virginia, USA, for April-December 1998 showing altitudes of aerosol layers. Backscattering ratios are for the ruby wavelength of 0.69 µm. The integrated values show total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km. Courtesy of Mary Osborne.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Hampton, Virginia (37.1°N, 76.3°W)
03 Apr 1998 13-26 (19.6) 1.09 4.11 x 10-5
07 Apr 1998 12-27 (14.5) 1.10 5.38 x 10-5
13 Apr 1998 15-25 (21.5) 1.06 2.98 x 10-5
20 May 1998 13-28 (25.9) 1.08 3.42 x 10-5
19 Jun 1998 13-23 (20.9) 1.04 1.70 x 10-5
02 Jul 1998 14-29 (18.8) 1.06 1.17 x 10-5
14 Jul 1998 15-29 (18.5) 1.05 1.62 x 10-5
10 Sep 1998 17-30 (27.7) 1.06 0.89 x 10-5
24 Sep 1998 13-29 (16.6) 1.11 2.99 x 10-5
15 Oct 1998 13-33 (14.2) 1.11 4.81 x 10-5
24 Nov 1998 14-29 (17.9) 1.10 3.79 x 10-5
02 Dec 1998 12-27 (18.2) 1.09 3.15 x 10-5

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Mary Osborn, NASA Langley Research Center (LaRC), Hampton, VA 23681 USA.


Avachinsky (Russia) — November 1998 Citation iconCite this Report

Avachinsky

Russia

53.256°N, 158.836°E; summit elev. 2717 m

All times are local (unless otherwise noted)


Distinct change in seismic activity

A distinct change in seismic activity began on 3 December. About 120 shallow events of very low magnitude were recorded during 3-6 December. The only days during the episode when observation was not obscured by cloud were 1 and 3-6 December, but no plumes were seen those days.

Geologic Background. Avachinsky, one of Kamchatka's most active volcanoes, rises above Petropavlovsk, Kamchatka's largest city. It began to form during the middle or late Pleistocene, and is flanked to the SE by the parasitic volcano Kozelsky, which has a large crater breached to the NE. A large horseshoe-shaped caldera, breached to the SW, was created when a major debris avalanche about 30,000-40,000 years ago buried an area of about 500 km2 to the south underlying the city of Petropavlovsk. Reconstruction of the volcano took place in two stages, the first of which began about 18,000 years before present (BP), and the second 7000 years BP. Most eruptive products have been explosive, with pyroclastic flows and hot lahars being directed primarily to the SW by the breached caldera, although relatively short lava flows have been emitted. The frequent historical eruptions have been similar in style and magnitude to previous Holocene eruptions.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Colima (Mexico) — November 1998 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Lava flows and block-and-ash flows down flanks from growing lava dome

The eruption at Colima began by 20 November 1998 following 17 days of continuous seismic unrest and deformation of the summit cone. Gabriel Reyes, Juan José Ramírez, and Yuri Taran noted that fumarolic gases monitored during previous years may have also shown precursory variations in chemical composition and temperature. New fractures in the summit region were observed on repeated occasions by Abel Cortes and J.C. Gavilanes during ascents on 27 November 1997, 18 March 1998, and 5 May 1998. Between 1614 and 1800 on 17 November, Carlos Navarro and Cortes visited La Yerbabuena, a town on the SW flank 9 km from the summit crater, where they heard more than 10 episodes of rumbling noise coming from the volcano. Cloudy weather did not allow direct observation of the volcano, but based on previous experience they interpreted the noises to be the result of small rockslides.

During the morning of 18 November the settlement of La Yerbabuena (~180 inhabitants) was evacuated voluntarily and in orderly fashion with the assistance of the Colima Observatory Information Group and the local civil protection and military authorities. During that day residents also evacuated the settlement of Juan Barragan (120 people) 10 km SE of the summit.

The first helicopter overflight took place between 0800 and 1000 on 19 November but cloudy weather obscured large parts of the summit area. Observers did note a vigorous fumarolic plume blowing W. That night the Red Sismológica Telemétrica del Estado de Colima (RESCO) reported strong seismic activity and harmonic tremor over periods lasting for 6 minutes. They also registered increased rockfall signals.

At 0700 on 21 November the new lava dome had almost entirely filled the 1994 crater (BGVN 23:10; figure 25). At 1130 that morning, lava started spilling out of the summit crater area producing block-and-ash flows to rush down the S slopes at 3- to 5-minute intervals. The block-and-ash flows were mostly emplaced within the eastern branch of Barranca El Cordobán. The most voluminous flows reached the 2,400 m contour, a distance of more than 4 km from the crater.

Figure (see Caption) Figure 25. Photograph of Colima taken from the SW at 0930 on 21 November 1998. By this time the new dome has entirely filled the 1994 crater and was about to spill out onto the S face (on the right-central portion of the photo). Courtesy of J.C. Gavilanes, Universidad de Colima.
Figure (see Caption) Figure 26. An oblique, wide-angle aerial photo taken with the camera somewhat tilted (note horizon in upper corner) showing a pyroclastic event at 0830 on 22 November 1998. The event left a series of block-and-ash flows reaching a maximum distance of 4.5 km W of the summit. Courtesy of Abel Cortés, Colima Volcano Observatory, Universidad de Colima.

Another flight on 21 November revealed that the lava flow had advanced ~150 m downslope, and had a width of 100 m and a thickness of ~20 m. The lava flow continued advancing such that on 22 November it was 170 m long; on 23 November, 270 m; and on 24 November, 370 m. Block-and-ash flows emplaced during the morning of 25 November in the central branch of Barranca El Cordobán reached 1,900 m elevation. Observers and photographs revealed two additional lava flows as seen from both Rancho El Jabalí (10 km SW of the summit) during the night of 25 November and from Cofradia de Suchitlan (15 km SW) during the night of 26 November; these flows also descended the SW flank and headed towards two drainages (the W branch of Barranca El Cordobán and the S branch of Barranca La Lumbre).

Figure (see Caption) Figure 27. Time-lapse photograph (30 minutes) of Colima taken from a point near Suchitlan (15 km SW) around 2300 on 26 November 1998. Courtesy of Claus Siebe, UNAM.

On 28 November, S. Rodríguez, J.M. Espíndola, and C. Siebe observed the advance of the westernmost lava flow from a 3,100-m-elevation vantage point. Most of the time the flow's front and margins relinquished large blocks (up to 10 m across) producing strong rumbling noises. Small block-and-ash flows moved quietly compared with the rockfalls from the lava flow. Still, it was possible to collect samples of the lava flow.

Viewed in thin section the new lava contained, in decreasing abundance, phenocrysts of zoned plagioclase, hypersthene, pleochroic resorbed brown hornblende, and subordinate magnetite in a microcrystalline to glassy matrix. Chemical analysis indicated that the new lava is very similar in composition to previous eruptions (table 5).

Table 5. Chemistry of freshly erupted Colima lava sampled on 28 November 1998. Courtesy of S. Rodríguez, J.M. Espíndola, and C. Siebe; analysis made by Rufino Lozano, Laboratorio de Fluorescencia de Rayos X at Instituto de Geología, UNAM.

Element Analysis
SiO2 59.14%
TiO2 0.66%
Al2O3 17.54%
Fe2O3 1.86%
FeO 3.91%
MnO 0.11%
MgO 3.71%
CaO 6.64%
Na2O 3.99%
K2O 1.31%
P2O5 0.16%
LOI -0.02%
Total 99.01%
 
Rb 20 ppm
Sr 549 ppm
Ba 530 ppm
Y 19 ppm
Zr 148 ppm
Nb 4 ppm
V 110 ppm
Cr 123 ppm
Co 20 ppm
Ni 32 ppm
Cu 92 ppm
Zn 68 ppm
Th less than 2 ppm
Pb 7 ppm

On 2 December the three lava flows on the SSW flanks had reached these estimated lengths: 1,000 m (more westerly flow), 1,200 m (central flow), and 900 m (SE flow). Good views of these flows were obtained during an overflight the next day (figure 28). Around this time, it seemed most probable that the ongoing eruption would remain mostly effusive and not exceed the magnitude of eruptions witnessed here during past decades. Accordingly, inhabitants of La Yerbabuena were allowed to return to their homes on 1 December.

Figure (see Caption) Figure 28. The state of lava flow advance on Colima at 0850 on 3 December 1998. Photograph taken from the SW by Juan Carlos Gavilanes. Courtesy of J.C. Gavilanes, Universidad de Colima.

Fine ash produced thus far during the eruption consisted mostly of non-juvenile material related to rockfalls and small block-and-ash flows. Two stations, one located at Rancho El Jabalí (10 km SW of the summit) and the other at La Becerrera (12 km SW of the summit), registered maximum ashfalls on 23 and 26 November, respectively; both with daily loads of around 50 g/m2. The wind mostly dispersed this ash towards the SW and W.

COSPEC measurements carried out by Gavilanes and Cortes since 30 October 1998 showed a marked increase in SO2 flux (table 6). The highest discharge, measured on 26 November, yielded an estimate of more than 16,000 metric tons/day.

Table 6. COSPEC measurements for SO2 fluxes at Colima volcano at stated dates in 1998. Fluxes are in metric tons/day and were rounded to three significant figures. Measurements on 11 February, 14 April, 2 May, and 25 May were below the detection limit. Extrusion began on 20 November. Courtesy of Juan Carlos Gavilanes and Abel Cortes, Universidad de Colima and Colima Volcano Observatory.

Date Average Maximum Minimum Uncertainty (+/-) Avg. wind velocity (m/s)
30 Oct 1998 408 437 365 36 6.01
14 Nov 1998 390 484 307 89 8.93
18 Nov 1998 1,610 2,270 905 685 7.20
21 Nov 1998 1,400 567 325 121 3.93
22 Nov 1998 850 1,110 647 229 1.30
24 Nov 1998 4,670 5,260 4,320 467 7.72
25 Nov 1998 8,210 9,250 7,260 994 7.29
26 Nov 1998 16,420 20,360 10,120 5,120 13.5
27 Nov 1998 10,670 13,150 7,930 2,610 15.2
28 Nov 1998 4,790 5,600 3,890 853 3.20
30 Nov 1998 2,330 2,500 2,070 216 5.81
03 Dec 1998 1,890 2,500 1,520 490 3.73

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Juan Carlos Gavilanes, Carlos Navarro, Abel Cortés, Alicia Cuevas, and Esther Ceballos, Universidad de Colima; Claus Siebe, Juan Manuel Espíndola, Instituto de Geofísica, UNAM; Sergio Rodríguez-Elizarrarás, Instituto de Geología, UNAM.


Etna (Italy) — November 1998 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Summary of eruptive activity from summit craters during June-September 1998

The following report summarizes activity observed at each of the four summit craters of Etna (figure 70) from June through September 1998. In early June, Northeast Crater was quiet while Bocca Nuova, Southeast Crater and Voragine were displaying the highest level of activity seen in many months. Generally high levels of activity continued until a major explosive eruption from Voragine on 22 July. Strong Southeast Crater explosions on 15 September destroyed the intracrater cone, which was soon replaced.

Figure (see Caption) Figure 70. Map of the summit craters of Mount Etna, 10 July 1998. Courtesy of J.C. Tanguy and G. Patanè.

During early July all four craters were erupting simultaneously, a fact never recorded since their birth; only the Central Voragine has degree of permanence; Northeast Crater (NEC) appeared in 1911, the Bocca Nuova (BN) in 1968 and the Southeast Crater (SEC) in 1971.

Most of the information for this report was compiled by Boris Behncke at the Istituto di Geologia e Geofisica, University of Catania (IGGUC), and published on his internet web site. The compilation was based on personal visits to the summit, telescopic observations from Catania, and other sources. Additional separate reports were provided by Tanguy and Patanè (10-14 July observations) and Murray, Stevens, and Craggs (15 September observations). Aviation notices were issued by the Toulouse (France) Volcanic Ash Advisory Center.

Activity at Southeast Crater (SEC). There were at least three explosive vents on the intracrater cone during 4-5 June. Activity usually alternated between the N and S vents. When both exploded simultaneously, a third NW vent produced weak incandescent projections. Vigorous growth around the vents elevated the summit to 20 m above the SEC rim. Lava flowed towards the NE flank where it spilled down to the base of the SEC cone. During a visit on 11 June, SEC had the usual two vents active, and fresh bombs scattered over the crater floor. Recent flows had built a high mound on the E side of the cone; an active flow issued from the vent area. By the morning of 15 June the lava flow at SEC had reached its southern base and was advancing slowly.

Explosive activity on 22 June occurred from three vents on the intracrater cone, and lava issued from a vent halfway up the S flank. Explosive Strombolian activity occurred in distinct cycles separated by quiet periods of up to one hour, although lava effusion persisted. The beginning of each cycle was marked by a flame of burning gas at the summit. More vigorous bursts would then follow at a larger vent. Explosions would become increasingly frequent and rise higher (up to 150 m above the vent), showering the southern part of SEC with bombs. Activity would then shift back to the SW vent where each Strombolian burst was accompanied by a gas flame. Intermittent explosive and effusive activity continued on 24 and 28 June.

During a summit visit by Behncke and members of L'Association Volcanologique Europeenne (LAVE) of Paris on 4 July, explosive activity at SEC was intense, with bombs falling outside the crater. Activity from the top of the intracrater cone sent jets of bombs and scoria up to 150 m. Lava issued from three vents, one feeding a flow over the SW crater rim. On the evening of 7 July LAVE members reported that the active lava flow on the SW flank of SEC was ~200 m long. The summit visit on 13 July was made by Giovanni Sturiale, Sandro Privitera, and Behncke (IGGUC), and Jürg Alean. At SEC, Strombolian activity was vigorous, bombs fell frequently outside the crater, and lava emission was continuing. Recent lava had filled the SW part of the crater to within 1-2 m of the rim. In all other areas the pre-1997 rim of SEC has been buried by overflowing lava. Jürg Alean visited on 14 July and reported that SEC continued to produce Strombolian activity. From the Torre del Filosofo hut a small lava flow could be seen descending the SE flank of SEC; incandescent blocks frequently detached from the flow front.

Vigorous activity occurred at SEC during the 22 July Voragine episode, and during the days after activity was limited to SEC where vigorous lava fountaining and effusion occurred. On 24 July, Sturiale and Privitera observed vigorous Strombolian activity, with many bombs falling outside the crater. However, SEC activity declined and virtually ceased by the end of July.

As of the night of 17-18 August, there had been no resumption of the SEC eruption. The crater was seen erupting later on 18 August by Privitera. When Monaco and Behncke visited on 20 August, virtually no activity was observed. As of 26 August SEC appeared quiet, although the activity in July had built the intracrater cone to 40-50 m higher than the crater rim. Bombs were scattered all over the crater area and beyond. Two post-22 July lava flows had spilled onto the S and NE flanks. No activity occurred during a visit by Behncke and Sturiale on 9 September.

Explosive activity from SEC was observed by scientists from Open University (Murray and Stevens) and the University of London (Craggs) on the morning of 15 September. Several ash clouds erupting from the summit between 0745 and 0800 were seen from 10 km S. At 0815 bomb-laden ash clouds were observed from near the Piccolo Rifugio (4.5 km S of the summit craters). At 0822 an exceptionally large explosion sent meter-sized bombs ~300-400 m above the crater rim. One more minor explosion was observed before the summit was obscured at 0826. Observation recommenced at the Pizzi Denieri volcano observatory. The summit was usually obscured by clouds, but five explosions during 0928-0936 were audible above gale-force winds and engine noise. Ash clouds were seen from Mt. Nero on the NE rift (6 km from the summit craters) at 1003, and at 1006 an explosion was heard.

Explosions continued all afternoon, causing ashfall in inhabited areas on the E flank. During the afternoon, while conducting fieldwork 50 km S of Etna, Behncke and Sturiale saw black ash fountains piercing weather clouds above the summit. These pyroclastic jets rose several hundred meters above the summit before drifting E. Observations by Behncke on 19 September revealed that the explosions ejected lithics and fresh bombs, which were abundant in the saddle between SEC and the main summit cone. Some of the bombs were up to 5 m across and had flattened upon impact. Bombs tens of centimeters in diameter formed a continuous deposit on the NW side of the crater. Most of the intracrater cone was destroyed, and a crater ~80 m across formed in its place (figure 71).

Figure (see Caption) Figure 71. Sketch drawing showing Southeast Crater of Etna as seen from the NW on 19 September 1998. The former intracrater cone has been replaced by an explosion crater that contains a small new cone with two erupting vents, and a small non-eruptive vent that lies below the major breach in the crater wall in the left center. Lava that had overflowed the SW crater rim until July 1998 is shown in a dark pattern at right. Courtesy of Boris Behncke.

Vigorous activity on 17 and 18 September ejected bombs described as having been "several meters across" by a group of British geologists led by J.B. Murray working in the area. The beginning of a lava flow down the NE flank of SEC is not known, but it was reported by mountain guides to have been moving on 17-18 September. During a 19 September visit by Behncke, Strombolian bursts occurred from two vents in the explosion crater, around which a small cone had begun to grow. Lava emission from a vent high on the SEC cone was feeding a flow that advanced towards Valle del Leone.

Activity at SEC was continuing on 21 and 25 September with intense Strombolian activity; incandescent bombs jetted 150-200 m high. Continued vigorous activity during the last week of September caused rapid growth of the intracrater cone until ti was higher than ever before, having almost entirely covered the remains of its predecessor.

Activity at Bocca Nuova (BN). Eruptive activity during 4-5 June was occurring at both previously active areas. Night incandescence and bomb ejections were seen in a deep pit within the SE eruptive area. Noisy activity occurred at the NW eruptive area, at the bottom of the collapsed cone that had grown in 1997. At least five vents were producing explosions and lava fountains accompanied by bursts of burning gas. Several lava flows extended over the crater floor.

Observations were made for 30 minutes on 11 June from the crater rim. The SE vents had fountains of ash and bombs rising ~50 m. At the NW eruptive area, three vents were active, and the collapse pit was filled with pyroclastics and recent lava flows. Two large (30 and 50 m diameter) vents were in the central part of the filled pit while a smaller vent (~5 m in diameter) lay 50-70 m S; this latter one produced weak lava sputterings, building a low hornito. The two larger vents showed a repetitive eruptive behavior for the first 15 minutes of observation, then erupted simultaneously in a series of ash-free lava fountains. For about ten minutes there were bomb ejections from both major vents. Centimeter-sized scoria and Pele's hair were deposited all over the SE sector and on SEC.

Activity was less intense on 15 June; during a 1-hour stay in the summit area, strong explosions from the large cone ejected ash-rich jets of bombs up to 100 m above the crater rim. Visits to BN are dangerous due to frequent blasts of large quantities of meter-sized bombs. Most blasts observed on 22 June lasted up to 10 minutes. The source vent lay in the partially collapsed 1997 cone at the N eruptive area; it produced almost continuous minor explosions between the large detonations, ejecting large clots of fluid lava. A small vent to the south ejected minor sprays of meter-sized bombs. Continuous lava fountaining occurred from a SE vent. During the 22 June visit the central vent was the site of pulsating gas jets, and vigorous lava fountaining occurred at the larger SW vent. A large asymmetrical cone leaning against the thin wall between the Voragine and BN had grown around the vent. Vigorous activity was continuing on 24 and 28 June.

During a summit visit by Behncke and members of LAVE on 4 July, all four summit craters were active. The summit visit on 13 July by Sturiale, Privitera, Behncke, and Alean showed low levels of activity; a small cone had grown around the main vent. The N eruptive area was the site of Strombolian bursts every 5-10 minutes. A fairly large cone had grown at this vent, the first time that significant cone growth had occurred in BN since late 1997. Lava had covered the S crater floor.

A visit by J.C. Tanguy and G. Patanè during 10-14 July revealed that, with respect to the preceding year, the bottom of BN had raised considerably owing to the tephra deposition, so that the strongest explosions from the NW vent (figure 72) sometimes showered the external slope with bombs. By 12 July the explosions were reduced in strength and frequency. Jürg Alean visited on 14 July and reported that the N cone produced fountains heavily charged with bombs; many fell on the crater rims and in the Voragine.

Figure (see Caption) Figure 72. Sketch of the Bocca Nuova and Voragine craters at Etna, 10 July 1998. Courtesy of J.C. Tanguy and G. Patanè.

Vigorous activity occurred at BN during the 22 July Voragine episode. On the afternoon of the 23rd, Carmelo Monaco (IGGUC) saw bright incandescence in BN even in bright daylight from an airplane approaching Catania. Activity was noted on 25 July and increased the following day according to Claude Grandpey (LAVE); activity at the NW area occurred from a small vent while the SE area had three vents emitting gas and bombs. In late July and early August, numerous vents erupted explosively at the NW area; subsidence of the central crater floor by a few meters occurred on 1 August. The SE vents displayed spectacular lava cascades from one vent into the other, the lower vent filling until an explosion cleared it. Kloster (LAVE) reported a lava lake in this area on 7 and 10 August, but during the following days there was only Strombolian activity.

On 20 August Monaco and Behncke observed moderate eruptions at the N vent area. Besides the summit vent, there were at least four smaller flank vents which had erupted recently. On 26 August frequent ash emissions were occurring. Growth of a small cone above the diaframma (septum between the craters) culminated in the fracturing of this cone and a cascade of lava into BN in late August.

A visit to the summit by Behncke and Sturiale on 9 September revealed that one vent at the summit of the NW cone was the site of Strombolian bursts alternating with bomb and ash emissions. Four smaller vents on the flanks on the cone were weakly degassing. Weak Strombolian activity occurred from two SE vents where a small cone was growing in a collapse depression. Behncke saw activity at similar levels on 19 September. As of 25 September there was low-level activity.

Activity at Voragine. On 3 June, near-continuous cannon-shot like detonations were heard kilometers away, and Marco Fulle (Osservatorio Astronomico, Trieste) observed magma bubbles within the vent burst at the onset of fire-fountaining episodes. When observed during 4-5 June, the vent in the SW crater floor had enlarged notably since 6 April and shifted away from the diaframma, and a low pyroclastic cone had grown around it. On the evening of 4 June, activity at the Voragine was observed for about 4 hours. A sustained fountain jetted from the vent, showering the SW part of the crater floor with bombs; many also fell into BN. This fountain lasted about 75 minutes, followed by pyroclastic material sliding from the inner walls of the vent into its throat. After a few minutes, a small vent opened below the inner SE rim of the vent and emitted jets of incandescent lava. Ejections soon resumed at the main vent, and a flame of burning gas persisted at the subsidiary vent accompanied by weak pyroclastic sprays. A new period of fountaining at the main vent resulted in the continuous fall of bombs into BN. The subsidiary vent was soon buried. At times, portions of the inner walls collapsed, causing ash-rich fountains.

The Voragine was not visited on 11 June, but very strong explosive activity was heard more than 10 km S, and high fountains contained meter-sized bombs. On 15 June the focus of activity had shifted to the central vent, previously active between July and December 1997. This vent ejected continuous lava fountains while a lava flow covered the E half of the crater floor. Fountains played up to 200 m above the vent, with all bombs falling back into the crater. At times, the magma level dropped, and the character of the activity changed to discrete explosions. The SW vent exhibited noisy gas emissions alternating with ash emission and lava fountaining. Vigorous activity was continuing on the evening of 24 June. During a summit visit on 28 June, Monaco observed fountaining from the central vent; the SW vent was less active and mostly ejected ash.

A scoria deposit extending SE, produced by a Voragine lava fountaining episode on 1 July, was examined by Behncke and members of LAVE on 4 July. Both vents in the Voragine were in vigorous, alternating activity. Eruptive cycles at the SW vent produced jets of fragmented pyroclastics. As activity waned at this vent, projections of large bombs would initiate at the central vent, increasing in frequency and height into a pulsating fountain at least 100 m above the crater floor.

Stefano Branca (IGGUC) reported that frequent explosions were audible throughout 6 July at Viagrande, a village at the SE flank of Etna; air concussions associated with the explosions shook windows and rattled doors. The explosions probably originated at the Voragine, the site of recent noisy activity. On 7 July explosions were still audible but less intense. Members of LAVE observed activity that evening from the SW vent that dropped bombs as far as the S rim of NEC.

A visit by J.C. Tanguy and G. Patanè during 10-14 July revealed activity at the large SW cone (figure 72) near the diaframma and from a central cone. By 12 July the two vents hurled large lava lumps and bombs in a fountain-like manner, some of which fell outside the crater. On 13 July this activity was stronger. That afternoon activity decreased, but two flows began from a fissure NE of the central cone. Lava rapidly invaded the northern, lowest part of the Voragine. During the peak effusive activity the two lava flows reached a speed estimated at 3-4 m/s. On the morning of 14 July, only the SW vent showed Strombolian explosions. Lava flows had entirely disappeared under a layer of tephra erupted during the night.

During a visit on 13 July by Sturiale, Privitera, Behncke, and Alean, the most vigorous activity occurred at the Voragine. On 12 July, lava fountains roared up to 200 m above the crater rim for three hours from the SW vent. Powerful jets of bombs mixed with ash were also ejected. The cone around the SW vent was higher in places than the diaframma; the vent was 30-50 m across. Activity varied from isolated powerful explosions to long-lasting lava fountains. At times dense ash plumes with large bombs rose from the vent. Explosions from the central cone blasted lava in all directions. Small lava fountains and ash emissions occurred from two fissures. On at least 20 occasions during 90 minutes of observation the magma surface in the vent domed up, forming a huge bubble that exploded. Explosions later ejected meter-sized bombs to 200 m or higher; many fell into BN, outside the Voragine, or on the E slope of the main summit cone not far from SEC. Jürg Alean visited on 14 July and reported that both vents showed intense activity. The SW vent was filled almost to the rim by lava which was fountaining vigorously. The central vent displayed a similar eruptive behavior as on the previous visit, but no lava bubbles were observed. On 20 July lava fountaining from the Voragine was common.

A major eruptive event began from the Voragine at about 1835 on 22 July. The following is based on preliminary information from scientists of the IGGUC (mainly Giovanni Sturiale and Sandro Privitera) and others who visited after the event as late as 20 August. According to eyewitnesses on the SW side of the main summit cone, huge lava fountains rose from the Voragine, and heavy tephra falls began in the summit area. A large mushroom-shaped tephra column rose up to 10 km above the summit. The plume was then driven S and SE, and widespread ashfalls occurred more than 30 km away. Sand-sized tephra fell in Catania, leaving a deposit about 1 mm thick. For the first time since 24 September 1986 (when NEC had a powerful explosive eruption) the Fontanarossa airport of Catania had to be closed (it was reopened after 15 hours). The Toulouse (France) Volcanic Ash Advisory Center issued 17 aviation notices warning pilots about the ash during 22-29 July. The tephra falls caused traffic problems on roads and highways. Close to the summit, a thick scoria deposit buried the dirt roads leading to the Rifugio Torre del Filosofo and around the western base of the main summit cone. Sturiale and Privitera reported that at Torre del Filosofo the thickness of the scoria deposit was about 50 cm.

It appears that both vent areas produced lava fountains and a tall tephra column. Rapid accumulation of ejecta in the saddle on the NW rim led to a lava flow between the NEC and the main summit cone (figure 73). The flow covered the road connecting the N and S flanks of Etna, and eroded a deep scar into the the S flank of the NEC cone. Continuing pyroclastic activity produced a thick scoria and bomb deposit, with bombs up to 5 m in length. A scoria fan extended 1-1.5 km NW. In the area of the diaframma a lava flow covered the crater floor to several meters depth. On the E flank of the main summit cone a thick pyroclastic deposit formed. In towns on the E and SE flank, the tephra deposit was a few millimeters to a few centimeters thick. Morphological changes within the Voragine consisted mainly of a large amount of filling of the crater followed by subsidence. Parts of the SW crater rim also collapsed.

Figure (see Caption) Figure 73. Sketch map of Etna's summit craters showing features frequently mentioned in the updates, and approximate extent of recent lava flows as of 5 October 1998. Active vents are indicated as gray dots in the craters. Courtesy of Boris Behncke.

Vigorous activity occurred simultaneously at BN and SEC on 22 July Voragine event, indicating that the episode affected much of the central conduit system at some depth, possibly due to the rise of a batch of fresh gas-rich magma. Lava fountaining from the Voragine continued intensely through the night of 22-23 July.

According to Grandpey (LAVE), the Voragine appeared "full of materials" on 25 July with no trace of the former intracrater cones. No further activity occurred until 3 August when Kloster (LAVE) saw explosions ejecting bombs. Two days later, three vents erupted in the center of the Voragine. On 7 August small flows on the crater floor were followed by explosive activity. Powerful Strombolian activity with bomb ejections and ash emission caused light ashfall on the SE flank on 18 August, reaching the outskirts of Catania.

On 19 August explosive ash emissions sent small plumes up to several hundred meters above the summit. When Monaco and Behncke visited on 20 August, vigorous activity occurred from two vents. Very light ashfalls on 21 and 24 August reached Catania; ash emissions were also produced on 26 August. A number of reports indicated continued activity through the end of August.

On 6 September bombs fell on the outer W slope of the Voragine and on 7 September ash emission occurred throughout the day. A visit to the summit by Behncke and Sturiale on 9 September revealed continuous moderately strong Strombolian activity from a SW vent; sporadic explosive activity from the vent next to the diaframma sent bombs over the crater rim. At least three other vents were quietly degassing. Similar activity was continuing as of 19 September. On 30 September strong ash and gas emissions rose hundreds of meters.

Activity at Northeast Crater (NEC). Deep-seated Strombolian activity within the central pit resumed in mid-May according to Vittorio Scribano (Istituto di Scienze della Terra, Catania University). Night glow was observed on the evening of 22 June from 3 km NE. During a summit visit by Behncke and members of LAVE on 4 July, all four craters were active; for the first time since 28 March eruptive activity was observed directly at NEC. The eruption site was a 30-m-diameter vent in the NW part of the central pit while a SW vent (~15-20 m in diameter) emitted dense vapor plumes. Small Strombolian bursts from the larger vent occurred every 2-5 minutes, with most ejecta falling back into the pit.

A visit on 13 July by Sturiale, Privitera, Behncke, and Alean revealed mild Strombolian activity from the central pit that ejected bombs. When Monaco and Behncke visited on 20 August, NEC was degassing quietly. Strong fumarolic activity was occurring on 26 August and 9 September.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Istituto di Geologia e Geofisica, Palazzo delle Scienze, Università di Catania, Corso Italia 55, 95129 Catania, Italy; J.C. Tanguy and G. Patanè, University of Catania, Istituto di Geologia e Geofisica, 55 Corso Italia, 95129 Catania, Italy; John Murray and Nicki Stevens, Department of Earth Sciences, Open University, Milton Keynes, United Kingdom; Emma Craggs, Geology Dept, Royal Holloway College, University of London, United Kingdom; Volcanic Ash Advisory Center (VAAC) Toulouse, Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/vaac/)


Galeras (Colombia) — November 1998 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Fracture-related seismicity continues

Since a volcanic crisis in February 1989 (SEAN 14:02-14:05), Observatorio Vulcanológico y Sismológico de Pasto (OVSP) has been constantly monitoring Galeras. The following is from their bi-monthly reports for late 1998.

During September and October 1998, low-level seismic activity continued at Galeras (figure 90). Most of the energy released (1.6 x 1016 ergs) was due to earthquakes associated with a fracture process. Volcano-tectonic earthquakes registered during these two months totaled 79, ranging from 0.5 to 16 km in depth. One remarkable earthquake occurred at 0209 on 21 September: it was located at 1°15.75'N, 77°19.16'W at a depth of 8 km, released 1.21 x 1016 ergs of energy, and had a coda magnitude of 3.4. This earthquake was felt in Pasto City and neighboring settlements. It was the most energetic event of 1998 to date.

Figure (see Caption) Figure 90. Location of seismic events at Galeras during September-October 1998. Courtesy OVSP.

Seismic processes related to fluid dynamics (i.e. long-period events and tremor episodes) released a total of 5.18 x 1014 ergs. Of these events, nine had small amplitudes with long coda and quasi-monochromatic frequencies—so-called "screw type" or "Tornillo" characteristics. Coda values spanned 19-65 s and dominant frequencies ranged 1.82-4.0 Hz. An unusual event occurred 23 October, when harmonic tremor lasted approximately one hour. This episode released 7.09 x 109 ergs.

Galeras, a 4,276 m high andesitic stratovolcano, has a cone that rises 150 m above the floor of the summit caldera. The caldera is open to the west. The active crater is located ~9 km W of Pasto, a city of 350,000 persons. More than 400,000 people live within the volcano's zone of influence. At least six major eruptions have been identified during the past 4,500 years, last in 1886. These eruptions were Vulcanian with inferred low-altitude eruption columns (<10 km) that produced small-volume pyroclastic flows. During the last 500 years eruptions have been characterized by gas-and-ash emissions, small lava flows, and pyroclastic flows that have traveled up to 15 km from the crater.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Patricia Ponce V., and Pablo Chamorro C., Observatorio Vulcanológico y Sismológico de Pasto (OVSP), Carrera 31, 18-07 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Grimsvotn (Iceland) — November 1998 Citation iconCite this Report

Grimsvotn

Iceland

64.416°N, 17.316°W; summit elev. 1719 m

All times are local (unless otherwise noted)


Subglacial eruption near site of 1996 outburst flood

On 18 December an eruption occurred within the caldera of the subglacial Grímsvötn volcano, 10 km S of the 1996 eruption that resulted in a catastrophic flood. Scientists quickly investigated; the information that follows is from the Nordic Volcanological Institute (NVI).

Eruptive activity. The eruption began at 0920 on 18 December. Ten minutes later a plume (figure 4) was observed that eventually rose 10 km above the Vatnajökull glacier and persisted throughout the day. The plume could be seen from Reykjavik, 200 km W. Winds deflected the plume, causing tephra fallout onto the glacier up to 50 km SE. The London Volcanic Ash Advisory Center issued aviation notices later that day and throughout the eruption.

Figure (see Caption) Figure 4. Photo of the eruption plume from Grímsvötn as it appeared from an aircraft on 18 December 1998. Courtesy of NVI; photo by Karl Grönvold.

The eruption was preceded by a mild increase in seismicity for several weeks. A small earthquake swarm began at 2200 on 17 December and a sharp increase in earthquake activity began at 0330 on 18 December. This latter activity was replaced by continuous tremor at 0920, marking the beginning of the eruption. The Icelandic Meteorological Office and the Science Institute monitored seismicity during the eruption.

Vents were located along a 1,300-m-long E-W oriented fissure on the S caldera fault, similar to eruptions in 1934 and 1983, at the foot of Mt. Grímsfjall (which rises ~300 m above the flat ice shelf of the Grímsvötn subglacial lake). The eruption penetrated the caldera lake and its ice shelf, from ice/water depth of ~100 m. Activity was most vigorous at one crater, but several other craters on the short eruptive fissure were also active with less frequent explosions.

The eruption was slightly less vigorous on 19 December. The plume was continuous, but somewhat lower, rising to 7-8 km. Tephra continued to fall SE. A small part of the Grímsvötn ice shelf next to the eruption site had melted without raising the water level of the caldera lake significantly. Activity was mostly limited to one crater.

An overflight on 20 December from 1045 to 1215 revealed variable activity. The eruption plume extended to 7 km altitude. Initially the plume was light-colored, and narrow at its base. Later the ash content of the plume greatly increased, and the plume turned black. It collapsed down to 1-2 km, created a base surge, and Mt. Grímsfjall disappeared into an ash cloud.

Photographs from 27 December showed intermittent eruptive activity between 1124 and 1240. The plume was discontinuous, fed by intermittent crater activity. It rose to a maximum of 4.5 km and distributed ash near the crater; bombs up to 0.5 m in diameter were ejected onto Grímsfjall. The eruption has resulted in the formation of a tephra ring that lies partly on ice, but its inner part is likely to be made completely of ash overlying bedrock.

The eruption ended on 28 December. Continuous tremor recorded at the Grimsfjall seismograph, 3 km from the eruption site, stopped at 1050 on 28 December. Small tremor bursts were recorded for another 3 hours, but activity stopped completely at 1400.

This eruption was located 10 km S of the 1996 eruption in Vatnajökull (Gudmundsson and others, 1997), which caused a catastrophic outburst flood from the glacier. This time no major flood ensued because only a small amount of the Grímsvötn ice shelf near the eruption site melted, and water did not flow towards the Grímsvötn caldera lake.

Chemical analyses of ash. The ash analyzed fell during 1000-1200 on 20 December in Suðursveit, ~60 km SE of Grímsvötn. The ash was well sorted with an average grain size of 0.05 mm and density of ~2.7 g/cm3. The areal density of ash fall was estimated at 93 g/m2. The ash was aphyric; the glass composition (table 1) can be compared with Grímsvötn ash samples from earlier this century. The composition is similar to earlier samples; however, the recent sample is slightly less evolved, with higher MgO/FeO, Al2O3, and CaO, but lower TiO2. The composition was markedly different from more evolved samples from the 1996 eruption or most of the samples available from the neighboring Bárðarbunga volcanic system.

Table 1. Microprobe analyses of the glass phase from the 20 December 1998 Grímsvötn eruptions (standard deviation in parentheses) and two Grímsvötn hyaloclastites. The analyses from the 1983, 1934, 1922, and 1903 eruptions are from Grönvold and Johannesson (1984). The analyses of the hyaloclastites are from Heikki Makipaa (1978). All analyses are in weight percent. Courtesy NVI.

Eruption / Sample Description SiO2 TiO2 Al2O3 FeO (total) MnO MgO CaO Na2O K2O P2O5
Dec 1998 50.46 (0.55) 2.55 (0.05) 13.94 (0.29) 12.90 (0.13) 0.23 (0.01) 5.72 (0.20) 11.00 (0.28) 2.71 (0.09) 0.48 (0.03) 0.35 (0.12)
1983 G83-2 50.30 2.98 12.80 14.00 0.20 5.00 9.71 2.58 0.45 0.32
1983 G83-1 50.50 3.02 12.60 14.40 0.26 4.96 9.55 2.62 0.51 0.36
1934 G34 50.30 3.08 12.80 13.40 0.26 5.14 9.92 2.56 0.52 0.38
1922 G22 50.10 3.06 12.80 13.90 0.20 5.24 10.20 2.47 0.40 0.30
1903 G03 49.80 2.92 13.10 13.60 0.20 5.45 10.30 2.53 0.38 0.27
HM22 Hyaloclastite glass 49.92 2.59 14.46 12.95 0.23 5.42 10.09 2.98 0.31 0.32
HM23 Hyaloclastite glass 49.49 2.49 14.10 12.91 0.23 5.12 10.56 2.80 0.45 0.25
HM22, HM23 Whole-rock 52.00 2.57 12.85 12.99 0.22 9.90 5.56 2.93 0.51 0.32
1934 G34 Whole-rock 49.34 3.10 14.23 13.96 0.23 9.95 4.84 3.32 0.48 0.39
Svíahnúkur caldera rim hyaloclastite 50.65 1.96 15.31 11.40 0.16 11.34 6.73 1.50 0.43 0.39

The potential chemical pollution of the fallout ash was tested by leaching a batch of ash with 6.7 times its mass of de-ionized water. The pH of the leachate was 5.12; the water-soluble components were as follows (mg leachate / kg ash): SiO2, 7.2; Na, 315.3; K, 32.7; SO4, 557.8; F, 346.5; Cl, 366.2.

References. Grönvold, K., and Jóhannesson, H., 1984, Eruption in Grímsvötn 1983, course of events and chemical studies of the tephra: Jökull, 34:1-11.

Gudmunsson, M., Sigmundsson, F., and Björnsson, H., 1997, Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland: Nature, v. 389, p. 954-957.

Geologic Background. Grímsvötn, Iceland's most frequently active volcano in historical time, lies largely beneath the vast Vatnajökull icecap. The caldera lake is covered by a 200-m-thick ice shelf, and only the southern rim of the 6 x 8 km caldera is exposed. The geothermal area in the caldera causes frequent jökulhlaups (glacier outburst floods) when melting raises the water level high enough to lift its ice dam. Long NE-SW-trending fissure systems extend from the central volcano. The most prominent of these is the noted Laki (Skaftar) fissure, which extends to the SW and produced the world's largest known historical lava flow during an eruption in 1783. The 15-cu-km basaltic Laki lavas were erupted over a 7-month period from a 27-km-long fissure system. Extensive crop damage and livestock losses caused a severe famine that resulted in the loss of one-fifth of the population of Iceland.

Information Contacts: Karl Grönvold and Freysteinn Sigmundsson, Nordic Volcanological Institute (NVI), Grensásvegur 50, 108 Reykjavík, Iceland (URL: http://nordvulk.hi.is/); Pall Einarsson, Science Institute, University of Iceland; Icelandic Meteorological Office, Reykjavík, Iceland (URL: http://en.vedur.is/).


Ijen (Indonesia) — November 1998 Citation iconCite this Report

Ijen

Indonesia

8.058°S, 114.242°E; summit elev. 2769 m

All times are local (unless otherwise noted)


Recent measurements of acid crater lake

Measurements and sampling were made in the acid lake of Kawah-Ijen during two transits with a rubber rowboat on 7 and 10 December 1998. The 7 December measurements occurred just after heavy rain and the lake's color was pale and nearly white. In the middle of the lake, the surface temperature was 23.5°C with a pH of 0.48 as a result of dilution by the rain. The temperature near the solfatara at the S side of the lake ranged between 24.6 and 24.9°C with a pH of 0.45. Near the hot sublacustrine spring the temperature was as high as 61.7°C and the pH was 0.60. In the Banyupahit River, 3 km from the dam that closes the lake, the water had a temperature of 21.1°C and a pH of 0.47.

Three days later, 10 December, the lake was pale green with localized brown coloration; the temperature of the surface was 24.8-25.2°C and the pH 0.36-0.38. The highest measured temperature of the solfatara was 224°C, while the CO2 content of the atmosphere near the lake surface was normal, ~300 ppm.

Geologic Background. The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery.

Information Contacts: Jacques-Marie Bardintzeff, Laboratoire de Petrographie-Volcanologie, bat 504 Universite Paris-Sud, 91405 Orsay, France.


Karymsky (Russia) — November 1998 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Strombolian eruptions continue, ash column seen on 24 November

Seismicity remained above background levels during 1 November-7 December. Low-level Strombolian activity, including 100-200 earthquakes and gas explosions each day, continued to characterize activity at the volcano. On 24 November a pilot in the vicinity reported an explosive event that sent an ash column 6 km above the summit. The color-coded hazard status remained at Yellow.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry; Tom Miller, Alaska Volcano Observatory.


Kilauea (United States) — November 1998 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Continuing flow from Pu`u `O`o; major bench collapse

A significant collapse of the lava bench on the coast SE of Kilauea occurred in early December. Lava continued to flow into the sea via a tube from the Pu`u `O`o vent, and a pit at the vent continued to grow.

A large part of the active lava delta on the SE coast collapsed into the sea sometime between 1200 on 10 December and 0930 on 11 December. A comparison between the shoreline as mapped on 11 and 24 November (figure 125), and the shoreline on 11 December, showed that ~5.8 hectares (ha) was lost. The missing shoreline included ~3.4 ha of land built since August and ~2.4 ha built W of the current lava-entry area (indicated by the steam cloud at the top of figure 125) between 1992 and 1997. Judging from observations of earlier bench collapses, the collapsed area most likely slid into the sea in several segments over a period of tens of minutes to several hours.

Figure (see Caption) Figure 125. View of the Kilauea lava entry point area looking S on 24 November 1998. Courtesy HVO; photograph by J. Kauahikaua.

The eruption of Pu`u `O`o continued in November as lava flowed to the sea through a lava tube that developed on the coastal plain after a major pause in magma supply to the vent on 12-14 August (BGVN 23:08). Another brief pause occurred on 7-8 November (pause #21 of the current eruptive episode) leading to several small `a`a and pahoehoe flows on the coastal plain, none of which reached the sea. Scientists measured a slight increase in the discharge of lava from the tube system—from 3/day in late October to just over 400,000 m3/day in early December. Dense volcanic fumes continued to obscure various pits within Pu`u `O`o most of the time, but sloshing sounds of lava degassing could be heard from the crater rim.

A new pit that developed high on the S flank of Pu`u `O`o about one year ago enlarged significantly in 1998, and recent measurements of cracks around the edge of the pit showed that its walls were slumping slowly into the pit.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Ken Rubin and Mike Garcia, Hawaii Center for Volcanology, University of Hawaii, Dept. of Geology & Geophysics, 2525 Correa Rd., Honolulu, HI 96822 USA (URL: http://www.soest.hawaii.edu/GG/hcv.html).


Manam (Papua New Guinea) — November 1998 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Energetic outbursts lead to pyroclastic flows, lava flows

Following one month of build-up in seismicity and radial tilt (figure 10), intensive eruptive activity resumed on 5 October 1998—the first since its fatal eruption of November-December 1996 (BGVN 21:12).

Figure (see Caption) Figure 10. Seismicity and radial tilt from a water-tube instrument at Manam, August-October 1998. Courtesy of RVO.

Visible increases in activity started on 23-25 September, with intermittent dark ash emissions and night-time incandescent projections to ~200 m above South Crater. In subsequent days of October, the activity decreased to continuous white vapor emissions, first profuse then very weak, and occasional roaring sounds and fluctuating glow. This corresponded to a slight decrease in seismic amplitude levels, but the radial tilt continued to show inflation.

On the morning of 5 October a rapid build-up of activity took place. At 0800 ash emissions became forceful, rising ~2 km above South Crater. By 0815 the first small pyroclastic flows started down SE Valley at 5-10 minute intervals. At 0850, the now-dark ash column rose ~3 km, surrounded by blue vapor. Pyroclastic flows started at 0913, penetrating down SW Valley, and the island's E side underwent heavy ash and scoria fall. After 1020 this crater produced several loud explosions every 10-15 minutes. Loud roaring and banging starting at 1205 heralded a decline in activity. By 1600, thick, dark clouds still rose intermittently, but by 1800 only weak, thin gray emissions were visible. Roaring and banging sounds were heard through the night. Although short-lived, this phase also fed a lava flow into SE Valley that branched into two lobes below 900 m elevation and stopped at ~450 m. A lava flow also started toward SW Valley but stopped at the headwall.

In the following days, the tiltmeter 4 km from the summit (at Tabele Observatory) recorded a drop of 2 µrad while the seismicity decreased to near background levels. Until 15 October, gray ash clouds and occasional deep roaring sounds were observed. Not even red glow remained. By the evening of the 16th, red glow reappeared and incandescent projections rose 100-200 m above South Crater. On 17 October, dark ash clouds rose forcefully with rumbling sounds, and minor ash fell on the island's N side.

On the 18th, Main Crater occasionally emitted gray-brown plumes to 600-700 m, and the seismic amplitude increased. Activity in South Crater became sub-continuous, with incandescent projections to 1,000-1,100 m. On the morning of the 19th, a lava flow issued by South Crater descended into SW Valley. The strength of the eruption declined after 1415 and again after 1600. Yet, by 2225 there was a fountain of incandescent projections 1,400-1,600 m above the crater accompanied by loud roaring all night.

Emissions on the morning of the 20th comprised a thick, dark, ash-laden column. In the afternoon, small pyroclastic flows at 1415 and 1750 reached only to the head of SW Valley. By that time, the lava flow extended to within ~2 km of the coast. A single large explosion at 1715 ejected ballistic blocks 1,500 m above the crater. That night, on-going Strombolian explosions rarely reached 1,100 m above the crater.

On the 21st, Main Crater produced dark columns, rising to ~1,000 m, while the roaring Strombolian eruption persisted in South Crater. That night, small tongues of lava flowed in the upper SE Valley.

Activity began to decrease on the 23rd, when the Strombolian projections gave way to intermittent dark ash clouds to ~800 m above the crater. After 1000 on the 23rd, rumbling diminished. The next day Main Crater forcefully ejected dark columns with ballistic fragments and South Crater continued to issue subdued white emissions, with occasional ones that were gray and forceful. This activity persisted until the end of the month, without sound except for occasional low roaring and a faint glow.

While the seismicity noticeably reflected the variations in eruptive strength, tilt was not affected by the second eruptive phase and it resumed rising steadily thereafter as late as early November (figure 10).

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ben Talai and Patrice de Saint-Ours, RVO.


Morne Plat Pays (Dominica) — November 1998 Citation iconCite this Report

Morne Plat Pays

Dominica

15.255°N, 61.341°W; summit elev. 940 m

All times are local (unless otherwise noted)


Strong earthquake swarms, tremor

According to reports from local news sources and USAID's Office of Foreign Disaster Assistance (OFDA), earthquake swarms began on the island of Dominica on 11 September and continued intermittently into October. The Seismic Research Unit (SRU) of the University of the West Indies started monitoring the activity on 28 September and determined that [seismicity] was occurring in the S part of the island beneath Morne Patates volcano. By 23 October the [seismicity] had subsided to about two [earthquake] events per hour, with 10% large enough to be felt.

An earthquake recorded by SRU at 1018 on 24 September had its epicenter at 15.28°N, 61.37°W. It occurred at a depth of 15 km with a body-wave magnitude of 2.9 and a Richter magnitude of 1 to 3. A spasmodic (new events were starting before the previous were finished) sequence of activity started about 1500 on 22 October. These events were less than 6 km deep and had a maximum magnitude of 3.5 Richter and an intensity of MM V. On 23 October, an SRU aerial reconnaissance revealed no surface manifestations of the events (i.e., scarps, vents).

The strong [felt earthquakes] on 22-23 October were described as the longest and most intense in recent times. These [earthquakes] caused landslides and road closures, including the main road from the capital, Roseau, to the communities on the S end of the island. The SRU stated on 22 October that 27 was the maximum number of [events] recorded within a 24-hour period since 28 September, noting that the daily numbers were not as high as during the 1974 sequence.

Morne Patates, at the southern tip of Dominica, is an arcuate structure open to Soufriere Bay on the west. It was constructed within an irregular depression on the SW flank of a larger stratovolcano, Morne Plat Pays, whose summit is only 3 km NE. The latest eruptions occurred at about 450 ± 90 years BP (Roobol and others, 1983) from the Morne Patates lava dome just prior to European settlement. At least ten swarms of small-magnitude earthquakes have occurred since 1765. The most recent swarm, between March and October 1986, consisted of 10-30 recorded A-type volcanic shocks in about two hours. No eruptive activity followed any of these swarms and no systematic shallowing was documented to indicate upward migration of magma.

General References. Roobol, M.J., Wright, J.V., and Smith, A.L., 1983, Calderas or gravity-slide structures in the Lesser Antilles Island Arc?: JVGR, v. 19, p. 121-134.

Geologic Background. The Morne Plat Pays volcanic complex occupies the southern tip of the island of Dominica and has been active throughout the Holocene. An arcuate caldera that formed about 39,000 years ago as a result of a major explosive eruption and flank collapse is open to Soufrière Bay on the west. This depression cuts the SW side of Morne Plat Pays stratovolcano and extends to the southern tip of Dominica. At least a dozen small post-caldera lava domes were emplaced within and outside this depression, including one submarine dome south of Scotts Head. The latest dated eruptions occurred from the Morne Patates lava dome about 1270 CE, although younger deposits have not yet been dated. The Morne Plat Pays complex is the site of extensive fumarolic activity, and at least ten swarms of small-magnitude earthquakes, none associated with eruptive activity, have occurred since 1765 at Morne Patates.

Information Contacts: Tina Neal, OFDA/USAID, 1300 Pennsylvania Ave. NW, Washington, DC 20523-8602 (URL: http://www.info.usaid.gov/ofda/ofda.htm); CaKaFete News, 25-12 Street, Canefield, Dominica (URL: http://www.cakafete.com/).


Popocatepetl (Mexico) — November 1998 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Growing lava body in crater leads to larger explosions

A change in the typical low-level steam-and-gas emission regime in late November and early December suggested that a new lava body was growing inside the crater. The following has been condensed from CENAPRED bulletins.

Low-level activity continued during the first three weeks of November, and included low-intensity, short-duration exhalations of steam and gas with occasional eruptions of ash. Bad weather obstructed observations on many days. Authorities recommended that no one approach within 5 km of the crater because of the danger of sudden explosions. The volcanic alert level remained at yellow, indicating a state of heightened caution. Several A-type earthquakes occurred (on 6, 14, 15, 16, and 17 November; M 2.1-2.9), generally 3-4 km E or SE from the crater, none of which seemed to affect eruptive activity. One exceptional emission occurred at 0109 on 9 November; its intense phase lasted one minute and was followed by 12 minutes of high-frequency tremor.

At 1753 on 19 November a moderately large eruption was followed by five smaller ones. The series lasted seven minutes and produced an ash column that rose 2-3 km above the summit and dissipated NNW. Light ash fall was reported in the neighboring town of Amecameca. At 2019 a slightly smaller exhalation lasted nine minutes.

At 1302 on 22 November the volcano began a substantial increase in activity, starting with a sequence of small ash emissions; light ashfall was reported at Paso de Cortés and Amecameca. This activity continued into the night with about 40 separate emission events by midnight. Exhalations increased, and at about 0430 on 23 November harmonic tremor episodes were recorded. At 0530 incandescence at the crater could be seen, at 0854 high-frequency tremor started, and at 0922 a moderate ash emission generated a column 3 km above the summit. By noon about 100 exhalations had been recorded. Dense fumarolic clouds of gas and steam were blown NW. Beginning at 1245 activity increased again: high-frequency tremor and emissions occurred at a rate of one per minute. Although the summit was obscured by cloud, it was assumed, based on reports from local towns, that ash emissions were continuous. After 1515 seismicity increased to saturation levels on most of the recording instruments. Later, an emission of steam, gas, and ash could be seen. At 1630 seismicity started to decrease.

Small, low-frequency tremor signals began around 0200 on 24 November, and intensified between 0300 and 0600. The tremor was accompanied by continuous emissions of gas, steam, and some ash, blown to the SW. At 1257 another increase of activity began. Low-frequency tremor of variable amplitude was recorded until 1600. Poor visibility prevented direct observation of the summit during most of the day.

A steam plume that rose 2-2.5 km over the summit persisted until 0803 on 25 November when a moderately large explosion lasting one minute produced an ash plume that rose 3-4 km over the summit (figure 28) and threw rock fragments to a distance of 2 km. The top of the plume moved N, while the lower part moved SW; ashfall warnings were issued to towns in those directions. A low-frequency tremor signal followed the explosion and persisted through the day. Other explosions occurred at 1205 and 1658 on 25 November. Although the explosions were heard in nearby towns, there were no reports of large ash emissions, and it is likely that the ejected rock fragments were dispersed around the crater.

Figure (see Caption) Figure 28. Characteristic explosions and associated plumes from Popocatépetl taken by CENAPRED's video monitor during 25-26 November 1998. Scenes 1-3 (top) are from 0803-0805 on 25 November; scenes 4-5 (bottom) are from 1013-1015 on 26 November. Courtesy of CENAPRED.

An increase in tremor was followed by new explosions at 0654 and 0719 on 26 November. Moderate steam-and-ash plumes rose to a height of 1,500 m above the summit. A stronger exhalation at 0931 produced a moderate plume of steam and ash rising 3-3.5 km above the summit. Other explosions at 1013 (figure 28) and 1104 produced higher ash columns. In all cases warnings were issued to air-traffic controllers. A new warning to the general population recommended approaching no closer than 7 km from the crater. Tremor was followed by volcanic earthquakes at 2113 and 2220; both events produced moderately large explosions and ash plumes, and during the later event incandescent lava fragments were thrown to a distance of ~1.5 km.

Moderate explosions were detected in the crater at 1206, 1333, 1749, and 2345 on 27 November, and at 0242 and 1021 on 28 November. All of them, except the third, expelled incandescent fragments of lava around the crater to a distance of 0.5-2 km, and produced moderately large emissions of ash, rising in most cases up to 4 km over the summit. This activity was detected against a background of low-level exhalation and tremor signals of decreasing amplitude. Light ashfall had been reported in Tlacotitlán at 0130 on 28 November. During 28 November activity increased again following several short harmonic tremor signals at 2130. At 2228 a moderate volcano-tectonic event was followed by small tremor episodes.

At 0002 and 0305 on 29 November two explosions were preceded by low-frequency tremor. The second explosion produced a shock wave clearly heard at Paso de Cortes and San Nicolás de los Ranchos. Large quantities of glowing rocks ejected from the crater could be seen falling in a area of ~3 km radius. There was also a large ash emission. At 0654 a moderately large emission, lasting seven minutes, formed an ash plume 4 km above the summit. At 1118 there were several low-frequency harmonic tremors. A moderately large explosion at 1645 ejected incandescent lava blocks around the cone and produced an ash plume up to 7 km above the summit (according to personnel working close to Paso de Cortes).

Tremor episodes and moderate emissions of steam, ash, and gas with occasional explosions persisted over the next week. One explosion at 0929 on 30 November began with a strong shock wave and blast, ejected fragments over its flanks 2-3 km from the crater, and produced an ash column 4 km above the summit. At 1853 on 3 December an explosion ejected incandescent fragments over the SE flanks and produced a moderately large ash cloud, carried by the wind to the SE. The explosion signal lasted one minute, followed by 15 minutes of tremor. At 1255 on 4 December an explosion threw hot debris on the SE flanks and produced an ash plume that rose 4-5 km above the summit. Another explosive eruption at 1511 on 6 December ejected incandescent rocks over the E and N flanks and produced an ash column 5 km above the summit that dispersed to the NW. This event lasted 1.5 minutes and was followed by high-frequency tremor for four minutes. Three explosions were recorded on 7 December at 0241, 0449, and 0623; glowing fragments fell on the E and N flanks and an ash column rose 4 km. The last of these events lasted 1.5 minutes and was followed by high-frequency tremor for 10 more minutes. During 8 December frequent exhalations with durations of 3-10 minutes each produced steam-and-ash columns 2 km above the summit.

Activity became stable at lower levels during the second week of December, persisting until the time of this report (15 December).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz-Reyna1,2, Roberto Quaas1,2, Carlos Valdés G.2, and Alicia Martinez Bringas1. 1 Centro Nacional de Prevencion de Desastres (CENAPRED) Delfin Madrigal 665, Col. Pedregal de Santo Domingo,Coyoacan, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); 2 Instituto de Geofisica, UNAM, Coyoacán 04510, México D.F., México.


Rabaul (Papua New Guinea) — November 1998 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Intermittent emissions continue during October

Tilt, leveling, and sea-shore surveys continued to record the slow resurgence of the caldera floor observed since April 1996. During October, continued slow magma supply into Rabaul Caldera kept feeding mild Vulcanian activity at Tavurvur cone. Emissions occurred at irregular intervals, from a few minutes to several hours apart. Longer time intervals usually resulted in more powerful and voluminous explosions.

In the beginning of the month, explosions ejected a grayish ash plume 500-1,000 m above the crater. Following a particularly large explosion at 2138 on October 5 (which littered the cone with incandescent ballistic blocks, and displayed dramatic lightning within the dark rising cloud) emissions were larger for a few days, rising to 1,000-3,000 m, although without sounds. During 10-15 October emissions were again milder, hardly rising over 600 m above the crater. Emissions occurring 16-20 October rose to ~1,000 m and were often accompanied by roaring sounds. After 29 October, emissions were again noiseless, and from the 26th onward they became lower in ash content and energy.

October was the transitional period of wind shift. From the 19th, the NW wind began to dominate and bring welcome relief after seven months of very unpleasant, corrosive, and toxic ashfall to Rabaul and neighboring residents.

The recorded seismicity consisted almost exclusively of low-frequency events accompanying the Vulcanian activity from Tavurvur. However, two types of signals were observed: usual short-duration events, and low-amplitude, long-duration (1-3 minutes) events. Their combined number, with an increase in August and September, averaged 46 per day but increased to 81 and 143 on the last two days of October without any corresponding change in visible eruptive activity. The two types of signals usually occurred in subequal amounts, although on 5-7 October the number of long-lasting events started to dominate, while the shorter events prevailed for a few days after the 8th. The amplitude of both types fluctuated substantially for several multi-day intervals during October. Short-duration harmonic signals were also recorded during 16-18 and 24 October. On 20 October the system registered the month's only significant high-frequency event.

A visit to Rabaul by professional photographer George Casey resulted in several images of Tavurvur during August. Casey appreciated the aid kindly given him by RVO staff and was gracious enough to provide us with photos, including one of a small plume on 4 August (figure 32).

Figure (see Caption) Figure 32. The Tavurvur cone at Rabaul emits a small plume on 4 August in this photograph looking SE from the bay's shore. Courtesy of George Casey.
Figure (see Caption) Figure 33. An E-facing close-up photograph of the Tavurvur cone at Rabaul from the bay's shore; it emphasizes its low conical shape, wide-aperture crater, and ongoing emissions. Courtesy of George Casey.
Figure (see Caption) Figure 34. SE-looking overview photograph taken on 11 August from Rabaul caldera's topographic margin looking out over the city of Rabaul, Simpson harbor, and the cones that bound the harbor's NE side. The now-resurging caldera is breached by the sea on its E side. Tavurvur cone, ~10 km distant, lies in the peninsular lowlands to the right of the highest peak, Mother (Kombiu), and the lower peak, South Daughter. Courtesy of George Casey.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai and Patrice de Saint-Ours, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Sheveluch (Russia) — November 1998 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Steam-and-gas plumes, tremor episodes

Seismicity was generally at background levels during 1 November-7 December. Clouds obscured the volcano throughout much of the reporting period. On 1, 2, and 6 November steam-and-gas plumes were seen to rise 300 m above the summit before dispersing. High-frequency tremor increased over six hours on both 13 and 15 November. Periods of high-frequency tremor lasted 0.7 hours on 17 November and 3.5 hours on 22 November. Two hours of high-frequency tremor and 3 hours of low-frequency spasmodic tremor were recorded on 2 December. On 5-6 December a plume rose 150 m above the summit.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — November 1998 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Small dome collapses, pyroclastic flows, and ash venting

There was a slight increase in activity in October according to reports from the Montserrat Volcano Observatory (MVO). Five small collapse events occurred on the dome, each producing significant deposits of ash up to 3 km away. Pyroclastic flows occurred along most of the volcano's main drainage. Ash fell predominantly W and NW of the volcano, light ash fell in the N of the island. Dome collapses were commonly followed by periods of volcanic tremor and ash venting, and sometimes swarms of volcano-tectonic earthquakes occurred shortly after the collapse events. The dome gradually eroded, leaving some large fractures in the carapace that could lead to larger collapses in the future.

Visual observations. Intermittent small pyroclastic flows originated from all flanks of the dome. The first significant event, at 0801 on 13 October, produced pyroclastic flows in Tuitt's Ghaut and Tyer's Ghaut. Volcanic tremor after the collapse correlated with ash venting from high on the dome's N flank, the ash cloud rapidly reached 7,500 m. The cloud drifted NW, depositing ash on parts of the island.

At 0916 on 18 October, there was another collapse, the ash cloud rose to around 2,000 m and moved W, although the exact direction was uncertain because a low cloud hampered observation. Subsequent volcanic tremor lasted for several hours.

Another small dome collapse occurred at 2241 on 20 October. The ash cloud from this event rose to an estimated 2,500 m, drifting slowly to the W and NW. Observations the following morning revealed that the pyroclastic flows from this event had traveled towards Plymouth as far as Upper Parsons (2.5 km W of the summit). Fallout included some coarse lithic fragments 4 to 5 mm in diameter.

At 0051 on 26 October, a fourth small collapse occurred. The seismic signal lasted for about 12 minutes followed by an extended period of tremor. Reports were received of thunder from the resultant ash cloud, and there was subsequent wet ashfall as far as 7 km N. Information received from NOAA satellite images indicated that the ash cloud reached to between 6,000 and 7,500 m. Observations during the early hours of the morning suggested that there were two ash cloud lobes, one S of Belham Valley and one over the Salem-Old Towne area. The deepest measured ashfall was 25 mm; 4 mm or more fell in other areas. The ash was fine grained, with common accretionary lapilli. During an observation flight on the 27th, steaming could be seen at the edge of the delta, indicating that the pyroclastic flows had traveled into the sea. The flows also reached NE as the Tar River Estate House (3 km from the summit). On the SW side, down the White River, a thin deposit of ash from the pyroclastic flows could be seen as far as about 700 m from the old coastline at O'Garras; when these deposits were emplaced is unknown.

A fifth small dome collapse occurred at 0418 on 31 October; an ash plume first drifted W, and thenN and NE depositing some ash in occupied areas at the island's N end. An observation flight later that day revealed new deposits: a pyroclastic-flow deposit in the White River reaching Galways Soufriere, and another in the Gages valley that did not extend beyond the top of the Gages fan. The White River deposit had numerous large angular blocks resting on its surface.

A large fissure within the dome extended from its base, where it rests against Chances Peak, to its top in the Galways area (S). At the foot of this crack a triangular-shaped opening had developed and appeared to have been the source of the White River pyroclastic-flow.

Unusual wind directions during the latter part of October directed the plume to the N. As a result, residents in N Montserrat smelled strong sulfurous odors.

On 27 October, probing into the pyroclastic deposits in the area of the Farm River in Trant's yielded these depth-temperature relations: 1.0 m and 86°C; 1.4 m and 146°C; and 2.25 m and 239°C. Unusually clear conditions in the early evening of 27 October enabled observers in Old Towne and Salem to see three small glowing areas on the dome; these areas were thought to reveal the dome's incandescent interior exposed during the recent collapse events.

Seismicity, deformation, and environmental monitoring. Over the reporting period seismicity was generally low; however, small dome collapses triggered volcanic tremor and swarms of volcano-tectonic earthquakes. As in the previous month, tremor correlated with intensified ash-and-steam venting from the N flanks of the dome.

Five small collapses occurred between 13 and 31 October. These were marked by pyroclastic-flow signals that lasted several minutes. The collapse on the 13th was preceded by a swarm of small volcano-tectonic earthquakes. Several much larger volcano-tectonic earthquakes occurred during the collapse, the first approximately 30 seconds after the start of the collapse; hypocenters for these events were tightly clustered directly under the lava dome.

The collapse on the 18th was accompanied by a more intense swarm of earthquakes (table 32). The first earthquake occurred about 40 seconds after the beginning of the collapse and was one of the largest earthquakes recorded since the installation of the broadband network; it was felt in the Woodlands area. This earthquake was much richer in low frequencies than typical volcano-tectonic earthquakes on Montserrat, possibly suggesting a larger source dimension. Hypocenters for the largest earthquakes were located S of the volcano. At the start of the swarm, hypocenters were directly under Roaches Mountain; as the swarm progressed, hypocenters migrated to S of Chances Peak. Preliminary calculations showed that the largest events were consistent with oblique-normal faulting in a NE-SW direction.

Table 32. October 1998 earthquake swarms at Soufriere Hills. Courtesy of MVO.

Date Start Time Duration (hours) Hybrid Long-period Volcano-tectonic
13 Oct 1998 0249 5.10 0 0 11
18 Oct 1998 0916 6.73 0 0 51
25 Oct 1998 0614 11.32 0 0 24

All GPS sites on the volcano and in the N of the island appear stable and there were no significant changes since last month. The EDM reflector on the northern flank was shot from Windy Hill. The line continues to shorten slowly. The site was later destroyed by a pyroclastic flow.

SO2 flux, measured using the miniCOSPEC instrument, was (in metric tons/day) 1,300 on 9 October, 340 on 21 October, and 280 on 30 October. These results are similar to those measured in recent months, although an apparent decrease occurred late in the month. Sulfur dioxide was also measured at ground level using diffusion tubes around the island. SO2 in Plymouth (at Police Headquarters) remained high; elsewhere the average levels were very low.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat, West Indies (URL: http://www.mvo.ms/).


Ushkovsky (Russia) — November 1998 Citation iconCite this Report

Ushkovsky

Russia

56.113°N, 160.509°E; summit elev. 3943 m

All times are local (unless otherwise noted)


Earthquakes form distinctive group

On the basis of waveform features and locations, earthquakes in the vicinity of the volcano during November were identified as constituting a separate group. Since September 1998 more than 20 events with magnitudes ranging from 0.5 to 1.0 occurred at shallow depths (<5 km).

Geologic Background. Ushkovsky volcano (formerly known as Plosky) is a large compound volcanic massif located at the NW end of the Kliuchevskaya volcano group. It consists of the flat-topped Ushkovsky (Daljny Plosky), which is capped by an ice-filled 4.5 x 5.5 km caldera, and the adjacent slightly higher peak of Krestovsky (Blizhny Plosky) volcano. Two glacier-clad cinder cones with large summit craters form a high point within the Ushkovsky caldera. Linear zones of cinder cones are found on the SW and NE flanks and on lowlands to the west. The younger caldera at the summit of Daljny was formed in association with the eruption of large lava flows and pyroclastic material from the Lavovy Shish cinder cones at the foot of the volcano about 8600 years ago. The only known historical activity was an explosive eruption from the summit cone in 1890.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Villarrica (Chile) — November 1998 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Summary of February-November activity; intermittent lava pond pulses, phreatic explosions

This report summarizes daily visual observations by members of the Proyecto de Observación Villarrica (POVI), volcano guides, and other sources during February to November 1998. In late February, after two months of subsidence, the magmatic column reached the crater floor with a weak and irregular degassing. By mid-March the lava pond was clearly visible as an intermittent red glow from 12 km away. In April and May, three convective magmatic pushes, gas-poor, filled half of the funnel-shaped crater with pahoehoe lava. On 13, 25, and 30 June, small phreatic emissions rose up to 200 m above the summit. Since mid-October, the activity level in the lava pond has varied, with the low levels of degassing intensity occurring at irregular intervals. On 8 November, the red glow was seen for the only time that month.

It is inferred that the red glow indicates that a small volume of usually gas-enriched magma has reached the crater floor in phases and at irregular intervals. This causes a sudden occurrence of the glow, sometimes with increasing intensity and lasting from a few hours up to 3 days. Subsequently, a distinct reduction of the glow intensity is interpreted to mean that an insufficient supply of convecting magma and gas allows the lava pond to form a crust. During the report period, 16 such magmatic pulses were observed and 10 additional pulses were inferred for periods of non-observation due to weather conditions.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Werner Keller U., Proyecto de Observacion Villarrica (P.O.V.I.), Wiesenstrasse 8, 86438 Kissing, Germany (URL: https://www.povi.cl/).


Whakaari/White Island (New Zealand) — November 1998 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Minor eruptive activity continues; alert level raised

Minor eruptive activity continued at White Island through November and early December. The level of activity varied, but observations during visits and instrumental indicators in early December were sufficient to raise the Alert Level from 1 to 2 on 3 December. The current style of activity was expected to continue for some time.

There was evidence that molten magma was the direct cause of eruptive activity, although only weak volcanic tremor accompanied the ash eruptions. A surveillance visit was made on 1 December to assess the ongoing activity, conduct deformation and magnetic surveys, and collect ash and gas samples.

Observations. The active vent at the base of the NW wall of 1978/90 Crater continued to erupt fine-grained volcanic ash during the 1 December visit. The vent size had not changed since the 2 November visit (BGVN 23:10). During the later visit, an ash-charged, tan-brown convecting plume rose to ~800 m before trailing downwind 10-15 km. The volume of ash in the plume was greater than that observed any time during November. The eruptive activity had deposited up to 45 mm of fine, dark gray and brown ash at the crater rim. Samples of ash that fell on 1 December showed a significant change from ash collected on 23 November and earlier. The 1 December ash samples contained fresh, vesiculated glass, suggesting that magma may have risen in the vent and was contributing directly to the eruption. Previously the ash was derived from solidified lava.

A ground-deformation survey showed a consistent trend of minor inflation across the main crater floor, with continued subsidence near the rim of 1978/90 Crater (figure 34). Large-scale post-1990 inflation was evident at the more distal sites (Pegs C and J), with only minor changes over the last 2-3 months. Collapse about the crater rim, which started in July, was continuing but at a lesser rate (Pegs M and W). Provisional results from the magnetic survey indicated heating at depth and shallow cooling about the crater rim area.

Figure (see Caption) Figure 34. Contour plot from White Island showing the height changes (mm) between measurements made 2 November and 1 December 1998. Courtesy IGNS.

Fumarolic discharge pressures from sites 1, 6a (base of Donald Mound), and 13a were not significantly stronger than those observed on 2 and 16 November, and temperatures remained high at these features: site 1, 124°C; site 6a, 107°C; and site 13a, 120°C. Molten sulfur was found in vents at sites 1 and 13a, which is consistent with the temperatures in excess of 119°C. The sulfur mound at site 1 had grown over the vent during November, suggesting that sulfur was being remobilized from depth in response to elevated temperatures. The discharge at site 6a was mildly superheated, but of high pressure, indicating a relatively high gas content. These observations were consistent with general heating of the hydrothermal system.

The lake, which had reformed in the main crater, was the likely result of recent rains. The lake water was cool (~20°C) and had the brown color of the ash falling into it.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B.J. Scott, Manager of Volcano Surveillance, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports