Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Pacaya (Guatemala) Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Sangeang Api (Indonesia) Two ash plumes and small thermal anomalies during February-June 2020

Stromboli (Italy) Strombolian explosions persist at both summit craters during January-April 2020

Nevado del Ruiz (Colombia) Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Asosan (Japan) Daily ash emissions continue through mid-June 2020 when activity decreases

Aira (Japan) Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020



Pacaya (Guatemala) — August 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Pacaya, located in Guatemala, is a highly active volcano that has previously produced continuous Strombolian explosions, multiple lava flows, and the formation of a small cone within the crater due to the constant deposition of ejected material (BGVN 45:02). This reporting period updates information from February through July 2020 consisting of similar activity that dominantly originates from the Mackenney crater. Information primarily comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions were recorded consistently throughout this reporting period. During February 2020, explosions ejected incandescent material 100 m above the Mackenney crater. At night and during the early morning the explosions were accompanied by incandescence from lava flows. Multiple lava flows were active during most of February, traveling primarily down the SW and NW flanks and reaching 500 m on 25 February. On 5 February the lava flow on the SW flank divided into three flows measuring 200, 150, and 100 m. White and occasionally blue gas-and-steam emissions rose up to 2.7 km altitude on 11 and 14 February and drifted in multiple directions. On 16 February Matthew Watson utilized UAVs (Unmanned Aerial Vehicle) to take detailed, close up photos of Pacaya and report that there were five active vents at the summit exhibiting lava flows from the summit, gas-and-steam emissions, and small Strombolian explosions (figure 122).

Figure (see Caption) Figure 122. Drone image of active summit vents at Pacaya on 16 February 2020 with incandescence and white gas-and-steam emissions. Courtesy of Matthew Watson, University of Bristol, posted on 17 February 2020.

Activity remained consistent during March with Strombolian explosions ejecting material 100 m above the crater accompanied by occasional incandescence and white and occasionally blue gas-and-steam emissions drifting in multiple directions. Multiple lava flows were detected on the NW and W flanks reaching as far as 400 m on 9-10 March.

In April, frequent Strombolian explosions were accompanied by active lava flows moving dominantly down the SW flank and white gas-and-steam emissions. These repeated explosions ejected material up to 100 m above the crater and then deposited it within the Mackenney crater, forming a small cone. On 27 April seismicity increased at 2140 due to a lava flow moving SW as far as 400 m (figure 123); there were also six strong explosions and a fissure opened on the NW flank in front of the Los Llanos Village, allowing gas-and-steam to rise.

Figure (see Caption) Figure 123. Infrared image of Pacaya on 28 April 2020, showing a lava flow approximately 500 m long and moving down the S flank on the day after seismicity increased and six strong explosions were detected. Courtesy of ISIVUMEH (Reporte Volcán de Pacaya July 2020).

During May, Strombolian explosions continued to eject incandescent material up to 100 m above the Mackenney crater, accompanied by active lava flows on 1-2, 17-18, 22, 25-26, and 29-30 May down the SE, SW, NW, and NE flanks up to 700 m on 30 May. White gas-and-steam emissions continued to be observed up to 100 m above the crater drifting in multiple directions. Between the end of May and mid-June, the plateau between the Mackenney cone and the Cerro Chiquito had become inundated with lava flows (figure 124).

Figure (see Caption) Figure 124. Aerial views of the lava flows at Pacaya to the NW during a) 18 September 2019 and b) 16 June 2020 showing the lava flow advancement toward the Cerro Chiquito. Courtesy of INSIVUMEH (Reporte Volcán de Pacaya July 2020).

Lava flows extended 700 m on 8 June down multiple flanks. On 9 June, a lava flow traveled N and NW 500 m and originating from a vent on the N flank about 100 m below the Mackenney crater. Active lava flows continued to originate from this vent through at least 19 June while white gas-and-steam emissions were observed rising 300 m above the crater. At night and during the early mornings of 24 and 29 June Strombolian explosions were observed ejecting incandescent material up to 200 m above the crater (figure 125). These explosions continued to destroy and then rebuild the small cone within the Mackenney crater with fresh ejecta. Active lava flows on the SW flank were mostly 100-600 m long but had advanced to 2 km by 30 June.

On 10 July a 1.2 km lava flow divided in two which moved on the NE and N flanks. On 11 July, another 800 m lava flow divided in two, on the N and NE flanks (figure 126). On 14 and 19 July, INSIVUMEH registered constant seismic tremors and stated they were associated with the lava flows. No active lava flows were observed on 18-19 July, though some may have continued to advance on the SW, NW, N, and NE flanks. On 20 July, lava emerged from a vent at the NW base of the Mackenney cone near Cerro Chino, extending SE. Strombolian explosions ejected incandescent material up to 200 m above the crater on 22 July, accompanied by active incandescent lava flows on the SW, N, NW, NE, and W flanks. Three lava flows on the NW flank were observed on 22-24 July originating from the base of the Mackenney cone. Explosive activity during 22 July vibrated the windows and roofs of the houses in the villages of San Francisco de Sales, El Patrocinio, El Rodeo, and others located 4 km from the volcano. The lava flow activity had decreased by 25 July, but remnants of the lava flow on the NW flank persisted with weak incandescence observed at night, which was no longer observed by 26 July. Strombolian explosions continued to be detected through the rest of the month, accompanied by frequent white gas-and-steam emissions that extended up to 2 km from the volcano; no active lava flows were observed.

Figure (see Caption) Figure 125. Photos of Pacaya on 11 July 2020 showing Strombolian explosions and lava flows moving down the N and NE flanks. Courtesy of William Chigna, CONRED, posted on 12 July 2020.
Figure (see Caption) Figure 126. Infrared image of Pacaya on 20 July 2020 showing a hot lava flow accompanied by gas-and-steam emissions. Courtesy of INSIVUMEH (BEPAC 47 Julio 2020-22).

During February through July 2020, multiple lava flows and thermal anomalies within the Mackenney crater were detected in Sentinel-2 thermal satellite imagery (figure 127). These lava flows were observed moving down multiple flanks and were occasionally accompanied by white gas-and-steam emissions. Thermal anomalies were also recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 10 August through July 2020 within 5 km of the crater summit (figure 128). There were a few breaks in thermal activity from early to mid-March, late April, early May, and early June; however, each of these gaps were followed by a pulse of strong and frequent thermal anomalies. According to the MODVOLC algorithm, 77 thermal alerts were recorded within the summit crater during February through July 2020.

Figure (see Caption) Figure 127. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) primarily as lava flows originating from the summit crater during February to July 2020 frequently accompanied by white gas-and-steam emissions. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 128. The MIROVA thermal activity graph (Log Radiative Power) at Pacaya during 10 August to July 2020 shows strong, frequent thermal anomalies through late July with brief gaps in activity during early to mid-March, late April, early May, and early June. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Matthew Watson, School of Earth Sciences at the University of Bristol (Twitter: @Matthew__Watson, https://twitter.com/Matthew__Watson); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Sangeang Api (Indonesia) — August 2020 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Two ash plumes and small thermal anomalies during February-June 2020

Sangeang Api is a 13-km-wide island located off the NE coast of Sumbawa Island, part of Indonesia's Lesser Sunda Islands. Documentation of historical eruptions date back to 1512. The most recent eruptive episode began in July 2017 and included frequent Strombolian explosions, ash plumes, and block avalanches. The previous report (BGVN 45:02) described activity consisting of a new lava flow originating from the active Doro Api summit crater, short-lived explosions, and ash-and-gas emissions. This report updates information during February through July 2020 using information from the Darwin Volcanic Ash Advisory Center (VAAC) reports, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, or CVGHM) reports, and various satellite data.

Volcanism during this reporting period was relatively low compared to the previous reports (BGVN 44:05 and BGVN 45:02). A Darwin VAAC notice reported an ash plume rose 2.1 km altitude and drifted E on 10 May 2020. Another ash plume rose to a maximum of 3 km altitude drifting NE on 10 June, as seen in HIMAWARI-8 satellite imagery.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected a total of 12 low power thermal anomalies within 5 km from the summit during February through May 2020 (figure 42). No thermal anomalies were recorded during June and July according to the MIROVA graph. Though the MODVOLC algorithm did not detect any thermal signatures between February to July, many small thermal hotspots within the summit crater could be seen in Sentinel-2 thermal satellite imagery (figure 43).

Figure (see Caption) Figure 42. Thermal anomalies at Sangeang Api from 10 August 2019 through July 2020 recorded by the MIROVA system (Log Radiative Power) were infrequent and low power during February through May 2020. No thermal anomalies were detected during June and July. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite imagery using “Atmospheric penetration” (bands 12, 11, 8A) rendering showed small thermal hotspots (orange-yellow) at the summit of Sangeang Api during February through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Stromboli (Italy) — August 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions persist at both summit craters during January-April 2020

Stromboli is a stratovolcano located in the northeastern-most part of the Aeolian Islands composed of two active summit vents: the Northern (N) Crater and the Central-South (CS) Crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano. The ongoing eruption began in 1934 and has been characterized by regular Strombolian explosions in both summit craters, ash plumes, and occasional lava flows (BGVN 45:08). This report updates activity from January to April 2020 with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Activity was consistent during this reporting period. Explosion rates ranged from 1-20 per hour and were of variable intensity, producing material that rose from less than 80 to over 250 m above the vents (table 8). Strombolian explosions were often accompanied by gas-and-steam emissions, spattering, and lava flows which has resulted in fallout deposited on the Sciara del Fuoco and incandescent blocks rolling toward the coast up to a few hundred meters down the slopes of the volcano. According to INGV, the average SO2 emissions measured 300-650 tons/day.

Table 8. Summary of activity at Stromboli during January-April 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Jan 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 2-20 per hour. Ejected material rose 80-150 m above the N crater and 150-200 m above the CS crater. A small cone is growing on the S1 crater and has produced some explosions and ejected coarse material mixed with fine ash. The average SO2 emissions measured 300 tons/day.
Feb 2020 Strombolian activity and degassing continued. Explosion rates varied from 2-14 per hour. Ejected material rose 80-200 m above the N crater and 80-250 m above the CS crater. The average SO2 emissions measured 300 tons/day.
Mar 2020 Strombolian activity and degassing continued with discontinuous spattering. Explosion rates varied from 1-16 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Intense spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.
Apr 2020 Strombolian activity and degassing continued with spattering. Explosion rates varied from 1-17 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.

During January 2020, explosive activity mainly originated from three vents in the N crater and at least three vents in the CS crater. Ejecta from numerous Strombolian explosions covered the slopes on the upper Sciara del Fuoco, some of which rolled hundreds of meters down toward the coast. Explosion rates varied from 2-12 per hour in the N crater and 9-14 per hour in the CS crater; ejected material rose 80-200 m above the craters. According to INGV, a small cone growing in the S1 crater produced some explosions that ejected coarse material mixed with fine ash. On 18 and 19 January a lava flow was observed, both of which originated in the N crater. In addition, two explosions were detected in the N crater that was associated with two landslide events.

Explosive activity in February primarily originated from 2-3 eruptive vents in the N crater and at least three vents in the CS crater (figure 177). The Strombolian explosions ejected material 80-250 m above the craters, some of which fell onto the upper part of the Sciara. Explosion rates varied from 3-12 per hour in the N crater and 2-14 per hour in the CS crater (figure 178). On 3 February a short-lived lava flow was reported in the N crater.

Figure (see Caption) Figure 177. A drone image showed spattering accompanied by gas-and-steam emissions at Stromboli rising above the N crater on 15 February 2020. Courtesy of INGV (Rep. No. 08/2020, Stromboli, Bollettino Settimanale, 10/02/2020 - 16/02/2020, data emissione 18/02/2020).
Figure (see Caption) Figure 178. a) Strombolian explosions during the week of 17-23 February 2020 in the N1 crater of Stromboli were seen from Pizzo Sopra La Fossa. b) Spattering at Stromboli accompanied by white gas-and-steam emissions was detected in the N1 and S2 craters during the week of 17-23 February 2020. c) Spattering at Stromboli accompanied by a dense ash plume was seen in the N1 and S2 craters during the week of 17-23 February 2020. All photos by F. Ciancitto, courtesy of INGV (Rep. No. 09/2020, Stromboli, Bollettino Settimanale, 17/02/2020 - 23/02/2020, data emissione 25/02/2020).

Ongoing explosive activity continued into March, originating from three eruptive vents in the N crater and at least three vents in the CS crater. Ejected lapilli and bombs rose 80-250 m above the craters resulting in fallout covering the slopes in the upper Sciara del Fuoco with blocks rolling down the slopes toward the coast and explosions varied from 4-13 per hour in the N crater and 1-16 per hour in the CS crater. Discontinuous spattering was observed during 9-19 March. On 19 March, intense spattering was observed in the N crater, which produced a lava flow that stretched along the upper part of the Sciara for a few hundred meters. Another lava flow was detected in the N crater on 28 March for about 4 hours into 29 March, which resulted in incandescent blocks breaking off the front of the flow and rolling down the slope of the volcano. On 30 March a lava flow originated from the N crater and remained active until the next day on 31 March. Landslides accompanied by incandescent blocks rolling down the Sciara del Fuoco were also observed.

Strombolian activity accompanied by gas-and-steam emissions continued into April, primarily produced in 3-4 eruptive vents in the N crater and 2-3 vents in the CS crater. Ejected material from these explosions rose 80-250 m above the craters, resulting in fallout products covering the slopes on the Sciara and blocks rolling down the slopes. Explosions varied from 4-15 per hour in the N crater and 1-10 per hour in the CS crater. On 1 April a thermal anomaly was detected in satellite imagery accompanied by gas-and-steam and ash emissions downstream of the Sciara del Fuoco. A lava flow was observed on 15 April in the N crater accompanied by gas-and-steam and ash emissions; at the front of the flow incandescent blocks detached and rolled down the Sciara (figure 179). This flow continued until 16 April, ending by 0956; a thermal anomaly persisted downslope from the lava flow. Spatter was ejected tens of meters from the vent. Another lava flow was detected on 19 April in the N crater, followed by detached blocks from the front of the flow rolling down the slopes. Spattering continued during 20-21 April.

Figure (see Caption) Figure 179. A webcam image of an ash plume accompanied by blocks ejected from Stromboli on 15 April 2020 rolling down the Sciara del Fuoco. Courtesy of INGV via Facebook posted on 15 April 2020.

Moderate thermal activity occurred frequently during 16 October to April 2020 as recorded in the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 180). The MODVOLC thermal alerts recorded a total of 14 thermal signatures over the course of nine different days between late February and mid-April. Many of these thermal signatures were captured as hotspots in Sentinel-2 thermal satellite imagery in both summit craters (figure 181).

Figure (see Caption) Figure 180. Low to moderate thermal activity at Stromboli occurred frequently during 16 October-April 2020 as shown in the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 181. Thermal anomalies (bright yellow-orange) at Stromboli were observed in thermal satellite imagery from both of the summit vents throughout January-April 2020. Images with Atmospheric Penetration rendering (bands 12, 11, 8A); courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/en/, Facebook: https://www.facebook.com/ingvvulcani/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — August 2020 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Columbia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, and historical observations since 1570. It’s profound notoriety stems from an eruption on 13 November 1985 that produced an ash plume and pyroclastic flows onto the glacier, triggering large lahars that washed down 11 valleys, inundating most severely the towns of Armero (46 km W) and Chinchiná (34 km E) where approximately 25,000 residents were killed. It remains the second deadliest volcanic eruption of the 20th century after Mt. Pelee killed 28,000 in 1902. Ruiz remained quiet for 20 years after the September 1985-July 1991 eruption until a new explosive event occurred in February 2012; a series of explosive events lasted into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a lava dome inside the Arenas crater in August 2015 which has regularly displayed thermal anomalies through 2019. This report covers ongoing activity from January-June 2020 using information primarily from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued at Nevado del Ruiz throughout January-June 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 7 km altitude during early March. SGC confirmed the presence of the growing lava dome inside Arenas crater during an overflight in January; infrared satellite imagery indicated a continued heat source from the dome through April. SGC interpreted repeated episodes of ‘drumbeat seismicity’ as an indication of continued dome growth throughout the period. Small- to moderate-density sulfur dioxide emissions were measured daily with satellite instruments. The MIROVA graph of thermal activity indicated a heat source consistent with a growing dome from January through April (figure 102).

Figure (see Caption) Figure 102. The MIROVA graph of thermal activity at Nevado del Ruiz from 2 July 2019 through June 2020 indicated persistent thermal anomalies from mid-November 2019-April 2020. Courtesy of MIROVA.

Activity during January-March 2020. During January 2020 some of the frequent tremor seismic events were associated with gas and ash emissions, and several episodes of “drumbeat” seismicity were recorded; they have been related by SGC to the growth of the lava dome on the floor of the Arenas crater. An overflight on 10 January, with the support of the Columbian Air Force, confirmed the presence of the dome which was first proposed in August 2015 (BGVN 42:06) (figure 103). The Arenas crater had dimensions of 900 x 980 m elongate to the SW-NE and was about 300 m deep (figure 104). The dome inside the crater was estimated to be 173 m in diameter and 60 m high with an approximate volume of 1,500,000 m3 (figures 105 and 106). In addition to the dome, the scientists also noted ash deposits on the summit ice cap (figure 107). The Washington VAAC reported an ash plume on 19 January that rose to 5.5 km altitude and drifted SW, dissipating quickly. On 30 January they reported an ash plume visible in satellite imagery extending 15 km NW from the summit at 5.8 km altitude. A single MODVOLC alert was issued on 15 January and data from the VIIRS satellite instrument reported thermal anomalies inside the summit crater on 14 days of the month. Sulfur dioxide plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily during the month.

Figure (see Caption) Figure 103. SGC confirmed the presence of a lava dome inside the Arenas crater at Nevado del Ruiz on 10 January 2020. The dome is shown in brown, and zones of fumarolic activity are labelled around the dome. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 104. A view of the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020 (left) is compared with a view from 2010 (right). They were both taken during overflights supported by the Colombian Air Force (FAC). Ash deposits on the ice fields are visible in both images. Fumarolic activity rises from the inner walls of the crater in January 2020. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 105. The dome inside the Arenas crater at Nevado del Ruiz appeared dark against the crater rim and ash-covered ice field on 10 January 2020. Features observed include (A) the edge of the Arenas crater, (B) a secondary crater 150 m in diameter located to the west, (C) interior cornices, (D) the lava dome, (E) a depression in the center of the dome caused by possible subsidence and cooling of the lava, (F) a source of gas and ash emission with a diameter of approximately 15 m (secondary crater), and (G, H, and I) several sources of gas emission located around the crater. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 106. Images of the summit of Nevado del Ruiz captured by the PlanetScope satellite system on 14 March 2018 (A) and 10 January 2020 (B) show the lava dome at the bottom of Arenas crater. Courtesy Planet Lab Inc. and SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 107. Ash covered the snow and ice field around the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020. The lava dome is the dark area on the right. Courtesy of SGC (posted on Twitter @sgcol).

The Washington VAAC reported multiple ash plumes during February 2020. On 4 February an ash plume was observed in satellite imagery drifting 35 km W from the summit at 5.8 km altitude. The following day a plume rose to 6.1 km altitude and extended 37 km W from the summit before dissipating by the end of the day (figure 108). On 6 February an ash cloud was observed in satellite imagery centered 45 km W of the summit at 5.8 km altitude. Although it had dissipated by midday, a hotspot remained in shortwave imagery until the evening. Late in the day another plume rose to 6.7 km altitude and drifted W. Diffuse ash was seen in satellite imagery on 13 February fanning towards the W at 5.8 km altitude. On 18 February at 1720 UTC the Bogota Meteorological Weather Office (MWO) reported an ash emission drifting NW at 5.8 km altitude; a second plume was reported a few hours later at the same altitude. Intermittent emissions continued the next day at 5.8-6.1 km altitude that reached as far as 50 km NW before dissipating. A plume on 21 February rose to 6.7 km altitude and drifted W (figure 109). Occasional emissions on 25 February at the same altitude reached 25 km SW of the summit before dissipating. A discrete ash emission around 1550 UTC on 26 February rose to 6.1 km altitude and drifted W. Two similar plumes were reported the next day. On 28 and 29 February plumes rose to 5.8 km altitude and drifted W.

Figure (see Caption) Figure 108. Emissions rose from the Arenas crater at Nevado del Ruiz on 5 February 2020. The Washington VAAC reported an ash plume that day that rose to 6.1 km altitude and drifted 37 km W before dissipating. Courtesy of Camilo Cupitre.
Figure (see Caption) Figure 109. Emissions rose from the Arenas crater at Nevado del Ruiz around 0600 on 21 February 2020. The Washington VAAC reported ash emissions that day that rose to 6.7 km altitude and drifted W. Courtesy of Manuel MR.

SGC reported several episodes of drumbeat type seismicity on 2, 8, 9, and 27 February which they attributed to effusion related to the growing lava dome in the summit crater. Sentinel-2 satellite imagery showed ring-shaped thermal anomalies characteristic of dome growth within Arenas crater several times during January and February (figure 110). The VIIRS satellite instrument recorded thermal anomalies on twelve days during February.

Figure (see Caption) Figure 110. Persistent thermal anomalies from Sentinel-2 satellite imagery during January and February 2020 suggested that the lava dome inside Nevado del Ruiz’s Arenas crater was still actively growing. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

On 4, 14, and 19 March 2020 thermal anomalies were visible in Sentinel-2 satellite data from within the Arenas crater. Thermal anomalies were recorded by the VIIRS satellite instrument on eight days during the month. Several episodes of drumbeat seismicity were recorded during the first half of the month and on 30-31 March. Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout February and March (figure 111). The Washington VAAC reported an ash emission on 1 March that rose to 5.8 km altitude and drifted NW; it was centered 15 km from the summit when detected in satellite imagery. The next day a plume was seen in satellite imagery moving SW at 7.0 km altitude, extending nearly 40 km from the summit. Additional ash emissions were reported on 4, 14, 15, 21, 28, 29, and 31 March; the plumes rose to 5.8-6.7 km altitude and drifted generally W, some reaching 45 km from the summit before dissipating.

Figure (see Caption) Figure 111. Distinct SO2 plumes with Dobson values (DU) greater than 2 were recorded by the TROPOMI satellite instrument daily during February and March 2020. Ecuador’s Sangay produced smaller but distinct plumes most of the time as well. Dates are shown at the top of each image. Courtesy of NASA’s Sulfur Dioxide Monitoring Page.

Activity during April-June 2020. The Washington VAAC reported an ash emission that rose to 6.7 km altitude and drifted W on 1 April 2020. On 2 April, emission plumes were visible from the community of Tena in the Cundinamarca municipality which is located 100 km ESE (figure 112). The unusually clear skies were attributed to the reduction in air pollution in nearby Bogota resulting from the COVID-19 Pandemic quarantine. On 4 April the Bogota MWO reported an emission drifting SW at 5.8 km altitude. An ash plume on 8 April rose to 6.7 km altitude and drifted W. On 25 April the last reported ash plume from the Washington VAAC for the period rose to 6.1 km altitude and was observed in satellite imagery moving W at 30 km from the summit; after that, only steam and gas emissions were observed.

Figure (see Caption) Figure 112. On the evening of 2 April 2020, emission plumes from Nevado del Ruiz were visible from Santa Bárbara village in Tena, Cundinamarca municipality which is located 100 km ESE. The unusually clear skies were attributed to the reduction in air pollution in the nearby city of Bogota resulting from the COVID-19 Pandemic quarantine. Photo by Williama Garcia, courtesy of Semana Sostenible (3 April 2020).

Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout the month. On 13 April, a Sentinel-2 thermal image showed a hot spot inside the Arenas crater largely obscured by steam and clouds. Cloudy images through May and June prevented observation of additional thermal anomalies in satellite imagery, but the VIIRS thermal data indicated anomalies on 3, 4, and 26 April. SGC reported low-energy episodes of drumbeat seismicity on 4, 9, 10, 12, 15, 16, 20, and 23 April which they interpreted as related to growth of the lava dome inside the Arenas crater. The seismic events were located 1.5-2.0 km below the floor of the crater.

Small emissions of ash and gas were reported by SGC during May 2020 and the first half of June, with the primary drift direction being NW. Gas and steam plumes rose 560-1,400 m above the summit during May and June (figure 113). Drumbeat seismicity was reported a few times each month. Sulfur dioxide emissions continued daily; increased SO2 activity was recorded during 10-13 June (figure 114).

Figure (see Caption) Figure 113. Gas and steam plumes rose 560-1,400 m above the summit of Nevado del Ruiz during May and June 2020, including in the early morning of 11 June. Courtesy of Carlos-Enrique Ruiz.
Figure (see Caption) Figure 114. Increased SO2 activity during 10-13 June 2020 at Nevado del Ruiz was recorded by the TROPOMI instrument on the Sentinel-5P satellite. Sangay also emitted SO2 on those days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: El Servicio Geológico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes, https://twitter.com/sgcol); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Camilo Cupitre (URL: https://twitter.com/Ccupitre/status/1225207439701704709); Manuel MR (URL: https://twitter.com/ElPlanetaManuel/status/1230837262088384512); Semana Sostenible (URL: https://sostenibilidad.semana.com/actualidad/articulo/fumarola-del-nevado-del-ruiz-fue-captada-desde-tena-cundinamarca/49597); Carlos-Enrique Ruiz (URL: https://twitter.com/Aleph43/status/1271800027841794049).


Asosan (Japan) — July 2020 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Daily ash emissions continue through mid-June 2020 when activity decreases

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones for 2,000 years; all historical activity is from Nakadake Crater 1. The largest ash plume in 20 years occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; explosions with ash plumes continued through the first half of 2020 and are covered in this report. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes, and Sentinel-2 satellite images provide data on ash emissions and thermal activity.

The Tokyo VAAC issued multiple daily reports of ash plumes from Nakadake Crater 1 from 1 January-14 June 2020. They were commonly at 1.8-2.1 km altitude, and often drifted E or S. JMA reported that ashfall continued downwind from the ash plumes until mid-June; seismic activity was relatively high during January and February and decreased steadily after that time. The measured SO2 emissions ranged from 1,000-4,900 tons per day through mid-June and dropped to 500 tons per day during the second half of June. Intermittent thermal activity was recorded at the crater through mid-May.

Explosive activity during January-June 2020. Ash plumes rose up to 1.1 km above the crater rim at Nakadake Crater 1 during January 2020 (figure 70). Ashfall was confirmed downwind of an explosion on 7 January. During February, ash plumes rose up to 1.7 km above the crater, and ashfall was again reported downwind. The crater camera provided by the Aso Volcano Museum occasionally observed incandescence at the floor of the crater during both months. Incandescence was also occasionally observed with the Kusasenri webcam (3 km W) and was seen on 20 February from a webcam in Minamiaso village (8 km SW).

Figure (see Caption) Figure 70. Ash plumes rose up to 1.1 km above the Nakadake Crater 1 at Asosan during January 2020 (left) and up to 1.7 km above the crater during February 2020 (right) as seen in these images from the Kusasenri webcam. Ashfall was reported downwind multiple times. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, January and February 2020).

During March 2020, ash plumes rose as high as 1.3 km. Ashfall was reported on 9 March in Ichinomiyamachi, Aso City (figure 71). In field surveys conducted on the 18th and 25th, there was no visible water inside the crater, and high-temperature grayish-white plumes were observed. The temperature at the base of the plume was measured at 300°C (figure 72).

Figure (see Caption) Figure 71. Ashfall from Asosan appeared on 9 March 2020 in Ichinomiyamachi, Aso City around 10 km N. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).
Figure (see Caption) Figure 72. During a field survey of Nakadake Crater 1 at Asosan on 25 March 2020, JMA staff observed a gray ash plume rising from the crater floor (left). The maximum temperature of the ash plume was measured at about 300°C with an infrared thermal imaging device (right). Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).

Occasional incandescence was observed at the bottom of the crater during April and May 2020; ash plumes rose 1.1 km above the crater on most days in April and were slightly higher, rising to 1.8 km during May, although activity was more intermittent (figure 73). A brief increase in SO2 activity was reported by JMA during field surveys on 7 and 8 May; satellite data captured small plumes of SO2 on 1 and 6 May (figure 74). A brief increase in tremor amplitude was reported by JMA on 16 May.

Figure (see Caption) Figure 73. Although activity at Asosan’s Nakadake Crater 1 was more intermittent during April and May 2020 than earlier in the year, ash plumes were still reported most days and incandescence was seen at the bottom of the crater multiple times until 15 May. Left image taken 11 May 2020 from the Kusachiri webcam; right image taken from the crater webcam on 10 May provided by the Aso Volcano Museum. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, May 2020).
Figure (see Caption) Figure 74. The TROPOMI instrument on the Sentinel-5P satellite detected small but distinct SO2 plumes from Asosan on 1 and 6 May 2020. Additional small plumes are visible from Aira caldera’s Sakurajima volcano. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.

The last report of ash emissions at Nakadake Crater 1 from the Tokyo VAAC was on 14 June 2020. JMA also reported that no eruption was observed after mid-June. On 8 June they reported an ash plume that rose 1.4 km above the crater. During a field survey on 16 June, only steam was observed at the crater; the plume rose about 100 m (figure 75). In addition, a small plume of steam rose from a fumarole on the S crater wall.

Figure (see Caption) Figure 75. A steam plume rose about 100 m from the floor of Nakadake Crater 1 on 16 June 2020. A small steam plume was also observed by the S crater wall. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, June 2020).

Thermal activity during January-June 2020. Sentinel-2 satellite data indicated thermal anomalies present at Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April, and 11 May (figure 76). In addition, thermal anomalies from agricultural fires appeared in satellite images on 11 February, 7 and 17 March (figure 77). The fires were around 5 km from the crater, thus they appear on the MIROVA thermal anomaly graph in black, but are likely unrelated to volcanic activity (figure 78). No thermal anomalies were recorded in satellite data from the Nakadake Crater 1 after 11 May, and none appeared in the MIROVA data as well.

Figure (see Caption) Figure 76. Thermal anomalies appeared at Asosan’s Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April and 11 May 2020. On 2 January a small ash plume drifted SSE from the crater (left). On 6 February a dense ash plume drifted S from the crater (center). Only a small steam plume was visible above the crater on 21 February (right). Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 77. Thermal anomalies from agricultural fires located about 5 km from the crater appeared in satellite images on 11 February, and 7 and 17 March 2020. Although a dense ash plume drifted SSE from the crater on 11 February (left), no thermal anomalies appear at the crater on these dates. Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 78. The MIROVA project plot of Log Radiative Power at Asosan from 29 June 2019 through June 2020 shows only a few small thermal alerts within 5 km of the summit crater during January-June 2020, and a spike in activity during February and March located around 5 km away. These data correlate well with the Sentinel-2 satellite data that show intermittent thermal anomalies at the summit throughout January-May and agricultural fires located several kilometers from the crater during February and March. Courtesy of MIROVA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Aira (Japan) — July 2020 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the adjacent Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity at Minamidake from January through June 2020; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

Activity continued during January-June 2020 at Minamidake crater with tens of explosions each month. The Tokyo VAAC issued multiple daily reports of ash emissions during January and February. Less activity occurred during the first half of March but picked up again with multiple daily reports from mid-March through mid-April. Emissions were more intermittent but continued through early June, when activity decreased significantly. JMA reported explosions with ash plumes rising 2.5-4.2 km above the summit, and ejecta traveling generally up to 1,700 m from the crater, although a big explosion in early June send a large block of tephra 3 km from the crater (table 23). Thermal anomalies were visible in satellite imagery on a few days most months and were persistent in the MIROVA thermal anomaly data from November 2019 through early June 2020 (figure 94). Incandescence was often visible at night in the webcams through early June; the Showa crater remained quiet throughout the period.

Table 23. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater within the Aira Caldera, January through June 2020. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Ashfall is measured at the Kagoshima Local Meteorological Observatory (KLMO), 10 km W of Showa crater. Data courtesy of JMA (January to June 2020 monthly reports).

Month Ash emissions (explosive) Max plume height above crater Max ejecta distance from crater Total amount of ashfall (g/m2) Total ashfall previous month
Jan 2020 104 (65) 2.5 km 1,700 m 75 (12 days) 280,000 tons
Feb 2020 129 (67) 2.6 km 1,800 m 21 (14 days) 230,000 tons
Mar 2020 26 (10) 3.0 km 1,700 m 3 (8 days) 360,000 tons
Apr 2020 51 (14) 3.8 km 1,700 m less than 0.5 (2 days) 160,000 tons
May 2020 51 (24) 4.2 km 1,300 m 19 (8 days) 280,000 tons
Jun 2020 28 (16) 3.7 km 3,000 m 71 (9 days) 150,000 tons
Figure (see Caption) Figure 94. Persistent thermal anomalies were recorded in the MIROVA thermal energy data for the period from 2 July 2019 through June 2020. Thermal activity increased in October 2019 and remained steady through May 2020, decreasing abruptly at the beginning of June. Courtesy of MIROVA.

Explosions continued at Minamidake crater during January 2020 with 65 ash plumes reported. The highest ash plume rose 2.5 km above the crater on 30 January, and incandescent ejecta reached up to 1,700 m from the Minamidake crater on 22 and 29 January (figure 95). Slight inflation of the volcano since September 2019 continued to be measured with inclinometers and extensometers on Sakurajima Island. Field surveys conducted on 15, 20, and 31 January measured the amount of sulfur dioxide gas released as very high at 3,400-4,700 tons per day, as compared with 1,000-3,000 tons in December 2019.

Figure (see Caption) Figure 95. An explosion at the Minamidake summit crater of Aira’s Sakurajima volcano on 29 January 2020 produced an ash plume that rose 2.5 km above the crater rim and drifted SE (left). On 22 January incandescent ejecta reached 1,700 m from the summit during explosive events. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, January 2020).

About the same number of explosions produced ash plumes during February 2020 (67) as in January (65) (figure 96). On 10 February a large block was ejected 1,800 m from the crater, the first to reach that far since 5 February 2016. The tallest plume, on 26 February rose 2.6 km above the crater. Sentinel-2 satellite imagery indicated two distinct thermal anomalies within the Minamidake crater on both 1 and 6 February (figure 97). Activity diminished during March 2020 with only 10 explosions out of 26 eruptive events. On 21 March a large bomb reached 1,700 m from the crater. The tallest ash plume rose 3 km above the crater on 17 March. Scientists noted during an overflight on 16 March that a small steam plume was rising from the inner wall on the south side of the Showa crater; a larger steam plume rose to 300 m above the Minamidake crater and drifted S (figure 98). Sulfur dioxide emissions were similar in February (1,900 to 3,100 tons) and March (1,300 to 3,400 tons per day).

Figure (see Caption) Figure 96. An ash plume rose from the Minamidake crater at the summit of Aira’s Sakurajima volcano on 6 February 2020 at 1752 local time, as seen looking S from the Kitadake crater. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, February 2020).
Figure (see Caption) Figure 97. Sentinel-2 satellite imagery revealed two distinct thermal anomalies within the Minamidake crater at Aira’s Sakurajima volcano on 1 and 6 February 2020. Images use Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.
Figure (see Caption) Figure 98. During an overflight of Aira’s Sakurajima volcano on 16 March 2020, JMA captured this view to the SW of the Kitadake crater on the right, the steam-covered Minamidake crater in the center, and the smaller Showa crater on the left adjacent to Minamidake. Courtesy of JMA and the Maritime Self-Defense Force 1st Air Group P-1 (Sakurajima Volcanic Activity Commentary, March 2020).

During April 2020, ejecta again reached as far as 1,700 m from the crater; 14 explosions were identified from the 51 reported eruptive events, an increase from March. The tallest plume, on 4 April, rose 3.8 km above the crater (figure 99). The same number of eruptive events occurred during May 2020, but 24 were explosive in nature. A large plume on 9 May rose to 4.2 km above the rim of Minamidake crater, the tallest of the period (figure 100). On 20 May, incandescent ejecta reached 1,300 m from the summit. Sulfur dioxide emissions during April (1,700-2,100 tons per day) and May (1,200-2,700 tons per day) were slightly lower than previous months.

Figure (see Caption) Figure 99. A large ash plume at Aira’s Sakurajima volcano rose from Minamidake crater at 1621 on 4 April 2020. The plume rose to 3.8 km above the crater and drifted SE. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, April 2020).
Figure (see Caption) Figure 100. Activity continued at Aira’s Sakurajima volcano during May 2020. A large plume rose to 4.2 km above the summit and drifted N in the early morning of 9 May (left). The Kaigata webcam located at the Osumi River National Highway Office captured abundant incandescent ejecta reaching 1,300 m from the crater during the evening of 20 May. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, May 2020).

A major explosion on 4 June 2020 produced 137 Pa of air vibration at the Seto 2 observation point on Sakurajima Island. It was the first time that air vibrations exceeding 100 Pa have been observed at the Seto 2 station since the 21 May 2015 explosion at the Showa crater. The ash plume associated with the explosion rose 1.5 km above the crater rim. During an 8 June field survey conducted in Higashisakurajima-cho, Kagoshima City, a large impact crater believed to be associated with this explosion was located near the coast 3 km SSW from Minamidake. The crater formed by the ejected block was about 6 m in diameter and 2 m deep (figure 101); fragments found nearby were 10-20 cm in diameter (figure 102). A nearby roof was also damaged by the blocks. Smaller bombs were found in Kurokami-cho, Kagoshima City, around 4- 5 km E of Minamidake on 5 June; the largest fragment was 5 cm in diameter. Multiple ash plumes rose to 3 km or more above the summit during the first ten days of June; explosions on 4 and 5 June reached 3.7 km above the crater (figure 103). Larger than normal inflation and deflation before and after the explosions was recorded during early June in the inclinometers and extensometers located on the island. Incandescence at the summit was observed at night through the first half of June. The Tokyo VAAC issued multiple daily ash advisories during 1-10 June after which activity declined abruptly. Two brief explosions on 23 June and one on 28 June were the only two additional ash explosions reported in June.

Figure (see Caption) Figure 101. A large crater measuring 6 m wide and 2 m deep was discovered 3 km from the Minamidake crater in Higashisakurajima, part of Kagoshima City, on 8 June 2020. It was believed to be from the impact of a large block ejected during the 4 June explosion at Aira’s Sakurajima volcano. Photo courtesy of Kagoshima City and JMA (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 102. Fragments 10-30 cm in diameter from a large bomb that traveled 3 km from Minamidake crater on Sakurajima were found a few days after the 4 June 2020 explosion at Aira. Courtesy of JMA, photo courtesy of Kagoshima City (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 103. An ash plume rose 3.7 km above the Minamidake crater at Aira’s Sakurajima volcano on 5 June 2020 and was recorded in Sentinel-2 satellite imagery. Image uses Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevados de Chillan (Chile) — July 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 24, Number 12 (December 1999)

Managing Editor: Richard Wunderman

Additional Reports (Unknown)

Japan: Spectra of hydrophone-detected tremor

Fuego (Guatemala)

28-29 December explosions expelled ash and a 900-m-tall plume

Galeras (Colombia)

Minor gas emissions and low seismicity, but some tornillo events

Guagua Pichincha (Ecuador)

Ongoing dome growth; lahar hazards; 1999 summary

Izalco (El Salvador)

Fumaroles active 35 years ago now emitting water vapor at 86°C

Langila (Papua New Guinea)

Intermittent eruptive activity; fine ashfall

Manam (Papua New Guinea)

Ash emissions from both craters during November

Pacaya (Guatemala)

Mid-January eruption spawns lava flow, 8-km-high plume, and evacuations

Rabaul (Papua New Guinea)

Mild Vulcanian eruptions continue from Tavurvur

Santa Ana (El Salvador)

Scientists visit the summit crater and sample the acid lake

Santa Maria (Guatemala)

Dome growth, explosions, and related processes in mid- to late 1999

Ulawun (Papua New Guinea)

White vapor emissions and low seismicity

Whakaari/White Island (New Zealand)

Report from 5 January visit by videographers



Additional Reports (Unknown) — December 1999 Citation iconCite this Report

Additional Reports

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Japan: Spectra of hydrophone-detected tremor

Robert Dziak at the NOAA/Pacific Marine Environmental Laboratory noted that loud acoustic signals continue to be detected from an unknown submarine source in or adjacent to the Volcano Islands of Japan (see sketch map in BGVN 24:11). Spectra and representative time series appear in figures 2, 3, and 4. These data were collected near the Galapagos Islands by a NOAA hydrophone (at 8°S, 95°W) roughly 14,000 km from the estimated source.

see figure caption Figure 2. Hydrophone record showing the acoustic signals detected from an inferred submarine eruption along the Bonin arc. At this time, the exact location of the volcano is uncertain. The diagram shows a ~ 2,500-second interval of the time-series amplitude (bottom) and corresponding frequency spectra (from consecutive 1-second data windows) received on a hydrophone at 10°S, 95°W. The tremor signals typically last 2-5 minutes; they display a 10 Hz fundamental with 20, 30, and 40 Hz overtones. The signals were recorded on 21 March 1999 (2100-22:00 GMT), after propagating across the Pacific through the oceanic-sound (SOFAR) channel. Similar signals were detected at hydrophone arrays in the E and NE Pacific and at remote hydrophones maintained by NOAA located near the Galapagos Islands. Courtesy of R. Dziak.
see figure caption Figure 3. This diagram shows an enlargement of the hydrophone record at 10°S, 95°W from an inferred submarine eruption along the Bonin arc. The diagram shows a ~1,000-second interval of the time-series amplitude (bottom) and the corresponding frequency spectra (top). For this interval, only the 20- and 30-Hz overtones are readily apparent (above). The signals shown arrived at the hydrophone at 2100-2200 GMT on 21 March 1999. Courtesy of R. Dziak.
see figure caption Figure 4. A spectral plot of hydrophone amplitude versus frequency from an unconfirmed submarine eruption along the Bonin arc. The spectra were produced from one of the 2-minute signal packets shown in figures 3 and 4. The plot shows a fundamental frequency centered near 10 Hz, and lower-amplitude harmonics at 20, 30, and 40 Hz. Courtesy of R. Dziak.

The extremely high-amplitude tremor signals have been detected since May 1998, and are clearly recorded on hydrophone arrays in the N and E Pacific, and at a NOAA array in the equatorial area near the Galapagos Islands. The signals are larger, for example, than those from the 1993 submarine eruption at Soccoro Island (BGVN 18:01), and consist of a high-amplitude 10-Hz fundamental and three harmonics at 20, 30, and 40 Hz . The signals are unlikely to have come from any easily envisioned synthetic or biological sources (such as whales) because the fundamental wavelengths are substantial, seemingly too long to have been generated by these types of sources.

In general, the hydrophones are deployed within the ocean-sound (SOFAR) channel. The sound channel is a region of low acoustic velocity, and therefore acts much like a waveguide, allowing sound waves in the ocean to propagate over long distances with little loss in signal strength. However, the signal can be small or even absent at some stations due to bathymetry shadowing or other effects.

According to Olivier Hyvernaud, after careful comparison with the hydroacoustical data, the signals were recognized in seismic records at Tahiti, where the French Polynesian Network commonly records the converted seismic waves of ocean-acoustic signals that propagate past the islands. However, the signals have not been recognized on seismic instruments at Iwo Jima. Although it may seem surprising that Iwo Jima would lack a signal, Dziak notes that the difference could be explained by the physics of the situation. Acoustic waves propagating through an ocean-sound channel (2-D) would undergo little attenuation. In contrast, the seismic waves propagating through the Earth's crust (3-D) undergo much greater attenuation with distance. The Bulletin continues to present hydro-acoustical data so that others may compare them with records from local instruments.

The inferred source area of these acoustic signals (see BGVN 24:11) was derived by combining the arrival times of correlated signals throughout the Pacific basin with detailed ocean sound-speed models. Ocean sound-speed is a complex function of temperature, salinity, and pressure (depth). The models are a result of 30 years of direct sampling of these ocean parameters and account for seasonal variations. Unfortunately, the source of these signals is well to the W of the hydrophone arrays; consequently, the source location is not well-constrained. The estimated source area comprises over ~1.4 x 105 km2, and the area of uncertainty (the "box" shown on the sketch map) could extend far enough east to include the known active volcanic areas such as the Bonin arc. It is hoped that as more ancillary information becomes available, it will be possible to derive a better estimate of the source location.

On the topic of volcanism along the volcanic front of the Bonin arc, Yasuo Otani of the Japanese Maritime Safety Agency noted that there are daily commercial air flights to Guam (~1,300 km S of Iwo jima).

Otani conveyed the latest observations at the two known active vents near Iwo Jima. At Fukutoku-okanoba on 25 January observers saw very small changes in water color; on 26 January they noted somewhat larger-scale changes. Around the same time, 25-26 January, Funka-asane was also the scene of discolored water.

Both Fukutoku-okanoba and Funka-asane are sufficiently shallow that the vent's flux changes can be easily seen from the surface. In fact, hydrothermal emanations and small-scale eruptions gain much attention from fishermen, who keep an eye on various local eruptive sites because they believe some eruptive phases affect fishing.

Otani expressed doubt of far-traveled geophysical signals from either of these two sources near Iwo jima. Instead, he noted, enormous acoustical noise must eminate from breakwater construction on the margin of the Bonin Islands (Ogasawara Islands), ~200 km NE of Iwo Jima, where a large-scale blasting and other heavy moving has been occurring.

Geologic Background. Reports of floating pumice from an unknown source, hydroacoustic signals, or possible eruption plumes seen in satellite imagery.

Information Contacts: Robert P. Dziak, Oregon State University/NOAA, Hatfield Marine Science Center, 2115 SE OSU Drive, Newport, OR 97365 USA (URL: http://newport.pmel.noaa.gov/); Yasuo Otani, Coastal Surveys and Cartography Division, Hydrographic Department, Maritime Safety Agency, 3-1 Tsukiji, 5-Chome, Chuo-ku, Tokyo 104-0045, Japan.


Fuego (Guatemala) — December 1999 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


28-29 December explosions expelled ash and a 900-m-tall plume

Fuego resumed eruptive activity on 21 May 1999 (BGVN 24:04). No reports are currently available to describe August through 27 December activity.

On 28-29 December observers noted weak, moderate, and some strong explosions that emitted gray ash 100-800 m S and SW of the vent. By the evening of 28 December it was possible to observe incandescent material over the crater. The rising ash formed a black column to 300-500 m altitude, blowing S. Until 1040, seismic data revealed 22 explosions, many of moderate amplitude.

Ash expulsions continued with associated earthquakes until 0915 the following day. Later in the reporting interval, the eruptive and associated seismic activity decreased with the exception of ~35 minutes on 28 December, when a black column of ash (blowing SW) continued to escape. Consistent explosions gave off gray ash in weak-to-moderate plumes; these reached up to ~900 m over the crater. Wind carried portions of the ash plume to the E, S, and SW. When strong, the explosions were audible in nearby villages such as El Parcelamiento Morelia and Aldea Panimanche. Volcano watchers chiefly saw explosions at night, when incandescent material rose over the crater.

General Reference. Chesner, C.A., and Rose, W.I., 1984, Geochemistry and evolution of the Fuego Volcanic Complex, Guatemala: JVGR, v. 21, p. 25-44.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Eddie Sánchez and Otoniel Matías, Instituto Nacional de Sismología, Vulcanología, Meteorología e Hydrología (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala.


Galeras (Colombia) — December 1999 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Minor gas emissions and low seismicity, but some tornillo events

Low-intensity seismic activity continued during November and December 1999, similar to previous months. During this period, 66 volcano-tectonic (VT) earthquakes were registered, releasing a total energy of 5.03 x 1014 ergs. The VT events occurred at depths between 0.5 and 25 km below the summit within 20 km of the active crater. The largest magnitude event (coda magnitude 2.4) occurred NE of the summit on 28 December at a depth of 19 km. Fifty-six (56) long-period events (LP) occurred during this period (compared to 19 in the previous two months) releasing 6.53 x 1014 ergs. The most remarkable aspect of this seismicity was the occurrence of 15 tornillo events with dominant frequencies between 1.6 and 1.9 Hz although some had peaks between 9 and 18 Hz.

Radon-222 emissions at soil stations located around the volcano measured values between 40 and 5,468 pCi/l, levels similar to those of previous month, with the peak value occurring at Barranco station 6 km NW of the summit.

Low-pressure, gray and white, gas emissions came from active vents. Temperature measurements taken in the Deformes fumarole at the SSW edge of the main crater registered values from 128 to 132°C.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Observatorio Vulcanológico y Sismológico de Pasto (OVSP), Carrera 31, 18-07 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Guagua Pichincha (Ecuador) — December 1999 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Ongoing dome growth; lahar hazards; 1999 summary

This report covers 25 December 1999 through 15 January 2000. The Geophysical Institute released a summary of activity for 1999 as well as a hazards map of Quito showing the likely areas where lahars might enter the city (figure 21). The lahars are expected to chiefly consist of redistributed tephra originally laid down as airfall ash deposits. The map will enable authorities to better understand the likely areas of impact so that they may create plans for lahar cleanup.

Figure (see Caption) Figure 21. A map illustrating a crucial hazard envisioned for Quito-remobilized tephra from Guagua Pichincha eruptions that travel downslope as lahars (shaded areas). Quito, particularly southern Quito, gains protection from a natural barrier formed by the intervening Ungui-El Cinto ridge (which lies along the W margin of the city, i.e. at the top of the figure). The geometry of this barrier accounts for the lack of lahar hazard zones in the southern part of the city. The original map, taken from the Instituto's web site, used color shading and a series of enlarged maps to indicate four levels of hazard (reduced here to one solid gray shading). In addition, streams on the original map appeared in blue and many thus remained distinct from the various hazard designations. Courtesy of the Geophysical Institute.

Summary of activity during 1999. Activity during 1999 can be divided into two phases: phreatic and magmatic (table 1). The phreatic phase lasted until 23 September. Besides phreatic eruptions it included seismic swarms below the crater and earthquakes felt in Quito. Other differences between the two phases appear on table 9. The largest explosions of the phreatic phase took place on 28 January, 19 and 28 February, 19 May, 28 June, and 24 August. Before July, the phreatic outbursts came from the eastern sector of the 1660 dome; afterwards the sources for the outbursts moved progressively westward, creating new cracks and craters. After August, phreatic explosions gained strength and increased in juvenile ash content, presumably corresponding to the demise of the plug within the conduit.

Table 9. Summary of seismic events during the 1999 phreatic and magmatic phases of activity. Courtesy of the Geophysical Institute.

Phase VT LP Hybrid Lloa hybrid Explosions Rockfalls Felt in Quito
Phreatic 1,710 1,266 45 7,524 178 -- 1,355
Magmatic 2,520 87,055 7 24,206 140 3,255 132

In the magmatic phase eruptions alternately caused growth and destruction of a series of numbered domes (dome 1, dome 2, etc.). The largest explosions during the magmatic phase of 1999 took place on 26 September, 5 October, 26 November, and 3 December.

During October 1999, Guagua Pichincha had the highest number of daily explosions (53) and the first substantial magmatic eruption. Between 2 and 3 October low-level seismicity prevailed, but with increased rockfalls. Slow dome growth and fewer explosions convinced authorities to return to a lower hazard status (to Yellow Alert). Then, on 5 October, came the first substantial eruption to emit juvenile ash-the resulting column rose to 18 km altitude and dispersed NE with some ash landing on Quito and the plume traveling towards Colombia. After a brief hiatus, another eruption occurred on 7 October, this time failing to drop significant ash on Quito.

Seismicity increased after 20 October, peaking during 27 October-8 November at over 3,000 earthquakes a day, in harmony with new dome growth. November surpassed other months in number of earthquakes (43,738).

The destruction of dome 2 occurred on 10 November. A corresponding decrease in seismicity followed, averaging 800 daily earthquakes. Dome 3 was destroyed on 17 November and seismicity afterwards reached 600-700 earthquakes/day. Dome 4 grew next but was subsequently destroyed on 26 November, associated with ashfall on Quito. On 1 December earthquakes reached their peak at 5,000/day. Dome 5 grew next; it was destroyed two days later on 3 December associated with ashfall on Quito. Seismicity next averaged 500 events a day and domes 6 and 7 grew and were destroyed on 10 and 17 December. After the latter event, seismicity dropped considerably, reaching averages of 30 events/day until 31 December. Visual observations, however, disclosed a new batch of magma rising comparatively aseismically, presumably because its conduit offered less resistance to flow. At the time the annual summary was prepared, dome 8 had remained intact for at least a week, possibly surviving into the new year.

Daily reports. Relatively quiet dome growth prevailed during 25 December-15 January, with most of the larger outbursts noted toward the end of this interval. For example, five to six explosions a day took place 11-13 January; their reduced displacements (RD) were under 2 cm2 and the resulting plumes rose up to 2 km above the summit. Fumarolic and less dramatic outbursts generally rose less than ~1.2 km. A helicopter-assisted visit to a geophysical station on the caldera margin revealed that the inclinometer there had suffered the impact of a ~30-cm-diameter incandescent bomb.

Volcano seismicity will be discussed in a future Bulletin report. Two shallow tectonic earthquakes, MR 3.8 and 3.1, took place on 1 and 2 January 2000; both were felt by people in N Quito; the next few days included earthquake swarms in the same region.

During the reporting interval, NOAA aviation notices of plumes were chiefly cautionary rather than announcing any large disturbances. The Embassy of Ecuador is receiving donations for the victims of the country's two volcanic crises, and will continue to do so throughout the emergency. On 1 December, El Commercio newspaper noted an issue not foreseen in the city's emergency plans that came to light after three explosions left a thin layer of airfall ash on the city. The report noted the need to regulate vehicle speeds so as to limit the amount of dust kicked up by passing vehicles.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Geophysical Institute (Instituto Geofísico), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; Embassy of Ecuador, 2535 15th Street NW, Washington, D.C. 20009 USA (URL: http://www.ecuador.org/); Washington Volcanic Ash Advisory Center, NOAA Satellite Services Division, NESDIS E/SP23, NOAA Science Center, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); El Commercio newspaper, Quito, Ecuador (URL: http://www.elcomercio.com).


Izalco (El Salvador) — December 1999 Citation iconCite this Report

Izalco

El Salvador

13.813°N, 89.633°W; summit elev. 1950 m

All times are local (unless otherwise noted)


Fumaroles active 35 years ago now emitting water vapor at 86°C

Izalco's summit crater was visited to examine the fumarole field that was the site of many geochemical and mineralogical studies in the 1960's and 1970's. The remaining fumaroles consist only of water vapor with a maximum temperature of 86°C.

Volcan de Izalco originated in 1770 A.D. on the S flank of Santa Ana volcano. Frequent Strombolian eruptions from the volcano, known as the "Lighthouse of Central America," produced a 650-m-high stratovolcano within 200 years.

Geologic Background. Volcán de Izalco, El Salvador's youngest volcano, was born in in 1770 CE on the southern flank of Santa Ana volcano. Frequent strombolian eruptions from Izalco provided a night-time beacon for ships, causing the volcano to be known as El Faro, the "Lighthouse of the Pacific." During the two centuries prior to the cessation of activity in 1966, Izalco built a steep-sided, 650-m-high stratovolcano truncated by a 250-m-wide summit crater. Izalco has been one of the most frequently active volcanoes in North America, and its sparsely vegetated slopes contrast dramatically with neighboring forested volcanoes. Izalco's dominantly basaltic-andesite pyroclasts and lava flows are geochemically distinct from those of both Santa Ana and its fissure-controlled flank vents. Lava flows were mostly erupted from flank vents and deflected southward by the slopes of Santa Ana, traveling as far as about 7 km from the summit of Izalco.

Information Contacts: Alain Bernard, BRUGEL, Université Libre de Bruxelles 160/02 50, Ave. Roosevelt, 1050 Brussels, Belgium.


Langila (Papua New Guinea) — December 1999 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Intermittent eruptive activity; fine ashfall

Intermittent Vulcanian eruptive activity at Crater 2 continued throughout November. Crater 2 released small-to- moderate volumes of gray ash clouds on 2, 4, 9-17, 20, and 25-27 November. On the 25th, two explosions produced dense convoluted ash clouds that rose ~1.5 km above the crater, resulting in fine ashfall downwind to the SSE. A bright red glow was visible on the 15th. Crater 3 was quiet throughout the month. Visual observation reports in December were only received on the 1st and 2nd. On these two days the activity at both craters was low, producing very weak volumes of white vapor. The seismograph remained unoperational.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: I. Itikarai, H.Patia, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Manam (Papua New Guinea) — December 1999 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash emissions from both craters during November

Mild eruptive activity occurred at Manam's two summit craters during the first week of November. Main Crater released occasional pale gray ash clouds accompanied by weak roaring noises during 2-4 November; no glow was visible at night. The summit was covered on the 5th and 6th. When it became clear on the 7th, it was seen emitting only weak-to-moderate volumes of white vapor. This level of emissions continued until the end of the month and throughout December.

Southern Crater released thin white vapor during the first few days of November. However, activity shifted from Main Crater on the 7th and Southern Crater released pale gray ash emissions at irregular intervals. An explosion at 1140 produced an ash cloud that rose several hundred meters above the summit, resulting in fine ashfall on the NW part of the island. Although both craters were covered by atmospheric clouds on 9th, weak roaring noises were evident. Southern Crater released small-to-moderate volumes of white vapor after 10 November through December.

Seismic activity was low during November. However, there was a slight increase in seismic amplitudes during the first week of the month. This increase coincided with the mild increase in activity observed from the two summit craters. Seismic amplitudes dropped for a while after mid-November 1999. It reached a trough in the second week of December, then began to increase again. The level was still rising at the end of the December. These observations took place within the range of normal background level.

The steady fluctuating inflation measured by the water-tube tiltmeter since July levelled off in late October. No changes were observed in November or December. There was an accumulated inflationary tilt of about 20 µrad between July and late October.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: I. Itikarai, H.Patia, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Pacaya (Guatemala) — December 1999 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Mid-January eruption spawns lava flow, 8-km-high plume, and evacuations

An INSIVUMEH report noted that Pacaya, which erupts frequently, had been relatively quiet through at least 1 September 1999. At that time its behavior was fumarolic only and tremor registered sporadically.

The rest of this report covers the interval from late December to 16 January. Anomalously large explosions took place during the days preceding 23 December, when Strombolian eruptions sent material 300-500 m high. The explosions originated in a narrow depression 50-75 m long on the upper SW flank, facing the city of Patrocinio. The activity was observed from points on the S coast. Shallow explosions created earthquakes in and around the volcano.

Atmospheric conditions remained relatively stable; a clear, calm wind blew from the N at ~35 km/hour. On 29 December weak explosions deposited rocks and fine ash over the edifice, and a constant fumarole emitted white and blue colored gases. The explosions that day created a plume 25 m high. A lava flow extended 75 m from the crater rim toward the SW, in the direction of Patrocinio. Tremor and explosions also occurred.

In January 2000, Pacaya remained restless. Otto Garcia reported that on 14 January a period of Strombolian activity began with lava flows and small explosions. Then, on 16 January, a comparatively violent explosion took place. Photographs taken from the NW (figures 25-28) showed high tephra ejections, a dark plume, and lava flows. According to NOAA reports received by Garcia, the tephra-bearing plume reached ~8-km altitude after the eruption climaxed around 2245. Winds spread tephra S and SE to the provinces of Escuintala, Siquninala, and Santa Lucia Cotz, and as far as 50 km S of the volcano. Lava fountains that rose 500-750 m above the cone were visible from Guatemala City, ~35 km N; the vigorous outburst lasted ~4 hours. In nearby villages 1,500 residents were evacuated.

Figure (see Caption) Figure 25. A powerful incandescent lava fountain rises above the summit of MacKenney cone at Pacaya on 16 January 2000. This view from the NW shows the forested flank vent Cerro Chino to the left. A dense ash column rises and is blown SW. A more vigorous phase of the eruption apparently occurred later, after dark. Courtesy of Manolo Barillas (CONRED).
Figure (see Caption) Figure 26. A daytime scene of the 16-17 January Pacaya eruption. The view is from the NW. Courtesy of Manolo Barillas (CONRED).
Figure (see Caption) Figure 27. Pacaya's fountaining seen on the night of 16-17 January 2000. The view is from the NW. Courtesy of Manolo Barillas (CONRED).
Figure (see Caption) Figure 28. Dense, billowing ash clouds from Pacaya on 16 January 2000. Cars along the road between the towns of Amatitlán and Esquintla are in the foreground. Courtesy of Manolo Barillas (CONRED).

The eruption was photogenic and appeared in numerous media reports. A CNN news report stated that by 17 January Eddie Sanchez of INSIVUMEH estimated that the lava flow had advanced 900 m down the mountain.

Tourist's photos and impressions. On the afternoon of 16 January guided tourist groups were visiting the volcano; some had ascended to an overlook when unusually energetic explosions occurred. One tourist, Gene Weast, wrote of his experience during the explosion in a brief letter that appeared on a website along with documenting photographs, including figure 29.

During the hike up the volcano, the guide cautioned the group to keep their distance from fresh lava, since such material had become larger and hotter in the last few days. Every 10 seconds an explosion from the summit sent rocks and lava 40-100 m high. As the sun began to set the explosions suddenly became louder, and chunks of lava (volcanic bombs) were thrown 0.5-1 km into the sky. Soon after the large explosions commenced, these bombs began to fall on the sides of the mountain. All of the guides and tourists ran back down the volcano and managed to escape the explosions safely.

Figure (see Caption) Figure 29. A photo of the violent 16 January 2000 explosion at Pacaya taken in the late afternoon with an 80 mm lens as the photographer stood on the rim of La Meseta, ~500 m from the summit vent. A Strombolian explosion ejected a spray of incandescent lava hundreds of meters into the air; the stream was framed by billows of dark, gray plumes that continued to rise above it. Some erupted material escaped through a notch in the MacKenney cone and formed a small lava flow that bifurcated in the lower part of the photograph. This flow headed toward the moat between the MacKenney cone and La Meseta rim. Courtesy of Gene Weast.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Eddie Sanchez and Otoniel Matias, Instituto Nacional de Sismología, Vulcanología, Meteorología e Hydrología (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala; Otto García, 7a Avenida 14-44 zona 9, Edificio La Galeria, Oficina 11, 2do. Nivel, Guatemala, Guatemala; Manolo Barillas, Coordinadora Nacional para la Reducción de Desastres (CONRED), Avenida Hincapie 21-72 zona 13, Guatemala City, Guatemala; Gene Weast, 1061 SW Western Blvd., Corvallis, OR 97333 USA; Cable News Network (CNN) (URL: http://www.cnn.com/).


Rabaul (Papua New Guinea) — December 1999 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Mild Vulcanian eruptions continue from Tavurvur

The mild Vulcanian activity at Tavurvur continued at a low level through November and December. During 1-14 November the emissions from the 1941 vent consisted mainly of small volumes of thin white vapor. Occasionally, small-to-moderate volumes of pale gray ash clouds were produced. In the early hours of 15 November, the activity changed as continuous, forceful emissions of thick, light-to-dark gray ash clouds became paramount. This pattern of activity was sustained with minor fluctuations until the 18th, accompanied by low booming and roaring noises. Emissions came from the 1941 vent and from a smaller vent on the W flank of the 1995 vent, the latter apparently becoming active on the 15th after a long period of quiescence. Also during this three day period, NW winds blew the ash clouds SSE to heights of 1-1.5 km. After the 18th, except for a mild explosion on 30 November, the low-level activity noted at the beginning of November prevailed once again and continued throughout December until the 30th when several belches of dark gray ash clouds were produced. Once again, these were blown to the SE. The 1995 lava-producing vent remained quiet.

Seismic activity was low throughout both months. About 459 low-frequency (LF) earthquakes were recorded in November but more than half of these (244) were recorded during the anomalous period of 15-18 November. Only 64 LF earthquakes were recorded in December. Both months had lower counts than the 617 recorded in October. Most of the LF earthquakes were associated with Tavurvur's summit activity of ash emissions.

Five high-frequency earthquakes were recorded in November and 11 in December. They were too small to be located in December, but the sequence of arrival times from the few stations that recorded them indicated all but two were from the NE, with one each from the E and SE. Ground deformation measurements showed a slight deflation during November with no significant change in December.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: I. Itikarai, H.Patia, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Santa Ana (El Salvador) — December 1999 Citation iconCite this Report

Santa Ana

El Salvador

13.853°N, 89.63°W; summit elev. 2381 m

All times are local (unless otherwise noted)


Scientists visit the summit crater and sample the acid lake

The acid lake within the summit crater of Santa Ana was extensively sampled by a scientific team using a small boat on 28-29 January 2000. The ambient lake temperature was ~18.9°C with 1.01 pH. A fumarole field on the crater wall adjacent to the lake had a maximum temperature of 523°C. A hot spring vent near the fumarole field feeds warm water (80°C) into the lake. This new lake sampling allows comparisons with data taken in 1992-93.

Santa Ana, El Salvador's highest volcano, is a large stratovolcano immediately W of Coatepeque Caldera. The broad volcano summit is cut by several crescent craters. A series of parasitic vents and cones have formed along a fissure system that extends from near the town of Chalchuapa N of the volcano to the San Marcelino cinder cone on the SE flank.

Geologic Background. Santa Ana, El Salvador's highest volcano, is a massive, dominantly andesitic-to-trachyandesitic stratovolcano that rises immediately W of Coatepeque caldera. Collapse of Santa Ana (also known as Ilamatepec) during the late Pleistocene produced a voluminous debris avalanche that swept into the Pacific Ocean, forming the Acajutla Peninsula. Reconstruction of the volcano subsequently filled most of the collapse scarp. The broad summit is cut by several crescentic craters, and a series of parasitic vents and cones have formed along a 20-km-long fissure system that extends from near the town of Chalchuapa NNW of the volcano to the San Marcelino and Cerro la Olla cinder cones on the SE flank. Historical activity, largely consisting of small-to-moderate explosive eruptions from both summit and flank vents, has been documented since the 16th century. The San Marcelino cinder cone on the SE flank produced a lava flow in 1722 that traveled 13 km E.

Information Contacts: Demetrio Escobar and Marisa Orantes, Centro de Investigaciones Geotecnicas, Calle Antigua La Chacra, Costado Oriente de Talleres "El Coro", PP 109 San Salvador, El Salvador; Alain Bernard, BRUGEL, Université Libre de Bruxelles 160/02 50, Ave. Roosevelt, 1050 Brussels, Belgium; Bill Rose, Colleen Riley, and Keith MacPhail, Department of Geological Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA; Uwe Grunewald, Insitut fuer Geowissenschaften, Burgweg 11, 07749 Jena, Germany.


Santa Maria (Guatemala) — December 1999 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Dome growth, explosions, and related processes in mid- to late 1999

Many dome collapses took place in late July 1999 when the Caliente crater was the scene of repeated pyroclastic flows. Ash columns rose up to ~2.5 km. Dark beige to gray-colored ash fell ~25 km S in Retalhuleu and some fine ash traveled farther still. Dome extrusions also took place; some relatively fluid lavas traveled towards the S.

When visited on 28-29 December, the volcano's activity consisted of weak explosions. Some of these explosions were accompanied by moderate rumbling, weak avalanches, and sizable, active lava flows descending the S flank. A continuous wind, ~35 km/hour, prevailed in the volcano's vicinity.

During 2137-0919 on 29-30 December observers noted four weak explosions. Two of these, at 2137 and 0419, had associated strong tremor and fine gray ash emissions that rose ~50 m and blew W. Visitors also noted a few weak avalanches.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Eddie Sánchez and Otoniel Matías, Instituto Nacional de Sismología, Vulcanología, Meteorología e Hydrología (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala.


Ulawun (Papua New Guinea) — December 1999 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


White vapor emissions and low seismicity

After the mild eruption on 19 October, in November the activity at Ulawun reverted to its usual low level, gently releasing variable amounts of vapor. Seismicity was at background levels. Activity remained low in December. Visual observation reports during 1-21 December indicated that summit activity consisted of weak-to-moderate volumes of white vapor emissions. Seismicity remained low with low-frequency earthquakes through 16 December when the seismograph became unoperational.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: I. Itikarai, H.Patia, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Whakaari/White Island (New Zealand) — December 1999 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Report from 5 January visit by videographers

The following report from Stephen and Donna O'Meara relates their visit to White Island on 5 January 2000. They spent ~2.5 hours (0845 to 1115) around and inside the active central crater complex.

On an exceptionally clear day the steam plume rose 400-600 m above sea level before strong winds blew it to the E. The source of the main wind-blown plume came from the center of the active crater complex, though steam from fumaroles near the complex's base at the W and E walls added to the steam column's thickness at times. When seen from a distance at sea, the total column thickness changed from thick to thin at roughly 15-minute intervals.

A few bubbling springs in small ravines were observed on the floor of the active central crater complex near Donald Mound. A lime-green crater lake with slightly scalloped edges filled the 1978/1990 Crater Complex. A semicircular region around the PeeJay vent area and much of the adjacent wall to the N and S was active. The entire region produced vigorously jetting gas and steam from many single vents and craters with multiple vents. Veins of steam laced the entire lake and skated across the surface in the wind. The source of the steam appeared to be not only the highly active area on the NE side of the Complex, but submerged fumaroles in and around the entire crater lake.

Activity in and around the lake did not occur simultaneously. Individual vents turned on or shut down independently. When most vigorous, jetting from the PeeJay area could be heard several hundred meters away. The plume was very acidic and gas masks were required when the winds shifted. A videotape was made of the activity on the NE side of the crater. Photographs show small changes in activity around the entire lake circumference, including changes at submerged fumaroles on the W side of the Crater Complex. Exploration of the E side of the active Crater Complex found several small mud volcanoes, powerful fumaroles, and bubbling springs.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: Stephen and Donna O'Meara, Volcano Watch International, PO Box 218, Volcano, HI 96785, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports