Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ibu (Indonesia) Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Dukono (Indonesia) Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Sabancaya (Peru) Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sheveluch (Russia) Significant explosions destroyed part of the lava-dome complex during April 2023

Bezymianny (Russia) Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Chikurachki (Russia) New explosive eruption during late January-early February 2023



Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ibu (Indonesia) — June 2023 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Persistent eruptive activity since April 2008 at Ibu, a stratovolcano on Indonesian’s Halmahera Island, has consisted of daily explosive ash emissions and plumes, along with observations of thermal anomalies (BGVN 47:04). The current eruption continued during October 2022-May 2023, described below, based on advisories issued by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), daily reports by MAGMA Indonesia (a PVMBG platform), and the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data. The Alert Level during the reporting period remained at 2 (on a scale of 1-4), except raised briefly to 3 on 27 May, and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side of the volcano.

According to MAGMA Indonesia, during October 2022-May 2023, daily gray-and-white ash plumes of variable densities rose 200-1,000 m above the summit and drifted in multiple directions. On 30 October and 11 November, plumes rose a maximum of 2 km and 1.5 km above the summit, respectively (figures 42 and 43). According to the Darwin VAAC, discrete ash emissions on 13 November rose to 2.1 km altitude, or 800 m above the summit, and drifted W, and multiple ash emissions on 15 November rose 1.4 km above the summit and drifted NE. Occasional larger ash explosions through May 2023 prompted PVMBG to issue Volcano Observatory Notice for Aviation (VONA) alerts (table 6); the Aviation Color Code remained at Orange throughout this period.

Figure (see Caption) Figure 42. Larger explosion from Ibu’s summit crater on 30 October 2022 that generated a plume that rose 2 km above the summit. Photo has been color corrected. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 43. Larger explosion from Ibu’s summit crater on 11 November 2022 that generated a plume that rose 1.5 km above the summit. Courtesy of MAGMA Indonesia.

Table 6. Volcano Observatory Notice for Aviation (VONA) ash plume alerts for Ibu issued by PVMBG during October 2022-May 2023. Maximum height above the summit was estimated by a ground observer. VONAs in January-May 2023 all described the ash plumes as dense.

Date Time (local) Max height above summit Direction
17 Oct 2022 0858 800 m SW
18 Oct 2022 1425 800 m S
19 Oct 2022 2017 600 m SW
21 Oct 2022 0916 800 m NW
16 Jan 2023 1959 600 m NE
22 Jan 2023 0942 1,000 m E
29 Jan 2023 2138 1,000 m E
10 May 2023 0940 800 m NW
10 May 2023 2035 600 m E
21 May 2023 2021 600 m W
21 May 2023 2140 1,000 m W
29 May 2023 1342 800 m N
31 May 2023 1011 1,000 m SW

Sentinel-2 L1C satellite images throughout the reporting period show two, sometimes three persistent thermal anomalies in the summit crater, with the most prominent hotspot from the top of a cone within the crater. Clear views were more common during March-April 2023, when a vent and lava flows on the NE flank of the intra-crater cone could be distinguished (figure 44). White-to-grayish emissions were also observed during brief periods when weather clouds allowed clear views.

Figure (see Caption) Figure 44. Sentinel-2 L2A satellite images of Ibu on 10 April 2023. The central cone within the summit crater (1.3 km diameter) and lava flows (gray) can be seen in the true color image (left, bands 4, 3, 2). Thermal anomalies from the small crater of the intra-crater cone, a NE-flank vent, and the end of the lava flow are apparent in the infrared image (right, bands 12, 11, 8A). Courtesy of Copernicus Browser.

The MIROVA space-based volcano hotspot detection system recorded almost daily thermal anomalies throughout the reporting period, though cloud cover often interfered with detections. Data from imaging spectroradiometers aboard NASA’s Aqua and Terra satellites and processed using the MODVOLC algorithm (MODIS-MODVOLC) recorded hotspots on one day during October 2022 and December 2022, two days in April 2023, three days in November 2022 and May 2023, and four days in March 2023.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Dukono (Indonesia) — June 2023 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Dukono, a remote volcano on Indonesia’s Halmahera Island, has been erupting continuously since 1933, with frequent ash explosions and sulfur dioxide plumes (BGVN 46:11, 47:10). This activity continued during October 2022 through May 2023, based on reports from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG; also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data. During this period, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone. The highest reported plume of the period reached 9.4 km above the summit on 14 November 2022.

According to MAGMA Indonesia (a platform developed by PVMBG), white, gray, or dark plumes of variable densities were observed almost every day during the reporting period, except when fog obscured the volcano (figure 33). Plumes generally rose 25-450 m above the summit, but rose as high as 700-800 m on several days, somewhat lower than the maximum heights reached earlier in 2022 when plumes reached as high as 1 km. However, the Darwin VAAC reported that on 14 November 2022, a discrete ash plume rose 9.4 km above the summit (10.7 km altitude), accompanied by a strong hotspot and a sulfur dioxide signal observed in satellite imagery; a continuous ash plume that day and through the 15th rose to 2.1-2.4 km altitude and drifted NE.

Figure (see Caption) Figure 33. Webcam photo of a gas-and-steam plume rising from Dukono on the morning of 28 January 2023. Courtesy of MAGMA Indonesia.

Sentinel-2 images were obscured by weather clouds almost every viewing day during the reporting period. However, the few reasonably clear images showed a hotspot and white or gray emissions and plumes. Strong SO2 plumes from Dukono were present on many days during October 2022-May 2023, as detected using the TROPOMI instrument on the Sentinel-5P satellite (figure 34).

Figure (see Caption) Figure 34. A strong SO2 signal from Dukono on 23 April 2023 was the most extensive plume detected during the reporting period. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the N-flank Gunung Mamuya cone. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — May 2023 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sabancaya is located in Peru, NE of Ampato and SE of Hualca Hualca. Eruptions date back to 1750 and have been characterized by explosions, phreatic activity, ash plumes, and ashfall. The current eruption period began in November 2016 and has more recently consisted of daily explosions, gas-and-ash plumes, and thermal activity (BGVN 47:11). This report updates activity during November 2022 through April 2023 using information from Instituto Geophysico del Peru (IGP) that use weekly activity reports and various satellite data.

Intermittent low-to-moderate power thermal anomalies were reported by the MIROVA project during November 2022 through April 2023 (figure 119). There were few short gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. According to data recorded by the MODVOLC thermal algorithm, there were a total of eight thermal hotspots: three in November 2022, three in February 2023, one in March, and one in April. On clear weather days, some of this thermal anomaly was visible in infrared satellite imagery showing the active lava dome in the summit crater (figure 120). Almost daily moderate-to-strong sulfur dioxide plumes were recorded during the reporting period by the TROPOMI instrument on the Sentinel-5P satellite (figure 121). Many of these plumes exceeded 2 Dobson Units (DU) and drifted in multiple directions.

Figure (see Caption) Figure 119. Intermittent low-to-moderate thermal anomalies were detected during November 2022 through April 2023 at Sabancaya, as shown in this MIROVA graph (Log Radiative Power). There were brief gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. Courtesy of MIROVA.
Figure (see Caption) Figure 120. Infrared (bands 12, 11, 8A) satellite images showed a constant thermal anomaly in the summit crater of Sabancaya on 14 January 2023 (top left), 28 February 2023 (top right), 5 March 2023 (bottom left), and 19 April 2023 (bottom right), represented by the active lava dome. Sometimes gas-and-steam and ash emissions also accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 121. Moderate-to-strong sulfur dioxide plumes were detected almost every day, rising from Sabancaya by the TROPOMI instrument on the Sentinel-5P satellite throughout the reporting period; the DU (Dobson Unit) density values were often greater than 2. Plumes from 23 November 2022 (top left), 26 December 2022 (top middle), 10 January 2023 (top right), 15 February 2023 (bottom left), 13 March 2023 (bottom middle), and 21 April 2023 (bottom right) that drifted SW, SW, W, SE, W, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

IGP reported that moderate activity during November and December 2022 continued; during November, an average number of explosions were reported each week: 30, 33, 36, and 35, and during December, it was 32, 40, 47, 52, and 67. Gas-and-ash plumes in November rose 3-3.5 km above the summit and drifted E, NE, SE, S, N, W, and SW. During December the gas-and-ash plumes rose 2-4 km above the summit and drifted in different directions. There were 1,259 volcanic earthquakes recorded during November and 1,693 during December. Seismicity also included volcano-tectonic-type events that indicate rock fracturing events. Slight inflation was observed in the N part of the volcano near Hualca Hualca (4 km N). Thermal activity was frequently reported in the crater at the active lava dome (figure 120).

Explosive activity continued during January and February 2023. The average number of explosions were reported each week during January (51, 50, 60, and 59) and February (43, 54, 51, and 50). Gas-and-ash plumes rose 1.6-2.9 km above the summit and drifted NW, SW, and W during January and rose 1.4-2.8 above the summit and drifted W, SW, E, SE, N, S, NW, and NE during February. IGP also detected 1,881 volcanic earthquakes during January and 1,661 during February. VT-type earthquakes were also reported. Minor inflation persisted near Hualca Hualca. Satellite imagery showed continuous thermal activity in the crater at the lava dome (figure 120).

During March, the average number of explosions each week was 46, 48, 31, 35, and 22 and during April, it was 29, 41, 31, and 27. Accompanying gas-and-ash plumes rose 1.7-2.6 km above the summit crater and drifted W, SW, NW, S, and SE during March. According to a Buenos Aires Volcano Ash Advisory Center (VAAC) notice, on 22 March at 1800 through 23 March an ash plume rose to 7 km altitude and drifted NW. By 0430 an ash plume rose to 7.6 km altitude and drifted W. On 24 and 26 March continuous ash emissions rose to 7.3 km altitude and drifted SW and on 28 March ash emissions rose to 7.6 km altitude. During April, gas-and-ash plumes rose 1.6-2.5 km above the summit and drifted W, SW, S, NW, NE, and E. Frequent volcanic earthquakes were recorded, with 1,828 in March and 1,077 in April, in addition to VT-type events. Thermal activity continued to be reported in the summit crater at the lava dome (figure 120).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Centro Vulcanológico Nacional (CENVUL), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Sheveluch (Russia) — May 2023 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Significant explosions destroyed part of the lava-dome complex during April 2023

Sheveluch (also spelled Shiveluch) in Kamchatka, has had at least 60 large eruptions during the last 10,000 years. The summit is truncated by a broad 9-km-wide caldera that is breached to the S, and many lava domes occur on the outer flanks. The lava dome complex was constructed within the large open caldera. Frequent collapses of the dome complex have produced debris avalanches; the resulting deposits cover much of the caldera floor. A major south-flank collapse during a 1964 Plinian explosion produced a scarp in which a “Young Sheveluch” dome began to form in 1980. Repeated episodes of dome formation and destruction since then have produced major and minor ash plumes, pyroclastic flows, block-and-ash flows, and “whaleback domes” of spine-like extrusions in 1993 and 2020 (BGVN 45:11). The current eruption period began in August 1999 and has more recently consisted of lava dome growth, explosions, ash plumes, and avalanches (BGVN 48:01). This report covers a significant explosive eruption during early-to-mid-April 2023 that generated a 20 km altitude ash plume, produced a strong sulfur dioxide plume, and destroyed part of the lava-dome complex; activity described during January through April 2023 use information primarily from the Kamchatka Volcanic Eruptions Response Team (KVERT) and various satellite data.

Satellite data. Activity during the majority of this reporting period was characterized by continued lava dome growth, strong fumarole activity, explosions, and hot avalanches. According to the MODVOLC Thermal Alerts System, 140 hotspots were detected through the reporting period, with 33 recorded in January 2023, 29 in February, 44 in March, and 34 in April. Frequent strong thermal activity was recorded during January 2023 through April, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph and resulted from the continuously growing lava dome (figure 94). A slightly stronger pulse in thermal activity was detected in early-to-mid-April, which represented the significant eruption that destroyed part of the lava-dome complex. Thermal anomalies were also visible in infrared satellite imagery at the summit crater (figure 95).

Figure (see Caption) Figure 94. Strong and frequent thermal activity was detected at Sheveluch during January through April 2023, according to this MIROVA graph (Log Radiative Power). These thermal anomalies represented the continuously growing lava dome and frequent hot avalanches that affected the flanks. During early-to-mid-April a slightly stronger pulse represented the notable explosive eruption. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite imagery showed persistent thermal anomalies at the lava dome of Sheveluch on 14 January 2023 (top left), 26 February 2023 (top right), and 15 March 2023 (bottom left). The true color image on 12 April 2023 (bottom right) showed a strong ash plume that drifted SW; this activity was a result of the strong explosive eruption during 11-12 April 2023. Courtesy of Copernicus Browser.

During January 2023 KVERT reported continued growth of the lava dome, accompanied by strong fumarolic activity, incandescence from the lava dome, explosions, ash plumes, and avalanches. Satellite data showed a daily thermal anomaly over the volcano. Video data showed ash plumes associated with collapses at the dome that generated avalanches that in turn produced ash plumes rising to 3.5 km altitude and drifting 40 km W on 4 January and rising to 7-7.5 km altitude and drifting 15 km SW on 5 January. A gas-and-steam plume containing some ash that was associated with avalanches rose to 5-6 km altitude and extended 52-92 km W on 7 January. Explosions that same day produced ash plumes that rose to 7-7.5 km altitude and drifted 10 km W. According to a Volcano Observatory Notice for Aviation (VONA) issued at 1344 on 19 January, explosions produced an ash cloud that was 15 x 25 km in size and rose to 9.6-10 km altitude, drifting 21-25 km W; as a result, the Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). Another VONA issued at 1635 reported that no more ash plumes were observed, and the ACC was lowered to Orange (the second highest level on a four-color scale). On 22 January an ash plume from collapses and avalanches rose to 5 km altitude and drifted 25 km NE and SW; ash plumes associated with collapses extended 70 km NE on 27 and 31 January.

Lava dome growth, fumarolic activity, dome incandescence, and occasional explosions and avalanches continued during February and March. A daily thermal anomaly was visible in satellite data. Explosions on 1 February generated ash plumes that rose to 6.3-6.5 km altitude and extended 15 km NE. Video data showed an ash cloud from avalanches rising to 5.5 km altitude and drifting 5 km SE on 2 February. Satellite data showed gas-and-steam plumes containing some ash rose to 5-5.5 km altitude and drifted 68-110 km ENE and NE on 6 February, to 4.5-5 km altitude and drifted 35 km WNW on 22 February, and to 3.7-4 km altitude and drifted 47 km NE on 28 February. Scientists from the Kamchatka Volcanological Station (KVS) went on a field excursion on 25 February to document the growing lava dome, and although it was cloudy most of the day, nighttime incandescence was visible. Satellite data showed an ash plume extending up to 118 km E during 4-5 March. Video data from 1150 showed an ash cloud from avalanches rose to 3.7-5.5 km altitude and drifted 5-10 km ENE and E on 5 March. On 11 March an ash plume drifted 62 km E. On 27 March ash plumes rose to 3.5 km altitude and drifted 100 km E. Avalanches and constant incandescence at the lava dome was focused on the E and NE slopes on 28 March. A gas-and-steam plume containing some ash rose to 3.5 km altitude and moved 40 km E on 29 March. Ash plumes on 30 March rose to 3.5-3.7 km altitude and drifted 70 km NE.

Similar activity continued during April, with lava dome growth, strong fumarolic activity, incandescence in the dome, occasional explosions, and avalanches. A thermal anomaly persisted throughout the month. During 1-4 April weak ash plumes rose to 2.5-3 km altitude and extended 13-65 km SE and E.

Activity during 11 April 2023. The Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS) reported a significant increase in seismicity around 0054 on 11 April, as reported by strong explosions detected on 11 April beginning at 0110 that sent ash plumes up to 7-10 km altitude and extended 100-435 km W, WNW, NNW, WSW, and SW. According to a Tokyo VAAC report the ash plume rose to 15.8 km altitude. By 0158 the plume extended over a 75 x 100 km area. According to an IVS FEB RAS report, the eruptive column was not vertical: the initial plume at 0120 on 11 April deviated to the NNE, at 0000 on 12 April, it drifted NW, and by 1900 it drifted SW. KVS reported that significant pulses of activity occurred at around 0200, 0320, and then a stronger phase around 0600. Levin Dmitry took a video from near Békés (3 km away) at around 0600 showing a rising plume; he also reported that a pyroclastic flow traveled across the road behind him as he left the area. According to IVS FEB RAS, the pyroclastic flow traveled several kilometers SSE, stopping a few hundred meters from a bridge on the road between Klyuchi and Petropavlovsk-Kamchatsky.

Ashfall was first observed in Klyuchi (45 km SW) at 0630, and a large, black ash plume blocked light by 0700. At 0729 KVERT issued a Volcano Observatory Notice for Aviation (VONA) raising the Aviation Color Code to Red (the highest level on a four-color scale). It also stated that a large ash plume had risen to 10 km altitude and drifted 100 km W. Near-constant lightning strikes were reported in the plume and sounds like thunderclaps were heard until about 1000. According to IVS FEB RAS the cloud was 200 km long and 76 km wide by 0830, and was spreading W at altitudes of 6-12 km. In the Klyuchi Village, the layer of both ash and snow reached 8.5 cm (figure 96); ashfall was also reported in Kozyrevsk (112 km SW) at 0930, Mayskoye, Anavgay, Atlasovo, Lazo, and Esso. Residents in Klyuchi reported continued darkness and ashfall at 1100. In some areas, ashfall was 6 cm deep and some residents reported dirty water coming from their plumbing. According to IVS FEB RAS, an ash cloud at 1150 rose to 5-20 km altitude and was 400 km long and 250 km wide, extending W. A VONA issued at 1155 reported that ash had risen to 10 km and drifted 340 km NNW and 240 km WSW. According to Simon Carn (Michigan Technological University), about 0.2 Tg of sulfur dioxide in the plume was measured in a satellite image from the TROPOMI instrument on the Sentinel-5P satellite acquired at 1343 that covered an area of about 189,000 km2 (figure 97). Satellite data at 1748 showed an ash plume that rose to 8 km altitude and drifted 430 km WSW and S, according to a VONA.

Figure (see Caption) Figure 96. Photo of ash deposited in Klyuchi village on 11 April 2023 by the eruption of Sheveluch. About 8.5 cm of ash was measured. Courtesy of Kam 24 News Agency.
Figure (see Caption) Figure 97. A strong sulfur dioxide plume from the 11 April 2023 eruption at Sheveluch was visible in satellite data from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of Simon Carn, MTU.

Activity during 12-15 April 2023. On 12 April at 0730 satellite images showed ash plumes rose to 7-8 km altitude and extended 600 km SW, 1,050 km ESE, and 1,300-3,000 km E. By 1710 that day, the explosions weakened. According to news sources, the ash-and-gas plumes drifted E toward the Aleutian Islands and reached the Gulf of Alaska by 13 April, causing flight disruptions. More than 100 flights involving Alaska airspace were cancelled due to the plume. Satellite data showed ash plumes rising to 4-5.5 km altitude and drifted 400-415 km SE and ESE on 13 April. KVS volcanologists observed the pyroclastic flow deposits and noted that steam rose from downed, smoldering trees. They also noted that the deposits were thin with very few large fragments, which differed from previous flows. The ash clouds traveled across the Pacific Ocean. Flight cancellations were also reported in NW Canada (British Columbia) during 13-14 April. During 14-15 April ash plumes rose to 6 km altitude and drifted 700 km NW.

Alaskan flight schedules were mostly back to normal by 15 April, with only minor delays and far less cancellations; a few cancellations continued to be reported in Canada. Clear weather on 15 April showed that most of the previous lava-dome complex was gone and a new crater roughly 1 km in diameter was observed (figure 98); gas-and-steam emissions were rising from this crater. Evidence suggested that there had been a directed blast to the SE, and pyroclastic flows traveled more than 20 km. An ash plume rose to 4.5-5.2 km altitude and drifted 93-870 km NW on 15 April.

Figure (see Caption) Figure 98. A comparison of the crater at Sheveluch showing the previous lava dome (top) taken on 29 November 2022 and a large crater in place of the dome (bottom) due to strong explosions during 10-13 April 2023, accompanied by gas-and-ash plumes. The bottom photo was taken on 15 April 2023. Photos has been color corrected. Both photos are courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Activity during 16-30 April 2023. Resuspended ash was lifted by the wind from the slopes and rose to 4 km altitude and drifted 224 km NW on 17 April. KVERT reported a plume of resuspended ash from the activity during 10-13 April on 19 April that rose to 3.5-4 km altitude and drifted 146-204 km WNW. During 21-22 April a plume stretched over the Scandinavian Peninsula. A gas-and-steam plume containing some ash rose to 3-3.5 km altitude and drifted 60 km SE on 30 April. A possible new lava dome was visible on the W slope of the volcano on 29-30 April (figure 99); satellite data showed two thermal anomalies, a bright one over the existing lava dome and a weaker one over the possible new one.

Figure (see Caption) Figure 99. Photo showing new lava dome growth at Sheveluch after a previous explosion destroyed much of the complex, accompanied by a white gas-and-steam plume. Photo has been color corrected. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

References. Girina, O., Loupian, E., Horvath, A., Melnikov, D., Manevich, A., Nuzhdaev, A., Bril, A., Ozerov, A., Kramareva, L., Sorokin, A., 2023, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, ??????????? ???????? ??? ?? ???????, 20(2).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Kam 24 News Agency, 683032, Kamchatka Territory, Petropavlovsk-Kamchatsky, Vysotnaya St., 2A (URL: https://kam24.ru/news/main/20230411/96657.html#.Cj5Jrky6.dpuf); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Bezymianny (Russia) — May 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Bezymianny is located on the Kamchatka Peninsula of Russia as part of the Klyuchevskoy volcano group. Historic eruptions began in 1955 and have been characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. During the 1955-56 eruption a large open crater was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. The current eruption period began in December 2016 and more recent activity has consisted of strong explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023, based on weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during November and March 2023 was relatively low and mostly consisted of gas-and-steam emissions, occasional small collapses that generated avalanches along the lava dome slopes, and a persistent thermal anomaly over the volcano that was observed in satellite data on clear weather days. According to the Tokyo VAAC and KVERT, an explosion produced an ash plume that rose to 6 km altitude and drifted 25 km NE at 1825 on 29 March.

Gas-and-steam emissions, collapses generating avalanches, and thermal activity continued during April. According to two Volcano Observatory Notice for Aviation (VONA) issued on 2 and 6 April (local time) ash plumes rose to 3 km and 3.5-3.8 km altitude and drifted 35 km E and 140 km E, respectively. Satellite data from KVERT showed weak ash plumes extending up to 550 km E on 2 and 5-6 April.

A VONA issued at 0843 on 7 April described an ash plume that rose to 4.5-5 km altitude and drifted 250 km ESE. Later that day at 1326 satellite data showed an ash plume that rose to 5.5-6 km altitude and drifted 150 km ESE. A satellite image from 1600 showed an ash plume extending as far as 230 km ESE; KVERT noted that ash emissions were intensifying, likely due to avalanches from the growing lava dome. The Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). At 1520 satellite data showed an ash plume rising to 5-5.5 km altitude and drifting 230 km ESE. That same day, Kamchatka Volcanological Station (KVS) volcanologists traveled to Ambon to collect ash; they reported that a notable eruption began at 1730, and within 20 minutes a large ash plume rose to 10 km altitude and drifted NW. KVERT reported that the strong explosive phase began at 1738. Video and satellite data taken at 1738 showed an ash plume that rose to 10-12 km altitude and drifted up to 2,800 km SE and E. Explosions were clearly audible 20 km away for 90 minutes, according to KVS. Significant amounts of ash fell at the Apakhonchich station, which turned the snow gray; ash continued to fall until the morning of 8 April. In a VONA issued at 0906 on 8 April, KVERT stated that the explosive eruption had ended; ash plumes had drifted 2,000 km E. The ACC was lowered to Orange (the third highest level on a four-color scale). The KVS team saw a lava flow on the active dome once the conditions were clear that same day (figure 53). On 20 April lava dome extrusion was reported; lava flows were noted on the flanks of the dome, and according to KVERT satellite data, a thermal anomaly was observed in the area. The ACC was lowered to Yellow (the second lowest on a four-color scale).

Figure (see Caption) Figure 53. Photo showing an active lava flow descending the SE flank of Bezymianny from the lava dome on 8 April 2023. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Satellite data showed an increase in thermal activity beginning in early April 2023. A total of 31 thermal hotspots were detected by the MODVOLC thermal algorithm on 4, 5, 7, and 12 April 2023. The elevated thermal activity resulted from an increase in explosive activity and the start of an active lava flow. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data also showed a pulse in thermal activity during the same time (figure 54). Infrared satellite imagery captured a continuous thermal anomaly at the summit crater, often accompanied by white gas-and-steam emissions (figure 55). On 4 April 2023 an active lava flow was observed descending the SE flank.

Figure (see Caption) Figure 54. Intermittent and low-power thermal anomalies were detected at Bezymianny during December 2022 through mid-March 2023, according to this MIROVA graph (Log Radiative Power). In early April 2023, an increase in explosive activity and eruption of a lava flow resulted in a marked increase in thermal activity. Courtesy of MIROVA.
Figure (see Caption) Figure 55. Infrared satellite images of Bezymianny showed a persistent thermal anomaly over the lava dome on 18 November 2022 (top left), 28 December 2022 (top right), 15 March 2023 (bottom left), and 4 April 2023 (bottom right), often accompanied by white gas-and-steam plumes. On 4 April a lava flow was active and descending the SE flank. Images using infrared (bands 12, 11, 8a). Courtesy of Copernicus Browser.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Chikurachki (Russia) — May 2023 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


New explosive eruption during late January-early February 2023

Chikurachki, located on Paramushir Island in the northern Kuriles, has had Plinian eruptions during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. Reported eruptions date back to 1690, with the most recent eruption period occurring during January through October 2022, characterized by occasional explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers a new eruptive period during January through February 2023 that consisted of ash explosions and ash plumes, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

According to reports from KVERT, an explosive eruption began around 0630 on 29 January. Explosions generated ash plumes that rose to 3-3.5 km altitude and drifted 6-75 km SE and E, based on satellite data. As a result, the Aviation Color Code (ACC) was raised to Orange (the second highest level on a four-color scale). At 1406 and 1720 ash plumes were identified in satellite images that rose to 4.3 km altitude and extended 70 km E. By 2320 the ash plume had dissipated. A thermal anomaly was visible at the volcano on 31 January, according to a satellite image, and an ash plume was observed drifting 66 km NE.

Occasional explosions and ash plumes continued during early February. At 0850 on 1 February an ash plume rose to 3.5 km altitude and drifted 35 km NE. Satellite data showed an ash plume that rose to 3.2-3.5 km altitude and drifted 50 km NE at 1222 later that day (figure 22). A thermal anomaly was detected over the volcano during 5-6 February and ash plumes drifted as far as 125 km SE, E, and NE. Explosive events were reported at 0330 on 6 February that produced ash plumes rising to 4-4.5 km altitude and drifting 72-90 km N, NE, and ENE. KVERT noted that the last gas-and steam plume that contained some ash was observed on 8 February and drifted 55 km NE before the explosive eruption ended. The ACC was lowered to Yellow and then Green (the lowest level on a four-color scale) on 18 February.

Figure (see Caption) Figure 22. Satellite image showing a true color view of a strong ash plume rising above Chikurachki on 1 February 2023. The plume drifted NE and ash deposits (dark brown-to-gray) are visible on the NE flank due to explosive activity. Courtesy of Copernicus Browser.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 25, Number 07 (July 2000)

Managing Editor: Richard Wunderman

Apoyo (Nicaragua)

Tectonic seismicity between Apoyo and Masaya in July 2000

Arenal (Costa Rica)

Larger-than-average pyroclastic flow engulfs three people on 23 August

Fournaise, Piton de la (France)

Eruptions in February, March, June, and July 2000

Langila (Papua New Guinea)

Forceful ash emissions on 5 and 9 April rise 1-2 km

Manam (Papua New Guinea)

An increase in activity at Southern Crater 3-4 June

Masaya (Nicaragua)

Summary of activity; nearby M 5.4 earthquake at 1 km focal depth on 6 July

Miyakejima (Japan)

Robust, multifaceted eruptions from new summit crater

Obituary Notices (Unknown)

Deaths of two volcanologists (Asep Mukti and Wildan) at Semeru

Popocatepetl (Mexico)

Ash plumes, minor ashfalls, and mudflows during 15 June-22 August

Rabaul (Papua New Guinea)

Two periods of increased summit explosive activity in June

Semeru (Indonesia)

Ongoing eruptive activity; 27 July explosion causes injuries and two fatalities

Tungurahua (Ecuador)

January-July volcanism possibly decreased; lava fountains and many lahars

Ulawun (Papua New Guinea)

Vapor emissions during May and June; moderate seismicity in June

Whakaari/White Island (New Zealand)

New crater formed on 27 July during the largest eruption in about 20 years



Apoyo (Nicaragua) — July 2000 Citation iconCite this Report

Apoyo

Nicaragua

11.92°N, 86.03°W; summit elev. 600 m

All times are local (unless otherwise noted)


Tectonic seismicity between Apoyo and Masaya in July 2000

[The following was originally included within the Masaya report, not as a stand-alone report about Apoyo.]

July 2000 seismicity near Masaya and Laguna de Apoyo. During July 2000 there were over 300 earthquakes near Laguna de Apoyo (Apoyo volcano) and Masaya. The earthquakes, determined to be of tectonic rather than volcanic origin, caused surficial damage at both volcanoes.

At 1329 on 6 July a small M 2 earthquake occurred near the N rim of Laguna de Apoyo that was followed at 1330 by a M 5.4 earthquake (figure 1). It was located ~32 km SE of Managua, at 11.96°N, 86.02°E, with a focal depth less than 1 km (figure 2). The earthquake was felt in most of Nicaragua and was most strongly felt in the cities of Managua (Modified Mercalli V-VI) and Masaya (VI), and in the region near Laguna de Apoyo (maximum intensity of VII or VIII). The earthquake caused numerous landslides down the volcano's crater walls and surface faulting was observed. In towns located in the epicentral zone, trees and electric lines fell and many houses were partially or totally destroyed. About 70 people were injured and four children were killed by collapsing walls or roofs of homes. At Masaya volcano, ~8 km from the epicenter, there were minor collapses of Santiago crater's walls. No change in degassing was observed at the volcano.

Figure (see Caption) Figure 1. Seismogram showing the M 2 and M 5.4 earthquakes near the Masaya volcano station on 6 July 2000. Courtesy of INETER.
Figure (see Caption) Figure 2. Epicenters near Masaya for the M 5.4 earthquake on 6 July, and the M 4.8 earthquake on 25 July 2000 (stars). The aftershocks from these earthquakes are also shown (small circles). Courtesy of INETER.

Immediately after the earthquake there were many smaller, shallow earthquakes in a zone that includes the area between Masaya, Laguna de Apoyo, and W of Granada (figure 2). In the epicentral zone property was destroyed, cracks opened in the ground, landslides occurred, and trees fell. Several landslides occurred at the edges and steep walls of Laguna de Apoyo. A large number of earthquakes continued until 10 July (figure 3 and table 1). The number of earthquakes then diminished until 1554 on 25 July when a M 4.8 earthquake took place, initiating a series of smaller earthquakes that lasted until about 27 July.

Figure (see Caption) Figure 3. Graph showing the number of earthquakes in the Masaya region between 4 and 30 July 2000. Courtesy of INETER.

Table 1. A summary of earthquakes in vicinity of Masaya and Laguna de Apoyo in early July 2000. Courtesy of INETER.

Date Time Number of daily earthquakes Maximum magnitude
07 Jul 2000 1330 180 5.2
08 Jul 2000 1100 70 3.8
09 Jul 2000 1200 81 3.6
10 Jul 2000 1800 27 3.1
11 Jul 2000 1800 6 3.3
13 Jul 2000 1800 16 2.8

The July earthquakes were the most destructive seismic events since the 1972 Managua earthquake. The epicentral zone of the July 2000 earthquakes correlates with the same active zones of past earthquakes, which are caused by fault movement between the Cocos and Caribbean plates.

Geologic Background. The scenic 7-km-wide, lake-filled Apoyo caldera is a large silicic volcanic center immediately SE of Masaya caldera. The surface of Laguna de Apoyo lies only 78 m above sea level; the steep caldera walls rise about 100 m to the eastern rim and up to 500 m to the western rim. An early shield volcano constructed of basaltic-to-andesitic lava flows and small rhyodacitic lava domes collapsed following two major dacitic explosive eruptions. The caldera-forming eruptions have been radiocarbon dated between about 21,000-25,000 years before present. Post-caldera ring-fracture eruptions of uncertain age produced lava flows below the scalloped caldera rim. The slightly arcuate, N-S-trending La Joya fracture system that cuts the eastern flank of the caldera only 2 km east of the caldera rim is a younger regional fissure system structurally unrelated to Apoyo caldera.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Arenal (Costa Rica) — July 2000 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Larger-than-average pyroclastic flow engulfs three people on 23 August

During January to July 2000 Arenal's outbursts generally remained low but included frequent pyroclastic explosions, gas emissions, and avalanches. In late August explosions spawned a pyroclastic flow that injured three people several kilometers from the crater; two later died. Three days later a small airplane crashed into the volcano.

In January through parts of June crater C continued its usual activities, consisting of a constant gas emission, sporadic Strombolian eruptions, and occasional incandescent avalanches. Crater D exhibited fumarolic activity. The lava continued to flow variously toward the NNE, E, SE flanks. The NE and SE flank were continually affected by acid rain and pyroclastic material that contributed to the destruction of the vegetation on these flanks, resulting in major erosion that created small avalanches on the rivers Calle de Arenas, Manolo, Guillermina, and Agua Caliente.

The EDM network (established along the subradial lines) continued to show an average annual contraction of 7-10 ppm. The dry inclinometers ("dry tilt") showed variations in the radial component, deflation at ~5 µrad per year.

During the last half of April and throughout May eruptive activity increased, but few ash columns rose to ~500 m over crater C. The columns of ash were carried by the predominating winds toward the NW and SE flank causing both acid rain and ash fall. In May a narrow channel of lava began to flow toward the NNE flank. It later widened into a fan burning vegetation on the N and NE flanks.

From April to May the seismometer detected an increase in both number of eruptions and the hours of tremor. On 16 May two MR 3 earthquakes were recorded and located on the flanks of the volcano at 2 and 5 km from the summit. These earthquakes were reported to be felt in La Fortuna, 6.5 km NE of the volcano.

Eruptive activity remained low in June; few eruption clouds rose more than 500 m over crater C. In July crater C continued with the emission of gases, lava flows, sporadic Strombolian eruptions, and occasional pyroclastic flows. The eruptive activity increased in July with respect to June, although the number of eruptions, their intensity, and the quantity of pyroclastic material ejected remained low.

In August Arenal became more active and underwent a series of explosions. One began at 0945 on 23 August; mutiple pyroclastic flows came down the volcano's NE side (figure 89) as a series of pulses. Pulses occurred at 0955, 0956, and 0958. The most important pulse occurred at 1001 and continued for six minutes. Two more pulses followed at 1008 and 1012. For the next two hours activity returned to normal, but at 1323 a new series of explosions began. At 1336 a pyroclastic flow began and lasted for ten minutes. Various pulses descended the NNE flank. Normal low-level activity resumed 19 hours after the afternoon explosions.

Figure (see Caption) Figure 89. A map of Arenal and vicinity showing the distribution of deposits from the 23 August pyroclastic flows (N-directed swath of dark-gray color). The light gray shows the lava field formed by past eruptions. Courtesy of Rafael Barquero (OSIVAM).

News reports. One of the pyroclastic flows on 23 August engulfed a Costa Rican tour guide and two tourists from the United States. OVSICORI-UNA stated that the victims were burnt by the front of the flow ~2.3 km from the crater. According to a local volcanologist, the flow was traveling at 80 km/hour at that point.

The three victims were sent to San José to be treated for their burns and injuries. On the night of 23 August the tour guide died in the hospital. An 8-year-old girl from Massachusetts died on 6 September as a result of her burns.

The National Emergency Commission (NEC) ordered evacuations of the tourist centers of Los Lagos, the Tabacón hot springs and resort, Hotel Montaña del Fuego, Arenal Lodge, and other areas. The NEC and Red Cross workers evacuated 600 tourists and residents and closed the route around the volcano to Tilarán. On 24 August the volcano returned to its normal behavior. The 23 August explosive eruptions were believed to be the strongest since the deadly 1968 eruption.

On 26 August a ten-passenger airplane crashed into the NE flank ~200 m below the summit. All of the occupants died. The cause of the crash is unknown at this point and no further details are available.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Oficina de Sismología y Vulcanología del Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica; The Tico Times (URL: http://www.ticotimes.net/); La Nacion (URL: http://www.nacion.co.cr/).


Piton de la Fournaise (France) — July 2000 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptions in February, March, June, and July 2000

During 14 February to 4 March 2000 an eruption occurred at Piton de la Fournaise that was briefly mentioned in a previous report (BGVN 25:01) and is discussed here in more detail. After 4 March through May, there was no volcanic activity and seismicity was low with 1-2 events per month. On 23 June volcanism recommenced with an eruption that lasted more than a month.

Eruption of 14 February 2000. Three and a half months after its previous eruption (BGVN 24:09), Piton de la Fournaise erupted on 14 February. Throughout January, seismicity was well above normal levels until the beginning of February when a relative lull in seismicity lasted for two weeks (figure 50). At 2314 on 13 February a seismic crisis began that lasted 64 minutes. A total of 261 earthquakes occurred with magnitudes up to 1.9. The deepest events were localized at sea level, just below Dolomieu summit crater (figure 51).

Figure (see Caption) Figure 50. Seismic events at Piton de la Fournaise during December 1999- February 2000 shown as a series of five day averages. Heightened activity occurred through January, and a relative lull in activity occurred two weeks prior to the eruption on 14 February. Seismic information was not available for the beginning of the eruption (February 14-24). Courtesy of OVPDLF.
Figure (see Caption) Figure 51. Map of the N flank of Piton de la Fournaise showing the lava flows from the 14 February 2000 eruption (black), fissure vents (white lines within the flow), and the major features associated with the flow. Note Dolomieu summit crater at lower edge of the map. Courtesy of OVPDLF.

On 13 February, three minutes after the beginning of the seismic crisis, the first significant variations in deformation were recorded at 2317 and 2320, on radial and tangential components, respectively, by the "Dolomieu Sud" tiltmeter station. After initial deformation was observed, tiltmeter and extensometer stations at "Soufriere," "Bory," "Tunnel Catherine," and "Flanc Est" (figure 52) registered variations, with up to 270 µrad recorded for the "Soufriere tiltmeter" radial component. The intrusion of magma caused inflation under the summit crater. The inflation center started S of Dolomieu summit crater, migrated below Dolomieu, and then traveled to the N flank of the volcano where several vents opened (figure 53). At 0018 on 14 February, tremors registered at all of the seismic stations marking the beginning of the eruption.

Figure (see Caption) Figure 52. Map showing the location of radon, deformation, magnetic, and seismic stations on Piton de la Fournaise in February 2000. Courtesy of OVPDLF.
Figure (see Caption) Figure 53. During the 14 February 2000 eruption at Piton de la Fournaise the center of inflation migrated. The incenter of inflation was calculated on 5-minute intervals and plotted on this sketch map. The center of inflation was estimted based on the shift of deformation vectors over time. Courtesy of OVPDLF.

Inclement weather produced by cylone Eline passing 200 km N of Reunion inhibited visual observations for several days. After that, scientists found that several en echelon fissures were localized on the N flank starting at 2,490 m elevation (white lines within black lava flows, figure 53). An aa flow inundated the "Puy Mi-Côte" crater, passed to the W and E of the crater, and continued in the direction of "Piton Partage." Both vents were inactive at the time of observation. Eruptive activity was concentrated on a vent 300 m E of Puy Mi-Côte, where stable 20- to 30-m-high fountains were observed from a new crater, whose rim grew to 20 m high at that time. A second, much smaller crater was active about 100 m above the main crater. A large aa lava flow and meter-sized blocks descended in the direction of "Piton Kapor" (site of the 1998 eruption), then joined the first lava flow and followed the "rempart Fouqué" to the E. This lava flow terminated about 4 km away at 1,950 m altitude near "Nez Coupé de Saint Rose." Beginning on 24 February a large number of small pahoehoe lava flows were observed. For several hours on 4 March a large number of gas-piston events were observed and then at 1800 tremor stopped, marking the end of the eruption.

Retrospective analysis revealed that the initial aa lava flow represented most of the erupted material. The lava was particularly irregular with scoria that ranged in size from tens of centimeters to meter-sized blocks. Pahoehoe flows from the 24 February phase of the eruption partly covered the aa lava that was emitted earlier. The entire lava flow covered an area of about 1.3 x 106 m2 and comprised a total volume of about 4 x 106 m3 of aphyric basalt. The main new crater was called "Piton Célimène" (figure 53).

Eruption of 23 June 2000. Beginning in June, long-term deformation was observed at several stations near the volcano. Since the beginning of the month up to 0.1 mm of inflation took place at the "Soufrière" extensometer (figure 52). Starting on 12 June clear inflation of up to 70 µrad was observed at the "Dolomieu Sud" tiltmeter. After 20 June inflation of up to 20 µrad was observed at the "Château Fort" tiltmeter. The Château Fort extensometer showed variations in opening, shear, and vertical movement components.

Seismicity increased during 9-14 June with twelve deep earthquakes ~6 km below the W flank. During 15-21 June seismicity drastically increased with 2, 2, 4, 10, 29, 69, and 101 earthquakes recorded on successive days (figure 54). All of these earthquakes occurred below Dolomieu summit crater, with focal depths between sea level and 1 km above sea level. They had magnitudes up to 1.8 that increased with the number of earthquakes recorded. During the same time period, five deep earthquakes also occurred.

Figure (see Caption) Figure 54. The number of daily seismic events recorded at two seismic stations at Piton de la Fournaise during 1 June through 6 July 2000. Courtesy of OVPDLF.

During 0600-0640 on 22 June, following 50 seismic events, there was a small seismic crisis that consisted of 36 low-energy seismic events. For 36 hours after the seismic crisis only very low-energy earthquakes occurred. At 1650 on 23 June another seismic crisis took place (figure 54). It consisted of about 300 earthquakes, including some greater than M 2 and possibly as high as M 2.5. Some of the earthquakes were recorded at the seismic station in Cilaos, more than 30 km from the volcano.

During the seismic crisis one shallow earthquake was centered under the E flank of the volcano. Around this time the observatory's tiltmeter network showed uplift of the central part of the volcano to over 200 µrad. The inferred effect of an intrusion was first localized under the summit region, then shifted to the SE. At 1800 eruption tremor began, and tremor localization suggested the eruption site was on the SE flank between "Signal de l' Enclose" and "Château Fort" craters between 1.9 and 2.2 km elevation. Figure 55 shows these named locations and the actual fissure vent and extent of lava flows.

Figure (see Caption) Figure 55. Map and image composite of the 23 June 2000 lava flows on the E flank of Piton de la Fournaise. Courtesy of OVPDLF.

According to the observatory staff, the 23 June eruption began with the formation of a short-lived, 500-m-long, SE-trending fissure on the SE flank at an elevation of ~2,100 m (figure 55). A second, 200-m-long, ESE trending vent also formed on the SE flank at ~1,800 m. About eight lava fountains initially rose up to 50 m above the second vent. In addition, a 300-m-long aa lava flow traveled down the "Grandes Pentes" to an elevation of 580 m. About two days after the eruption began, the intensity of the lava fountains decreased, and the crater rim reached a height of 10-15 m.

Within 24 hours after the onset of the eruption, tremor rapidly decreased to less than 10% of the initial value. Unlike typical eruptions at Piton de la Fournaise, seismicity under the central crater continued for the first five days of the eruption. During 24-28 June there were 26, 22, 17, 17 and six seismic events, respectively, up to M 2.5. Similar seismic events occurred during eruptions in 1986, 1988, and 1998; in two cases they preceded the formation of new vents. However, no new vents formed during 24-28 June. After 29 June no seismic events were recorded, and starting on 27 June there was an increase in tremors that remained around initial levels and lasted three weeks. Throughout most of the eruption there was a lava lake in the eruption crater and several meter-sized lava flows emerged at its base reaching up to 300-400 m below the crater. Lava samples were collected during the eruption, and a lava temperature of 1,160°C was measured several times using a thermocouple.

On 30 July the eruption stopped after 37 days of activity. The initial flow was entirely aa lava, while the later outspreading lava flows were aa and pahoehoe lava. The entire lava flow covered an area of ~3 x 102 m2 and comprised a total volume of ~1 x 107 m3. The final crater was 26 m high and was named "Piton Pârvédi."

Geologic Background. Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three scarps formed at about 250,000, 65,000, and less than 5,000 years ago by progressive eastward slumping, leaving caldera-sized embayments open to the E and SE. Numerous pyroclastic cones are present on the floor of the scarps and their outer flanks. Most recorded eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest scarp, which is about 9 km wide and about 13 km from the western wall to the ocean on the E side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures outside the scarps.

Information Contacts: Thomas Staudacher, Nicolas Villeneuve, Jean Louis Cheminée, Kei Aki, Jean Battaglia, Philippe Catherine, Valérie Ferrazzini, and Philippe Kowalski, Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, Institut National des Sciences de l'Univers, 14 RN3 - Km 27, 97418 La Plaine des Cafres, Réunion, France (URL: http://www.ipgp.fr/fr/ovpf/observatoire-volcanologique-piton-de-fournaise).


Langila (Papua New Guinea) — July 2000 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Forceful ash emissions on 5 and 9 April rise 1-2 km

This report covers April through June 2000. Activity remained at a low level in April. From visual observation reports received only up to 9 April, Crater 2 periodically gently released moderate to thick ash clouds. However, on 5 and 9 April, the ash clouds were released more forcefully and with rumbling sounds. These ash clouds rose 1-2 km above the summit before being blown SE. Crater 3 released light white vapor throughout the month.

Visual observations were next reported after 16 June. Crater 2 produced thick, white ash clouds in moderate volume. On 23 and 24 June, these clouds were accompanied by blue vapor. On 16 and 18 June, rumbling noises were heard. Crater 3 was inactive in June with the exception of a weak trail of thin white vapor escaping on 16 June.

The seismograph remained non-operational throughout the entire reporting period.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Manam (Papua New Guinea) — July 2000 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


An increase in activity at Southern Crater 3-4 June

This report covers April-June 2000. Inflation that began in January 2000 (BGVN 25:03) peaked in early April. By mid-April the water-tube tiltmeter 4 km SW of the summit detected a 2.5 µrad decrease in tilt. By the end of April the tilt had recovered 1.5 µrad. Emissions from both the summit craters, Main and Southern, consisted of gentle releases of light to moderate volumes of white vapor. Seismicity remained low with the number of events ranging from 500 to 1,200 events a day. Seismic amplitude measurements were steady at background levels.

During May, Manam continued to produce varying amounts of white vapor from both craters. Rabaul Volcanic Observatory (RVO) characterized the seismicity as normal. Tiltmeter readings showed no particular trend.

Throughout June, Main Crater released light to moderate volumes of white vapor. However, during 3-4 June, Southern crater increased in activity.

At 1235 on 3 June, an explosive eruption produced thick, dark ash clouds and produced fine-ash and scoria deposits at Yassa village, W of the summit. The ash clouds reached an altitude of 1-1.2 km. The initial explosion was followed by light to moderate release of ash. At 0004 on 4 June, booming sounds lasting 1-2 minutes were accompanied by the ejection of glowing lava fragments. These fragments fell in the SW valley and had free fall times (FFT) of 5-10 s. Some weak to low fluctuating night time glows were visible during the intervals between lava fragment ejections. Prior to and after the events of 3-4 June, Southern crater produced light amounts of white vapor.

Although there were no water-tiltmeter readings after 19 June, the values taken 4 km S of the crater showed an inflation of 10 µrad from 1-19 June. Since December 1999, there has been an overall inflation of 16 µrad. There were no seismic readings during 1-10 June. Low-level seismicity the remainder of the month had counts ranging from 600-1,360 a day. Seismic amplitude measurements were relatively steady at normal background levels.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Masaya (Nicaragua) — July 2000 Citation iconCite this Report

Masaya

Nicaragua

11.9844°N, 86.1688°W; summit elev. 594 m

All times are local (unless otherwise noted)


Summary of activity; nearby M 5.4 earthquake at 1 km focal depth on 6 July

Since the last report on Masaya, of continued degassing and marked gravity decreases (BGVN 24:04), there have been sporadic reports about its activity, which are summarized below prior to discussion of a nearby M 5.4 earthquake on 6 July 2000.

Reports of ash-and-steam emissions. Between November 1999 and January 2000 there were several reports from the Washington VAAC of ash-and-steam emissions from Masaya. On 22 November 1999 the VAAC reported that GOES-8 imagery suggested that Masaya may have awakened. Satellite imagery showed activity at or very near Masaya, including a plume of ash or "smoke" moving to the WSW, and a hotspot that was visible for over two hours. At about 1600 the imagery suggested that an explosion may have occurred and by 1615 the resultant plume was at ~800 m (near Masaya's summit), and had been blown WSW.

On 22 December 1999 the Washington VAAC issued an ash advisory stating that a continuous low-level plume was being emitted from Masaya. Volcanic activity was confirmed by INETER who noted that seismic activity was consistent with ash emissions. The cloud was ~2 km in altitude and was blown to the WSW.

On 18 January 2000 the VAAC reported that GOES-8 imagery through 0845 detected a low-level thin ash plume from Masaya's summit. The plume reached an altitude of ~900 m, was blown to the SW, and rapidly dissipated.

Seismic activity during April 1999-March 2000. Seismic activity at the volcano remained low with eight microearthquakes registered for the month. The RSAM (seismic tremor) stayed at ~30 units. During the first two weeks of April the RSAM signal was not obtained due to technical problems in the seismic power station. On 23 April two explosions were detected by RSAM, which were confirmed by observers at the Masaya Volcano National Park. In that case, RSAM began to show a small increase until 0800, and an hour later the two explosions occurred.

May 1999: The number of microearthquakes was 21 for the month. The RSAM stayed at ~24 units. June: The number of microearthquakes was 18 for the month. The RSAM stayed at ~24 units. August: The number of microearthquakes was 47 for the month. The RSAM remained at ~40 units. Constant gas emissions occurred. September: The number of microearthquakes was 87 for the month. The RSAM stayed constant at ~40 units. Constant gas emissions occurred. October: The number of microearthquakes was 22 for the month. The RSAM stayed constant at ~20 units. Constant gas emissions occurred. November: There were 49 microearthquakes for the month. The RSAM stayed constant. Constant gas emissions occurred. December: Twenty one earthquakes were registered for the month. The RSAM stayed constant.

January 2000: Eleven earthquakes were registered for the month. The RSAM stayed constant. At 1145 on 6 January an explosion occurred in Santiago crater. February: Six microearthquakes and the RSAM remained constant. March: There were three microearthquakes for the month. The RSAM was at a similar level as the previous month.

July 2000 seismicity near Masaya and Laguna de Apoyo. During July 2000 there were over 300 earthquakes near Laguna de Apoyo (Apoyo volcano) and Masaya. The earthquakes, determined to be of tectonic rather than volcanic origin, caused surficial damage at both volcanoes.

At 1329 on 6 July a small M 2 earthquake occurred near the N rim of Laguna de Apoyo that was followed at 1330 by a M 5.4 earthquake (figure 10). It was located ~32 km SE of Managua, at 11.96°N, 86.02°E, with a focal depth less than 1 km (figure 11). The earthquake was felt in most of Nicaragua and was most strongly felt in the cities of Managua (Modified Mercalli V-VI) and Masaya (VI), and in the region near Laguna de Apoyo (maximum intensity of VII or VIII). The earthquake caused numerous landslides down the volcano's crater walls and surface faulting was observed. In towns located in the epicentral zone, trees and electric lines fell and many houses were partially or totally destroyed. About 70 people were injured and four children were killed by collapsing walls or roofs of homes. At Masaya volcano, ~8 km from the epicenter, there were minor collapses of Santiago crater's walls. No change in degassing was observed at the volcano.

Figure (see Caption) Figure 10. Seismogram showing the M 2 and M 5.4 earthquakes near the Masaya volcano station on 6 July 2000. Courtesy of INETER.
Figure (see Caption) Figure 11. Epicenters near Masaya for the M 5.4 earthquake on 6 July, and the M 4.8 earthquake on 25 July 2000 (stars). The aftershocks from these earthquakes are also shown (small circles). Courtesy of INETER.

Immediately after the earthquake there were many smaller, shallow earthquakes in a zone that includes the area between Masaya, Laguna de Apoyo, and W of Granada (figure 11). In the epicentral zone property was destroyed, cracks opened in the ground, landslides occurred, and trees fell. Several landslides occurred at the edges and steep walls of Laguna de Apoyo. A large number of earthquakes continued until 10 July (figure 12 and table 2). The number of earthquakes then diminished until 1554 on 25 July when a M 4.8 earthquake took place, initiating a series of smaller earthquakes that lasted until about 27 July.

Figure (see Caption) Figure 12. Graph showing the number of earthquakes in the Masaya region between 4 and 30 July 2000. Courtesy of INETER.

Table 2. A summary of earthquakes in vicinity of Masaya and Laguna de Apoyo in early July 2000. Courtesy of INETER.

Date Time Number of daily earthquakes Maximum magnitude
07 Jul 2000 1330 180 5.2
08 Jul 2000 1100 70 3.8
09 Jul 2000 1200 81 3.6
10 Jul 2000 1800 27 3.1
11 Jul 2000 1800 6 3.3
13 Jul 2000 1800 16 2.8

The July earthquakes were the most destructive seismic events since the 1972 Managua earthquake. The epicentral zone of the July 2000 earthquakes correlates with the same active zones of past earthquakes, which are caused by fault movement between the Cocos and Caribbean plates.

Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).


Miyakejima (Japan) — July 2000 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Robust, multifaceted eruptions from new summit crater

This report covers the period 8 July-31 August 2000, an interval marked by strong outbursts, spectacular plumes, pyroclastic flows, ashfalls, and a remarkable series of concentric crater collapses that followed the initial crater collapse on 8 July 2000 (figures 6 and 7). Striking ash-column photos, some marked with azimuthal angles and calculated plume heights, appear on Japanese-language websites (see below).

Figure (see Caption) Figure 6. An oblique aerial view of Miyake-jima's pre-eruption summit; the sketched-in curve indicates the area of the collapse on 8 July 2000. That area is sub-circular in plan view (figure 7) and has a diameter of ~ 0.9 km. View is looking NNE. Courtesy of Tokyo Metropolitan Islands Promotion Corporation.
Figure (see Caption) Figure 7. Map of Miyake-jima's active summit crater documenting the crater's expansion during July and August 2000. The margins were drawn from aerial photos taken on the specified dates. The progression was thought to be closely linked with summit deflation; this deflation had been detected since the end of June and accelerated on 8 July. Large dots indicate the locations of a series of small migrating vents seen in the crater during 10-26 August. From the website of K. F. Fujita.

Continuous deflation at the summit had been recorded since the end of June. However, on 8 July the deflation accelerated. Following 4 days of earthquake swarms under the summit, at 1841 on 8 July, a small, phreatic explosion sent a cloud to 800 m above the summit (BGVN 25:07). This explosion lasted several minutes. At the same time, a large pit crater formed with a diameter of ~800-1,000 m and a depth of 100-200 m. A small amount of ash was ejected but was not comparable to the volume of the depression. Red ash and cinder deposits from this eruption were estimated to amount to less than 1 x 106 m3. The volume of collapse was estimated at 50 x 106 m3. No scoriae or any other juvenile material was found. The rapid deflation is thought to have formed as the result of "drain-back" of magma that had intruded near the surface. This appears to have been the catalyst for the explosion.

After the 8 July explosion, tiltmeters recorded periods of sudden inflation. Inflations were preceded and accompanied by long-period earthquakes located less than 2 km below the surface. The intervals of inflation and earthquakes were followed by continued steady deflation. This cycle repeated itself approximately every 12 hours from the 8 July eruption to 23 July.

Following a series of foreshocks, at 1601 on 1 July a Mb 6.1 earthquake struck near Kozu-shima Island, NW of Miyake-jima. This was followed on 14 July by a M 5.3 earthquake off the coast of Miyake-jima. At about 0400, shortly after the earthquake, a phreatic eruption occurred. Thick layers of ash were deposited on the N and E parts of the islands. This eruption continued until about 1300 on 15 July. Photographs taken by Asahi News Network (ANN) on the afternoon of 14 July showed that the 8 July crater had expanded to a diameter of 1,000 m and a depth of 400 m. Observers looking at the bottom of the 8 July crater saw small phreatic explosions yielding plumes with convoluted and scrolled shapes (reminiscent of cock's tails); these originated from a new pit crater that was ~100 m in diameter. The volume of ash from this eruption was estimated to be less than 10 x 106 m3. The volume of collapse was estimated at 200 x 106 m3.

Measurements in early August showed that the collapsed crater had enlarged to a diameter of 1.4 km and a depth of 450 m. According to The Japan Times, an eruption on 10 August produced a plume that rose 3 km above the summit and deposited ash over the NE section of the island. Yukio Hayakawa reported that small pyroclastic flows accompanied this event. After 10 August, phreatic explosions occurred intermittently. Figure 7 shows the progressive expansion of the crater associated with the deflation. GPS measurements made at four stations around the summit indicated continued summit deflation, including during the explosion on 18 August.

At 1700 on 18 August, a large phreatic eruption occurred. This was the largest eruption since activity began on 26 June 2000. Yukio Hayakawa reported small pyroclastic flows. According to articles by the Associated Press and Reuters, white clouds rising to 8 km above the summit were encountered by a commercial airline pilot who was in route from Guam to Narita airport in Tokyo. The plane, which was flying over the island of Miyake shortly after the eruption, later landed safely at Narita. Aviation contacts later revealed that while in flight a commercial airliner encountered airborne ash and underwent a dual-engine flame-out, but managed to land safely. The airliner sustained ~$4 million (US dollars) in damage.

Ash fall was reported to be heaviest on the western part of the island, but ash in the NW sector accumulated up to 15 cm thick as far as 3 km from the crater (figure 8). Ballistics, which included basaltic bombs, were ejected at the end of the eruption and were deposited in a uniform, radial pattern around the crater (figure 9). On the W slope of the volcano, 2-m-diameter ballistics destroyed roofs of cowsheds and formed craters in the meadows. To the SE, there were reports of broken car windows and cinders 5 cm in diameter at the airport. It is uncertain whether these ballistics were juvenile material.

Figure (see Caption) Figure 8. Isopach map of ash-fall deposits from Miyake-jima's eruption on 18 August 2000. Courtesy of Joint University Research Group, Geological Survey of Japan.
Figure (see Caption) Figure 9. Isopleth map of ballistics from Miyake-jima's eruption on 18 August 2000. Courtesy of Joint University Research Group, Geological Survey of Japan.

Although several lower plume-height observations and estimates were made, for example by aviators, one based on a photograph of the actively rising ash column indicated that the 18 August plume rose to at least 15 km. Laser radar (lidar) provided additional constraints on the height of airborne volcanic aerosols at distance from the volcano, detecting them on 23 August at 16 and 17.5 km altitude. More details follow.

For the 18 August eruption, lidar data collected by Takashi Shibata established these values at Nagoya, Japan (35°N, 137°E, on S Honshu Island, 290 km SE of the volcano) around 2100 on 23 August: backscatter ratio at 532 nm, 1.1; depolarization ratio at 532 nm, 5%; plume height, 16 km; and plume width, 100 km.

On 23 August the lidar instrument run by Motowo Fujiwara and Kouichi Shiraishi in Fukuoka (33.5°N, 130.4°E, on NW Kyushu Island, 850 km W of the volcano) detected a thin aerosol layer. Their measurement took place over an interval that began at 0013 and extended over the next hour and a half. They detected relatively strong scattering in the lower stratosphere and found these values: peak backscatter ratio at 532 nm, 1.20-1.25; depolarization ratio at 532 nm, 8-15%; layer height, 17.5 km; and layer width, 1 km. The cited height corresponds to the peak (strongest effect) of the layer; this altitude was ~1.7 km above the tropopause observed by Fukuoka Meteorological Observatory at 2100 on 22 August. Fujiwara and Shiraishi suggested aerosols might have come from Miyake-jima, specifically its eruption at 1702 on 18 August. The Meteorological Observatory reported that during the period from 18-21 August the wind direction around the layer height (17-18 km) changed from ENE to SSE (i.e., basically easterly) and its speed changed from 3 to 7 m/s. These easterly winds further suggested that the lidar-detected aerosol layer originated from a Miyake-jima eruption.

Observations made on 20 August by Osamu Oshima of the University of Tokyo revealed 3 small cones with open pits inside the summit crater, multiple mudflows from the crater pits onto the crater floor, and step faults that crossed new ash layers. He interpreted the step faults to indicate continued subsistence of the crater floor.

The Tokyo VAAC reported three small eruptions at Miyake-jima on 28 August. The eruption clouds reached respective heights of about 5.8, 3.8, and 5 km. On 29 August at 0430, Miyake-jima erupted vigorously again; according to the Eruption Committee this was the second-largest outburst of the recent eruptive episode (the most vigorous being the 18 August eruption). There were two pyroclastic flows, one to the NE that extended 5 km to the sea, and one to the SW that extended for 3 km. The pyroclastic flows contained large amounts of HCl, unlike those of 18 August. The eruption was theorized to be the result of either the collapse of an unstable hydrothermal system or contact between magma and meteoric water inside the volcano. Photos of the pyroclastic flows appeared on the internet (see references).

According to an article by the Associated Press and the Japanese news agency Asahi Shimbun, on 29 August all students, teachers, and school officials on Miyake-jima were evacuated to Tokyo, and all remaining residents of the island were ordered to evacuate. Residents who had not yet left the island as of 31 August were being housed in shelters due to the threat of mudslides produced by thick ash and rain.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1,100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2,500 years ago. Numerous craters and vents, including maars near the coast and radially oriented fissure vents, are present on the flanks. Frequent eruptions have been recorded since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469 CE, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit crater was slowly formed by subsidence during an eruption in 2000.

Information Contacts: Miyake-jima Meterological Observatory and Volcanological Division; Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Akihiko Tomiya, Geological Survey of Japan, 1-1-3 Higashi, Ibaraki, Tsukuba 305, Japan (URL: https://www.gsj.jp/); Setsuya Nakada, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Takashi Shibata, STEL, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Yukio Hayakawa, Faculty of Education, Gunma University, Aramaki, Maebashi 371, Japan (URL: http://www.hayakawayukio.jp/); Motowo Fujiwara and Kouichi Shiraishi, Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonann-ku, Fukuoka 814-0180, Japan; U.S. Geological Survey, Reston, VA, USA (URL: http://www.usgs.gov); The Japan Times, 5-4, Shibaura 4-chome, Minato-ku, Tokyo 108-0023 (URL: http://www.japantimes.co.jp/); Asahi Shimbun (URL: http://www.asahi.com/english/english.html); Associated Press; Reuters.


Obituary Notices (Unknown) — July 2000 Citation iconCite this Report

Obituary Notices

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Deaths of two volcanologists (Asep Mukti and Wildan) at Semeru

An explosion at Semeru on 27 July 2000 took the lives of two dedicated Volcanological Survey of Indonesia (VSI) staff members, Wildan and Mukti. Asep Wildan was born in Bandung and a graduate of the physics department at the Institute of Technology Bandung. He worked with VSI since 1993, most recently as a geophysicist in VSI's Eastern Java section where he investigated volcano seismology at Semeru and other volcanoes in East Java and Bali. He is survived by his wife and young daughter.

Mukti was born in the city of Banyuwangi on the eastern tip of Java. A high-school graduate, he served with VSI since 1990 in the capacity of volcano observer and was posted at Semeru. He is survived by his mother. Efforts are underway to work with VSI to provide economic assistance for the families of Wildan and Mukti.

Asep Wildan and Mukti made important contributions to VSI's volcano research and monitoring programs, and both had, in the past, generously provided vital assistance to international researchers working at Semeru. They will be greatly missed by their many Indonesian and international friends and colleagues.

Geologic Background. Obituary notices for volcanologists are sometimes written when scientists are killed during an eruption or have had a special relationship with the Global Volcanism Program.

Information Contacts:


Popocatepetl (Mexico) — July 2000 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Ash plumes, minor ashfalls, and mudflows during 15 June-22 August

This report covers the period form 15 June to 22 August 2000. The highest ash column in this period rose to over 5 km above the summit.

Throughout most of the reporting period, activity remained stable with periodic exhalations of small amplitude and duration. However, two small mudflows were reported: one on 23 June and the other on 24 June. According to CENAPRED, the mudflow on 24 June did not reach any human settlements. No information was available concerning the 23 June mudflow.

On 3 July, two small exhalations generated ash clouds that reached 1 and 2.5 km above the summit and ash fell over the volcano's SW sector. On 4 July, ash from a small exhalation fell in Tetela, a town ~15 km SW of the crater. On 14 July, the volcano erupted and produced an ash cloud that reached 1.6 km in height. According to the Associated Press (AP), the ash from this eruption was blown N and did not significantly impact any populated regions surrounding the volcano.

On 4 August, two closely spaced explosive eruptions occurred. The first at 1251, a moderately large exhalation, lasted 2 minutes. The second one occurred at 1255 and lasted 1.5 minutes. The resulting ash cloud rose to greater than 5 km above the volcano. Ash reportedly fell in nearby communities (Atlautla, San Juan Tehuixtitlan, San Pedro Nexapa, Amecameca, and Tenango).

At 0910 on 10 August, Popocatépetl erupted again. Ash reached to 3.5 km above the volcano. The ash clouds traveled to the W. A second eruption was visible in GOES 8 imagery. It was expected that nearby Mexican states would be coated with a thin layer of ash. At 19:15 on 23 August, a moderate exhalation produced ashfall in the nearby communities of San Pedro Nexapa and Amecameca (~12 km NW and ~16 km NW of the summit, respectively). Throughout the rest of the reporting period there were exhalations of low intensity and short duration that mainly involved gas with small amounts of ash.

Several volcano-tectonic earthquakes, ranging in magnitude from 1.7 to 2.3, occurred during the month of July. The first of these was on 2 July. It was followed by earthquakes on 6, 8, 9, 11, 15, and 23 of July. Three volcano-tectonic earthquakes occurred on 20 July, all under M 2.5. On 1 August, three more tectonic earthquakes were recorded, M 1.9 - 2.7. Other earthquakes occurred on 5 and 10 August; both were less than M 2.

Popocatépetl's volcanic hazard level remained at yellow. CENAPRED recommended that all visitors remain 7 km or more from the crater.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: The National Center of the Prevention of Disasters (CENAPRED) (URL: https://www.gob.mx/cenapred/); Discovery.com (URL: http://www.discovery.com); Washington VAAC (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Volcano World (URL: http://volcano.oregonstate.edu).


Rabaul (Papua New Guinea) — July 2000 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Two periods of increased summit explosive activity in June

This report covers the period April-June 2000. During mid-April, the inflationary trend that began in February 2000 tapered off (BGVN 25:03). However, the realtime GPS system, along with electronic and water tilt data, continued to indicate a long-term inflation trend.

Emissions from the 1941 vent were characterized by thin, white vapor throughout the months of April and May. The 1995 vent was free of vapor emissions except for gentle puffs of grey ash-clouds on 5, 14-16, and 28-30 April, and 5 and 30 May. During April, these ash clouds rose several hundred meters above the summit before being blown to the W, NW, and SW. Towards the end of May, the general haze produced began to contain a weak ash component and there was a strong smell of SO2.

In April, a single high-frequency earthquake was recorded and located NE of the caldera wall. Low-frequency earthquakes continued to occur throughout April and were related to the eruptive activity associated with Tavurvur (figure 35). The number of these earthquakes fluctuated within background levels. There was a significant decrease in the number of trigger counts from 78 in February and 90 in March to 28 in April. The number rose again in May to 64. However, it should be noted that these trigger counts include only events that trigger two or more stations. The count that includes non-triggered events (seismic events that do not trigger more than one station) is much higher. On 15 and 30 April, bands of sub-continuous, 2-3 hour long, non-harmonic tremor were recorded.

Figure (see Caption) Figure 35. Map of Rabaul caldera showing locations of volcanic vents, selected towns, and features (modified from Almond and McKee, 1982).

For most of May, seismic activity was low. The exception was a ~M 4.8 earthquake that occurred at 1649 on 10 May and was centered 30 km NE of Rabaul. This produced several aftershocks; a total of 95 high-frequency triggered events were recorded on this date. Because of the proximity of these events to the established 'NE earthquake zone,' which is associated with ongoing eruptive activity, there was an expectation that higher levels of summit activity would occur at Tavurvur.

In June, 13 high-frequency events were recorded. Most originated NE of the Rabaul caldera. The S-P interval for these events was 1-4 seconds. Earthquakes occurring in this region have apparently been associated with the ongoing eruptive activity that began on 28 November 1995. A total of 185 low-frequency triggered events were recorded in June. Most of these events were related to explosions during two episodes of ashfall, one on 5 June and the other on 28 June. In addition, quasi-monochromatic volcanic tremor with durations ranging from a few minutes to a few hours were recorded during these periods. An increase in low- frequency non-triggered events was noted before each of the two episodes.

The 5 and 28 June episodes were characterized by moderate ashfall that emanated from Tavurvur. The first episode began on 5 June with a Vulcanian eruption that deposited lithic blocks beyond the crater rim. Through 8 June there was moderate-to-heavy ashfall. On 6 June at 1150 a loud explosion occurred at the 1941 vent. This was followed by increased explosive activity until the afternoon of 7 June when explosions occurred at 30-minute intervals. The explosion clouds contained moderate amounts of ash and rose to about 1.0-1.5 km above the summit. These ash clouds were blown such that they deposited ash towards the N, NE, and NW where Rabaul Town is located. By 8 June, the explosions had subsided to occasional emissions of light-to-moderate white vapor. For the following two weeks, the areas to the N, NE, and NW were continuosly blanketed in a thin fog of white vapor from Tavurvur.

At 0527(?) on 28 June, another explosion from the 1941 vent triggered the second period of light-to-moderate ashfall. The explosion was followed immediately by a dark grey ash cloud that rose to 1.5 km above the summit before being blown to the N and NW. Over the next two days, further ash clouds were produced that attained heights of several hundred meters. Discrete explosions, occurring at long intervals, marked the end of this period of activity. The last explosion occurred on 30 June.

Beginning in early May, electronic and wet-tilt measurements showed a downward tilt with a total deflation of ~9.0 µrad throughout May and June. However, an inflation of 4.0 µrad was recorded before the activity of 5-8 June and 5.5 µrad was recorded before the 27-30 June activity.

The low-lying Rabaul caldera forms a sheltered harbor once utilized by New Britain's largest city Rabaul prior to the 1994 eruption, which forced the abandonment of the city. Tavurvur and Vulcan are two eruption centers within the Rabaul caldera complex. These volcanoes have had virtually simultaneous eruptions in 1878, 1937, and 1994.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ima Itikarai, David Lolok, Herman Patia, and Steve Saunders, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Semeru (Indonesia) — July 2000 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ongoing eruptive activity; 27 July explosion causes injuries and two fatalities

Semeru has been undergoing nearly constant eruptive activity since 1967. Volcanological Survey of Indonesia (VSI) reports through mid-September 1999 (BGVN 24:09) and earlier described seismicity (including seismically detected pyroclastic flows) and ongoing eruptive outbursts. Accessible Darwin VAAC reports since 3 June 1998 help to characterize the long-term eruptive patterns (table 3). VSI reports are not available for September 1999 through January 2000.

Table 3. A summary of aviation reports (Volcanic Ash Advisories) describing Semeru's plumes during 3 June 1998-21 August 2000. The first two columns describe the time and date when a report was issued. Time entries with commas signify that multiple reports were generated with similar comments. Where available, the time of the observations appear with the comment. Dash marks indicate lack of mention in report. Note that for plume heights, Semeru's summit lies at 3,676 m above sea level. Information sources include air reports (for example, routed via airlines, AIREPS), pilot reports (PIREPS), Notice to Airmen (NOTAM), satellite data, and reports from ground observations. Source data was provided by the Darwin VAAC.

Date Time (GMT) Information Sources Plume altitude (km) Satellite confirmed ash (Y/N) Clouds (Y/N) Comment
03 Jun 1998 0525 AIREP -- N -- Volcanic activity observed S of Surabaya, cloud moving S.
11 Jul 1998 0635 AIREP 6.1 -- -- Small volcanic plume.
31 Aug 1998 0635 AIREP 6.1 -- -- Small ash plume.
01 Sep 1998 1500 AIREP 7.6 N -- Volcanic activity observed at 1037.
02 Sep 1998 0800 AIREP 5.2 N -- Volcanic activity observed at 0551.
19 Apr 1999 1228 AIREP 7.6 N -- Eruption observed at 1003.
13 Jun 1999 1003 AIREP 6.1 N -- Plume tops seen.
09 Jul 1999 0942 NOTAM 6.1 N -- Report of ash cloud.
16 Jul 1999 1226 AIREP 4.6 Y -- Eruption reported at 0905. Weak ash plume apparent on satellite imagery extending 16.7 km WSW at 0936; no ash apparent on subsequent lower resolution imagery at 1030 and 1130.
16 Jul 1999 1817 AIREP -- N -- Satellite imagery shows no further evidence of ash cloud at 1732.
05 Aug 1999 0451 AIREP 6.1 N -- Reported plume at 0350; satellite imagery at 0232 showed no evidence of ash cloud.
05 Aug 1999 0538 AIREP 6.1 N Y Follow-up to plume (reported above).
23 Aug 1999 0304 NOTAM 4.6 (top) N N Volcanic ash drifting SW; satellite image at 0132 and last 3 hourly images (no plume visible).
13 Jun 2000 1144 AIREP 7.6 N -- Ash plume.
13 Jun 2000 1211 AIREP 7.6 N -- Ash plume.
23 Jun 2000 1228 AIREP 4.6 N -- Ash plume at 0445.
16 Jul 2000 1128 AIREP 7.6 N -- Ash cloud at 0335.
18 Jul 2000 0946 AIREP 9.2 N -- Ash cloud 0600.
18 Jul 2000 1536, 2129 AIREP -- N -- Ash cloud follow-up but cloud appears to have dissipated.
19 Jul 2000 0044 NOAA 9.2 Y -- Satellite imagery at 2115 and 2330; ash extending 56 km WSW bearing 257° from Mt. Semeru, plume width not more than 11 km; winds in area suggest height of ash above 5.5 km.
19 Jul 2000 0652, 1245, 1837 GMS-5 satellite and Meteorological & Geophysical Agency of Indonesia 4.6-9.2 -- -- Apparently undergoing a phase of enhanced activity; ground based reports over last month have given plume heights of 4.6 km; no ash clouds observed by satellite since 0030.
20 Jul 2000 0019 GMS-5 satellite and Meteorological & Geophysical Agency of Indonesia -- N -- Latest imagery at 2333 on 19 July.
19 Aug 2000 0653, 0812 PIREP 10.7 N Y Possible smoke plume at 0438; scattered cloud in area.
20 Aug 2000 0944 AIREP 7.3 Y N Smoke plume at 0427; satellite imagery mostly clear of cloud shows a weak plume extending SSE 56-74 km.
21 Aug 2000 0938 -- -- N -- Satellite imagery lacks clear plume at 0830.

Activity during February-July 2000. Explosive activity during February 2000 included ash emissions, numerous rockfalls, and a few deep A-type earthquakes (table 4). Plumes of thick white ash were seen to rise up to 400 m above the summit on many occasions. Persistent haze or cloudy weather prevented direct observation throughout most of the month. At night during the week of 8-14 February observers noted a 60-m-high flame. Generally, explosions and rockfalls dominated recorded seismicity.

Table 4. Summary of seismicity at Semeru, 31 January-29 August 2000. * Six days of data, through 15 July. Courtesy of VSI.

Dates Deep (A-type) Shallow (B-type) Tectonic Explosion Avalanche Tremor Pyroclastic Flows
31 Jan-07 Feb 2000 2 3 6 142 49 4 --
08 Feb-14 Feb 2000 2 -- 9 390 5 31 --
15 Feb-21 Feb 2000 8 -- 3 327 9 0 --
22 Feb-27 Feb 2000 1 -- 4 548 11 -- --
29 Feb-07 Mar 2000 "Seismic activity was relatively similar to last week... dominated by explosion and avalanche earthquakes."
07 Mar-13 Mar 2000 19 5 5 628 38 -- 1
14 Mar-20 Mar 2000 3 -- 15 530 18 -- --
21 Mar-27 Mar 2000 5 4 8 733 26 -- --
28 Mar-03 Apr 2000 5 4 8 733 26 16 --
04 Apr-10 Apr 2000 8 -- 7 737 45 56 1
11 Apr-17 Apr 2000 1 -- 3 805 50 18 --
18 Apr-24 Apr 2000 -- 1 4 678 45 48 --
25 Apr-01 May 2000 2 -- 4 703 31 17 3
02 May-08 May 2000 -- 13 3 770 46 -- 5
09 May-16 May 2000 -- -- 2 535 15 -- 4
17 May-23 May 2000 7 3 1 705 95 -- 3
24 May-30 May 2000 No data available.
31 May-05 Jun 2000 No data available.
06 Jun-12 Jun 2000 No data available.
13 Jun-19 Jun 2000 -- -- 7 557 25 7 2
20 Jun-26 Jun 2000 1 1 4 709 56 4 --
27 Jun-02 Jul 2000 -- 1 6 600 86 15 6
03 Jul-09 Jul 2000 1 -- 6 717 36 9 8
10 Jul-15 Jul 2000* -- 1 6 557 27 6 8
17 Jul-23 Jul 2000 No data available.
24 Jul-30 Jul 2000 14 4 18 542 60 -- 7
31 Jul-07 Aug 2000 -- -- -- 657 64 -- 5
08 Aug-14 Aug 2000 -- -- -- 584 43 -- 2
15 Aug-21 Aug 2000 -- -- -- 420 17 -- 0
22 Aug-29 Aug 2000 23 1 21 542 27 -- 3

Explosions and lava avalanches continued in March. Clouds and haze often obscured the volcano, but sometimes thick white emissions appeared above the summit to a maximum height of 500 m. Visual activity and seismicity appeared to increase in late March-early April.

During 4-10 April explosions and lava avalanches were still continuing and became stronger. Seismicity also increased significantly; tremor earthquakes took place 56 times, with maximum amplitudes of 3-15 mm. One pyroclastic flow traveled 1,500 m down the Besuk Kembar river. Many observations in clear conditions showed that the ash cloud was thick and white, rising 400-600 m above the summit. Emissions continued the following week, and explosions increased. "Red flames" sometimes appeared at the summit during night observations. Similar activity continued throughout April. The number of pyroclastic flows increased in late April, and continued at a typical rate of 2-7 per week for the next few months (table 4). On 30 April at 0743, from a location 15 km NNW of Semeru, a pyroclastic flow was observed travelling 800 m down the SSW flank.

Ashfall occurred at the Semeru Volcano Observatory during the week of 2-8 May, when five pyroclastic flows were recorded. Seismicity decreased again, but "red flame" was still seen at night and plumes rose as high as 600 m through 23 May.

Explosive activity was continuing in the second half of June; observers noted white-gray plumes ~600 m above the summit. Pyroclastic flows that reached maximum distances of ~2.5-3 km were reported on 1-2, 4, 10, and 15 July.

Observations on 2 May 2000. John Seach and Geoff Mackley made observations during a 3-hour summit stay on 2 May 2000. During the climb from Ranu Pani village in the N, ash deposits were observed to cover vegetation at a distance of 10 km from the volcano. The bottom third of the cone was vegetated, and zones of mass-wasting had sliced away 20- m-wide sections of forest. The top two-thirds of the cone consisted of ash, cinders, and blocks up to 1.5 m in diameter. There were areas of deep erosion and the risk of rockfalls posed a hazard to climbers.

The summit area (Mahameru) lay covered by ash and baseball-sized blocks with a density of 50/m2. A 20-m-wide, 60-m-deep, W-sloping valley separated Mahameru from the active Jonggring Seloko crater, but they are joined by a ridge. The highest N rim of the crater was approximately 30 m below the summit peak. A 2-m-diameter block was located 15 m below the summit on the wall of the valley.

Between 0725 and 1010, 13 eruptive events were observed. During this interval the N rim of Jonggring could not be approached because of the intermittent rain of blocks falling outside the crater and into the valley 50 m from the crater. Two vents produced short-lived Vulcanian eruptions with variable timing and size. Eruptions commenced with degassing, explosions, or the sound of breaking rock, followed by falling bombs and brown ash emission. The explosions were relatively quiet and not accompanied by groundshaking. Brown ash clouds rose to 600 m above the vent and drifted SE. The plume detached from the summit before the next eruption began. Steam emission occurred between eruptions.

Observations on 14 July 2000. Volcanologists on an International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) field trip in east Java observed eruptions of Semeru from an observation point on the N rim of the Sand Sea caldera at Bromo (figure 10). Eruption plumes became visible just before sunrise. Gray ash-and-steam plumes rose a few hundred meters and drifted out over the ocean. Multiple plumes from earlier eruptions were visible downwind. Eruptions lasted up to 2 minutes, and occurred at intervals of between 5 and 30 minutes during the approximately 2 hours of observations. One explosion event was quickly followed by another explosion, apparently from a second location within the crater. Plumes were frequently seen during the next two days from other points around the volcano.

Figure (see Caption) Figure 10. Photograph taken just after sunrise on 14 July 2000 showing an ash eruption from Semeru (upper right) and a steam plume rising from Bromo (lower left). The cone in the lower right is Batok, another young cone within the Sand Sea caldera of the Bromo-Tengger volcanic complex. Note the extensive ash cover on the upper part of Semeru. View is towards the S. Courtesy of Ed Venzke, Smithsonian Institution.

Explosion on 27 July 2000. At approximately 0706 on the morning of 27 July an explosion resulted in two deaths and injuries to five other volcanologists near the NE rim of the active summit crater Jonggring Seloko (see map in BGVN 17:10). The group consisted of a five-member Semeru evaluation team of the Volcanological Survey of Indonesia (VSI), four local porters, and foreign scientists who had attended the IAVCEI conference in Bali the previous week. The fatalities and injuries were caused by impacts and burns from ballistic clasts. These originated from the second of two closely spaced explosions from separate vents that ejected material out to a few hundred meters. Both fatalities were VSI staff members: Asep Wildan was the team leader, and Mukti was a volcano observer from the Semeru Volcano Observatory. Those injured included Suparno, a VSI volcano observer from the Semeru Volcano Observatory, Amit Mushkin from the Hebrew University in Israel, Mike Ramsey from the University of Pittsburgh, and Lee Siebert and Paul Kimberly from the Smithsonian Institution. Kimberly sustained the most serious injuries among the five survivors, including a broken hand, broken arm, and 3rd-degree burns. Following surgeries in Singapore and burn treatments in the United States, Kimberly was released from the hospital in early September.

Continuing activity through August. Visual observations were hindered by bad weather the first week of August. Activity generally decreased through 22 August. White to light-brown ash clouds rising to about 600 m in height were frequently seen during this period. Seismicity increased again in late August, and on 25 and 27 August three pyroclastic flows were recorded. Thin white-gray ash plumes rose ~600 m.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); John Seach, P.O. Box 16, Chatsworth Island, NSW 2469, Australia; Ed Venzke, Global Volcanism Program, Smithsonian Institution, Washington DC 20560-0119, USA.


Tungurahua (Ecuador) — July 2000 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


January-July volcanism possibly decreased; lava fountains and many lahars

During January-July 2000 Tungurahua volcano experienced continuous but relatively mild activity with occasional lava fountaining. There were periods (hours to days) of relative calm during June and July.

The volcano continues to generate a variety of seismic events, most events being the long-period (LP) type. Two episodes of volcano-tectonic (VT) events were observed; one between late January and early March, and one less intense event between early May and mid-June. Epicenters for these events were across the top of the volcano's cone with focal depths at 3-13 km. Hybrid events, whose waveforms consist of a short, higher-frequency onset followed by lower-frequency, larger-amplitude signals, were most abundant in January and February (~50 events/week), partially coinciding with the greater VT activity. Subsequently these events diminished to 1-2 events/week, except for a brief swarm in early April.

Events of classical LP waveform were frequent, varying from ~400 events/week in January, ~600 in February, ~400 in March, ~600 in April, ~500 in May, and ~400 in June. A sharp increase to ~950 events/week was observed in July. Some of the LP events (3.7-4.0 Hz) were located tentatively at depths of 7-10 km below the crater. However, the great majority of LP events (1.5-3.3 Hz) were 3-7 km deep. They were often associated with explosion clouds or forceful emissions of ash-and-steam within 1-3 seconds of the seismic onset, suggesting a high-level origin.

Explosions, recognized principally by their impulsive onset, were more frequent during January and February (~80-90 events/week), but in subsequent months dropped to ~20-30 events/week, with many accompanied by a sonic boom. Reduced displacement values for the explosions typically were 5-10 cm2, and occasionally 12-18 cm2.

Low-frequency tremor with spectral frequencies between 0.5-1.6 Hz, but monochromatic at times, were observed in April and May, but only sporadically in June and July. During the period from the 2nd week of April through the 2nd week of May, the low-frequency episode coincided with lava fountaining in the summit crater. The fountains, comprised of the continuous ejection of incandescent material 100-500 m into the air, lasted hours; sustained roaring and surf-like noises heard 12 km away.

The constant glow of incandescent material in the crater, which was observed frequently in late 1999, was seen only occasionally during August, possibly due to unfavorable weather conditions. Better viewing conditions in late June and July confirmed that incandescent lava still remained in the crater or immediately below it.

The emissions have consisted of a permanent, grayish-white to light-gray column of steam with varying amounts of fine-grained ash that commonly rise less than 1 km above the crater. Explosions or strong emissions have consisted of blocks being thrown hundreds of meters into the air and by the formation of Vulcanian-like eruption clouds that are medium-to-dark gray in color and sometimes with a mushroom shape. The clouds have reached as high as 5 km above the summit. Primarily, easterly winds have carried the very fine ash to the W and WSW, but occasionally anywhere in the azimuthal arc between NW and SW. Both national and international flights reported the ash plume. The ash deposits were several centimeters thick on the lower W flank of the cone, but only several millimeters in the agriculturally important lands farther W.

Ballistic blocks were vesicular, black, glassy andesite containing phenocrysts of olivine, plagioclase, augite, and hypersthene, in a glassy matrix with 10-20% microlites. More recent samples had fewer olivines and larger augites. Chemical analyses of these blocks as well as collected ash gave the following typical values: SiO2 ~58.5%, K2O ~1.72%, MgO ~3.9%, Ni ~33 ppm, and Cr ~65 ppm.

COSPEC monitoring since November was hindered by heavy cloud cover. Following the consistently high SO2 flux values of 6,000-8,000 metric tons/day (t/d) during September-October 1999, values decreased to an average of 3,000-4,000 t/d in November-December 1999. Values then rose to ~8,000 t/d in January and subsequently dropped to an average of ~1,000-2,000 t/d in June and July 2000. An exception to this trend was an increase to ~4,000 t/d observed in April-May, 2000, which coincided with the lava fountaining episode. In general, higher SO2 values seem to be associated with greater tremor activity.

Monthly water analyses of hot springs at both the N and S bases of the edifice have not shown any variation in temperature, pH, conductivity, nor in the concentrations of SO4, Cl-, Na+, CO3--, Ca++, Mg++, and K+, since chemical monitoring began in 1992 and since the activity on Tungurahua began in July 1999.

Lahars coincided with the rainy season and became frequent in October and November 1999; they rapidly cut the main highway at every stream crossing along the western half of the cone (the area of greatest ash fall). Occasional rains from December to June generated flows of debris. The main highway to Baños and to the Amazon Basin was frequently blocked for hours due to lahar deposits.

In general, the activity appeared to be subsiding. However, during the 1916-18 eruptive period the volcano experienced 1.5 years of little activity between major eruptions. An orange alert is still in effect. In the past, Tungurahua typically generated both Merapi- and St. Vincent-like nuées ardentes. The W sector of Baños (17,000 inhabitants) lies at the mouth of a canyon that starts near the summit of the volcano, 9 km away and 3,000 m above the town.

Following the evacuation of Baños on 17 October 1999, the town remained abandoned until late December (BGVN 25:01). As of August 2000, about 80% of the population had returned and tourism has re-established itself.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II collapsed about 3,000 years ago and produced a large debris-avalanche deposit to the west. The modern glacier-capped stratovolcano (Tungurahua III) was constructed within the landslide scarp. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Geophysical Institute (Instituto Geofísico), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador.


Ulawun (Papua New Guinea) — July 2000 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Vapor emissions during May and June; moderate seismicity in June

This report covers the period from April to June 2000. There were no unusual reports from Ulawun in April. Throughout May, moderate to thick white vapor was emitted. Emissions in June consisted of thin white vapor. However, on 5 and 7 June, the emissions were thick white vapor. Seismic activity for June was at a moderate level.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: I. Itikarai, D. Lolok, K. Mulina, and F. Taranu, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Whakaari/White Island (New Zealand) — July 2000 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


New crater formed on 27 July during the largest eruption in about 20 years

This report covers June and July 2000. On 18 April 2000, the Institute of Geological and Nuclear Sciences (IGNS) increased the alert level from 1 to 2 (level 5 being the most severe) following minor eruptive activity that began on 7 March 2000 and included elevated seismicity and higher than normal SO2 gas flux (BGVN 25:03).

The IGNS reported that for the week ending 16 June 2000, the active MH vent continued to emit an ash plume. This plume sometimes extended as far as 60 km downwind and deposited ash as far as 15 km away. Up to several centimeters of ash were deposited on White Island. Until 16 June, seismic activity was significantly less than in May.

Field observations on 12 July indicated little change in activity since April. Furthermore, no direct relationship between seismic activity during this time and the eruptive activity could be determined. The ash continued to be vented to an altitude of 800-1,000 m. By 19 July, strong NE winds had periodically blown the ash plume towards the mainland, resulting in minor ash deposition there. Ashfall at Turango airport led to landing and departure restrictions. Air traffic was also disrupted around the Bay of Plenty.

On 22 July IGNS staff noticed an increase in activity compared to previous observations. A yellowish-brown gas and an ash plume extending to a height of 1500 m were blown to the E and SE. This continued to disrupt air traffic and deposit ash on the mainland. In fact, the IGNS staff were unable to land due to ash accumulation at the landing site. However, they noted that yellowish-brown ash now covered the island with thicknesses ranging from several mm to several cm. They saw no evidence of ballistic bombs or evidence that the eruptive style had changed from the previous months. However, they did note that the height of the MH vent had decreased from its previous location above the acid lake to a height level with the lake.

On Thursday 27 July between 1700 and 2200, a period of strong seismic activity was recorded. Visual and satellite observations were not possible due to poor weather conditions. A tour operator arriving at the island the morning of 28 July, confirmed that there had been an eruption. IGNS staff arrived 29 July and discovered that a large explosive eruption formed a new crater 120 x 150 m wide in the site formerly occupied by a warm acidic lake in the 1978-90 Crater Complex. The eruption deposited as much as 30 cm of ash and pyroclastic material, including juvenile pumice blocks, over the eastern part of the island. This was the largest eruption at White Island in about 20 years; deposits from this eruption were found in areas frequently visited by tourists. The IGNS advised all visitors that similar eruptions pose serious risks to anyone on the island.

Observations on 31 July found the MH vent, which had enlarged to ~50 m, spewing a dark ash cloud while a reddish-brown ash cloud rose from the new 27 July vent. The plumes combined and rose as high as 1-1.2 km above the vents. After this event, activity returned to the level typical since April: minor eruptions that produced plumes of gas, steam, and volcanic ash.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: Brent Alloway, Brad Scott, and Steven Sherburn, Wairakei Research Center, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports