Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Erta Ale (Ethiopia) Thermal anomalies persist in the summit crater during May-September 2020

Merapi (Indonesia) Eruptions in April and June 2020 produced ash plumes and ashfall

Semeru (Indonesia) Ash plumes, lava flows, avalanches, and pyroclastic flows during March-August 2020

Kavachi (Solomon Islands) Discolored water plumes observed in satellite imagery during early September 2020

Krakatau (Indonesia) Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Raung (Indonesia) Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

Klyuchevskoy (Russia) Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Fuego (Guatemala) Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Nishinoshima (Japan) Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Turrialba (Costa Rica) New eruptive period on 18 June 2020 consisted of ash eruptions

Etna (Italy) Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Ol Doinyo Lengai (Tanzania) Multiple lava flows within the summit crater; September 2019-August 2020



Erta Ale (Ethiopia) — October 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Thermal anomalies persist in the summit crater during May-September 2020

Erta Ale is an active basaltic volcano in Ethiopia, containing multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. This report describes continued thermal activity in the summit caldera during May through September 2020 using information from various satellite data.

Volcanism at Erta Ale was relatively low from May to early August 2020. Across all satellite data, thermal anomalies were identified for a total of 2 days in May, 7 days in June, 4 days in July, 11 days in August, and 15 days in September. Beginning in early June and into September 2020 the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system identified a small cluster of thermal anomalies in the summit area after a brief hiatus from early January 2020 (figure 99). By mid-August, a small pulse of thermal activity was detected by the MIROVA (Middle Infrared Observation of Volcanic Activity) system. Many of these thermal anomalies were seen in Sentinel-2 thermal satellite imagery on clear weather days from June to September.

Figure (see Caption) Figure 99. A small cluster of thermal anomalies were detected in the summit area of Erta Ale (red dots) during June-September 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.

On 12 June a minor thermal anomaly was observed in the S pit crater; a larger anomaly was detected on 17 June in the summit caldera where there had been a previous lava lake (figure 100). In mid-August, satellite data showed thermal anomalies in both the N and S pit craters, but by 5 September only the N crater showed elevated temperatures (figure 101). The thermal activity in the N summit caldera persisted through September, based on satellite data from NASA VIIRS and Sentinel Hub Playground.

Figure (see Caption) Figure 100. Sentinel-2 thermal satellite imagery of Erta Ale on 17 June 2020 showing a strong thermal anomaly in the summit caldera. Sentinel-2 satellite image with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 101. Sentinel-2 thermal satellite imagery of Erta Ale showing thermal anomalies in the N and S pit craters on 21 (top left), 26 (top right), and 31 (bottom left) August 2020. On 5 September (bottom right) only the anomaly in the N crater remained. Sentinel-2 satellite image with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Merapi (Indonesia) — October 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Eruptions in April and June 2020 produced ash plumes and ashfall

Merapi, located just north of the city of Yogyakarta, Indonesia, is a highly active stratovolcano; the current eruption began in May 2018. Volcanism has recently been characterized by lava dome growth and collapse, small block-and-ash flows, explosions, ash plumes, ashfall, and pyroclastic flows (BGVN 44:10 and 45:04). Activity has recently consisted of three large eruptions in April and June, producing dense gray ash plumes and ashfall in June. Dominantly, white gas-and-steam emissions have been reported during April-September 2020. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity at Merapi dominantly consisted of frequent white gas-and-steam emissions that generally rose 20-600 m above the crater (figure 95). On 2 April an eruption occurred at 1510, producing a gray ash plume that rose 3 km above the crater, and accompanied by white gas-and-steam emissions up to 600 m above the crater. A second explosion on 10 April at 0910 generated a gray ash plume rising 3 km above the crater and drifting NW, accompanied by white gas-and-steam emissions rising 300 m above the crater (figure 96). Activity over the next six weeks consisted primarily of gas-and-steam emissions.

Figure (see Caption) Figure 95. Gas-and-steam emissions were frequently observed rising from Merapi as seen on 3 April (left) and 4 August (right) 2020. Courtesy of BPPTKG.
Figure (see Caption) Figure 96. Webcam image showed an ash plume rising 3 km above the crater of Merapi at 0917 on 10 April 2020. Courtesy of BPPTKG and MAGMA Indonesia.

On 8 June PVMBG reported an increase in seismicity. Aerial photos from 13 June taken using drones were used to measure the lava dome, which had decreased in volume to 200,000 m3, compared to measurements from 19 February 2020 (291,000 m3). On 21 June two explosions were recorded at 0913 and 0927; the first explosion lasted less than six minutes while the second was less than two minutes. A dense, gray ash plume reached 6 km above the crater drifting S, W, and SW according to the Darwin VAAC notice and CCTV station (figure 97), which resulted in ashfall in the districts of Magelang, Kulonprogo, and as far as the Girimulyo District (45 km). During 21-22 June the gas-and-steam emissions rose to a maximum height of 6 km above the crater. The morphology of the summit crater had slightly changed by 22 June. Based on photos from the Ngepos Post, about 19,000 m3 of material had been removed from the SW part of the summit, likely near or as part of the crater rim. On 11 and 26 July new measurements of the lava dome were taken, measuring 200,000 m3 on both days, based on aerial photos using drones. Gas-and-steam emissions continued through September.

Figure (see Caption) Figure 97. Webcam image showed an ash plume rising 6 km above the crater of Merapi at 0915 on 21 June 2020. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Semeru (Indonesia) — October 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes, lava flows, avalanches, and pyroclastic flows during March-August 2020

Semeru in eastern Java, Indonesia, has been erupting almost continuously since 1967 and is characterized by ash plumes, pyroclastic flows, lava flows and lava avalanches down drainages on the SE flanks. The Alert Level has remained at 2 (on a scale of 1-4) since May 2012, and the public reminded to stay outside of the general 1-km radius from the summit and 4 km on the SSE flank. This report updates volcanic activity from March to August 2020, using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity at Semeru consisted of dominantly dense white-gray ash plumes rising 100-600 m above the crater, incandescent material that was ejected 10-50 m high and descended 300-2,000 from the summit crater, and lava flows measuring 500-1,000 m long. Two pyroclastic flows were also observed, extending 2.3 km from the summit crater in March and 2 km on 17 April.

During 1-2 March gray ash plumes rose 200-500 m above the crater, accompanied by incandescent material that was ejected 10-50 m above the Jonggring-Seloko Crater. Lava flows reaching 500-1,000 m long traveled down the Kembar, Bang, and Kobokan drainages on the S flank. During 4-10 March ash plumes up to 200 m high were interspersed with 100-m-high white gas-and-steam plumes. At the end of a 750-m-long lava flow on the S flank, a pyroclastic flow that lasted 9 minutes traveled as far as 2.3 km. During 25-31 March incandescent material found at the end of the lava flow descended 700-950 m from the summit crater (figure 42).

Figure (see Caption) Figure 42. Sentinel-2 thermal satellite imagery showed lava avalanches descending the SSE flank on 26 March 2020. Images using short-wave infrared (SWIR, bands 12, 8A, 4) rendering; courtesy of Sentinel Hub Playground.

Incandescent material continued to be observed in April, rising 10-50 m above the Jonggring-Seloko Crater. Some incandescent material descended from the ends of lava flows as far as 700-2,000 m from the summit crater. Dense white-gray ash plumes rose 100-600 m above the crater drifting N, SE, and SW. During 15-21 April incandescent lava flows traveled 500-1,000 m down the Kembar, Bang, and Kobokan drainages on the S flank. On 17 April at 0608 a pyroclastic flow was observed on the S flank in the Bang drainage measuring 2 km (figure 43). During 22-28 April lava blocks traveled 300 m from the end of lava flows in the Kembar drainage.

Figure (see Caption) Figure 43. A pyroclastic flow at Semeru on 17 April 2020 moving down the S flank toward Besuk Bang. Photo has been color corrected. Courtesy of PVMBG.

Similar activity continued in May, with incandescent material from lava flows in the Kembar and Kobokan drainages descending a maximum distance of 2 km during 29 April-12 May, and 200-1,200 m in the Kembar drainage during 13-27 May, accompanied by dense white-gray ash plumes rising 100-500 m above the crater drifting in different directions. White gas-and-steam plumes rose 300 m above the crater on 26-27 May. Dense white-to-gray ash plumes were visible most days during June, rising 100-500 m above the crater and drifting in various directions. During 3-9 June incandescent material from lava flows descended 200-1,600 m in the Kembar drainage.

Activity in July had decreased slightly and consisted of primarily dense white-gray ash plumes that ranged from 200-500 m above the crater and drifted W, SW, N, and S. Weather conditions often prevented visual observations. On 7 July an ash plume at 0633 rose 400 m drifting W. Similar ash activity was observed in August rising 200-500 m above the crater. On 14 and 16 August a Darwin VAAC advisory stated that white-gray ash plumes rose 300-400 m above the crater, drifting W and WSW; on 16 August a thermal anomaly was observed in satellite imagery. MAGMA Indonesia reported ash plumes were visible during 19-31 August and rose 200-400 m above the crater, drifting S and SW.

Hotspots were recorded by MODVOLC on 11, 6, and 7 days during March, April, and May, respectively, with as many as four pixels in March. Thermal activity decreased to a single hotspot in July and none in August. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded numerous thermal anomalies at the volcano during March-July; a lower number was recorded during August (figure 44). The NASA Global Sulfur Dioxide page showed high levels of sulfur dioxide above or near Semeru on 18, 24-25, and 29-31 March, and 9 April.

Figure (see Caption) Figure 44. Thermal anomalies at Semeru detected during March-June 2020. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), PVMBG, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — October 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes observed in satellite imagery during early September 2020

Kavachi is an active submarine volcano in the SW Pacific, located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism has been characterized by phreatomagmatic explosions that ejected steam, ash, and incandescent bombs. The previous report described discolored water plumes extending from a single point during early 2018 and April 2020 (BGVN 45:05); similar activity was recorded for this current reporting period covering May through September 2020 and primarily using satellite data.

Activity at Kavachi is most frequently observed through satellite images and typically consists of discolored submarine plumes. On 2 September 2020 a slight yellow discoloration in the water was observed extending E from a specific point (figure 22). Similar faint plumes continued to be recorded on 5, 7, 12, and 17 September, each of which seemed to be drifting generally E from a point source above the summit where previous activity has occurred. On 7 September the discolored plume was accompanied by white degassing and possibly agitated water on the surface at the origin point (figure 22).

Figure (see Caption) Figure 22. Sentinel-2 satellite images of a discolored plume (light yellow) at Kavachi beginning on 2 September (top left) and continuing through 17 September 2020 (bottom right). The light blue circle on the 7 September image highlights the surface degassing and source of the discolored water plume. The white arrow on the bottom right image is pointing to the faint discolored plume. Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — October 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Eruption ends in mid-April 2020, but intermittent thermal anomalies continue

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. Presently, the caldera is underwater, except for three surrounding islands (Verlaten, Lang, and Rakata) and the active Anak Krakatau that was constructed within the 1883 caldera and has been the site of frequent eruptions since 1927. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). The previous report (BGVN 45:06) described activity that included Strombolian explosions, ash plumes, and crater incandescence. This report updates information from June through September 2020 using information primarily from Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and satellite data.

A VONA notice from PVMBG reported that the last eruptive event at Krakatau was reported on 17 April 2020, though the eruptive column was not observed. Activity after that was relatively low through September 2020, primarily intermittent diffuse white gas-and-steam emissions, according to PVMBG. No activity was reported during June-August, except for minor seismicity. During 11-13, 16, and 18 September, the CCTV Lava93 webcam showed intermittent white gas-and-steam emissions rising 25-50 m above the crater.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent hotspots within 5 km of the crater from May through September (figure 113). Some of these thermal hotspots were also detected in Suomi NPP/VIIRS sensor data. Sentinel-2 thermal satellite imagery showed faint thermal anomalies in the crater during June; no thermal activity was detected after June (figure 114).

Figure (see Caption) Figure 113. Intermittent thermal activity at Anak Krakatau from 13 October 2019-September 2020 shown on a MIROVA Low Radiative Power graph. The power of the thermal anomalies decreased after activity in April but continued intermittently through September. Courtesy of MIROVA.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images showing a faint thermal anomaly in the crater during 1 (left) and 11 (right) June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Raung (Indonesia) — September 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Eruptions confirmed during 2012- 2013; lava fills inner crater in November 2014-August 2015

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Visual reports of activity have often come from commercial airline flights that pass near the summit; Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption in 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. Confirmation and details of eruptions in 2012, 2013, and 2014-2015 are covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), several sources of satellite data, and visitors to the volcano.

Newly available visual and satellite information confirm eruptions at Raung during October 2012-January 2013, June-July 2013, and extend the beginning of the 2015 eruption back to November 2014. The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor. Raung was quiet after the 2015 eruption ended in August of that year until July 2020.

Eruption during October 2012-January 2013. A MODVOLC thermal alert appeared inside the summit crater of Raung on 14 October 2012, followed by another four alerts on 16 October. Multiple daily alerts were reported on many days through 8 November, most within the main crater. Single alerts appeared on 29 November and 1 December 2012 (figure 9). PVMBG raised the Alert Level on 17 October from 1 to 2 due to increased seismicity and raised it further to Level 3 on 22 October. A local news report by Aris Yanto indicted that a minor Strombolian eruption occurred inside the crater on 19 October. Strombolian activity was also observed inside the inner crater on 5 November 2012 by visitors (figure 10); they reported loud rumbling sounds that could be heard up to 15 km from the crater.

Figure (see Caption) Figure 9. Thermal activity at Raung during October and November 2012 included multiple days of multi-pixel anomalies, with almost all activity concentrated within the summit crater. Strombolian activity was observed on 5 November. Image shows all pixels from 23 September-1 December 2012. Courtesy of MODVOLC.
Figure (see Caption) Figure 10. Strombolian activity was observed inside the inner crater of Raung on 5 November 2012 by visitors. They reported loud rumbling sounds that could be heard up to 15 km from the crater. Photo by Galih, courtesy of Volcano Discovery.

The Darwin VAAC issued an advisory of an eruption plume to 9.1 km altitude reported at 0237 UTC on 8 November 2012. In a second advisory about two hours later they noted that an ash plume was not visible in satellite imagery. A press article released by the Center for Volcanology and Geological Hazard Mitigation (PVMBG) indicated that gray ash plumes were observed on 6 January 2013 that rose 300 m above the summit crater rim. Incandescence was observed around the crater and thundering explosions were heard by nearby residents.

Eruption during June-July 2013. Two MODVOLC thermal alerts were measured inside the summit crater on 29 June 2013. A photo taken on 21 July showed minor Strombolian activity at the inner crater (figure 11). A weak SO2 anomaly was detected in the vicinity of Raung by the OMI instrument on the Aura satellite on 27 July. Thermal alerts were recorded on 29 and 31 July. When Google Earth imageryrom 14 March 2011 created by Maxar Technologies is compared with imagery from 29 July 2013 captured by Landsat/Copernicus, dark tephra is filling the inner crater in the 2013 image; it was not present in 2011 (figure 12).

Figure (see Caption) Figure 11. Strombolian activity was observed inside the inner crater at the summit of Raung on 21 July 2013. Photo by Agus Kurniawan, courtesy of Volcano Discovery.
Figure (see Caption) Figure 12. Satellite imagery from Google Earth showing the eroded pyroclastic cone inside the summit crater of Raung on 14 March 2011 (left) and 29 July 2013 (right). Dark tephra deposits filling the inner crater in the 2013 image were not present in 2011. The crater of the pyroclastic cone is 200 m wide; N is to the top of the images. Courtesy of Google Earth.

Eruption during November 2014-August 2015. Information about this eruption was previously reported (BGVN 41:12), but additional details are provided here. Landsat-8 imagery from 28 October 2014 indicated clear skies and little activity within the summit crater. Local observers reported steam plumes beginning in mid-November (figure 13). MODVOLC thermal alerts within the summit crater were issued on 28 and 30 November, and then 15 alerts were issued on seven days in December. Thermal Landsat-8 imagery from cloudy days on 29 November and 15 December indicated an anomaly over the area of the pyroclastic cone inside the summit crater (figure 14).

Figure (see Caption) Figure 13. Local observers reported steam plumes at Raung beginning in mid-November 2014; this one was photographed on 17 November 2014. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 14. Satellite evidence of new eruptive activity at Raung first appeared on 29 November 2014. The true color-pansharpened Landsat-8 image of Raung from 28 October 2014 (left) shows the summit crater and an eroded pyroclastic cone with its own crater (the inner crater) with no apparent activity. Although dense meteoric clouds on 29 November (center) and 15 December 2014 (right) blocked true color imagery, thermal imagery indicated a thermal anomaly from the center of the pyroclastic cone on both dates. Courtesy of Sentinel Hub Playground.

In January 2015 the MODVOLC system identified 25 thermal anomalies in MODIS data, with a peak of eight alerts on 8 January. Visitors to the summit crater on 6 January witnessed explosions from the inner crater approximately every 40 minutes that produced gas and small amounts of ash and tephra. They reported lava flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was seen at night (figure 15). Landsat-8 images from 16 January showed a strong thermal anomaly covering an area of fresh lava (figure 16).

Figure (see Caption) Figure 15. Visitors to the summit crater of Raung on 6 January 2015 witnessed explosions from the inner crater approximately every 40 minutes that produced abundant gas and small amounts of ash and tephra. Lava was flowing continuously from the inner crater onto the larger crater floor, and incandescent activity was observed at night. Photos by Sofya Klimova, courtesy of Volcano Discovery.
Figure (see Caption) Figure 16. On a clear 16 January 2015, Landsat-8 satellite imagery revealed fresh lava flows NW of the pyroclastic cone within the summit crater at Raung. A strong thermal anomaly matches up with the dark material, suggesting that it flowed NW from within the pyroclastic cone. Left image is true color-pansharpened rendering, right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Satellite images were obscured by meteoric clouds during February 2015, but PVMBG reported gray and brown plumes rising 300 m multiple times and incandescence and rumbling on 14 February. Visitors to the summit crater during the second half of February reported Strombolian activity with lava fountains from the inner crater, at times as frequently as every 15 minutes (figure 17). Loud explosions and rumbling were heard 10-15 km away. MODVOLC thermal alerts stopped on 25 February and did not reappear until late June.

Figure (see Caption) Figure 17. A report issued on 25 February 2015 from visitors to the summit of Ruang noted large Strombolian explosions with incandescent ejecta and lava flowing across the crater floor. The fresh lava on the crater floor covered a noticeably larger area than that shown in early January (figure 15). Photo by Andi, courtesy of Volcano Discovery.

PVMBG raised the Alert Level to 2 in mid-March 2015. Weak thermal anomalies located inside and NW of the pyroclastic cone were present in satellite imagery on 21 March. PVMBG reported gray and brown emissions during March, April, and May rising as high as 300 m above the crater. Landsat imagery from 22 April showed a small emission inside the pyroclastic cone, and on 8 May showed a clearer view of the fresh black lava NW and SW of the pyroclastic cone (figure 18).

Figure (see Caption) Figure 18. Fresh lava was visible in Landsat-8 satellite imagery in April and May 2015 at Raung. A small emission was present inside the pyroclastic cone at the summit of Raung on 22 April 2015 (left). Fresh dark material is also evident in the SW quadrant of the summit crater that was not visible on 16 January 2015. A clear view on 8 May 2015 also shows the extent of the fresh black material around the pyroclastic cone (right). The summit crater is 2 km wide. Courtesy of Sentinel Hub Playground.

Nine MODVOLC thermal alerts appeared inside the summit crater on 21 June 2015 after no alerts since late February, suggesting an increase in activity. The Darwin VAAC issued the first ash advisory for 2015 on 24 June noting an aviation report of recent ash. The following day the Ujung Pandang Meteorological Weather Office (MWO) reported an ash emission drifting W at 3.7 km altitude. The same day, 25 June, Landsat-8 imagery clearly showed a new lava flow on the W side of the crater and a strong thermal anomaly. The thermal data showed a point source of heat widening SW from the center of the crater and a second point source of heat that appeared to be inside the pyroclastic cone. A small ash plume was visible over the cone (figure 19). Strombolian activity and ash plumes were reported by BNPB and PVMBG in the following days. On 26 June the Darwin VAAC noted the hotspot had remained visible in infrared imagery for several days. PVMBG reported an ash emission to 3 km altitude on 29 June.

Figure (see Caption) Figure 19. A new lava flow and strong thermal anomaly appeared inside the summit crater of Raung on 25 June 2015 in Landsat-8 imagery. The new flow was visible on the W side of the crater. The darker area extending SW from the rising ash plume is a shadow. The thermal data showed a point source of heat widening SW from the center of the crater and spreading out in the SW quadrant and a second point source of heat on the flank of the pyroclastic cone. Left image is True color-pansharpened rendering, and right image is thermal rendering. Courtesy of Sentinel Hub Playground.

Activity increased significantly during July 2015 (BGVN 41:12). Ash plumes rose as high as 6.7 km altitude and drifted hundreds of kilometers in multiple directions, forcing multiple shutdowns at airports on Bali and Lombok, as well as Banyuwangi and Jember in East Java. The Darwin VAAC issued 152 ash advisories during the month. Ashfall was reported up to 20 km W during July and 20-40 km SE during early August. Visitors to the summit in early July observed a new pyroclastic cone growing inside the inner crater from incandescent ejecta and dense ash emissions (figure 20). Landsat-8 imagery from 11 July showed a dense ash plume drifting SE, fresh black lava covering the 2-km-wide summit caldera floor, and a very strong thermal anomaly most intense at the center near the pyroclastic cone and cooler around the inner edges of the crater (figure 21). On 12 July, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a view of an ash-and-gas plume drifting hundreds of kilometers SE from Raung (figure 22).

Figure (see Caption) Figure 20. A new pyroclastic cone was growing inside the inner crater at the summit of Raung when photographed by Aris Yanto in early July 2015. Courtesy of Volcano Discovery.
Figure (see Caption) Figure 21. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and a large thermal anomaly caused by fresh lava. On 11 July a dense ash plume drifted SE and a strong thermal anomaly was centered inside the summit crater. The 2-km-wide crater floor was covered with fresh lava (compare with 25 June image in figure 19). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 22. On 12 July 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured a natural-color view of a plume of ash and volcanic gases drifting hundreds of kilometers SE from Raung. Courtesy of NASA Earth Observatory.

A satellite image on 20 July showed fresh incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit (figure 23). Incandescent ejecta emerged from two vents on the new pyroclastic cone inside the inner crater on 26 July (figure 24). On 27 July a dense ash plume was visible again in satellite imagery drifting NW and the hottest part of the thermal anomaly was in the SE quadrant of the crater (figure 25). Substantial SO2 plumes were recorded by the OMI instrument on the Aura satellite during July and early August 2015 (figure 26).

Figure (see Caption) Figure 23. A satellite image of the summit of Raung on 20 July 2015 showed fresh, incandescent lava covering the floor of the summit crater and a dense ash plume drifting N from the summit. Thermal activity on the NE flank was likely the result of incandescent ejecta from the crater causing a fire. Image created by DigitalGlobe, captured by WorldView3, courtesy of Volcano Discovery.
Figure (see Caption) Figure 24. Incandescent ejecta emerged from two vents on the new pyroclastic cone growing inside the inner crater of Raung on 26 July 2015. Photo by Vianney Tricou, used with permission, courtesy of Volcano Discovery.
Figure (see Caption) Figure 25. Landsat-8 imagery of Raung during July 2015 indicated dense ash emissions and large thermal anomalies from fresh lava. The 2-km-wide crater floor was fully covered with fresh lava by 11 July. On 27 July the dense ash plume was drifting NW and the highest heat was concentrated in the SE quadrant of the crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 26. Substantial plumes of sulfur dioxide from Raung were measured by the OMI instrument on the AURA satellite during July and August 2015. The first plumes were measured in mid-June; they intensified during the second half of July and the first week of August, but had decreased by mid-August. Wind directions were highly variable throughout the period. The date is recorded above each image. Courtesy of NASA Global Sulfur Dioxide Page.

Significant ash emissions continued into early August 2015 with numerous flight cancellations. The Darwin VAAC reported ash plumes rising to 5.2 km altitude and extending as far as 750 km SE during the first two weeks in August (figure 27). Satellite imagery indicated a small ash plume drifting W from the center of the crater on 12 August and weak thermal anomalies along the E and S rim of the floor of the crater (figure 28). The summit crater was covered with fresh lava on 14 August when viewed by visitors, and ash emissions rose a few hundred meters above the crater rim from a vent in the SW side of the pyroclastic cone (figure 29). The visitors observed pulsating ash emissions rising from the SW vent on the large double-crater new cinder cone. The larger vent to the NE was almost entirely inactive except for two small, weakly effusive vents on its inner walls.

Figure (see Caption) Figure 27. A dense ash plume drifted many kilometers S from Raung on 2 August 2015 in this view from nearly 100 km W. Incandescence at the summit indicated ongoing activity from the major 2015 eruption. In the foreground is Lamongan volcano whose last known eruption occurred in 1898. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 28. Landsat-8 satellite imagery of Raung indicated a small ash plume drifting W from the center of the crater on 12 August 2015. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. The summit crater of Raung on 14 August 2015 was filled with fresh lava from an eruption that began in November 2014. Ash emissions from a vent in the side of the newly grown pyroclastic cone within the crater rose a few hundred meters above the crater rim. Courtesy of Volcano Discovery.

The lengthy sequence of multiple daily VAAC reports that began in late June ended on 16 August 2015 with reports becoming more intermittent and ash plume heights rising to only 3.7-3.9 km altitude. Multiple discontinuous eruptions to 3.9 km altitude were reported on 18 August. The plumes extended about 100 km NW. The last report of an ash plume was from an airline on 22 August noting a low-level plume 50 km NW. Two MODVOLC alerts were issued that day. By 28 August only a very small steam plume was present at the center of the crater; the southern half of the edge of the crater floor still had small thermal anomalies (figure 30). The last single MODVOLC thermal alerts were on 29 August and 7 September. The Alert Level was lowered to 2 on 24 August 2015, and further lowered to 1 on 20 October 2016.

Figure (see Caption) Figure 30. By 28 August 2015 only a very small steam plume was present at the center of the summit crater of Raung, and the southern half of the edge of the crater floor only had weak thermal anomalies from cooling lava. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/);Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/, https://earthobservatory.nasa.gov/images/86213/eruption-of-raung-volcano); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Aris Yanto (URL: https://www.exploredesa.com/2012/11/mount-raung-produce-of-vulcanic-ash-plume-and-continue-eruption/); DigitalGlobe (URL: https://www.maxar.com/, https://twitter.com/Maxar/status/875449111398547457); Øystein Lund Andersen (URL: https://twitter.com/OysteinVolcano/status/1194879946042142726, http://www.oysteinlundandersen.com).


Klyuchevskoy (Russia) — September 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity, gas-and-steam and ash plumes, and a lava flow during June-early July 2020

Klyuchevskoy is a frequently active stratovolcano located in northern Kamchatka. Historical eruptions dating back 3,000 years have included more than 100 flank eruptions with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks. The previous report (BGVN 45:06) described ash plumes, nighttime incandescence, and Strombolian activity. Strombolian activity, ash plumes, and a strong lava flow continued. This report updates activity from June through August 2020 using weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.

Moderate explosive-effusive activity continued in June 2020, with Strombolian explosions, frequent gas-and-steam emissions that contained some amount of ash, and an active lava flow. On 1 June a gas-and-steam plume containing some ash extended up to 465 km SE and E. The lava flow descended the SE flank down the Apakhonchich chute (figure 43). Occasionally, phreatic explosions accompanied the lava flow as it interacted with snow. Intermittent ash plumes, reported throughout the month by KVERT using video and satellite data and the Tokyo VAAC using HIMAWARI-8 imagery, rose to 5.5-6.7 km altitude and drifted in different directions up to 34 km from the volcano. On 12 and 30 June ash plumes rose to a maximum altitude of 6.7 km. On 19 June, 28-30 June, and 1-3 July some collapses were detected alongside the lava flow as it continued to advance down the SE flank.

Figure (see Caption) Figure 43. Gray ash plumes (left) and a lava flow descending the Apakhonchich chute on the SE flank, accompanied by a dark ash plume and Strombolian activity (right) were observed at the summit of Klyuchevskoy on 10 June 2020. Courtesy of E. Saphonova, IVS FEB RAS, KVERT.

During 1-3 July moderate Strombolian activity was observed, accompanied by gas-and-steam emissions containing ash and a continuous lava flow traveling down the Apakhonchich chute on the SE flank. On 1 July a Tokyo VAAC advisory reported an ash plume rising to 6 km altitude and extending SE. On 3 July the activity sharply decreased. KVERT reported there was some residual heat leftover from the lava flow and Strombolian activity that continued to cool through at least 13 July; KVERT also reported frequent gas-and-steam emissions, which contained a small amount of ash through 5 July, rising from the summit crater (figure 44). The weekly KVERT report on 16 July stated that the eruption had ended on 3 July 2020.

Figure (see Caption) Figure 44. Fumarolic activity continued in the summit crater of Klyuchevskoy on 7 July 2020. Courtesy of KSRS ME, Russia, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity within 5 km of the summit crater from March through June followed by a sharp and sudden decline in early July (figures 45). A total of six weak thermal anomalies were detected between July and August. According to the MODVOLC thermal algorithm, a total of 111 thermal alerts were detected at or near the summit crater from 1 June to 1 July, a majority of which were due to the active lava flow on the SE flank and Strombolian explosions in the crater. Sentinel-2 thermal satellite imagery frequently showed the active lava flow descending the SE flank as a strong thermal anomaly, sometimes even through weather clouds (figure 46). These thermal anomalies were also recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data on a MIROVA graph, showing a strong cluster during June to early July, followed by a sharp decrease and then a hiatus in activity (figure 47).

Figure (see Caption) Figure 45. Thermal activity at Klyuchevskoy was frequent and strong during February through June 2020, according to the MIROVA graph (Log Radiative Power). Activity sharply decreased during July through August with six low-power thermal anomalies. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 thermal satellite images show the strong and persistent lava flow (bright yellow-orange) originating from the summit crater at Klyuchevskoy from 1 June through 1 July 2020. The lava flow was active in the Apakhonchich chute on the SE flank. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 47. Strong clusters of thermal anomalies were detected in the summit at Klyuchevskoy (red dots) during January through June 2020, as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Activity sharply decreased during July through August with few low-power thermal anomalies. Courtesy of MIROVA.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — September 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing explosions, ash plumes, lava flows, and lahars during April-July 2020

Fuego, located in Guatemala, is a stratovolcano that has been erupting since 2002 with historical eruptions dating back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 45:04) described recent activity that included multiple ash explosions, block avalanches, and intermittent lava flows. This report updates activity from April through July 2020 that consisted of daily explosions, ash plumes, block avalanches ashfall, intermittent lava flows, and lahars. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity during April-July 2020. Daily activity throughout April-July 2020 was characterized by multiple hourly explosions, ash plumes that rose to a maximum of 4.9 km altitude, incandescent pulses that reached 600 m above the crater, block avalanches into multiple drainages, and ashfall affecting nearby communities (table 21). The highest rate of explosions occurred on 2 and 3 April and 2 May with up to 16 explosions per hour. White degassing occurred frequently during the reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 132); the number of flows decreased in June through July, which is represented in the MIROVA analysis of MODIS satellite data, where the strength and frequency of thermal activity slightly decreased (figure 133). Occasional lahars were detected descending several drainages on the W and SE flanks, sometimes carrying tree branches and large blocks up to 1 m in diameter.

Table 21. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Number of explosions per hour Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Villages reporting ashfall
Apr 2020 5-16 4.3-4.9 km 8-20 km E, NE, SE, W, NW, SW, S, N Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, Honda, and Santa Teresa Morelia, Panimaché I and II, Sangre de Cristo, Santa Sofía, Finca Palo Verde, San Pedro Yepocapa, Las Cruces Quisache, La Rochela, Ceylan, and Osuna
May 2020 4-16 4.3-4.9 km 10-17 km S, SW, W, N, NE, E, SE Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala
Jun 2020 3-15 4.2-4.9 km 10-25.9 km E, SE, S, N, NE, W, SW, NW Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa and Honda San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir, Yucales, Santa Emilia, Santa Sofía
Jul 2020 1-15 4-4.9 km 10-24 km W, NW, SW, S, NE Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir
Figure (see Caption) Figure 132. Sentinel-2 thermal satellite images of Fuego between 9 April 2020 and 13 July 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the summit crater. Some lava flows were accompanied by gas emissions (9 April, 9 May, and 24 May 2020). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 133. Thermal activity at Fuego was persistent and strong from 16 September through late May 2020, according to the MIROVA graph (Log Radiative Power). From early to mid-June activity seemed to stop briefly before resuming again at a lower rate. Courtesy of MIROVA.

Activity during April-May 2020. Activity in April 2020 consisted of 5-16 explosions per hour, generating ash plumes that rose 4.3-4.9 km altitude and drifted 8-20 km in multiple directions. Ashfall was reported in Morelia (9 km SW), Panimaché I and II (8 km SW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Las Cruces Quisache (8 km NW), La Rochela, Ceylan, Osuna (12 km SW). The Washington VAAC issued multiple aviation advisories for a total of six days in April. Intermittent white gas-and-steam emissions reached 4.1-4.5 km altitude drifting in multiple directions. Incandescent ejecta was frequently observed rising 75-400 m above the crater; material ejected up to 600 m above the crater on 11 April. These constant explosions produced block avalanches that traveled down the Taniluyá (SW), Ceniza (SSW), Las Lajas (SE), Trinidad (S), Seca (W), Honda, and Santa Teresa (W) drainages. Effusive activity was reported on 6-13 and 15 April from the summit vent, traveling 150-800 m down the Ceniza drainage, accompanied by block avalanches in the front of the flow up to 1 km. Crater incandescence was also observed.

On 19-20 April a new lava flow descended the Ceniza drainage measuring 200-400 long, generating incandescent block avalanches at the front of the flow that moved up to 1 km. On 22 April lahars descended the Honda, Las Lajas, El Juté (SE), Trinidad, Ceniza, Taniluyá, Mineral, and Seca drainages and tributaries in Guacalate, Achiguate, and Pantaleón. During the evening of 23 April the rate of effusive activity increased; observatory staff observed a second lava flow in the Seca drainage was 170 m long and incandescent blocks from the flow traveled up to 600 m. Two lava flows in the Ceniza (130-400 m) and Seca (150-800 m) drainages continued from 23-28 April and had stopped by 30 April. On 30 April weak and moderate explosions produced ash plumes that rose 4.5-4.7 km altitude drifting S and SE, resulting in fine ashfall in Panimaché I, Morelia, Santa Sofía (figure 134).

Figure (see Caption) Figure 134. Photo of a small ash plume rising from Fuego on 30 April 2020. Photo has been slightly color corrected. Courtesy of William Chigna, CONRED.

During May 2020, the rate of explosion remained similar, with 4-16 explosions per hour, which generated gray ash plumes that rose 4.3-4.9 km altitude and drifted 10-17 km generally W and E. Ashfall was observed in Panimaché I, La Rochela, Ceilán, Morelia, San Andrés Osuna, Finca Palo Verde, Santa Sofía, Seilán, San Pedro Yepocapa, Alotenango (8 km ENE), Ciudad Vieja (13.5 km NE), San Miguel Dueñas (10 km NE), and Antigua Guatemala (18 km NE). The Washington VAAC issued volcanic ash advisory notices on six days in May. White gas-and-steam emissions continued, rising 4-4.5 km altitude drifting in multiple directions. Incandescent ejecta rose 100-400 m above the crater, accompanied by some crater incandescence and block avalanches in the Trinidad, Taniluyá, Ceniza, Las Lajas, Santa Teresa, Seca, and Honda drainages that moved up to 1 km and sometimes reached vegetated areas.

During 8-11 May a new 400 m long lava flow was detected in the Ceniza drainage, accompanied by constant crater incandescence and block avalanches traveling up to 1 km, according to INSIVUMEH. On 8 and 17 May moderate to strong lahars descended the Santa Teresa and Mineral drainages on the W flank and on 21 May they descended the Las Lajas drainage on the E flank and the Ceniza drainage on the SW flank. During 20-24 May a 100-400 m long lava flow was reported in the Ceniza drainage alongside degassing and avalanches moving up to 1 km and during 25-26 May a 150 m long lava flow was reported in the Seca drainage.

Activity during June-July 2020. The rate of explosions in June 2020 decreased slightly to 3-15 per hour, generating gray ash plumes that rose 4.2-4.9 km altitude and drifted 10-26 km in multiple directions (figure 135). As a result, intermittent ashfall was reported in San Pedro Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Finca Palo Verde, El Porvenir (8 km ENE), Yucales (12 km SW), Santa Emilia, Santa Sofia, according to INSIVUMEH. VAAC advisories were published on eight days in June. Degassing persisted in the summit crater that rose 4.1-4.5 km altitude extending in different directions. Crater incandescence was observed occasionally, as well as incandescent pulses that rose 100-300 m above the crater. Block avalanches were observed descending the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, Santa Teresa, and Honda drainages, which could sometimes carry blocks up to 1 km in diameter.

On 2 June at 1050 a weak to moderate lahar was observed in the Las Lajas drainage on the SE flank. On 5 June, more lahars were detected in the Seca and Mineral drainages on the W flanks. A new lava flow was detected on 12 June, traveling 250 m down the Seca drainage on the NW flank, and accompanied by constant summit crater incandescence and gas emissions. The flow continued into 14 June, lengthening up to 300 m long. On 24 June weak and moderate explosions produced ash plumes that rose 4.3-4.7 km altitude drifting W and SW (figure 135). On 29 June at 1300 a weak lahar was reported in the Seca, Santa Teresa, and Mineral drainages on the W flank.

Figure (see Caption) Figure 135. Examples of small ash plumes at Fuego on 15 (left) and 24 (right) June 2020. Courtesy of William Chigna, CONRED.

Daily explosions and ash plumes continued through July 2020, with 1-15 explosions per hour and producing consistent ash plumes 4-4.9 km altitude drifting generally W for 10-24 km. These explosions resulted in block avalanches that descended the Trinidad, Taniluyá, Ceniza, Honda, Las Lajas, Seca, and Santa Teresa drainages. The number of white gas emissions decrease slightly compared to previous months and 4-4.4 km altitude. VAAC advisories were distributed on twenty different days in July. Incandescent ejecta was observed rising 100-350 m above the crater. Occasional ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, and El Porvenir, according to INSIVUMEH.

On 4 July in the early morning, a lava flow began in the Seca drainage, which also produced some fine ash particles that drifted W. The lava flow continued into 5 July, measuring 150 m long. On the same day, weak to moderate lahars traveled only 20 m, carrying tree branches and blocks measuring 30 cm to 1 m. On 14, 24, and 29 July more lahars were generated in the Las Lajas drainages on the former date and both the Las Lajas and El Jute drainages on the two latter dates.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Nishinoshima (Japan) — September 2020 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Major June-July eruption of lava, ash, and sulfur dioxide; activity declines in August 2020

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted through November 2015 and returned during mid-2017, continuing the growth of the island with ash plumes, ejecta, and lava flows. A short eruptive event in July 2018 produced a small lava flow and vent on the side of the pyroclastic cone. The next eruption of ash plumes, incandescent ejecta, and lava flows began in early December 2019, resulting in significant growth of the island. This report covers the ongoing activity from March-August 2020 when activity decreased. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular overflights to make observations.

Renewed eruptive activity that began on 5 December 2019 continued during March-August 2020 but appeared to wane by the end of August. Major lava flows covered all sides of the island, with higher levels of activity during late June and early July. Ash emissions increased significantly during June and produced dense black ash plumes that rose up to 6 km altitude in early July. Explosive activity produced lightning and incandescent jets that rose 200 m and large bombs that fell to the base of the pyroclastic cone. Lava flow activity diminished at the end of July. Ash emissions decreased throughout August and appeared to cease after 27 August 2020. The MIROVA plot clearly reflects the high levels of thermal activity between December 2019 and August 2020 (figure 80); this event was reported by JMA as the largest eruption recorded to date. Sulfur dioxide emissions were very high during late June through early August, producing emissions that drifted across much of the western Pacific region.

Figure (see Caption) Figure 80. The MIROVA plot of thermal activity at Nishinoshima from 14 October 2019 through August 2020 indicates the high levels between early December 2019 and late July 2020 that resulted from the eruption of numerous lava flows on all flanks of the pyroclastic cone, significantly enlarging the island. Courtesy of MIROVA.

The Japan Coast Guard (JCG) conducted overflights of Nishinoshima on 9 and 15 March 2020 (figure 81). During both visits they observed eruptive activity from the summit crater, including ash emissions that rose to an altitude of approximately 1,000 m and lava flowing down the N and SE flanks (figure 82). Large ejecta was scattered around the base of the pyroclastic cone. The lava flowing north had reached the coast and was producing vigorous steam as it entered the water on 9 March; whitish gas emissions were visible on the N flank of the cone at the source of the lava flow (figure 83). On 9 March yellow-green discolored water was noted off the NE shore. The lava flow on the SE coast produced a small amount of steam at the ocean entry point and a strong signal in thermal imagery on 15 March (figure 84). Multiple daily MODVOLC thermal alerts were issued during 1-10, 17-24, and 27-30 March. Landsat-8 visual and thermal imagery on 30 March 2020 confirmed that thermal anomalies on the N and SE flanks of the volcano continued.

Figure (see Caption) Figure 81. The Japan Coast Guard conducted an overflight of Nishinoshima on 9 March 2020 and observed ash emissions rising 1,000 m above the summit and lava flowing into the ocean off the N flank of the island. Courtesy of Japan Coast Guard (JCG) and JMA.
Figure (see Caption) Figure 82. Lava flows at Nishinoshima during February and March 2020 were concentrated on the N and SE flanks. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. The growth of the SE-flank flow decreased during March while the N-flank flow rate increased significantly. Left image shows changes between 14 and 28 February and right image shows the differences between 28 February and 13 March. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the Japan National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, March 2020).
Figure (see Caption) Figure 83. Vigorous steam emissions on the N flank of Nishinoshima on 9 March 2020 were caused by the active flow on the N flank. Whitish steam and gas midway up the flank indicated the outlet of the flow. Ash emissions rose from the summit crater and drifted E. Courtesy of Japan Coast Guard and JMA.
Figure (see Caption) Figure 84. Infrared imagery from 15 March 2020 at Nishinoshima showed the incandescent lava flow on the SE flank (foreground), blocks of ejecta scattered around the summit and flanks of the pyroclastic cone, and the active N-flank flow (left). Courtesy of Japan Coast Guard and JMA.

Ash emissions were not observed at Nishinoshima during JCG overflights on 6, 16, and 19 April 2020, but gas-and-steam emissions were noted from the summit crater, and a yellow discoloration interpreted by JMA to be sulfur precipitation was observed near the top of the pyroclastic cone. The summit crater was larger than during previous visits. Steam plumes seen each of those days on the N and NE coasts suggested active ocean entry of lava flows (figure 85). A lava flow was observed emerging from the E flank of the cone and entering the ocean on the E coast on 19 and 29 April (figure 86). During the overflight on 29 April observers noted lava flowing southward from a vent on the E flank of the pyroclastic cone. A narrow, brown, ash plume was visible on 29 April at the summit crater rising to an altitude of about 1,500 m. Thermal observations indicated continued flow activity throughout the month. Multiple daily MODVOLC thermal alerts were recorded during 2-6, 10-11, 17-23, and 28-30 April. Significant growth of the pyroclastic cone occurred between early February and late April 2020 (figure 87).

Figure (see Caption) Figure 85. Multiple entry points of lava flowed into the ocean producing jets of steam along the N flank of Nishinoshima on 6 April 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 86. Lava flowed down the E flank of Nishinoshima from a vent below the summit on 19 April 2020. The ocean entry produced a vigorous steam plume (left). Courtesy of JCG.
Figure (see Caption) Figure 87. The pyroclastic cone at Nishinoshima grew significantly in size between 4 February (left), 9 March (middle), and 19 April 2020 (right). View is to the E. Courtesy of JMA and JCG.

Infrared satellite imagery from 17 May 2020 showed a strong thermal anomaly at the summit and hot spots on the NW flank indicative of flows. Visible imagery confirmed emissions at the summit and steam plumes on the NW flank (figure 88). Gray ash plumes rose to about 1,800 m altitude on 18 May during the only overflight of the month made by the Japan Coast Guard. In addition, white gas emissions rose from around the summit area and large blocks of ejecta were scattered around the base of the pyroclastic cone (figure 89). Steam from ocean-entry lava on the N flank was reduced from previous months, but a new flow moving NW into the ocean was generating a steam plume and a strong thermal signature. Multi-pixel thermal alerts were measured by the MODVOLC system on 1-3, 9-10, 13-15, 18, and 26-30 May. Sulfur dioxide emissions had been weak and intermittent from March through early May 2020 but became more persistent during the second half of May. Although modest in size, the plumes were detectible hundreds of kilometers away from the volcano (figure 90).

Figure (see Caption) Figure 88. Landsat-8 satellite imagery of Nishinoshima from 17 May 2020 confirmed continued eruptive activity. Visible imagery showed emissions at the summit and steam plumes on the NW flank (left) and infrared imagery showed a strong thermal anomaly at the summit and anomalies on the NW flank indicative of lava flows (right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Lava continued to enter the ocean at Nishinoshima during May 2020. A new lava flow on the NW flank produced a strong steam plume at an ocean entry (left) on 18 May 2020. In addition to a light gray plume of gas and ash, steaming blocks of ejecta were visible on the flanks of the pyroclastic cone. The strong thermal signature of the NW-flank flow in infrared imagery that same day showed multiple new lobes flowing to the ocean (right). Courtesy of JCG and JMA.
Figure (see Caption) Figure 90. Small but distinct SO2 emissions from Nishinoshima were recorded by the TROPOMI instrument on the Sentinel-5P satellite during the second half of May 2020. The plumes drifted tens to hundreds of kilometers away from the volcano in multiple directions as the wind directions changed. Nishinoshima is about 1,000 kilometers S of Tokyo. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity increased significantly during June 2020. Satellite imagery from 2 June revealed two intense thermal anomalies at the summit indicating a new crater, and lava flows active on the NW and NE flanks, all showing gas or steam emissions (figure 91). Dense brown and gray ash emissions were observed rising from the summit crater during JCG overflights on 7 and 15 June (figure 92). Plumes reached at least 1,500 m altitude, and ejecta reached the base of the pyroclastic cone. Between 5 and 19 June the lava flow on the WNW coast slowed significantly, while the flows to the N and E became significantly more active (figure 93). The Tokyo VAAC reported the first ash plume since mid-February on 12 June rose to 2.1 km and drifted NE. On 14 June they reported an ash plume extending E at 2.7 km altitude. Dense emissions continued to drift N and E at 2.1-2.7 km altitude until the last week of the month. The JCG overflight on 19 June observed darker ash emissions than two weeks earlier that drifted at least 180 km NE (figure 94) and incandescent tephra that exploded from the enlarged summit area where three overlapping craters trending E-W had formed.

Figure (see Caption) Figure 91. Landsat-8 satellite imagery on 2 June 2020 confirmed ongoing activity at Nishinoshima. Lava produced ocean-entry steam on the NE coast; a weak plume on the NW coast suggested reduced activity in that area (left). In addition, a dense steam plume drifted E from the summit, while a fainter plume adjacent to it also drifted E. The infrared image (right) indicated two intense anomalies at the summit, and weaker anomalies from lava flows on the NW and NE flanks. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 92. Lava flows at Nishinoshima entered the ocean on the N and NE coasts (left) on 7 June 2020, and dense, gray ash emissions rose to at least 1,500 m altitude. Courtesy of JCG.
Figure (see Caption) Figure 93. The lava flow on the WNW coast of Nishinoshima slowed significantly in early June 2020, while the flows to the N and E covered large areas of those flanks between 5 and 19 June. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows the differences between 22 May and 5 June and right image shows changes between 5 and 19 June. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 94. Ash emissions and explosive activity at Nishinoshima increased significantly during the second half of June. Dense black ash rose to 2.4 km altitude and drifted at least 180 km to the NE on 19 June 2020. Vigorous white steam plumes rose from the ocean on the E flank where a lava flow entered the ocean. Courtesy of JCG.

The Tokyo VAAC reported ash emissions that rose to 4.6 km altitude and drifted NE on 25 June. For the remainder of the month they rose to 2.7-3.9 km altitude and drifted N and NE. By the time of the JCG overflight on 29 June, the new crater that had opened on the SW flank had merged with the summit crater (figure 95). Dense black ash emissions rose to 3.4 km altitude and drifted NE, lava flowed down the SW flank into the ocean producing violent steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity (figure 96). Multiple layers of recent flow activity were visible along the SW coast (figure 97). Yellow-green discolored water encircled the entire island with a width of 1,000 m.

Figure (see Caption) Figure 95. The new crater on the SW flank of Nishinoshima had merged with the summit crater by 29 June 2020. Courtesy of JCG and JMA.
Figure (see Caption) Figure 96. Dense black ash emissions rose to 3.4 km altitude and drifted NE from the summit of Nishinoshima on 29 June 2020. Lava flowed down the SW flank into the ocean producing steam explosions, and incandescent tephra was scattered at least 200 m from the base of the pyroclastic cone from ongoing explosive activity at the summit (inset). Courtesy of JCG.
Figure (see Caption) Figure 97. Different textures of lava flows were visible along the SW flank of Nishinoshima on 29 June 2020. The active flow appeared dark brown and blocky, and produced steam explosions at the ocean entry site (right). Slightly older, brownish-red lava (center) still produced steam along the coastline. Courtesy of JCG.

MODVOLC thermal alerts reached their highest levels of the period during June 2020 with multi-pixel alerts recorded on most days of the month. Sulfur dioxide emissions increased steadily throughout June to the highest levels recorded for Nishinoshima; by the end of the month plumes of SO2 were drifting thousands of kilometers across the Pacific Ocean and being captured in complex atmospheric circulation currents (figure 98).

Figure (see Caption) Figure 98. Sulfur dioxide emissions at Nishinoshima increased noticeably during the second half of June 2020 as measured by the TROPOMI instrument on the Sentinel-5P satellite. Atmospheric circulation currents produced long-lived plumes that drifted thousands of kilometers from the volcano. Nishinoshima is 1,000 km S of Tokyo. Courtesy of NASA Sulfur Dioxide Monitoring Page.

By early July 2020, satellite data indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank, creating fans extending into the ocean (figure 99). The Tokyo VAAC reported ash emissions that rose to 3.7-4.9 km altitude and drifted N during 1-6 July. The altitude increased to 6.1 km during 8 and 9 July, and ranged from 4.6-6.1 km during 10-14 July while the drift direction changed to NE. The marine meteorological observation ship "Ryofu Maru" reported on 11 July that dense black ash was continuously erupting from the summit crater and drifting W at 1,700 m altitude or higher. They observed large volcanic blocks scattered around the base of the pyroclastic cone, and ash falling from the drifting plume. During the night of 11 July incandescent lava and volcanic lightning rose to about 200 m above the crater rim (figure 100).

Figure (see Caption) Figure 99. By early July 2020, satellite data from Nishinoshima indicated that the NE quadrant of the island was covered with ash, and a large amount of new lava had flowed down the SW flank creating fans extending into the ocean. The areas in blue indicate topographical changes due to lava flows and pyroclastic deposits from the previous measurement. Left image shows differences between 5 and 19 June and the right image shows changes between 19 June and 3 July that included abundant ashfall on the NE flank. The correlated image analysis uses ALOS-2 / PALSAR-2 and is carried out with the cooperation of JAXA through the activities of the Satellite Analysis Group of the Volcano Eruption Prediction Liaison Committee. The software was developed by the National Research Institute for Earth Science and Disaster Prevention and uses the technical data C1-No 478 of the Geospatial Information Authority of Japan. Courtesy of JAXA and JMA (Volcanic activity commentary material on Nishinoshima, June 2020).
Figure (see Caption) Figure 100. High levels of activity were observed at Nishinoshima by crew members aboard the marine meteorological observation ship "Ryofu Maru” on 11 July 2020. Abundant ash emissions filled the sky and tephra fell out of the ash cloud for several kilometers downwind (left, seen from 6 km NE). Incandescent explosions rose as much as 200 m into the night sky (right, seen from 4 km E). Courtesy of JMA.

During 16-26 July 2020 the Tokyo VAAC reported ash emissions at 3.7-5.2 km altitude that drifted primarily N and NE. The vessel "Keifu Maru" passed Nishinoshima on 20 July and crewmembers observed continuing emissions from the summit of dense, black ash. JCG observed an ash plume rising to at least 2.7 km altitude during their overflight of 20 July. A large dome of fresh lava was visible on the SW flank of the island (figure 101). Lower ash emissions from 2.4-3.7 km altitude were reported by the Tokyo VAAC during 27-29 July, but the altitude increased to 5.5-5.8 km during the last two days of the month. During an overflight on 30 July by the National Research Institute for Earth Science and Disaster Prevention, dark and light gray ash emissions rose to 3.0 km altitude, but no flowing lava or large bombs were observed. They also noted thick deposits of brownish-gray ash on the N side of the island (figure 102).

Figure (see Caption) Figure 101. JCG observed an ash plume at Nishinoshima rising to at least 2.7 km altitude during their overflight of 20 July 2020. A large dome of fresh lava was visible on the SW flank of the island. Courtesy of JCG.
Figure (see Caption) Figure 102. Ash emissions changed from dark to light gray on 30 July 2020 at Nishinoshima as seen during an overflight by the National Research Institute for Earth Science and Disaster Prevention. Thick brownish-gray ash was deposited over the lava on the N side of the island. Courtesy of JMA (Information on volcanic activity in Nishinoshima, July 2020).

JMA reported a sharp decrease in the lava eruption rate during July with thermal anomalies decreasing significantly mid-month. Multiple daily MODVOLC thermal alerts were recorded during the first half of the month but were reduced to two or three per day during the last third of July. Throughout July, SO2 emissions were the highest recorded in modern times for Nishinoshima. High levels of emissions were measured daily, producing streams with high concentrations of SO2 that were caught up in rotating wind currents and drifted thousands of kilometers across the Pacific Ocean (figure 103).

Figure (see Caption) Figure 103. Complex atmospheric wind patterns carried the largest SO2 plumes recorded from Nishinoshima thousands of kilometers around the western Pacific Ocean during July 2020. Nishinoshima is about 1,000 km S of Tokyo. Top and bottom left images both show 6 July but at different scales. Courtesy of NASA Sulfur Dioxide Monitoring Page.

Thermal activity was greatly reduced during August 2020. Only one or two MODVOLC alerts were issued on 11, 18, 20, 21, 29, and 30 August, and no fresh lava flows were observed. The Tokyo VAAC reported ash emissions daily from 1-20 August. Plume heights were 4.9-5.8 km altitude during 1-4 August after which they dropped to 3.9 km altitude through 15 August. A brief pulse to 4.6 km altitude was recorded on 16 August, but then they dropped to 3.0 km or lower through the end of the month and became intermittent. The last ash emission was reported at 2.7 km altitude drifting W on 27 August.

No eruptive activity was observed during the Japan Coast Guard overflights on 19 and 23 August. High temperatures were measured on the inner wall of the summit crater on 19 August (figure 104). Steam plumes rose from the summit crater to about 2.5 km altitude during both visits (figure 105). Yellow-green discolored water was present on 23 August around the NW and SW coasts. No lava flows were observed, and infrared cameras did not measure any surface thermal anomalies outside of the crater. Very high levels of SO2 emissions were measured through 12 August when they began to noticeably decrease (figure 106). By the end of the month, only small amounts of SO2 were measured in satellite data.

Figure (see Caption) Figure 104. A strong thermal anomaly was still present inside the newly enlarged summit crater at Nishinoshima on 19 August 2020. Courtesy of JCG.
Figure (see Caption) Figure 105. Only steam plumes were observed rising from the summit crater of Nishinoshima during the 23 August 2020 overflight by the Japan Coast Guard. Courtesy of JCG.
Figure (see Caption) Figure 106. Sulfur dioxide emissions remained very high at Nishinoshima until 12 August 2020 when they declined sharply. Circulating air currents carried SO2 thousands of kilometers around the western Pacific region. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG), Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan (URL: http://www.eorc.jaxa.jp/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Turrialba (Costa Rica) — September 2020 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


New eruptive period on 18 June 2020 consisted of ash eruptions

Turrialba is a stratovolcano located in Costa Rica that overlooks the city of Cartago. Three well-defined craters occur at the upper SW end of a broad 800 x 2,200 m summit depression that is breached to the NE. Activity described in the previous report primarily included weak ash explosions and minor ash emissions (BGVN 44:11). This reporting period updates information from November 2019-August 2020; volcanism dominantly consists of ash emissions during June-August, based on information from daily and weekly reports by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) and satellite data.

Volcanism during November 2019 through mid-June was relatively low, dominated by low SO2 emissions (100-300 tons/day) and typical low seismic tremors. A single explosion was recorded at 1850 on 7 December 2019, and two gas-and-steam plumes rose 800 m and 300 m above the crater on 25 and 27 December, respectively. An explosion was detected on 29 January 2020 but did not result in any ejecta. An overflight during the week of 10 February measured the depth of the crater (140 m); since the previous measurements made in February 2019 (220 m), the crater has filled with 80 m of debris due to frequent collapses of the NW and SE internal crater walls. Beginning around February and into at least early May 2020 the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system detected a small cluster of thermal anomalies (figure 52). Some of these anomalies were faintly registered in Sentinel-2 thermal satellite imagery during 10 and 25 April, with a more distinct anomaly occurring on 15 May (figure 53).

Figure (see Caption) Figure 52. A small cluster of thermal anomalies were detected in the summit area of Turrialba (red dots) during February-May 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.
Figure (see Caption) Figure 53. Sentinel-2 thermal satellite imagery detected minor gas-and-steam emissions (left) and a weak thermal anomaly (right) in the summit crater at Turrialba on 11 January and 15 May 2020, respectively. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

On 18 June activity increased, which marked the start of a new eruptive period that produced ash emissions rising 100 m above the crater rim at 1714, 1723, and 1818. The next morning, 19 June, two more events at 1023 and 1039 resulted in ash emissions rising 100 m above the crater. During 23-26 June small ash emissions continued to occur each day, rising no higher than 100 m above the crater. A series of small ash eruptions that rose 100 m above the crater occurred during 28 and 29 June; four events were recorded at 0821, 1348, 1739, and 2303 on 28 June and five more were recorded at 0107, 0232, 0306, 0412, and 0818 on 29 June. The two events at 0107 and 0412 were accompanied by ballistics ejected onto the N wall of the crater, according to OVSICORI-UNA.

Almost daily ash emissions continued during 1-7 July, rising less than 100 m above the crater; no ash emissions were observed on 3 July. On 6 July, gas-and-steam and ash emissions rose hundreds of meters above the crater at 0900, resulting in local ashfall. Passive gas-and-steam emissions with minor amounts of ash were occasionally visible during 9-10 July. On 14 July an eruptive pulse was observed, generating brief incandescence at 2328, which was likely associated with a small ash emission. Dilute ash emissions at 1028 on 16 July preceded an eruption at 1209 that resulted in an ash plume rising 200 m above the crater. Ash emissions of variable densities continued through 20 July rising as high as 200 m above the crater; on 20 July incandescence was observed on the W wall of the crater. An eruptive event at 0946 on 29 July produced an ash plume that rose 200-300 m above the crater rim. During 30-31 July a series of at least ten ash eruptions were detected, rising no higher than 200 m above the crater, each lasting less than ten minutes. Some incandescence was visible on the SW wall of the crater during this time.

On 1 August at 0746 an ash plume rose 500 m above the crater. During 4-5 August a total of 19 minor ash emissions occurred, accompanied by ash plumes that rose no higher than 200 m above the crater. OVSICORI-UNA reported on 21 August that the SW wall of the crater had fractured; some incandescence in the fracture zone had been observed the previous month. Two final eruptions were detected on 22 and 24 August at 1253 and 2023, respectively. The eruption on 24 August resulted in an ash plume that rose to a maximum height of 1 km above the crater.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — September 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Effusive activity in early April; frequent Strombolian explosions and ash emissions during April-July 2020

Etna, located on the island of Sicily, Italy, is a stratovolcano that has had historical eruptions dating back 3,500 years. Its most recent eruptive period began in September 2013 and has continued through July 2020, characterized by Strombolian explosions, lava flows, and ash plumes. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. Volcanism during this reporting period from April through July 2020 includes frequent Strombolian explosions primarily in the Voragine and NSEC craters, ash emissions, some lava effusions, and gas-and-steam emissions. Information primarily comes from weekly reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during April-July 2020. Degassing of variable intensity is typical activity from all summit vents at Etna during the reporting period. Intra-crater Strombolian explosions and ash emissions that rose to a maximum altitude of 5 km on 19 April primarily originated from the Voragine (VOR) and New Southeast Crater (NSEC) craters. At night, summit crater incandescence was occasionally visible in conjunction with explosions and degassing. During 18-19 April small lava flows were observed in the VOR and NSEC craters that descended toward the BN from the VOR Crater and the upper E and S flanks of the NSEC. On 19 April a significant eruptive event began with Strombolian explosions that gradually evolved into lava fountaining activity, ejecting hot material and spatter from the NSEC. Ash plumes that were produced during this event resulted in ashfall to the E of Etna. The flows had stopped by the end of April; activity during May consisted of Strombolian explosions in both the VOR and NSEC craters and intermittent ash plumes rising 4.5 km altitude. On 22 May Strombolian explosions in the NSEC produced multiple ash plumes, which resulted in ashfall to the S. INGV reported that the pit crater at the bottom of BN had widened and was accompanied by degassing. Explosions with intermittent ash emissions continued during June and July and were primarily focused in the VOR and NSEC craters; mild Strombolian activity in the SEC was reported in mid-July.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity throughout the reporting period (figure 296). In early April, the frequency and power of the thermal anomalies began to decrease through mid-June; in July, they had increased in power again but remained less frequent compared to activity in January through March. According to the MODVOLC thermal algorithm, a total of seven alerts were detected in the summit craters during 10 April (1), 17 April (1), 24 April (2), 10 July (1), 13 July (1), and 29 July (1) 2020. These thermal hotspots were typically registered during or after a Strombolian event. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in different directions (figure 297).

Figure (see Caption) Figure 296. Multiple episodes of varying thermal activity at Etna from 14 October 2019 through July 2020 were reflected in the MIROVA data (Log Radiative Power). In early April, the frequency and power of the thermal anomalies decreased through mid-June. In July, the thermal anomalies increased in power, but did not increase in frequency. Courtesy of MIROVA.
Figure (see Caption) Figure 297. Distinct SO2 plumes from Etna were detected on multiple days during April to July 2020 due to frequent Strombolian explosions, including, 24 April (top left), 9 May (top right), 25 June (bottom left), and 21 July (bottom right) 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during April-May 2020. During April, INGV reported Strombolian explosions that produced some ash emissions and intra-crater effusive activity within the Voragine Crater (VOR) and abundant degassing from the New Southeast Crater (NSEC), Northeast Crater (NEC), and from two vents on the cono della sella (saddle cone) that were sometimes accompanied by a modest amount of ash (figure 298). At night, summit crater incandescence was observed in the cono della salla. The Strombolian activity in the VOR built intra-crater scoria cones while lava flows traveled down the S flank of the largest, main cone. On 18 April effusive activity from the main cone in the VOR Crater traveled 30 m toward the Bocca Nuova (BN) Crater; the pit crater at the bottom of the BN crater had widened compared to previous observations. A brief episode of Strombolian explosions that started around 0830 on 19 April in the NSEC gradually evolved into modest lava fountaining activity by 0915, rising to 3 km altitude and ejecting bombs up to 100 m (figure 299). A large spatter deposit was found 50 m from the vent and 3-4 small lava flows were descending the NSEC crater rim; two of these summit lava flows were observed at 1006, confined to the upper E and S flanks of the cone. Around 1030, one or two vents in the cono della sella produced a gas-and-steam and ash plume that rose 5 km altitude and drifted E, resulting in ashfall on the E flank of Etna in the Valle del Bove, as well as between the towns of Zafferana Etnea (10 km SE) and Linguaglossa (17 km NE). At night, flashes of incandescence were visible at the summit. By 1155, the lava fountaining had gradually slowed, stopping completely around 1300. The NEC continued to produce gas-and-steam emissions with some intra-crater explosive activity. During the week of 20-26 April, Strombolian activity in the VOR intra-crater scoria cone ejected pyroclastic material several hundred meters above the crater rim while the lava flows had significantly decreased, though continued to travel on the E flank of the main cone. Weak, intra-crater Strombolian activity with occasional ash emissions and nightly summit incandescence were observed in the NSEC (figure 300). By 30 April there were no longer any active lava flows; the entire flow field had begun cooling. The mass of the SO2 emissions varied in April from 5,000-15,000 tons per day.

Figure (see Caption) Figure 298. Photos of Strombolian explosions at Etna in the Voragine Crater (top left), strong degassing at the Northeast Crater (NEC) (top right), and incandescent flashes and Strombolian activity in the New Southeast Crater (NSEC) seen from Tremestieri Etneo (bottom row) on 10 April 2020. Photos by Francesco Ciancitto (top row) and Boris Behncke (bottom row), courtesy of INGV.
Figure (see Caption) Figure 299. Strombolian activity at Etna’s “cono della sella” of the NSEC crater on 19 April 2020 included (a-b) lava fountaining that rose 3 km altitude, ejecting bomb-sized material and a spatter deposit captured by the Montagnola (EMOV) thermal camera. (c-d) An eruptive column and increased white gas-and-steam and ash emissions were captured by the Montagnola (EMOV) visible camera and (e-f) were also seen from Tremestieri Etneo captured by Boris Behncke. Courtesy of INGV (Report 17/2020, ETNA, Bollettino Settimanale, 13/04/2020 – 19/04/2020, data emissione 21/04/2020).
Figure (see Caption) Figure 300. Webcam images showing intra-crater explosive activity at Etna in the Voragine (VOR) and New Southeast Crater (NSEC) on 24 April 2020 captured by the (a-b) Montagnola and (c) Monte Cagliato cameras. At night, summit incandescence was visible and accompanied by strong degassing. Courtesy of INGV (Report 18/2020, ETNA, Bollettino Settimanale, 20/04/2020 – 26/04/2020, data emissione 28/04/2020).

Strombolian explosions produced periodic ash emissions and ejected mild, discontinuous incandescent material in the VOR Crater; the coarse material was deposited onto the S flank of BN (figure 301). Pulsating degassing continued from the summit craters, some of which were accompanied by incandescent flashes at night. The Strombolian activity in the cono della sella occasionally produced reddish ash during 3-4 May. During 5 and 8 May, there was an increase in ash emissions at the NSEC that drifted SSE. A strong explosive event in the VOR Crater located E of the main cone produced a significant amount of ash and ejected coarse material, which included blocks and bombs measuring 15-20 cm, that fell on the W edge of the crater, as well as on the S terrace of the BN Crater (figure 302).

Figure (see Caption) Figure 301. Photos of Strombolian explosions and summit incandescence at Etna on 4 May (left) and during the night of 11-12 May. Photos by Gianni Pennisi (left) and Boris Behncke (right, seen from Tremestieri Etneo). Courtesy of INGV.
Figure (see Caption) Figure 302. A photo on 5 May (left) and thermal image on 8 May (right) of Strombolian explosions at Etna in the Voragine Crater accompanied by a dense, gray ash plume. Photo by Daniele Andronico. Courtesy of INGV (Report 20/2020, ETNA, Bollettino Settimanale, 04/05/2020 – 10/05/2020, data emissione 12/05/2020).

On 10 May degassing continued in the NSEC while Strombolian activity fluctuated in both the VOR and NSEC Craters, ejecting ballistics beyond the crater rim; in the latter, some of the blocks fell back in, accumulated on the edge, and rolled down the slopes (figure 303). During the week of 11-17 May, eruptive activity at the VOR Crater was the lowest observed since early March; there were 4-5 weak, low intensity pulses not accompanied by bombs or ashfall in the VOR Crater. Degassing continued in the BN Crater. The crater of the cono della sella had widened further N following collapses due to the Strombolian activity, which exposed the internal wall.

Figure (see Caption) Figure 303. Map of the summit craters of Etna showing the active vents, the area of cooled lava flows (light green), and the location of the widening pit crater in the Bocca Nuova (BN) Crater (light blue circle) updated on 9 May 2020. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).

On 18 May an ash plume from the NSEC rose 4.5 km altitude and drifted NE. Strombolian explosions on 22 May at the NSEC produced multiple ash plumes that rose 4.5 km altitude and drifted S and SW (figure 304), depositing a thin layer of ash on the S slope, and resulting in ashfall in Catania (27 km S). Explosions from the VOR Crater had ejected a deposit of large clasts (greater than 30 cm) on the NE flank, between the VOR Crater and NEC on 23 May. INGV reported that the pit crater in the BN continued to widen and degassing was observed in the NSEC, VOR Crater, and NEC. During the week of 25-31 May persistent visible flashes of incandescence at night were observed, which suggested there was intra-crater Strombolian activity in the SEC and NSEC. The mass of the SO2 plumes varied between 5,000-9,000 tons per day.

Figure (see Caption) Figure 304. Photo of repeated Strombolian activity and ash emissions rising from Etna above the New Southeast Crater (NSEC) on 22 May 2020 seen from Zafferana Etnea on the SE flank at 0955 local time. Photo by Boris Behncke, INGV.

Activity during June-July 2020. During June, moderate intra-crater Strombolian activity with intermittent ash emissions continued in the NSEC and occurred more sporadically in the VOR Crater; at night, incandescence of variable intensity was observed at the summit. During the week of 8-14 June, Strombolian explosions in the cono della sella generated some incandescence and rare jets of incandescent material above the crater rim, though no ash emissions were reported. On the morning of 14 June a sequence of ten small explosions in the VOR Crater ejected incandescent material just above the crater rim and produced small ash emissions. On 25 June an overflight showed the developing pit crater in the center of the BN, accompanied by degassing along the S edge of the wall; degassing continued from the NEC, VOR Crater, SEC, and NSEC (figure 305). The mass of the SO2 plumes measured 5,000-7,000 tons per day, according to INGV.

Figure (see Caption) Figure 305. Aerial photo of Etna from the NE during an overflight on 25 June 2020 by the Catania Coast Guard (2 Nucleo Aereo della Guardia Costiera di Catania) showing degassing of the summit craters. Photo captured from the Aw139 helicopter by Stefano Branca. Courtesy of INGV (Report 27/2020, ETNA, Bollettino Settimanale, 22/06/2020 – 28/06/2020, data emissione 30/06/2020).

Similar modest, intra-crater Strombolian explosions in the NSEC, sporadic explosions in the VOR Crater, and degassing in the BN, VOR Crater, and NEC persisted into July. On 2 July degassing in the NEC was accompanied by weak intra-crater Strombolian activity. Intermittent weak ash emissions and ejecta from the NSEC and VOR Crater were observed during the month. During the week of 6-12 July INGV reported gas-and-steam emissions continued to rise from the vent in the pit crater at the bottom of BN (figure 306). On 11 July mild Strombolian activity, nighttime incandescence, and degassing was visible in the SEC (figure 307). By 15 July there was a modest increase in activity in the NSEC and VOR Craters, generating ash emissions and ejecting material over the crater rims while the other summit craters were dominantly characterized by degassing. On 31 July an explosion in the NSEC produced an ash plume that rose 4.5 km altitude.

Figure (see Caption) Figure 306. Photos of the bottom of the Bocca Nuova (BN) crater at Etna on 8 July 2020 showing the developing pit crater (left) and degassing. Minor ash emissions were visible in the background at the Voragine Crater (right). Both photos by Daniele Andronico. Courtesy of INGV (Report 29/2020, ETNA, Bollettino Settimanale, 06/07/2020 – 12/07/2020, data emissione 14/07/2020).
Figure (see Caption) Figure 307. Mild Strombolian activity and summit incandescence in the “cono della sella” (saddle vent) at the Southeast crater (SEC) of Etna on 11 July 2020, seen from Piano del Vescovo (left) and Piano Vetore (right). Photo by Boris Behncke, INGV.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy.


Ol Doinyo Lengai (Tanzania) — September 2020 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Multiple lava flows within the summit crater; September 2019-August 2020

Ol Doinyo Lengai, located near the southern end of the East African Rift in Tanzania, is a stratovolcano known for its unique low-temperature carbonatitic lava. Frequent eruptions have been recorded since the late 19th century. Activity primarily occurs in the crater offset to the N about 100 m below the summit where hornitos (small cones) and pit craters produce lava flows and spattering. Lava began overflowing various flanks of the crater in 1993. The eruption transitioned to significant explosive activity in September 2007, which formed a new pyroclastic cone inside the crater. Repeated ash emissions reached altitudes greater than 10 km during March 2008. By mid-April 2008 explosive activity had decreased. In September new hornitos with small lava flows formed on the crater floor. The most recent eruptive period began in April 2017 and has been characterized by spattering confined to the crater, effusive activity in the summit crater, and multiple lava flows (BGVN 44:09). Effusive activity continued in the summit crater during this reporting period from September 2019 through August 2020, based on data and images from satellite information.

Throughout September 2019 to August 2020, evidence for repeated small lava flows was recorded in thermal data and satellite imagery. A total of seven low-level pulses of thermal activity were detected within 5 km from the summit in MIROVA data during September 2019 (1), February (2), March (2), and August (2) 2020 (figure 207). Sentinel-2 satellite imagery also provided evidence of multiple lava flows within the summit crater throughout the reporting period. On clear weather days, intermittent thermal anomalies were observed in thermal satellite imagery within the summit crater; new lava flows were detected due to the change in shape, volume, and location of the hotspot (figure 208). During a majority of the reporting period, the thermal anomaly dominantly appeared in the center of the crater, though occasionally it would also migrate to the SE wall, as seen on 3 February, the E wall on 12 July, or the NE wall on 31 August. In Natural Color rendering, fresh lava flows appear black within the crater that quickly cools to a white-brown color. These satellite images showed the migration of new lava flows between February, March, and June (figure 209). The flow on 8 February occurs in the center and along the W wall of the crater; the flow on 9 March is slightly thinner and is observed in the center and along the E wall of the crater; finally, the flow on 17 June is located in the center and along the N wall of the crater.

Figure (see Caption) Figure 207. Seven low-level pulses of thermal activity within 5 km of the summit of Ol Doinyo Lengai were recorded in the MIROVA thermal data between September 2019 to August 2020; one in early September 2019, two in February, two in March, and two in August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 208. Sentinel-2 thermal satellite images of Ol Doinyo Lengai from November 2019 to August 2020 show intermittent thermal anomalies (bright yellow-orange) within the summit crater. The location of these anomalies occasionally changes, indicating new lava flows. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 209. Sentinel-2 satellite images of new lava flows within the summit crater at Ol Doinyo Lengai during 8 February (left), 9 March (middle), and 17 June (right) 2020. Lava flows appear black in the center of the crater that changes in volume and location from February to June. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

During August, multiple lava flows were detected in Sentinel-2 satellite imagery. On relatively clear days, lava flows were visible in the middle of the summit crater, occasionally branching out to one side of the crater (figure 210). On 6 August, a thin lava flow branched to the E flank, which became thicker by 11 August. On 16 and 21 August, the lava remained mostly in the center of the crater. A large pulse of fresh lava occurred on 31 August, extending to the NW and SE sides of the crater.

Figure (see Caption) Figure 210. Sentinel-2 images of multiple new lava flows at Ol Doinyo Lengai during August 2020. When visible in the first half of August, dark lava is concentrated in the center and E side of the crater; by the end of August the lava flows had reached the NW side of the crater. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 24, Number 03 (March 1999)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Eruptions increase in volume and number during February

Cameroon (Cameroon)

Eruptions and lava flows discharge from multiple S-flank vents

Etna (Italy)

Additional details of mid-October 1998 activity at Southeast Crater

Karymsky (Russia)

Ash eruptions continue during February

Kilauea (United States)

Large delta collapse on 8 March nearly claims victims

Klyuchevskoy (Russia)

Elevated seismicity and large steam plumes continue through March

Planchon-Peteroa (Chile)

Unrest including ashfall and SO2 emissions in November 1998

Poas (Costa Rica)

Relative seismic quiet; fumarole in the N crater remains active

Popocatepetl (Mexico)

Intermittent explosions and ash clouds during February and March

Rabaul (Papua New Guinea)

Small pyroclastic flows following explosions during 15-20 February

Santa Maria (Guatemala)

Explosions, lava flows, and lahars; summary of 1995-98 activity

Shishaldin (United States)

Increased shallow seismicity precede April Strombolian eruptions

Tenorio (Costa Rica)

Tectonic earthquake swarm in late 1998

Terceira (Portugal)

Migrating vents; floating blocks with large internal cavities ("lava balloons")

Unnamed (Tonga)

Eruption NW of Tongatapu builds temporary island in January

Villarrica (Chile)

Three years of seasonal fluctuations in lava pond height



Arenal (Costa Rica) — March 1999 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Eruptions increase in volume and number during February

This report covers August 1998 through March 1999. Early in this interval a small dome grew at a point adjacent and S of Crater C's lava vent; during September the dome reached ~10-m tall. Figure 88 shows Arenal's summit topography in April 1998.

Figure (see Caption) Figure 88. Oblique aerial photo of Arenal's summit taken looking to the N in April 1998. Crater D (right), last active in 1525, remains fumarolically active. Its rim formed the summit of the volcano prior to 1968. Crater C, the active crater, lies steaming on the left and contains a prominent breach on its rim. Lines on the photo were added to help distinguish key features. Although the exact date of the photo is unknown, it was taken shortly before the 5 May eruption. That eruption, which was unusually energetic, included pyroclastic flows, an airfall deposit, as well as the more typical lava flows. Photograph by Federico Chavarria Kopper; courtesy of Rodolfo Van der Laat, OVSICORI-UNA.

The volume and number of explosive eruptions in April 1999 diminished with respect to February, continuing a trend of decreasing activity going back to late 1998. Lava pulses first emitted during December traveled down the N flank and during February made it to 1,200 m elevation. Others descended the NE flank; since April 1998 lavas traveling in other directions have been absent. During January through April ash columns rarely rose more than 500 m.

Also during January-April, EDM surveys detected a contraction of 20 ppm/year; tiltmeters measured a deflation of 7-10 µrad/year. Seismic data transmission problems plagued the local station (VACR) during August, September, March, and April. Seismically detected eruptions registered between 48 and 473 times a month. Tremor prevailed for between 25 and 120 hours a month.

Despite ongoing Strombolian eruptions venting adjacent to Arenal's summit at crater C during 1999, there occurred no measurable gain in summit height. Most pyroclastic material entered channels and descended the summit area. As is typical, crater D remained fumarolically active.

Acid rain most strongly affected the flanks on the NW, W, and SW. Rainwater chemistry collected at station Cáracava for January 1997 through September 1998 showed these variations: pH, 3.4- 4.5; SO4 ion, ~2-13 mg/L; Cl ion, ~3-27 mg/L. For both 1997-98, peaks in pH appeared during September; similarly, peaks in the two ions appeared in the first half of the year (during the months January-May). The chlorine ion in rainwater was enriched compared to rainwater collected at Poás, a case where degassing occurs though a substantial crater lake that is thought to absorb a large portion of the fumarolic HCl.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, V. Barboza, M. Martinez, E. Duarte, R. Sáenz, E. Malavassi, R. Van der Laat, E. Hernández, and T. Marino, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Wendy Perez Fernandez, Seccion de Seismologia, Vulcanologia y Exploracion Geofisica, Escuela Centroamericana de Geologia, Universidad de Costa Rica, POB 35-2060, San José, Costa Rica.


Cameroon (Cameroon) — March 1999 Citation iconCite this Report

Cameroon

Cameroon

4.203°N, 9.17°E; summit elev. 4095 m

All times are local (unless otherwise noted)


Eruptions and lava flows discharge from multiple S-flank vents

During 1993 the Mt. Cameroon region (figure 3) experienced an earthquake swarm. Since then, the frequency of seismic events in the region had remained low, with a mean of 15 earthquakes per month, although some months had more than 30 events (BGVN 23:02). On 26 March 1999, although only one out of a network of six Institute for Mining and Geological Research (IRGM) seismographs was functioning, more than 15 seismic events were detected from the mountain. This increase in seismicity continued on 27 and 28 March, with more than 200 seismic events.

Figure (see Caption) Figure 3. Map of part of western Cameroon showing Mt. Cameroon along with some local towns and villages. The Nigerian border (upper left) is indicated by "x" marks. Contour interval is 500 m. Map data for this area is from 1971 or earlier.

Around 1930 on 28 March a volcanic eruption began on the S flank at about 2,650 m elevation. According to news reports, earthquakes were felt up to 70 km away from the volcano, in Douala and Kumba, on 29 and 30 March. A second vent opened on the evening of 30 March at ~1,400 m elevation, and sent a voluminous aa flow SSW through dense equatorial forest toward the coastal village of Bakingili. This flow traveled swiftly down the steep upper slopes, but slowed to an estimated 10-25 m/hour on the gentle flanks of the coastal plain. The flow eventually consumed hundreds of hectares of forest and destroyed plantations of palm trees as it moved towards the Atlantic Ocean.

News reports noted that by 31 March there were nine vents. Twelve vents were located during an observation trip by a National Scientific Committee on 3 April. The vents were aligned along a pre-existing fracture zone bearing N40°E. At this time the two vents on the SW end were already in fumarolic a post-volcanic phase. The other ten vents exhibited strong explosive activity, emitting gases, lapilli, ash, and incandescent lava blocks. Scoriaceous bombs were ejected 500 m laterally from one vent. The aa lava flows divided into various branches, the largest of which was 3 km long. The lava-flow temperature measured at 300 m from one of the vents was 972°C.

The main hazards from this eruption were lava flows and volcanic ash, which was blown SW into villages along the coast. A few eye and respiratory problems were reported among residents. Because of the risk the government decided to temporarily evacuate Bakingili, the village closest to where the lava is expected to enter the ocean.

Mount Cameroon, one of Africa's largest volcanoes, rises above the coast of west Cameroon. More than 100 small cinder cones, often fissure-controlled parallel to the long axis of the volcano, occur on the flanks and surrounding lowlands. A large satellitic peak, Etinde, is located on the SW flank. Historical activity, the most frequent of West African volcanoes, was first observed in the 5th century BC by the Carthaginian navigator Hannon. During historical time, moderate explosive and effusive eruptions have occurred from both summit and flank vents.

An eruption during February-March 1959 produced a large E-flank lava flow. Increased seismicity was recorded in November 1975, but no eruption occurred. An eruption during October-November 1982 produced lava fountaining from a radial fissure 6.5 km SW of the summit and a lava flow that moved 12 km down the SW flank. Two towns were evacuated, and tephra caused damage to plantations. In 1989 a minor explosive eruption formed a new crater at 2,860 m on the SW flank. The first seismic network was installed in 1984 by the Ekona Unit for Geophysical and Volcanological Research (ARGV) of the IRGM.

Geologic Background. Mount Cameroon, one of Africa's largest volcanoes, rises above the coast of west Cameroon. The massive steep-sided volcano of dominantly basaltic-to-trachybasaltic composition forms a volcanic horst constructed above a basement of Precambrian metamorphic rocks covered with Cretaceous to Quaternary sediments. More than 100 small cinder cones, often fissure-controlled parallel to the long axis of the 1400 km3 edifice, occur on the flanks and surrounding lowlands. A large satellitic peak, Etinde (also known as Little Cameroon), is located on the S flank near the coast. Historical activity was first observed in the 5th century BCE by the Carthaginian navigator Hannon. During historical time, moderate explosive and effusive eruptions have occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea. Explosive activity from two vents on the upper SE flank was reported in May 2000.

Information Contacts: B. Ateba, N. Ntepe, J. Nni, and R. Ubangoh, Ekona Unit for Geophysical and Volcanological Research (ARGV), Institute for Mining and Geological Research (IRGM), P.O. Box 370, Buea, Cameroon; J.V. Hell and J.M. Nnange, IRGM, P.O. Box 4110, Yaounde, Cameroon (URL: http://www.irgm-cameroun.org/); J. P. Lockwood and Jean-Baptiste Katabarwa, Geohazards Consultants International, Inc., PO Box 479, Volcano, HI 96785, USA (URL: http://www.geohazardsconsultants.com/), and Office of Foreign Disaster Assistance, U.S. Agency for International Development, 1300 Pennsylvania Avenue NW, Washington, DC 20523 USA (URL: https://www.usaid.gov/who-we-are/organization/bureaus/bureau-democracy-conflict-and-humanitarian-assistance/office-us); Isaha'a Boh Cameroon, Media Research and Strengthening Institute, P.O. Box 731, Yaounde, Cameroon.


Etna (Italy) — March 1999 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Additional details of mid-October 1998 activity at Southeast Crater

This report provides additional details of activity during 10-15 October 1998, along with a map of the lava flows emplaced at that time. These events were the seventh episode in a cycle of activity beginning on 15 September 1998. The cycle was characterized by periods of low or no activity interrupted by intense Strombolian fountains and lava flows at Southeast Crater (SEC) (BGVN 23:12). Observations of SEC between 1900 and 1920 on 10 October revealed Strombolian explosions which sent ejecta ~100 m above the crater rim approximately twice every 10 minutes. By 1800 on the 11th, observations from Nicolosi, ~15 km from SEC, indicated that Strombolian activity was increasing, with 16-17 explosions/minute sending ejecta to heights of ~200 m. By nightfall on the 11th, glow from the lava flow extending E from SEC was observed. Upon arrival at Torre del Filosofo (~1 km S of the SEC) at 1930, the explosions had increased to roughly one every 3 seconds and channelized aa lava proceeded down the E flank of SEC. Ejecta reached 100-300 m, typically landing within 300 m of the rim. By midnight, Strombolian activity was near-continuous. The lava fountaining was not Hawaiian in style because discrete explosions could be discerned.

By the morning of 12 October activity had declined to 6-12 explosions/minute, and by the morning of 14 October no explosions were observed. On 14 October, Harris, Sherman, and Wright mapped the flow emplaced during the night of 11-12 October (figure 76). The flow was a single-unit, ~750 m-long aa flow with distinct channelized and leveed portions in the proximal and medial sections. The distal section extended ~100 m into the Valle del Bove. Flow thicknesses were typically ~2 m, but levees were up to ~5 m high. Temperatures measured in cracks varied from 70 to 457 °C. The flow followed the S margin of another recent flow. The latter flow was presumably emplaced during 5-6 October and the highest temperature obtained on it was 55°C (BGVN 23:12). Measurements taken at this time indicated a length of ~500 m for the 5-6 October flow (figure 76).

Figure (see Caption) Figure 76. Sketch map of Etna showing E-directed aa flows from Southeast Crater (SEC), 14 October 1998. The North arrow points towards the right. The lavas were emitted during 5-6 and 10-11 October 1998. The map was created based on field measurements made by Andrew Harris, Sarah Sherman, and Robert Wright.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Andrew Harris, HIGP/SOEST, University of Hawaii, 2525 Correa Road, Honolulu, HI 96822 USA; John Murray and Robert Wright, Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Andrew George, Gwel an Bendra, Penhale Lane, St. Cleer, Liskeard, Cornwall, PL14 5EB, UK; Jon Hearn, 20 Ringwood Rd., Twerton, Bath BA2 3JJ, UK; Sarah Sherman, 3015A Alencastre Pl., Honolulu, HI 96816, USA.


Karymsky (Russia) — March 1999 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Ash eruptions continue during February

Seismicity remained above background during February and March, and the Level of the Concern Color Code remained at Yellow. Low-level Strombolian eruptive activity that has characterized the volcano for more than 3 years continued with ~150-200 daily earthquakes and gas explosions.

An ash plume observed on 10 February rose ~5 km above the summit. Satellite images on 15 and 17 February showed a thermal anomaly. Small earthquakes close to Karymsky Lake began to be recorded on 7 February. According to a pilot's report, an ash plume on the morning of 25 February rose as high as 3,500 m.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry; Tom Miller, Alaska Volcano Observatory.


Kilauea (United States) — March 1999 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Large delta collapse on 8 March nearly claims victims

During February and early March the eruption of Pu`u `O`o continued to deliver lava to the sea through the lava-tube system that developed on the coastal plain in August 1998 (figure 130). During this time no changes were observed at the Pu`u `O`o vent.

Figure (see Caption) Figure 130. Map showing three groups of Kilauea lava flows, including those as recent as 8 February 1999. A lava tube delivers lava to the ocean W of a prominent littoral cone (star) at the Kamokuna entry point. Courtesy of HVO.

Favorable wind conditions permitted a good view into the crater of Pu`u `O`o during late February. Lava was visible in the bottom of one pit as were several ledges around the edges of the pits; these ledges are remnants of the crater floor that collapsed into the pits as lava beneath Pu`u `O`o lowered during the past year. The most recent overflow of lava from the crater occurred in January 1998 (BGVN 22:12); the decline in crater activity since then is thought to be due to a change in an outlet in the local tube system located beneath the S flank of Pu`u `O`o. This outlet has moved downward as the lava tube has eroded through more than 20 m of loose tephra. As lava eroded the tephra, the lava level within the crater fell because the outlet is presumably hydraulically connected and in equilibrium.

On 8 March nearly all of the new land built since 11 December 1998 (BGVN 23:11 and 24:01) slid into the ocean. Several associated explosions hurled lava landward and the collapse removed part of the old sea cliff on the E and W sides of the active delta. Prior to the collapse, the ~10 hectare lava delta stood ~700 m long and extended as far as 200 m seaward from the previous shoreline's cliff face (figure 131). On the E side of the delta (foreground in figure 131), the former sea cliff was completely buried by lava, allowing easy though unauthorized access for visitors hoping for closer views of lava entering the sea. Landward of the W part of the delta, however, was a cliff standing 10-15 m tall, a vestige of a delta collapse on 11 December 1998 (BGVN 23:11). Warning signs posted by the National Park Service were at least 50 m landward of this cliff.

Figure (see Caption) Figure 131. W-looking aerial view taken on 4 March 1999 of the shore around the Kilauea's Kamokuna entry point. Area seaward of the white line fell into the sea on 8 March. Photograph by J. Kauahikaua; courtesy of HVO.

According to an anonymous eyewitness, seven people were on the delta when the 8 March collapse began. The first sign of a change in activity was a strong explosion that rocked the eyewitness where he lay on the ground above the buried cliff. An initial, energetic burst of lava from the edge of the delta threw spatter up to 70-80 m into the air (an estimate scaled from the people on the delta next to the explosion source). As large splatter clots fell around them, the seven retreated from the shoreline but became temporarily trapped by the sea cliff on the W side of the delta. The eyewitness used his flashlight to guide the endangered people to safety across to the E part of the delta.

Based on the eyewitness account, the collapse probably occurred between 0030 and 0200. The eyewitness left the area after the explosions began, and the delta was gone the next morning. The experience reinforced Park Service warnings that the ocean entry area remains extremely hazardous; visitors remain advised not to venture onto the active lava delta. After the collapse, lava began constructing a new delta into the sea (figure 133).

Figure (see Caption) Figure 132. Aerial view of Kilauea's shoreline near the Kamokuna entry point as seen on 11 March 1999, three days after the delta collapse. The black line indicates previous shoreline. Courtesy of HVO.
Figure (see Caption) Figure 133. Aerial view of Kilauea's shoreline as seen near the Kamokuna entry point on 18 March 1999 (10 days after the delta collapse) showing new delta growth. A black line indicates the previous shoreline. Courtesy of HVO.

When seawater and lava mixed within the confines of the lava tube, a steam explosion often resulted, sometimes blasting lava up through a hole in the roof of the tube. In figure 134 such a steam-driven explosion sent a dome-shaped sheet of lava, the skin of a bursting bubble, about 5 m into the air. Similar but larger explosions occurred intermittently for several days after the delta collapse on 8 March. As lava began rebuilding new land into the sea, water was apparently able to enter the developing lava-tube system within the delta.

Figure (see Caption) Figure 134. A series of still images from a video of a bursting lava bubble at Kilauea on 17 March. Video by J. Johnson, Ka'Io Productions; courtesy of HVO.

New tiltmeter. A new tiltmeter station was successfully installed in February near Pu`u `O`o in order better to monitor the middle east rift zone and the intermittent pauses in supply of magma to the vent. The new site design and improved electronics have yielded data 10 times better than those from older tiltmeter stations. This was the first of several new tiltmeters planned for Kilauea and Mauna Loa. Because the new instrument is about 5 m below the ground, the daily temperature effects on the rocks around the instrument are much less than for the older, shallower instruments, which were typically less than 1 m deep.

Figure (see Caption) Figure 135. View into the crater of Pu`u `O`o, looking toward the western side on 25 February. Courtesy HVO; photograph by J. Kauahikaua.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Klyuchevskoy (Russia) — March 1999 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Elevated seismicity and large steam plumes continue through March

Elevated seismicity persisted through February and March. Earthquake hypocenters were concentrated at levels near the summit crater and at depths of 25-30 km. Visual observations were hindered by bad weather on many days. Because of increases in activity, the Level of Concern Color Code was changed to Yellow from Green and back three times during the reporting period.

Deeper earthquakes increased toward the end of 1-7 February, and fumarolic plumes rose several hundred meters above the crater during this week. On 5 February a gas explosion sent a plume 2,500 m above the crater. Earthquakes at both shallow and deeper depths continued through 25 February, as did the fumarolic plumes.

Fumarolic or steam plumes were observed during most of the period 15-30 March rising hundreds of meters above the summit before being blown about 5 km. At 1422 on 17 March satellite images showed a steam plume extending 40 km NE. On 20 March separate gas and steam explosions occurring at a rate of 2-3 per hour rose 500 m above the crater. A 17-minute series of earthquakes and tremor was recorded on 3 March and low-amplitude tremor began to be recorded again on 12 March. Between 1918 and 2137 on 20 March a series of near-surface M <1.6 earthquakes occurred.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Planchon-Peteroa (Chile) — March 1999 Citation iconCite this Report

Planchon-Peteroa

Chile

35.223°S, 70.568°W; summit elev. 3977 m

All times are local (unless otherwise noted)


Unrest including ashfall and SO2 emissions in November 1998

Information from the city of Romeral's Emergency Office indicated that Planchón-Peteroa emitted noteworthy amounts of SO2 in October 1998 and showed signs of unrest in November 1998. Apparently, small phreatic eruptions produced minor explosions. Ash fell on Carrizales, ~8 km NW of the volcano, on 18 and 21 November, and fumaroles were observed from Carrizales on 24 November along with an intense SO2 odor. A local herdsman observed fine ashfall and intense fumaroles on 18 November and reported that fumes continued up to 24 November when he came down from the volcano. No seismic activity was felt. On 30 November, observers at ~3,050 m elevation on the E flank saw no fresh ash.

The volcano last erupted in February 1991 producing a 500-1,000 m column of gas and dispersing fine ash as far as 30 km ESE of the volcano.

Geologic Background. Planchón-Peteroa is an elongated complex volcano along the Chile-Argentina border with several overlapping calderas. Activity began in the Pleistocene with construction of the basaltic-andesite to dacitic Volcán Azufre, followed by formation of basaltic and basaltic-andesite Volcán Planchón, 6 km to the north. About 11,500 years ago, much of Azufre and part of Planchón collapsed, forming the massive Río Teno debris avalanche, which traveled 95 km to reach Chile's Central Valley. Subsequently, Volcán Planchón II was formed. The youngest volcano, andesitic and basaltic-andesite Volcán Peteroa, consists of scattered vents between Azufre and Planchón. Peteroa has been active into historical time and contains a small steaming crater lake. Historical eruptions from the complex have been dominantly explosive, although lava flows were erupted in 1837 and 1937.

Information Contacts: José Antonio Naranjo, Programa Riesgo Volcánico Servicio Nacional de Geología y Minería, (SERNAGEOMIN), Av. Santa María 0104, Casilla 10465, Santiago, Chile.


Poas (Costa Rica) — March 1999 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Relative seismic quiet; fumarole in the N crater remains active

This report covers late 1998 through March 1999. During this time, the terrace SE of the active crater lake continued to slide. The active crater lake, the northernmost of the two summit lakes, remained sky-blue to green-turquoise in color. The pyroclastic cone within the active crater remained the principal source of fumarolic outgassing, sometimes giving off plumes that rose 500 m and during November occasionally reaching 500-600 m. OVSICORI-UNA noted that fumaroles alongside the cone typically had temperatures up to 93°C. They found identical maximum temperatures at fumaroles along the crater walls and on the terrace N of the active crater lake. However, in September 1998, Wendy Perez Fernandez reported hotter temperatures (elevated by 19°C) and greater than usual fumarolic vigor.

Seismicity during January 1998-March 1999 was dominated on the OVSICORI-UNA system by low-frequency events. They occurred in largest number during early 1998 with the highest number recorded (during February 1998) consisting of 2,718 events. A substantial decrease in low-frequency events occurred during late 1998 and early 1999 with the lowest number recorded (during January 1999) consisting of 381 events. Tremor duration followed roughly similar patterns: the maxima (during February 1998) consisted of 55 hours. Tremor was absent for the four months after November 1998.

Scientists measured the comparatively clear waters of the southernmost, less-active lake (Laguna Botos). During January 1995 through 21 September 1998 they recorded rises in both temperature (from ~14°C in 1995 to ~28°C in 1998) and pH (from ~4 in 1995 to ~6 in 1998). Sulfate ion, although highly variable, also tended to climb during the four-year interval. Chloride ion concentrations decreased (from ~4 down to ~1 ppm).

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, V. Barboza, M. Martinez, E. Duarte, R. Sáenz, E. Malavassi, R. Van der Laat, E. Hernández, and T. Marino, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA).


Popocatepetl (Mexico) — March 1999 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Intermittent explosions and ash clouds during February and March

Frequent low-intensity short-period exhalations, with occasional ash plumes and incandescent ejecta, and periodic low-frequency tremor episodes characterized activity at the volcano during February and March. Due to the possibility of explosions, authorities continued to recommend that no one approach closer than 7 km to the crater. The volcanic alert status remains yellow.

Beginning at 0315 on 2 February a low-frequency tremor fluctuating in amplitude was recorded; it persisted for about 24 hours. During the next few days low-intensity events produced small steam, gas, and light ash emissions. Some high-frequency tremors were recorded on 9 February beginning at 2225 and lasting 14 minutes. Also on 9 February, three tectono-volcanic earthquakes occurred (at 0845, 1151, and 1152) SE of the summit at distances of ~8 km. These ranged from M 2.0 to 2.5. Low-frequency harmonic tremor was recorded on 12, 17, and 21 February. An A-type M 2.8 earthquake occurred at 2000 on 18 February.

Small exhalations preceded by low-frequency, low-amplitude harmonic tremor continued in March. "Pulgas" (small pulsating signals) were recorded; occasionally these preceded explosive events by a few hours. On 1 March small emissions of incandescent fragments were contained within and, later, an ash plume rose 1,000 m above the summit before moving E. Pulgas and low-frequency harmonic tremor of variable amplitude continued intermittently for a few days. The shape of recorded signals suggested a growing lava dome in the crater. During a flight on 4 March to measure CO2 volumes, gas and light ash could be seen emanating from the crater. On 8 March a vertical ash plume rose 5 km above the summit before being blown NE and, at a higher altitude, SW. Light ashfall was recorded E of the volcano.

Good weather on 8 March permitted several close-up images to be taken with the video camera. These images showed the glacier partially covered with ash and several impacts from explosions in December 1998. Small flows of melting snow or ice were seen.

At 1940 on 11 March a moderate explosion ejected incandescent fragments over the N flank. Radar showed an ash plume directed to the NE. At 2211 on 12 March another moderate explosion ejected incandescent fragments over the NE flank to a distance of 500 m. A larger explosion at 0531 on 18 March sent incandescent fragments over the E and SE flanks in a radius of 3 km. Poor weather obscured the summit on 19 March when another large explosion occurred. Ash was initially detected by radar and at 1845 an airplane reported a plume 16 km NE from the crater. The explosion was heard and felt in the town of Amecameca.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz-Reyna1,2, Roberto Quaas1,2, Carlos Valdés G.2, and Alicia Martinez Bringas1. 1Centro Nacional de Prevencion de Desastres (CENAPRED) Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacán, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); 2Instituto de Geofisica, UNAM, Coyoacán 04510, México D.F., México.


Rabaul (Papua New Guinea) — March 1999 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Small pyroclastic flows following explosions during 15-20 February

Moderate activity at Tavurvur continued during February with quiet, intermittent emissions of pale gray ash rising 600-1,000 m above the summit. Variable NW winds led to light ashfalls at Talwat and Matupit. A short period of more energetic activity during 15-20 February included moderate explosions ejecting lava blocks and dark gray ash. Small pyroclastic flows were generated down the S flank and ash rose to about 2,000 m. Some light ashfall was reported as far south as Kokopo.

Although the caldera was still restless, leveling, tilt, and GPS showed minor deformation with few significant movements during February. Seismicity was much lower than that previous months; low-frequency events totaled 465, compared with 2,843 in December 1998 and 1,413 in January 1999. Twenty-four explosive events were recorded, on 3, 4, 8, 12-18, 20, 21, 23, and 24 February. Only two high-frequency events were detected NE of the caldera, compared with 28 in that direction during January.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Herman Patia, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Santa Maria (Guatemala) — March 1999 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Explosions, lava flows, and lahars; summary of 1995-98 activity

Explosive activity and lava extrusion from the Caliente vent of the Santiaguito lava dome complex on the SW flank of Santa María continued in January 1999. Explosive activity in January was smaller (with plumes 150-500 m in height) following strong activity in November 1998 (see below). Recent plumes differed from typical explosive activity at Santiaguito; white-to-gray plumes, sometimes partially translucent, were denser and did not disperse rapidly, but draped the flanks of the dome. The lava flow extended ~500 m SW of the vent and had an oversteepened flow front, which periodically collapsed forming small pyroclastic flows and plumes 400-500 m high.

Summary of activity 1995-98. Frequent small-to-moderate explosive eruptions from Caliente vent accompanied by lava extrusion, periodic small pyroclastic flows, and lahars, took place throughout the 1990's. Lava extrusion down the ESE flank of Caliente that began in 1991 continued until 1995, gradually filling the barranco at the head waters of Río Nimá II (figure 28). In September 1995, the lava flow stopped after overtopping the barranca wall and spilling into the Río Nimá I drainage. From September 1995 until May 1996, lahars from the lava spillover traveled down the Río Nimá I, depositing fine sediments.

Figure (see Caption) Figure 28. Sketch map of rivers and towns S of Santa María. Locations of drainages are approximate. Santiaguito Volcano Observatory is delineated by the circled "x" (~ 3 km N of El Palmar). The arrow below the abandoned town of El Palmar indicates where the Río Nimá I diverted into the Río Samalá. Courtesy of INSIVUMEH.

Lava extrusion resumed in March 1996, shifting to an easterly direction. The first large lahar down the Río Nimá I took place on 17 May 1997. Lahars 5 m deep swept down the river, destroyed a bridge at Finca El Faro, and deposited 20-25 cm of sediment at the village of El Palmar, 10 km S of Santiaguito. Ten additional lahars took place from May to September 1997.

In 1998 continued lava extrusion into the Río Nimá I contributed to the generation of lahars downstream. From March to May 1998 the government dredged the river from 200 m above to 800 m below the bridge to protect the downstream towns of San Sebastian and Retalhuleu. The major highway was repeatedly overrun and then cleared.

On 28 May 1998, a large lahar descended the Río Nimá I and entered the N end of El Palmar, depositing 40 cm of fine sediment in the streets. The lahar was 7 m deep when it passed the Santiaguito Volcano Observatory, ~6 km S of Santiaguito. About 60 families were evacuated from El Palmar during the lahar, which was reported to be as loud as a jet engine; there were no fatalities. Following the May lahar the government declared El Palmar to be uninhabitable and the village was moved E across the Río Samalá.

From May to September an additional 12-15 lahars raised the river bed. From May to August, 5 m of hyperconcentrated-flow deposits were deposited in the Río Samalá above and below the town of San Felipe.

In August the largest lahar swept through the abandoned El Palmar, covering the S end of the town and destroying the cathedral, leaving only the front tower and the back wall standing. The lahar was 7 m deep and deposited about 2 m of sediment near the town hall. The Río Nimá I, which since 1991 had been diverted just south of town into the Río Samalá, shifted to a new course directly through the abandoned town. The lahar also produced major sedimentation downstream. Before May there had been 10 m of clearance below the Interamericana Pacifica highway bridge over the Río Samalá, 18 km from Santiaguito. After the August lahar there was only 1.5 m of clearance.

In November 1998 lahars down the Río Nimá I filled the channel above Finca La Mosquela, north of El Palmar, covering coffee plantations. There were, however, no major lahars resulting from Hurricane Mitch. The channel of the Río Nimá I, which in 1997 was ~12 m deep and 4-5 m wide at Finca Faro, below the Observatory, is now 15-20 m wide and 3-5 m deep. Farther downstream, between Finca La Mosquela and Finca Santa Marla, above El Palmar, the channel is only 1-3 m deep.

A strong effusive pulse began in November 1998, the first major magmatic event at Santiaguito since the explosions of 1989 and 1990. On 4 November a new lava flow began descending the SW flank of Caliente. Rapid effusion formed a cupola over the vent that collapsed repeatedly 8-20 November, producing pyroclastic flows in all directions, but principally SW. Pyroclastic flows traveled 4-5 km SW and S, and ash clouds rose 2 km. On 11-13 November collapses occurred at intervals of 15-60 minutes. Ashfall was reported in the towns of Retalhuleu and Coatepeque, where 2 mm of dark-gray ash accumulated.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Otoniel Matías, Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala.


Shishaldin (United States) — March 1999 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Increased shallow seismicity precede April Strombolian eruptions

Low-level seismicity and a thermal anomaly visible in satellite imagery continued at Shishaldin during March, preceding Strombolian eruptions on 17 April. On many days no observations were obtained due to bad weather.

A new seismic net at Shishaldin recorded elevated seismicity beginning near the end of January. On 9 February a thermal anomaly appeared on satellite imagery and vigorous steam plumes were reported through the next week (BGVN 24:02). No ash was detected on the satellite imagery. Low-level tremor prompted the Alaska Volcano Observatory (AVO) to raise the Level of Concern Color Code to Yellow on 18 February. The tremor subsequently diminished, but seismicity remained above normal.

National Weather Service observers in Cold Bay, 90 km NE, reported that no steam plume was present during the first week of March, but that the upper summit was snow-free. Apparently, heating in the summit area caused the snow to melt. A shallow M 5.0 earthquake ~14 km SW of Shishaldin on 4 March was followed by hundreds of small aftershocks that persisted until late in the month.

Seismic activity, chiefly strong tremor, substantially increased above previous levels at 0800 on 7 April, causing AVO to raise the hazard status to Orange. Weather in the area was overcast with haze, preventing views of the summit area. The strong tremor declined by the afternoon and returned to previous levels. Tremor remained steady from 8 April without significant changes through 12 April, when the hazard status was decreased to Yellow. The thermal anomaly observed in satellite imagery persisted.

On 12 April a M 4.5 earthquake struck W of the volcano; aftershocks followed. Tremor increased markedly late on 13 April. This tremor episode lasted over one day and decreased somewhat for the next three days. AVO again raised the hazard status to Orange on 14 April.

AVO staff flying with Alaska State Troopers saw a minor Strombolian eruption at 1700 on 17 April. Incandescent blocks and spatter rose as high as 200 m above the vent, but at that time no lava had come over the crater rim. On the morning of 18 April, National Weather Service observers NW of the volcano both in Cold Bay and on a ship saw incandescent lava at the summit and snow melt running down the NW flank. A small steam plume with little or no ash developed as hot lava contacted snow at the summit. Tremor remained elevated.

On 19 April at 1145 a pilot saw a steam-and-ash plume that reached ~9 km altitude. In accord with this observation, tremor amplitudes increased dramatically after 1133 in the wake of a steady, two-day tremor increase. Observers interpreted these as signs of a significant eruption and raised the hazard status to Red. By early afternoon the eruption column reached at least 13.7 km altitude. The eruption lasted about 7 hours with one ash plume at higher elevations moving N and another, at lower elevations, S. Aviation warnings ("Graphic Volcanic Meteorological Impact Statements") for 0410-1610 on 19 April indicated two separate areas to avoid; one area spread ~300 km N over an elliptically shaped zone and the other, ~500 km S over a broadly spreading pattern that also included a lobe reaching ~375 km NW of Shishaldin (to Chignik). Late on the night of 19 April seismic tremor decreased substantially, but the Strombolian eruption continued at moderate levels.

On 20 April at about 0345, seismicity abruptly and significantly declined, indicating that explosive activity had subsided; still, satellite imagery after 0650 (1450 GMT) revealed a summit-crater thermal anomaly. Authorities decreased the hazard status to Orange. Seismic activity increased again about 1600. The increase in seismicity strengthened at about 2300 and on the morning of 21 April reached levels similar to those recorded in the hours before the explosive eruption on 19 April, and the hazard status returned to Red. Moderate Strombolian eruptions were thought to be occurring, though at the time satellite imagery failed to show a major ash cloud.

A moderate Strombolian eruption occurred through the night of 21 April. Seismicity became elevated and a very large thermal anomaly became visible on satellite imagery. Lava fountains shot tens of meters above the summit and satellite imagery indicated occasional steam and clouds of sparse ash extending for less than 50 km at altitudes under 5,000 m.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Tenorio (Costa Rica) — March 1999 Citation iconCite this Report

Tenorio

Costa Rica

10.673°N, 85.015°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Tectonic earthquake swarm in late 1998

Tenorio volcano is located between Rincón de la Vieja (to the NW) and Arenal (to the SE). This region now has a new telemetric, digital seismic network consisting of six stations. Although not well instrumented for seismic measurements, Tenorio normally has very little seismic activity. In contrast to this historically moderate seismicity, an earthquake swarm with many tectonic events was recorded at both Tenorio and nearby Miravalles volcano during October and November 1997 (BGVN 22:10).

During October-November 1998 a total of 170 microearthquakes were recorded in the Tenorio area, 82 of which were located. Most events were recorded during 17-23 October, with up to 10 felt by people near the epicenter in Tierras Morenas (Barquero and Taylor, 1998). Magnitudes were 0.9-3.3 at depths of 0.5-10 km (most <2 km) and a maximum intensity of MM IV.

Within the Tenorio area are several fault systems oriented mainly NW-SE and NE-SW. There are also complex old volcanic caldera structures. The seismic swarms recorded in 1997 and 1998 denoted tectonic activity in these fault systems, considered neotectonic structures, and so they are not thought to be related to volcanic activity.

References. Barquero, R., and Taylor, W., 1998, Proyecto Geotérmico Tenorio: Los enjambres sísmicos periodo octubre-noviembre de 1997 y 1998: Informe preliminar. Inf. OSV 98.11 ICE, 15 p.

Further References. Boschini, I., 1998, Análisis preliminar del enjambre de sismos de la región de Miravalles-Tenorio de octubre y noviembre de 1997: Inf. OSV 98.08 ICE, 36 p.

ENEL, 1990: Estudios de reconocimiento y prefactibilidad geotérmica en la República de Costa Rica. Fase II. Estudio de prefactiblidad del area de Tenorio: Informe de Síntesis, 66 p.

ICE-ELC, 1983, informe geo-vulcanológico, Pyrotecto Geotérmico Miravalles: Informe interno ICE, 53 p.

Guillot, P.Y., Chiesa, S., and Alvarado, G., 1994, Chronostratigraphy of Upper Miocene-Quaternary volcanism in northern Costa Rica: Rev. Geol. Amér. Central, v. 17, p. 45-53.

Geologic Background. The 225 km2 dominantly andesitic Tenorio volcanic massif anchors the SE end of the Guanacaste Range and consists of a cluster of densely forested NNW-SSE-trending volcanic cones. Overlapping lava flows from the principal peak, Tenorio, blanket the NW-to-SW flanks and descend the NE flank. The NW-most of three craters of the central cone is sparsely vegetated and appears to be the most recently active. Volcán Montezuma to the north has twin craters, the northern of which fed a lava flow to the NE. Additional pyroclastic cones are found to the NE and SW of the central complex, and the Bijagua lava domes were constructed on the northern flank. A major debris avalanche covered about 100 km2 below the S flank. A legend exists of an eruption in 1816, but the volcano was densely forested at the time of an 1864 visit by Seebach and is not considered to have erupted in historical time. Fumarolic activity is present on the NE flank.

Information Contacts: Rafael Barquero, Observatorio Sismológico y Vulcanológico Arenal-Miravalles (OSIVAM), Instituo Costaricense de Electricidad (ICE), Apdo. 10032-1000, San José, Costa Rica.


Terceira (Portugal) — March 1999 Citation iconCite this Report

Terceira

Portugal

38.73°N, 27.32°W; summit elev. 1023 m

All times are local (unless otherwise noted)


Migrating vents; floating blocks with large internal cavities ("lava balloons")

During February and March 1999 the submarine eruption that began late 1998 continued at the Serreta volcanic ridge, ~9-14 km W of Terceira island (BGVN 23:01; Luis and others, 1999). The activity decreased slightly until the end of February, but eruptive areas clearly defined two main volcanic trends in both NE-SW and NW-SE directions (figure 2). In March, activity became less vigorous and observers saw sea surface manifestations only during intermittent short periods.

Figure (see Caption) Figure 2. Location of bubbles and floating blocks at Serreta (Terceira) that vented in January (crosses), February (triangles), and March (open rectangle) 1999. The approximate locations of the 1867 eruptions are also shown (solid circles, taken from Machado, 1967). Courtesy of the Center of Volcanology of the Azores University (CVUA).

The eruption of Serreta is interpreted as being a fissure-style vent that started along a NE-SW fracture system over 5 km long. During the eruption, the regional NW-SE fracture system also reactivated and eruptive vents developed on these two main trends. Plotting vent locations on published bathymetric maps made by the Instituto Hidrográfico puts them at depths of 300-800 m. However, bathymetric surveys carried out by the Portuguese Navy between January and March detected big anomalies in the area, perhaps due to gas bubbles, volcanic particles, and sharp thermal boundaries. Well-constrained depths for the active vents remain unknown and construction of a new bathymetric map of the area was planned for April.

This eruption involved basaltic, and probably very gas-rich, magma. Petrographic studies of the collected rock samples revealed olivine, pyroxene, and feldspars phenocrysts in a glassy groundmass with similar microlites that also include oxides. Chemical analysis made by colleagues from the Nordic Volcanological Institute showed that it is an alkaline magma with a composition along the magmatic trend defined by the Azores oceanic island basalts.

Floating blocks were seen on the surface (BGVN 23:01) and some were collected (figures 3 and 4). The scientific team attributed their seismic observations coupled with the floating blocks to the following mechanism. The magma, being low in viscosity, moves very easily through the already opened fractures and was thought to escape without producing high seismic signals. Floating lava blocks could result from the detachment of pillow-lava edges followed by the ascent of blocks with sufficient gas content. It is also possible that hot, gas-rich lava fragments result from small submarine lava lakes or fountains. A thin frozen skin of lava seals the gas cavity, and the block might then rise as a hot lava balloon. During ascent, the gas exsolves and nucleates inside the hot fragment while the blocks expand. Once at the surface the interaction between the hot blocks and the seawater produces white steam columns. At the same time, while cooling at the surface, the blocks crack slowly, lose their magmatic gas and sink. Sometimes when water enters inside the hot blocks, they blow up, violently throwing fragments several meters high.

Figure (see Caption) Figure 3. A floating lava block from Serreta (Terceira), 80 cm maximum diameter, collected on 10 February 1999. Such blocks have been termed a "lava balloons." Courtesy of the Center of Volcanology of the Azores University (CVUA).
Figure (see Caption) Figure 4. A sub-spherical floating block (a "lava balloon") from the Serreta eruption collected on an undisclosed day. Taken from Radiotelevisão Portuguesa (April 1999); URL: http://www.rtp.pt/.

Since the beginning of this volcanic crisis the physical and chemical parameters of waters and fumarolic gases from the Terceira Island have been monitored and no changes have been detected. Azores Civil Protection (SRPCA) devised a series of emergency plans.

Another submarine eruption took place near the current one in mid-1867 (figure 1). Five months of strong seismicity around the time of the eruption destroyed about 200 houses on Terceira in the coastal settlement of Serreta. Websites associated with Azores civil defense and a local TV station have more photos of the eruption, including floating blocks.

References. Azores civil defense website, April 1999, Açores crise sismovulcania: URL:.

Luis, J.F., Lourenço, N., Miranda, J.M., Gaspar, J.L., and G. Queiroz, 1999, A submarine eruption W of Terceira Island (Azores Archipelao): InterRidge News, Initiative for international cooperation in ridge-crest studies, vol. 8, no. 1, Spring 1999, p. 13-14.

Machado, F., 1967, Active volcanoes of the Azores, in Neumann Van Padang, M., and others, 1967, Catalogue of the Active Volcanoes of the World: International Assoc. of Volcanology, Part XXI, p. 28-30.

Geologic Background. Terceira Island contains four stratovolcanoes constructed along a prominent ESE-WNW-trending fissure zone that cuts across the island. Historically active Santa Barbara volcano at the western end of the island is truncated by two calderas. The youngest of these formed about 15,000 years ago. Comenditic lava domes fill and surround the caldera. Pico Alto lies north of the fissure zone in the north-central part of the island and contains a Pleistocene caldera largely filled by lava domes and lava flows. Guilherme Moniz caldera lies along the fissure zone immediately to the south, and 7-km-wide Cinquio Picos caldera at the SE end of the island is the largest in the Azores. Historical eruptions have occurred from Pico Alto, the fissure zone between Pico Alto and Santa Barbara, and from submarine vents west of Santa Barbara. Most Holocene eruptions have produced basaltic-to-rhyolitic lava flows from the fissure zone transecting the island.

Information Contacts: J.L. Gaspar, T. Ferreira, G. Queiroz, R. Coutinho, M.H. Almeida, N. Wallenstein, and J.M. Pacheco, Centre of Volcanology of the Azores University (CVUA), Departamento de Geociencias, Rua da Mae de Deus, 9502 Ponta Delgada, Azores, Portugal (URL: http://www.uac.pt/).


Unnamed (Tonga) — March 1999 Citation iconCite this Report

Unnamed

Tonga

20.852°S, 175.55°W; summit elev. -296 m

All times are local (unless otherwise noted)


Eruption NW of Tongatapu builds temporary island in January

This volcanic center in the Tonga Islands, 35 km NW of Tongatapu (figure 1) and S of Falcon Island, forms part of the Tofua Volcanic Arc (TVA). The following report was compiled from various sources, as well as a submission from Paul Taylor based in part on information obtained from Tongan colleagues.

Figure (see Caption) Figure 1. Location map of the southern part of the central region of the Tonga Platform and Tofua Volcanic Arc showing the site of the January 1999 volcanic activity in Tonga. Note the NNE-SSW trending trough-like feature that separates the volcanic arc and the Tonga Platform in this region, which may be a southerly extension of the Tofua Trough. Falcon Island is north of the January 1999 eruption site; the structure SSE of Falcon Island contains the islands of Hunga Ha'apai and Hunga Tonga, and was the site of submarine eruptions in 1912, 1937, and 1988. Bathymetric contours are at intervals of 500 m. Courtesy of Paul Taylor.

The Tonga Chronicle noted that the activity was first reported to Tonga Defense Services on 8 January by Carl Riechelmann, who had seen a plume coming from the site. On 12 January 1999 the Tonga Defence Services flew a photographic mission to record the reported appearance of a new island. Shortly after departing Tongatapu's Fua'amoto Airport in a Twin Beech equipped for surveillance operations, the crew sighted billowing white plumes from the volcano. The aircraft approached cautiously at 300 m altitude, made one circuit, then descended to 150 m for closer observation. The plane circled for almost an hour while a series of still photographs, as well as a video, were taken. During this time the crew noted that the island appeared to exhibit a pattern of rising, then receding. The island was estimated to be roughly 200-300 m long and 30-40 m wide. The crew also saw lava in a small vent that appeared to be located within a 100-m cone. The island was located at 20° 51.55'S, 175° 32.47'W (20.86°S, 175.54°W). Photographs and a report of their observations were posted on the website of Tonga Cable and Wireless.

Submarine activity continued on 14 January, with turbulent water present around a 40 x 300 m shoal, but no island was observed. Reports described a vent producing an ash-and-steam column and ejecting lava fragments, and floating pumice near the eruption site.

A precautionary Notice to Airmen (NOTAM) was issued to aviators on 14 January by the Nadi Aviation Control Center declaring an area within 5.5 km of the eruption site a danger area. Pilots were requested to report any signs of volcanic activity. Tongan officials also issued a warning to shipping transiting the area.

On 15 January a survey team, including two geologists from the Ministry of Land, Survey, and Natural Resources, inspected the island from the deck of the VOEA Savea, according to a report in the Tonga Chronicle. At that time the island had disappeared beneath the ocean surface, but the site was still emitting smoke and fumes. Because of possible danger, boats were warned to stay away.

Geologic Background. An unnamed submarine volcano is located 35 km NW of the Niu Aunofo lighthouse on Tongatapu Island. Tongatapu is a coral island at the southern end of an island chain paralleling the Tofua volcanic arc to the E. The volcano was constructed at the S end of a submarine ridge segment of the Tofua volcanic arc extending NNE to Falcon Island. The first documented eruptions took place in 1911 and 1923; an ephemeral island was formed in 1999.

Information Contacts: Paul W. Taylor, Australian Volcanological Investigations, PO Box 291, Pymble, NSW 2073, Australia; Kelepi Mafi, Ministry of Lands, Survey, and Natural Resources, P.O. Box 5, Nuku'Alofa, Kingdom of Tonga; Tonga Cable and Wireless, Private Bag 4, Nuku'alofa, Kingdom of Tonga (URL: http://www.candw.to/); Tonga Chronicle, PO Box 197, Nuku'alofa, Kingdom of Tonga; Tom Fox, International Civil Aviation Organization, 999 University Street, Montreal, Quebec H3C 5H7, Canada; Brad Scott, Wairakei Research Centre, Institute of Geological and Nuclear Sciences (IGNS) Limited, Private Bag 2000, Wairakei, New Zealand (URL: https://www.gns.cri.nz/).


Villarrica (Chile) — March 1999 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Three years of seasonal fluctuations in lava pond height

This report summarizes daily visual observations by members of the Proyecto de Observación Villarrica during December 1998 to March 1999. From mid-October through November 1998 team members noted a descent in the lava pond and a drop in visible activity (BGVN 23:11). On 2, 3 and 5 December 1998 a faint red glow was visible above the summit. Afterwards the magma was thought to have reached its lowest level.

When Jürg Alean visited the summit on 21 January, the faint noises caused by degassing could be clearly heard. No recent impacts of bombs were seen in the crater. Early on 5 February, after a break of 2 months, the lava pond reappeared on the crater floor. At about 1300 on 21 February observers saw several dark ash and gas emissions. During 1-26 March the summit remained cloud-covered but apparently little magmatic activity occurred. In the evenings of 29 and 31 March, observers saw glowing pyroclastic material ejected from the crater.

During 1998 the magma column underwent a complete cycle of activity. In January 1998 the column had reached its low; during February-March, the column began slow ascent. From March to September, the column reached hydrostatic equilibrium with its upper surface at the crater floor and this accompanied displays of weak-to-moderate Strombolian eruptions and convective activity in the lava pond. During October-December the column slowly subsided and by January 1999 it again stood at a low level in the vent.

This seasonal sequence has been observed in successive years since 1997 (BGVN 22:04 and 22:08). The seasonal changes in snow and ice mass on the volcano and a well-developed hydrothermal system may affect the magma within the volcanic edifice in a cyclic manner.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Jürg Alean, Stromboli On-Line, Rheinstrasse 6, CH-8193 Egisau, Switzerland (URL: http://www.swisseduc.ch/stromboli/); Werner Keller Ulrich, Proyecto de Observacion Villarrica (P.O.V.I.), Casilla 150, Correo Villa La Reina, Santiago, Chile (URL: https://www.povi.cl/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports