Recently Published Bulletin Reports
Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020
Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020
Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September
Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020
Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020
Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater
Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Karymsky (Russia) New eruption during April-July 2020; ash explosions in October 2020
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Continued explosions, ash plumes, and ashfall; June-November 2020
Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.
Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.
In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.
Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).
During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.
Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Kuchinoerabujima (Japan) — November 2020
Cite this Report
Kuchinoerabujima
Japan
30.443°N, 130.217°E; summit elev. 657 m
All times are local (unless otherwise noted)
Intermittent thermal anomalies and small eruptions in May and August 2020
Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).
Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.
Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.
Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.
According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).
The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.
Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Nyamuragira (DR Congo) — December 2020
Cite this Report
Nyamuragira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.
Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.
Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).
Raung (Indonesia) — December 2020
Cite this Report
Raung
Indonesia
8.119°S, 114.056°E; summit elev. 3260 m
All times are local (unless otherwise noted)
Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.
The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.
Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).
PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.
After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.
After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.
In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).
Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).
Sinabung (Indonesia) — November 2020
Cite this Report
Sinabung
Indonesia
3.17°N, 98.392°E; summit elev. 2460 m
All times are local (unless otherwise noted)
Explosions begin again on 8 August 2020; dome growth confirmed in late September
Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.
Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.
Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.
A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.
White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).
Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.
The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).
Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).
Heard (Australia) — November 2020
Cite this Report
Heard
Australia
53.106°S, 73.513°E; summit elev. 2745 m
All times are local (unless otherwise noted)
Persistent thermal anomalies in the summit crater from June through October 2020
The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.
Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).
Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.
Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Sabancaya
Peru
15.787°S, 71.857°W; summit elev. 5960 m
All times are local (unless otherwise noted)
Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.
Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).
Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.
Month |
Avg. daily explosions by week |
Max plume heights (km above the crater) |
Plume drift (km) and direction |
Communities reporting ashfall |
Minimum days with SO2 over 2 DU |
SO2 emissions per day (tons) by week |
Jun 2020 |
20, 10, 9, 13 |
1.5-4 |
30 km, SE, S, SW, NE, W, E |
Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa |
28 |
8,400, 2,200, 3,100, 7,600 |
Jul 2020 |
20, 15, 11, 12, 19 |
2-2.6 |
15-30 km E, NE, NW, SE, SW, S, W |
Achoma and Chivay |
23 |
4,400, 6,000, 1,900, 2,100, 5,900 |
Aug 2020 |
18, 12, 9, 29 |
1.7-3.6 |
20-30 km W, SW, SE, S, E, NW |
- |
20 |
2,300, 3,800, 5,300, 10,700 |
Sep 2020 |
39, 35, 33, 38, 40 |
1.8-3.5 |
25-35 km SE, S, SW, W, E, NE, N, NW, W |
Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta |
28 |
9,700, 2,600, 8,800, 7,800, 4,100 |
OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.
Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.
OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.
Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.
Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Rincon de la Vieja (Costa Rica) — October 2020
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).
Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.
Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.
Month |
Minimum total days of eruptions |
Ash plume height (m above the crater) |
Notable plume drift |
Gas-and-steam plume height (m above the crater) |
Apr 2020 |
16 |
200-1,000 |
- |
50-1,500 |
May 2020 |
15 |
200-3,000 |
W, NW, SW |
200-2,000 |
Jun 2020 |
8 |
100-2,000 |
N |
- |
Jul 2020 |
10 |
1,000 |
- |
- |
Aug 2020 |
18 |
500-1,000 |
- |
500 |
Sep 2020 |
13 |
700 |
- |
50 |
During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.
Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.
There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.
Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.
On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Fuego (Guatemala) — December 2020
Cite this Report
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
Daily explosions, ash emissions, and block avalanches during August-November 2020
Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.
Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.
Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.
Month |
Explosions per hour |
Ash Plume Heights (km) |
Ash plume distance (km) and direction |
Drainages affected by block avalanches |
Communities reporting ashfall |
Aug 2020 |
2-15 |
4.3-4.8 |
SW, W, NW, S, N, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa |
Sep 2020 |
3-16 |
4.3-4.9 |
W, SW, NW, N, S, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita |
Oct 2020 |
3-19 |
4.1-4.8 |
SW, W, S, SE, N, E, 10-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde |
Nov 2020 |
4-14 |
4.0-4.8 |
S, SW, SE, W, NW, 10-35 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute |
Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia |
The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.
Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.
The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.
The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.
On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.
Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Kikai
Japan
30.793°N, 130.305°E; summit elev. 704 m
All times are local (unless otherwise noted)
Explosion on 6 October 2020 and thermal anomalies in the crater
Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).
Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).
A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).
Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.
Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Manam (Papua New Guinea) — October 2020
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.
Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.
Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.
Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.
Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Karymsky (Russia) — October 2020
Cite this Report
Karymsky
Russia
54.049°N, 159.443°E; summit elev. 1513 m
All times are local (unless otherwise noted)
New eruption during April-July 2020; ash explosions in October 2020
Karymsky is an active volcano, part of Kamchatka’s eastern volcanic zone. Eruptive activity has been frequent since 1996 and has included ash explosions, gas-and-steam and ash emissions, and thermal anomalies. The most recent eruptive period ended in September 2019 (BGVN 44:11) with a new one beginning in April 2020. Both eruptions consisted of moderate explosive activity and ash plumes. This report updates information from November 2019 through October 2020, which describes a short-lived eruption from April to July and renewed activity in October. Information comes from daily, weekly, and special reports from the Kamchatka Volcanic Eruptions Response Team (KVERT), the Tokyo Volcanic Ash Advisory Center (VAAC), and satellite data.
Activity at Karymsky after November 2019 primarily consisted of moderate gas-and-steam emissions and rare weak thermal anomalies in the summit crater (on 2, 8, and 17 December 2019, according to KVERT). No thermal activity was reported during January through March 2020.
Over the weeks of late March to early April 2020, minor amounts of ash were present in gas-and-steam emissions that led to trace ashfall deposits on the snowy flanks and were visible in satellite imagery (figure 47). A weak thermal anomaly was observed in satellite imagery on 6 April. On 13 April the Tokyo VAAC reported an ash plume to 2.1 km altitude drifting SE. Gas-and-steam emissions containing some ash rose 2 km altitude on 17 April and drifted up to 80 km SE on both 17 and 21 April, accompanied by a weak thermal anomaly seen in satellite data. On 18 April the Tokyo VAAC released an advisory noting an ash plume at 1.5-2.1 km altitude drifting S.
KVERT reported intermittent thermal anomalies during May, along with moderate gas-and-steam emissions. On 10 May gas-and-steam plumes containing some ash drifted 77 km SE while ash plumes observed in HIMAWARI-8 satellite imagery rose to 2.7 km altitude. A dense plume drifting S resulted in large ash deposits covering all but the N flank of the volcano by 14 May, as observed in Sentinel-2 natural color satellite imagery (figure 48). KVERT reported that ash continued to be observed during 24-31 May, rising to a maximum altitude of 7 km on 27 May and extending in multiple directions. On 29 and 31 May explosions generated ash plumes that rose to 6 and 4 km altitude, respectively, and both extended up to 380 km SW, SE, and E. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in thermal activity within 5 km of the summit crater starting in late May, reflecting the renewed activity (figure 49). On 1 June another strong brown-gray ash plume was seen rising from Karymsky, drifting SE in satellite imagery, depositing large amounts of ash on all flanks (figure 48).
Intermittent ash emissions and moderate explosive activity continued in June. During 1-4 June continuous ash plumes rose to a high of 4.6 km altitude and drifted up to 400 km generally E, according to KVERT and the Tokyo VAAC advisories. By 19 June, KVERT stated that possible Strombolian activity was occurring, accompanied by moderate gas-and-steam emissions and frequent thermal anomalies; Sentinel-2 thermal satellite imagery also showed a thermal anomaly in the crater (figure 50). Ash plumes and gas-and-steam plumes containing some amount of ash were seen drifting SW and NW on 30 June (figure 51).
Similar activity continued into July, which included possible Strombolian activity, moderate gas-and-steam emissions, and frequent thermal anomalies. On 14 July a gas-and-steam plume that contained some ash drifted 26 km SW (figure 52); the Tokyo VAAC advisory reported a continuous ash plume that rose 3 km altitude and drifted SW. During 27-30 July Strombolian and Vulcanian explosions generated ash plumes that rose 3-3.7 km altitude and extended 250 km SW and SE. The frequency of thermal anomalies seen in MIROVA decreased in July; the MODVOLC system detected one thermal hotspot on 28 July.
Activity decreased in August; thermal anomalies were reported on 5-7, 10, 18, and 21 August, the latter of which was last observed thermal anomaly, according to KVERT. Moderate gas-and-steam emissions continued to occur through the week of 3 September (figure 53). On 26 September, the Tokyo VAAC issued an advisory for a small ash plume that rose to 1.8 km altitude and extended SE.
After a brief period of little to no activity, Tokyo VAAC advisories on 10 and 11 October both reported small ash plumes that rose 1.8 km altitude and drifted SE. An ash plume on 17 October rose to 3.9 km altitude drifting E; on 20 October an ash plume drifted up to 50 km SE. KVERT reported that a new eruption began on 21 October; pilots observed explosions at 1430 that generated ash plumes up to 4 km altitude and extended 40 km SE (figure 54). Multiple ash plumes during that day rose up to 6.4 km altitude and drifted as far as 530 km SE, accompanied by a thermal anomaly. Frequent ash explosions continued through the end of the month, with the highest plume rising to an altitude of 6 km on 30 October. In late October two thermal anomalies were detected in MIROVA.
Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Bel-Kam-Tour, st. Elizova, 39 Paratunka Kamchatka Krai, 684000, Russia (URL: https://bel-kam-tour.business.site/); Russia Today (RT), Borovaya St., 3 bldg. 1, Moscow 111020 (URL: https://www.rt.com/).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 30, Number 04 (April 2005)
Managing Editor: Richard Wunderman
Anatahan (United States)
Explosive eruption on 6 April 2005 issues highest ash plume recorded here
Awu (Indonesia)
Stable during mid- to late August 2004
Fernandina (Ecuador)
Lava flows down S flank from circumferential vents near caldera rim
Karthala (Comoros)
16 April 2005 seismicity leading to eruption; near-source tephra 1.5 m thick
Lascar (Chile)
4 May 2005 eruption sends ash over 1,000 km SE, ¾ of the way to Buenos Aires
Lengai, Ol Doinyo (Tanzania)
Tall hornito almost reaches summit elevation; more lava spills over rim
Vailulu'u (United States)
ALIA cruise discloses new cone in the summit crater
Anatahan (United States) — April 2005
Cite this Report
Anatahan
United States
16.35°N, 145.67°E; summit elev. 790 m
All times are local (unless otherwise noted)
Explosive eruption on 6 April 2005 issues highest ash plume recorded here
Anatahan's third historical eruption began on 5 January 2005, and is described in BGVN 29:12. Further details and satellite images were presented in BGVN 30:02, which covered events until mid-February 2005. A 5-6 April 2005 eruption cloud rose to at least 15 km altitude, which was the highest yet seen at the volcano.
Anatahan erupted almost continuously after 5 January 2005, when it started its third eruption in recorded history. An image collected by the Ozone Monitoring Instrument on NASA's Aura satellite shows atmospheric sulfur dioxide (SO2) concentrations between 31 January and 4 February 2005 (figure 14). A long SO2 plume extends NE and SW of Anatahan, and the edge of the plume covers Guam (the southernmost island) and the other Mariana Islands immediately to Anatahan's N and S.
Volcanogenic SO2 combines with water to create a sulfuric acid haze. Called "vog," this haze can cause illness and make breathing difficult. Volcanic haze grew so thick during the first week of February that the National Weather Service issued a volcanic haze advisory for Guam, where several illnesses were reported.
After mid-February 2005, eruptive activity at Anatahan steadily declined to less than 5% of the peak level attained since the eruption started on 5 January. Ash eruptions continued, and the 2003 crater floor was almost entirely covered by fresh lava out to a diameter of ~ 1 km. A MODIS image taken at 0115 on 18 February showed a plume of steam and vog extending about ~ 170 km SW of Anatahan. Seismic and acoustic records during the last week of February 2005 showed very low levels of activity. Seismic amplitudes during 23-28 February were similar to those recorded prior to the 5 January eruption. NASA MODIS (Moderate Resolution Imaging Spectroradiometer) imagery taken on 28 February showed a faint plume of vog and steam trending W of Anatahan.
During the first two weeks of March 2005 volcanic and seismic activity increased relative to the previous weeks. During 14-17 March, seismicity increased and steam rose a few hundred meters above the volcano. The inner E crater had been nearly filled with lava flows and lapilli since early January.
A small eruption began on 18 March at 1544 according to seismic data. On 19 March the Washington VAAC issued an advisory that an ash plume was visible on satellite imagery below 4 km altitude. Small explosions that began late on 20 March lasted for 14 hours. No emissions were visible on satellite imagery, but others were, later in March and April.
A strong outburst apparently began on 21 March, a day when seismicity increased significantly. Seismic amplitudes peaked on the 25th and faded out on the 26th. Near the peak on the 25th, the U.S. Air Force Weather Agency (AFWA) detected a hot spot on the island on satellite imagery and reported an ash plume briefly reaching ~ 5.8 km altitude. The plume height soon dropped to below 3 km altitude, and by near midday on the 27th the plume had changed from ash and steam to steam and vog. On the 27th the plume extended ~ 240 km SW.
On 5 April at about 2200 seismic signals began to increase slowly, and the Washington VAAC began to see increased ash on satellite imagery. On 6 April 2005 around 0300 an explosive eruption began and produced an ash plume to an initial height of ~ 15.2 km altitude, the highest in recorded history from the volcano. Seismicity peaked at the same time.
The AFWA reported an upper level ash plume at ~ 15.2 km altitude blowing E to SE and a lower level ash plume at ~ 4.6 km altitude blowing SW; the upper plume extended more than 465 km. Earth Probe TOMS data on 6 April at 1046 showed a compact sulfur-dioxide cloud drifting E of Anatahan following the eruption.
Chuck Sayon, the superintendent of American Memorial Park noted, "On Saipan at around 10 AM the skies darkened and light ash started falling . . . park operation[s] have been restricted to indoor activities due to irritation to eyes and breathing as ash starts to lightly coat the area. Schools are closed as well as the airport until further notice . . .."
On 6 April during 0400 to 0900 the seismicity at Anatahan decreased to near background. The seismicity surged for about 1 hour, with amplitudes about one-half those reached during the earlier eruption, and subsequently dropped again to near background. Prior to the 6 April eruption, during 31 March to 4 April the amplitudes of harmonic tremor varied, reaching a 2-month high on the 3rd. Small explosions occurred every one minute to several minutes, probably associated with cinder-cone formation. Steam-and-ash plumes drifted ~ 200 km, and vog drifted ~ 400 km at altitudes below ~ 2.4- 4.6 km.
The U.S. Geological Survey (USGS) (in conjunction with the Commonwealth of the Northern Mariana Islands) stated that the "eruption of 6 April 2005 was the largest historical eruption of Anatahan and expelled roughly 50 million cubic meters of ash. The eruption column and the amplitude of harmonic tremor both grew slowly over about 5 hours and both peaked about 0300 on 6 April local time . . .. The peak of the eruption lasted about one hour and then the activity declined rapidly over the following hour."
The 6 April 2005 eruption's plume was captured on satellite images. The image showed a plume that was tan or brown in color and clearly ash laden (figure 15).
Figure 16 shows SO2 concentrations in the atmosphere on 7 April 2005, over 30 hours after the large 6 April eruption. SO2 emissions from the eruption were measured by the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura satellite. OMI detects the total column amount of SO2 between the sensor and the Earth's surface and maps this quantity as it orbits the planet. A new perspective on the vertical distribution of the SO2 is revealed by combining the OMI data with coincident measurements made by the Microwave Limb Sounder (MLS), also part of the Aura mission.
The MLS data crisscross the OMI image and clearly show that some, but not all, of the SO2 measured by OMI to the volcano's E was in the upper troposphere or above. At these altitudes, SO2—and the sulfate aerosols that form from it—can stay in the atmosphere and affect the climate for a longer period of time. A weaker SO2 signal was also measured in the same region during the nighttime MLS overpass, which crosses the image from upper right to lower left. The daytime data, running from upper left to lower right, coincide with the OMI measurements. The MLS data west of Anatahan show no significant SO2 signal, indicating that the SO2 measured by OMI in this region was in the lower troposphere.
MLS measures thermal emissions from the Earth's limb, so unlike the OMI sensor it also collects data at night. It is designed to measure vertical profiles of atmospheric gases that are important for studying the Earth's ozone layer, climate, and air quality, such as SO2. These images, derived from preliminary, unvalidated OMI and MLS data, show MLS SO2 columns (filled circles) measured every 165 km along the Aura orbit, plotted over the OMI SO2 map. The MLS SO2 columns shown here are derived from profile measurements made from the upper troposphere into the stratosphere (~ 215-0 hPa (hectoPascal, 102 Pa) or ~ 12 km altitude and above), and the circles do not represent the actual size of the MLS footprint, which is roughly 165 x 6 km.
Anatahan's morphological changes were highlighted in before (pre-eruption) versus after (post-eruption) images (figure 17). Seismicity decreased at Anatahan after 6 April and during 7-11 April was at very low levels, near background. On 11 April, a steam-and-ash plume rose ~ 2.7 km altitude and drifted ~ 280 km WSW.
Occasional data from Anatahan revealed that seismicity appeared to increase during 24-25 April. During 20-25 April, a continuous thin plume of ash-and-steam rose to less than ~ 3 km altitude and drifted more than 185 km from the volcano. Harmonic tremor dropped dramatically on 1 May after being at high levels for several days. During 27 April to 1 May, the main ash-and-steam plume rose to ~ 3 km altitude According to a news article, the volcanic plume from Anatahan reached Philippine airspace on 4 May.
On 5 May an extensive ash-and-steam plume to 4.5 km altitude was visible in all directions. Ash extended 770 km N, 130 km S (to northern Saipan), and 110 km W. Vog extended in a broad swath from 3,000 km W, over the Philippines, to 1,000 km N of Anatahan. By 9 May harmonic tremor amplitude had decreased to near-background levels, with a corresponding drop in eruptive activity. As of 10 May AFWA was reporting ash to about 3 km altitude extending 400 km W and an area of vog less than half that noted on 5 May.
On 11 May AFWA reported thick ash rising to 4.2 km altitude and moving WNW. The thick ash extended in a triangular shape from the summit 444 km to the WSW through 510 km to the NW. A layer of thin ash at 3 km altitude extended another 1,000 km beyond the thick ash. A broad swath of vog extended over 2,200 km W nearly to the Philippines and over 1,400 km NNW of Anatahan. Although the ash plume diminished over the next few days and was not as thick, it remained significant, rising to 2.4 km and extending 370 km WNW on the 13th. Scientific personnel from the Emergency Management Office and the USGS working the next day at a spot 2-3 km W of the active vent heard a continuous roaring sound. They also saw ash and steam rising by pure convection, not explosively, to 3 km altitude.
Reference. Chadwick, W.W., Embley, R.W., Johnson, P.D., Merlea, S.G., Ristaub, S., and Bobbitta, A., 2005, The submarine flanks of Anatahan volcano, Commonwealth of the Northern Mariana Islands: Jour. of Volcanology and Geothermal Res. (In press, June 2005).
Geologic Background. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of a large stratovolcano with a 2.3 x 5 km compound summit caldera. The larger western portion of the caldera is 2.3 x 3 km wide, and its western rim forms the island's high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern portion of the caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. A submarine cone, named NE Anatahan, rises to within 460 m of the sea surface on the NE flank, and numerous other submarine vents are found on the NE-to-SE flanks. Sparseness of vegetation on the most recent lava flows had indicated that they were of Holocene age, but the first historical eruption did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera.
Information Contacts: Juan Takai Camacho and Ramon Chong, Emergency Management Office of the Commonwealth of the Northern Mariana Islands (CNMI/EMO), PO Box 100007, Saipan, MP 96950, USA (URL: http://www.cnmihsem.gov.mp/); Simon Carn, Joint Center for Earth Systems Technology (JCET), University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Charles Holliday, U.S. Air Force Weather Agency (AFWA), Offutt Air Force Base, Nebraska 68113, USA; Randy White and Frank Trusdell, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025-3591 USA (URL: https://volcanoes.usgs.gov/nmi/activity/); Saipan Tribune, PMB 34, Box 10001, Saipan, MP 96950, USA (URL: http://www.saipantribune.com/); Operational Significant Event Imagery (OSEI) team, World Weather Bldg., 5200 Auth Rd Rm 510 (E/SP 22), NOAA/NESDIS, Camp Springs, MD 20748, USA (URL: https://www.nnvl.noaa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch, NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Chuck Sayon, American Memorial Park, Saipan, MP 96950, USA; NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).
Awu
Indonesia
3.689°N, 125.447°E; summit elev. 1318 m
All times are local (unless otherwise noted)
Stable during mid- to late August 2004
Awu's eruption on 6 June 2004 and its elevated seismicity in early August 2004 was previously reported (BGVN 29:10). This report covers the last half of August 2004, which had not been reported on previously. Since the 6 June eruption, observation of the summit failed to reveal any significant changes (table 3). The hazard status of Awu during this August report remained at Level 2, having been elevated to 4 (the highest on a scale of 1 to 4) at the time of the 6 June eruption and then lowered on 14 June.
Table 3. Seismicity at Awu during August 2004 as reported by DVGHM.
Date |
Deep Volcanic (A-type) |
Shallow Volcanic (B-type) |
Tectonic |
09 Aug-15 Aug 2004 |
-- |
-- |
75 |
16 Aug-22 Aug 2004 |
2 |
1 |
81 |
23 Aug-29 Aug 2004 |
2 |
-- |
102 |
Geologic Background. The massive Gunung Awu stratovolcano occupies the northern end of Great Sangihe Island, the largest of the Sangihe arc. Deep valleys that form passageways for lahars dissect the flanks of the volcano, which was constructed within a 4.5-km-wide caldera. Powerful explosive eruptions in 1711, 1812, 1856, 1892, and 1966 produced devastating pyroclastic flows and lahars that caused more than 8000 cumulative fatalities. Awu contained a summit crater lake that was 1 km wide and 172 m deep in 1922, but was largely ejected during the 1966 eruption.
Information Contacts: Dali Ahmad, Directorate of Volcanology and Geological Hazard Mitigation (DVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).
Fernandina (Ecuador) — April 2005
Cite this Report
Fernandina
Ecuador
0.37°S, 91.55°W; summit elev. 1476 m
All times are local (unless otherwise noted)
Lava flows down S flank from circumferential vents near caldera rim
On the morning of 13 May 2005, a new eruption started on uninhabited Fernandina volcano (figure 5). Fernandina last erupted in 1995 (figure 6), and had been quiet and seemingly unchanged when a team from the Ecuadorian Institute of Geophysics (IG) flew over it in late March 2005. On 11 May an M 5.0 earthquake occurred with an epicenter ~ 30 km E of Fernandina's center. Only two other earthquakes have been located by the U.S. Geological Survey (USGS) within 100 km of Fernandina in last 4.5 years (M 4.0 on 23 February 2005 and M 4.6 on 16 April 2005), both having epicenters ~ 70-80 km SE of Fernandina's center. A seismic station, installed by the IG in 1996 on the NE coast of the island, was out of service at the time of eruption.
Galápagos National Park workers in western Galápagos were apparently the first to witness the eruption, and IG technicians recognized it on satellite imagery. The University of Hawaii presents hotspot images on their website. Their GOES data lacked hotspots at 0930, but a clear and strong one had developed on the S flank by 0945. Francisco Dousdebes (of Metropolitan Touring) placed the eruption's start time at 0935. S-flank hotspots were comparatively extensive by 1015. The Washington VAAC issued their first full advisory at 1315. Their notices reported that the W-directed plume rose to ~ 5 km altitude, and the S-directed plume went to 9 km; both were visible as late as 1745 on 13 May, depicting the leading portions of Fernandina' s ash plume more than 200 km from the volcano
An overflight of the eruption on the 13th by the National Park resulted in a report by Patricio Ramón and Hugo Yepes, and the eruption was confirmed by Washington Tapia, director of the Galápagos National Park. That evening, Galápagos resident Greg Estes telephoned Dennis Geist to report that the eruptive source was a "circumferential vent near [the] summit, S side . . . 6 km long with an eruptive zone 50 m across." It was uncertain how this fissure was related to the 1981 eruption site (figure 2 and SEAN 09:03). IG also noted that tephra had fallen on neighboring Isabela Island, in the areas of the volcanoes Wolf and Ecuador (~ 40 km from the vent, figure 1).
At 0537 on the second morning, 14 May, the Washington VAAC reported low level ash/steam not visible in infrared imagery, but at 0746, 1½ hours after sunrise, a plume of ash extended ~ 130 km to the W and was moving at 18 km/hour at 1,800 m elevation. The GOES thermal anomaly was greatly diminished by 0930, and remained low to non-existent until resumption around 1415. That afternoon, an overflight by Godfrey Merlen, Wacho Tapia, and Alan Tye (Charles Darwin Research Station) resulted in the fullest report to date.
They said that although the vent area was obscured by clouds, topography suggested a 4.5 km long fissure vent near the S rim, with activity having progressed from SW (near the first and uppermost flows of the 1995 radial fissure eruption) to the E (figure 1). The lava flows "had begun to pond on the gentler outer skirt of the island," and were then 5.5 km from the coast (~ 5 km from the vents). They thought it unlikely that the flows would reach the sea. A follow-up news report in El Comercio (Quito) quoted Tapia as identifying five flows down the S flank. Only one remained incandescent. At 1745 on 14 May, Washington VAAC reported a plume remaining to the NW, but—lacking detectable ash—they discontinued advisories. Thermal anomalies on the GOES satellite remained strong, however, until the next morning.
The report also noted that, "As on previous eruptions, such as that on Cerro Azul in 1998, lava passing through vegetated areas has caused small fires, but these have not spread far from the lava tongues themselves before going out. Most of the new flows have passed over unvegetated older lava, and damage to Fernandina's vegetation is limited."
The team also flew over Alcedo volcano on Isabela, where Project Isabela staff had reported increased fumarole activity. Steam was rising from the "new" fumarole sites (active since the 1990s) and from the area of sulfur deposits and fumaroles in the southwestern area of the rim, but this activity did not appear unusual.
On 15 May, the GOES thermal anomaly was gone before noon, but returned near midnight (about 2330), over a smaller area, and it remained through sunrise (0615) on 16 May. Small anomalies were visible the next several nights (when contrast with adjacent cold flows was strongest), but there was no obvious evidence of continued feeding of the new flows.
The complex thermal anomalies detected in MODIS satellite imagery (provided by the University of Hawaii), were abundant around the time of eruption. They spread over Fernandina's rim, in some cases in the caldera, and broadly over the S flank. They continued through at least the rest of May.
The Washington VAAC reported that a weak hotspot started 29 May 2005 at 1945 (30 May at 0145 UTC) and a very short narrow plume of ash and gases appeared in multi-spectral imagery at 2145 (30 May at 0345 UTC). No ground confirmation of an eruption was available, and there was a layer of low-level weather cloud over the island. At that time, the plume appeared to dissipate as it moved away at ~ 18 km/hour.
Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.
Information Contacts: Patricio Ramón and Hugo Yepes, Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Alan Tye, Charles Darwin Research Station, Puerto Ayora, Santa Cruz, Galapagos Islands, Ecuador (URL: http://www.darwinfoundation.org/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch, NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Tom Simkin, Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA; National Earthquake Information Center, U.S. Geological Survey, Box 25046, DFC, MS 966, Denver, CO 80225-0046, USA (URL: https://earthquake.usgs.gov/); MODIS Thermal Alert System; University of Hawaii and Manoa, 168 East-West Road, Post 602, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu).
Karthala
Comoros
11.75°S, 43.38°E; summit elev. 2361 m
All times are local (unless otherwise noted)
16 April 2005 seismicity leading to eruption; near-source tephra 1.5 m thick
After a long period of quiescence following the 1991 phreatic eruption, Karthala's seismicity rebounded starting in July 2000 (BGVN 25:10). In October 2000, more than 20 seismic events per day were recorded.
The local observatory and a key source for this report is the Karthala Volcano Observatory (KVO; Netter and Cheminée, 1997). They maintain close ties with the Centre National de Documentation et de Recherche Scientifique des Comores (CNDRS), Reunion Island University, the Institut de Physique du Globe de Paris, Piton de la Fournaise Volcanological Observatory, and various universities in France.
Activity during October 2000-March 2004. Between October 2000 and January 2003, relatively low seismicity was detected beneath Karthala's summit. The seismicity slowly increased. During January instruments recorded 51 earthquakes on the 5th, 58 on the 10th, and 50 on the 11th. During the month of April 2003 instruments registered 732 (i.e. averaging ~ 24 each day).
Seismic instruments detected several short earthquake swarms, each comprised of ~ 150 earthquakes. These swarms took place on 25 March and in April 2003, and each lasted several hours. Moreover, seismologists witnessed another swarm consisting of 183 events on 15 May. Except for that latter swarm, Karthala's seismicity was relatively quiet for 35 days after the 25 April swarm. A photo of the Chahalé crater from the year 2003, well before the April 2005 eruption, appears in figure 6. (For a map of Karthala's summit, see BGVN 16:08.)
During the time interval from early June 2003 to January 2004 instruments registered three periods with elevated seismicity. The first interval spanned 121 days from June until the end of September 2003 and included 6,315 earthquakes. Within that interval there was a major crisis on 6th September, comprised of 345 events, some being felt by local residents (BGVN 28:08).
The second interval began on 11 October 2003, reaching its peak on 4 January 2004 (253 events) and stopped on 31 January 2004. During this interval of 113 days, instruments registered 4,431 earthquakes. The third interval, during the time period of 3 February to 5 March 2004, contained fewer earthquakes. Instruments recorded 832 events in 31 days with a maximum of 143 events per day. After the third interval, KVO recorded only low seismicity until early 2005, when daily events rose to 50-60.
Eruption during April 2005. A seismic crisis began at 0812 on 16 April. Although instruments initially received only short-period events, starting at 0914 they also registered many long-period ones. From 1055 on 16 April a continuous signal was recorded, which was interpreted as tremor marking the beginning of the eruption. At around 1400 that day inhabitants heard a rumbling coming from the volcano. A few minutes later they observed an ash column above the summit. The first ash-fall deposits began to form around 1600, developing on the island's eastern side. According to the firsts reports, ash deposition increased and continued through the night accompanied by a strong smell of sulfur.
On the morning of 17 April ash falls continued on the eastern part of the island and were heavy enough to require inhabitants to use umbrellas to get about. At midday, Jean-Marc Heintz, a pilot for Comores Aviation, flew over the west flank and observed a large plume in the direction of the Chahalé crater. He also clearly observed airborne molten ejecta.
Around 1300, observers saw a very dark plume, spreading into a mushroom shape and accompanied by lightning flashes. Some inhabitants panicked and fled the island's eastern villages. In the afternoon, residents heard rumbling. During the evening, significant rainfall generated small mudflows, and the rumbling became stronger.
At that time, authorities evacuated some eastern villages (according to Agence France Presse (AFP) this affected ~ 10,000 people). Ash there started to fall on the island's western and northern parts, notably, on the country's capital city of Moroni (~ 10 km NW of the summit) and on the Hahaya airport (~ 20 km N of Moroni, ~ 25 km NW of the summit). Figure 7 shows a photo with the base of a vigorous plume over the E flanks on the afternoon of 17 April.
KVO authorities sometimes witnessed a red color at the plume's base, interpreted as a sign of an ongoing magmatic eruption. At 2105 the KVO seismic network recorded a drastic decrease in the amplitude of the tremor. During the night of 17-18 April, wide variations of the tremor amplitude were recorded with a maximum at 0140 on 18 April and a minimum at 0430 on 18 April. Thereafter, the tremor amplitude did not increase. During the night of 17-18 April the plume and falling ash disappeared.
On an overflight of the Chahalé crater at 0830 on 18 April, KVO personnel observed major modifications at the summit (figures 8-10). A lava lake (figure 8) had replaced the water-bearing lake (figure 6) that had occupied the crater since 1991.
On 19 April a new overflight revealed the crater floor containing the lava lake, with its chilled surface emitting steam (figure 13). Lava remained confined to Chahalé crater. Around the caldera area, and particularly on its N, observers saw conspicuous tephra deposits; most of the vegetation had been destroyed (figure 14).
On 20 April a field excursion found that ash deposits varied in thickness from a few millimeters on the coast to ~ 1.5 m at the summit. Near the summit the observers recognized some post-eruptive evaporation and geothermal processes. Specifically, although the lava lake's surface had frozen, there remained sufficient heat under the surface that groundwater migrating towards to the crater's floor evaporated into steam. During another field survey on 8 May, observers noted the renewed presence of lake water inside the crater.
Reference. Netter, C., and Cheminée, J. (eds.), 1997, Directory of Volcano Observatories, 1996-1997: World Organization of Volcano Observatories (WOVO), WOVO/IAVCEI/UNESCO, Paris, 268 p.
Geologic Background. The southernmost and largest of the two shield volcanoes forming Grand Comore Island (also known as Ngazidja Island), Karthala contains a 3 x 4 km summit caldera generated by repeated collapse. Elongated rift zones extend to the NNW and SE from the summit of the Hawaiian-style basaltic shield, which has an asymmetrical profile that is steeper to the S. The lower SE rift zone forms the Massif du Badjini, a peninsula at the SE tip of the island. Historical eruptions have modified the morphology of the compound, irregular summit caldera. More than twenty eruptions have been recorded since the 19th century from the summit caldera and vents on the N and S flanks. Many lava flows have reached the sea on both sides of the island. An 1860 lava flow from the summit caldera traveled ~13 km to the NW, reaching the W coast to the N of the capital city of Moroni.
Information Contacts: Nicolas Villeneuve (CREGUR, Centre de Recherches et d'Etudes en Géographie de l'Université de la Réunion); Hamidou Nassor, and Patrick Bachèlery (LSTUR, Laboratoire des Sciences de la Terre), Université de La Réunion BP 7151, 15 Avenue, René Cassin, 97715 Saint-Denis, Reunion Island; François Sauvestre and Hamid Soulé, CNDRS, BP 169, Moroni, République Fédérale Islamique des Comores (URL: http://volcano.ipgp.jussieu.fr/karthala/stationkar.html).
Lascar
Chile
23.37°S, 67.73°W; summit elev. 5592 m
All times are local (unless otherwise noted)
4 May 2005 eruption sends ash over 1,000 km SE, ¾ of the way to Buenos Aires
Lascar, the most active volcano in northern Chile, erupted on 4 May 2005. Although the eruption was substantial, thus far there is an absence of reports from anyone who saw the eruption at close range. Preliminary assessments came mainly from satellite sensors and distant affects witnessed in Argentina. This report is based on one sent to us by Chilean Observatorio Volcanológico de los Andes del Sur (OVDAS) scientists José Antonio Naranjo and Hugo Moreno, discussing events around 4 May, with brief comments on some of Lascar's behavior in the past several years, and suggestions for future monitoring.
Lascar sits ~ 70 km SW of the intersection between Chile, Argentina, and Bolivia, ~ 300 km inland from the Chilean port city of Antofagasta. This part of the coast lies along the Atacama desert, and on flat terrain tens of kilometers W of Lascar resides a large salt pan, the Salar de Atacama (about 50 x 150 km). The settlement of Toconao is ~ 33 km NW of Lascar. Previous reports discussed field observations during 13 October 2002 to 15 January 2003, and fine ash discharged from fumaroles on 9 December 2003 (BGVN 28:03 and 29:01).
Naranjo and Moreno concluded that at roughly 0400 on 4 May an explosive eruption ejected an ash cloud to a tentative altitude on the order of 10 km that dispersed to the SE. About 2 hours later the cloud began dropping ash on Salta, Argentina. Satellite images portrayed the ash cloud's dispersal. An aviation 'red alert' was issued by the Buenos Aires Volcanic Ash Center; they saw the plume over Argentina at altitudes of 3-5 km.
Shortly after atmospheric impacts of the 4 May eruption became apparent, the Buenos Aires VAAC notified OVDAS that NW Argentine cities had reported falling ash. These cities, all SE of Lascar, included Jujuy, Salta, Santiago del Estero, and Santa Fe—locations with respective approximate distances from Lascar of 260, 275, 580, and 1,130 km. The Argentine province of Chaco, along the country's NE margin, was also noted as receiving ash. Buenos Aires (~ 1,530 km SE of Lascar) remained ~ 400 km beyond the point of the farthest detected ashfall.
Patricia Lobera, a professor in Talabre, Argentina, 17 km E of Lascar, said that eruption noises were not heard there on the morning of 4 May. When observers saw the plume from Talabre that morning they reportedly thought the plume looked similar to those on previous days.
Remotely sensed hot spots were detected on a GOES satellite image for 0339 (0639 UTC) on 4 May, showing the first evidence of an eruption. In a later image, at 0409, the thermal anomaly had increased, and the image suggested a growing, ash-bearing cloud then trending ~ 23 km to the SE. The thermal anomaly diminished in intensity by 0439, remaining diminished thereafter, but by that time the plume's leading margin extended over ~ 100 km SE and its tail had detached from the volcano. At 0509 the plume reached 170 km SE. According to a press report, at around 0600 ash fell in Salta (~ 275 km SE of Lascar).
Rosa Marquilla, a geologist at the University of Salta, reported that residents there noticed a mist attributed to the eruption, which hung over the city until at least to 1600, after which, the sky gradually cleared. Preliminary description of the petrography of the ash that fell in Salta came from Ricardo Pereyra (University of Salta) who saw crystal fragments (pyroxenes, feldspars, and magnetite) and fragments of volcanic glass containing plagioclase mircrolites. Lithic fragments were not observed.
The OVDAS authors concluded that, apparently since the year 2000, Lascar underwent constant degassing from an open vent within the ~ 780-m-diameter active central crater. Sporadic explosions as in July 2000 and October 2002, and in this case, 4 May 2005, could be due to diverse causes. For example, there may have been temporarily obstructed conduits at depth, local collapses blocking the vent at the crater floor, or fresh magma injection contacting groundwater. Extrusion of a viscous dome lava also might explain the sudden explosions. That circumstance would presumably lead to visibly increased fumarolic output.
Naranjo and Moreno had several suggestions for ongoing monitoring. First, they suggested developing closer long-term contacts, including people able to visually monitor the volcano directly, as well as continued systematic contact with the Buenos Aires VAAC and their satellite analysts. They recommended ongoing relations with the University of Hawaii (MODVOLC) program to remotely sense hot-spots. They went on to suggest a campaign of stereo aerial photography to detect changes in the active crater. They advocated notifying local inhabitants of the possibility of ash falls before another explosive episode. They pointed out that mountaineers should be made aware of elevated risks within 8 km of the active crater.
References. Gardeweg, M., 1989, Informe preliminar sobre la evolución de la erupción del volcán Láscar (II Región): noviembre 1989: Servicio Nacional de Geología y Minería, Informe Inédito (unpublished report), 27 p.
Gardeweg, M., and Lindsay, J., 2004, Lascar Volcano, La Pacana Caldera, and El Tatio Geothermal Field: IAVCEI General Assembly Pucón 2004, Field Trip Guide-A2, 32 p.
Gardeweg, M., Medina, E., Murillo, M., and Espinoza, A., 1993, La erupción del 19-20 de abril de 1993: VI informe sobre el comportamiento del volcán Láscar (II Región): Servicio Nacional de Geología y Minería, Informe Inédito (unpublished report), 20 p.
Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.
Information Contacts: José Antonio Naranjo and Hugo Moreno, Programa Riesgo Volcanico, Servicio Nacional de Geologia y Mineria, Avda. Santa Maria 0104, Casilla 1347, Santiago, Chile; Gustavo Alberto Flowers, Buenos Aires Volcanic Ash Advisory Center (Buenos Aires VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/productos.php).
Ol Doinyo Lengai (Tanzania) — April 2005
Cite this Report
Ol Doinyo Lengai
Tanzania
2.764°S, 35.914°E; summit elev. 2962 m
All times are local (unless otherwise noted)
Tall hornito almost reaches summit elevation; more lava spills over rim
Although lava venting at Ol Doinyo Lengai continued intermittently after February 2004 (BGVN 29:02), no significant changes were detected until July 2004, a time when vigorous venting emitted substantial amounts of the low-viscosity carbonatitic lava typical at this volcano ('flash floods' of lava). This summary report covers the time interval from February 2004 through early February 2005 based on observations made by Frederick Belton, Celia Nyamweru, Bernhard Donth, and Christoph Weber. Websites devoted to Ol Doinyo Lengai, including photographs, information on the evolution, recent history, and current status of the volcano are maintained by Belton, Nyamweru, and Weber.
A map, thermal data, and some new elevation estimates. In February 2005 Weber and others collected location data with a global positioning system (GPS) receiver. Weber used this to create a sketch map of the active crater (figure 82).
In July 2004 Belton completed the third of a series of distance measurements across crater outflow areas at the crater rim (table 7). Due to the unusually strong eruption on 15 July 2004 (figure 83), deposits comprising the E overflow widened by 3 or 4 m (growing from 44 to 47 m, figure 82). Later, in January 2005, observers noticed a fourth area of overflows had become established on the N crater rim, with lavas pouring over the rim at two adjacent points there (figure 82).
Table 7. For Ol Doinyo Lengai, the width of the three extant lava outflows at the points where they spilled from the active crater ('overflows,' figure 15), as measured during 2 August 2003-29 July 2004. Two additional small overflows formed later, by January 2005, on the N crater rim. The 3-m E-overflow increase occurred during the eruption of T58C on 15 July 2004. Courtesy of Frederick Belton.
Date |
NW overflow width |
E overflow width |
W overflow width |
02 Aug 2003 |
135 m |
44 m |
17 m |
29 Jun 2004 |
135 m |
44 m |
18 m |
29 Jul 2004 |
135 m |
47 m |
18 m |
During 3-7 February 2005 Weber and others completed a series of lava and fumarole temperature measurements that appear as tables 8 and 9. The tables indicate the hottest lava and fumarole temperatures at cracks were 588°C (at T49C, February 2004) and 150°C (at T49G, June 2004), respectively. The hornitos T49C and T49G both lie near T49B, a hornito delineated on figure 82.
Table 8. Repeated maximum lava temperatures measured at Ol Doinyo Lengai during 28 August 1999 to 3 February 2005. The measurements were made employing a digital thermometer (TM 914C with a stab feeler of standard K type). The instrument was used in the 0-1200°C mode, and at least four replicate measurements were made at any one spot. Calibration was by the delta-T method; uncertainties were ± 6°C in the 0-750°C range. Courtesy of C. Weber.
Date |
Location |
Temperature (°C) |
28 Aug 1999 |
T40 lava lake |
529 |
01 Sep 1999 |
Pahoehoe flow in a tube near T40 |
519 |
01 Sep 1999 |
Aa flow still in motion at flat terrains (60 cm thick) |
516 |
03 Oct 2000 |
Pahoehoe flow in a tube near T49B |
507 |
03 Oct 2000 |
Aa flow still in slow motion at flat terrain (25 cm thick) |
496 |
11 Feb 2004 |
Pahoehoe flow in a tube near T49G |
588 |
12 Feb 2004 |
Pahoehoe flow in a tube near T49B |
579 |
13 Feb 2004 |
Aa flow not in motion anymore at flat terrain (15 cm thick) |
490 |
26 Jun 2004 |
Pahoehoe flow in slow motion (10 cm thick) flat terrain |
560 |
03 Feb 2005 |
Pahoehoe flow (15 cm thick) in motion traveling within a levee. |
561 |
03 Feb 2005 |
Aa flow not in motion anymore at flat terrain (15 cm thick) |
520 |
Table 9. Maximum fumarole temperatures measured at cracks in Ol Doinyo Lengai's crater floor over a series of visits during 28 August 1999 to 4 February 2005. Collected using the digital thermometer with procedures and parameters noted with the previous table. For locations, see map (figure 15). Courtesy of C. Weber.
Date |
Location |
Temperature (°C) |
28 Aug 1999 |
F1 |
70 |
28 Aug 1999 |
Near T49 |
82 |
03 Oct 2000 |
Near T49C |
75 |
03 Oct 2000 |
F1 |
69 |
20 Oct 2002 |
The hottest cracks in the crater floor |
124 |
20 Oct 2002 |
F1 |
78 |
30 Jun 2003 |
F1 |
86 |
30 Jun 2003 |
Near T49C |
76 |
12 Feb 2004 |
F1 |
88 |
26 Jun 2004 |
F1 |
78 |
26 Jun 2004 |
Near T49C |
150 |
04 Feb 2005 |
F1 |
84 |
Weber's team GPS measurements suggested a summit elevation of 2,960 ± 5 m. This is consistent with GPS measurements taken in October 2000, by a scientific group led by Joerg Keller, of 2,950-2,960 m (BGVN 25:12). In addition, the tallest hornito in the N-central crater rises to nearly this elevation (see discussion of T49/T56B, below).
During observations in February 2004, Weber measured the tallest hornito at the T49 location (part of T56B) in the center area of the active crater. GPS readings on top of T56B yielded an elevation of 2,886 m. This is only [74 m below the elevation of the summit]. The top of T49 is also ~ 33 m above the adjacent crater floor to the N. In addition, when he measured on 3-7 February, Weber found hornito T58C (a then recent feature) had grown to reach an elevation of ~ 2,870 m.
Observations during February 2004 to February 2005. During February 2004 visits, T56B did not erupt, but instead a new vent erupted at the T49 location (~ 10 m E of T49B, see also BGVN 29:02). This new vent was called T49G (figure 15).
A group from Volcano Expeditions International (VEI) spent 24-30 June 2004 on Lengai and found much of the scene at the vents in the crater similar to that noted in February 2004. They noted that half of the upper 10 m of hornito T56B had collapsed on its E side, and an active lava lake had formed inside this hornito with lava escaping several times through the collapsed opening to its E and flowing out ~ 200 m. The lava was rich in gas with a temperature of 560°C. The hornito T58B was also active and spattered lava many times during these days of observation. Some lava flows from T58B reached about 150 m to the S.
During 2-3 July 2004, Belton observed T58B erupt repeatedly, emitting lava and strombolian displays. The escaping lava flowed S, passing near the base of hornito T47. On 4 July, Belton saw some of the most intense activity of the month. A sequence of lavas erupted on that day and over the next few days. However, events in mid-July and later were also unusually vigorous.
The 4 July 2004 activity included strong strombolian eruptions at T58B and several collapses of its vent area, which released large cascades of lava onto the crater floor. Simultaneously, a tube-fed eruption of pahoehoe lava from the new vent T49G flowed across the NW crater rim to spill down that flank. Early on 5 July numerous eruptions of T58B sent lava flowing toward T47 at an estimated velocity of 10 m/sec. On 6 July, lava flowed out of the lake in T56B and onto the crater floor moving E and entering a cave in T45 for a short distance.
After very low activity during 7-10 July 2004, renewed flows and spatter came out on 11 July from T58B, and frequent but short (usually ~ 2 minute) episodes of loud degassing and spattering issued from the lava lake in T56B. At night, this vent emitted incandescent gas. This pattern continued until the morning of 14 July, when eruptions at T58B became more explosive and it expelled small ash clouds. On the morning of 15 July a collapse in the vent area of T58B released large rapid lava flows to the E. The episodes of degassing and spattering from T56B increased in frequency until 1500 on 15 July, when a small hole formed in the crater floor just E of T58B.
Called T58C, the hole became a newly opened vent. It began emitting visible gas puffs mixed with spatter. At this time the degassing episodes from T56B ceased. T58C then began strong degassing and squirted up intermittent lava fountains. The fountains soon fed a large lava stream moving toward the S crater wall.
By 1600 on 15 July 2004 a paroxysm at T58C was in progress, with lava forming 10- to 12-m-tall fountains and 'flash floods' that completely inundated the central-eastern crater floor (in the area between T56B, T58B, T37, T37B, T45, and T57). T58C also ejected strong jets of ash and gas. Turbulent rivers of lava flowing at more than 10 m/sec swept toward the crater's S wall and its E overflow and completely surrounded T37B and T45. Flow rate from the vent was estimated to peak at 10 m3/s.
The momentum of the rapidly outflowing lava carried it nearly 3 m up the W (upstream) side of T45 and obliterated the large cave within that cone. The associated surge of lava poured over the E crater rim and down the flank. It flooded over a 3 m wide swath of vegetation. This triggered a huge cloud of steam and smoke that resembled a small pyroclastic flow. The smoke cloud was accompanied by a loud sizzling sound. A brush fire burned along the crater rim overflow as additional floods of lava arrived. These larger-than-normal flows lasted for little more than 30 sec and were separated by periods of repose of 5 to 6 min. After sunset, incandescent gas flared from the vent during the repose periods. Weak strombolian activity was seen in T56B.
Early on 16 July 2004 the newly formed T58C was a circular pit ~ 2 m in diameter with lava sloshing violently at a depth of ~ 2 m. Two small sub-vents on the N and S edges of the pit interconnected with the main vent. Activity continued sporadically at T58B and T56B with strombolian activity and lava flows. On 21 July there was an exceptionally strong eruption of T58B with loud explosions, jetting of ash-poor clouds, and spatter thrown to above-average heights. Explosions blasted a new vent in the upper E side of T58B. At least four oval bombs 9-12 cm in length flew through the air, along with a great deal of lapilli and ash. Later examination of the bomb's interiors revealed that they all had an outer zone ~ 1.5- to 2-cm thick and a distinctive inner core.
On 23 July 2004, a sloping ~ 4 m2 oval section of the crater floor immediately SW of the new spatter cone T58C began to steam and vibrate. Tremor increased and ground movement was visible, manifested as a small section of crater floor rapidly pushed outward and then inward several centimeters, like a membrane vibrating in time to the degassing sounds of lava in T58C just behind it. Abruptly this portion of the crater floor broke outward, and a flood of lava ensued. T58C was observed to grow in height through the time when Belton left the crater on 29 July 2004.
Observations during January and February 2005. Donth reported that during his visit on 10 January 2005, hornito T49B erupted to form many effusive lava flows. For the first time, lava escaped over the northern edge of the crater (see figure 15).
During Weber's crater visit, 3-7 February 2005, the hornito T49B actively emitted lava flows that traveled to the N. Pahoehoe lava flows in motion within small levees on flat terrain were measured from 520°C up to a maximum of 561°C (table 3). The fumaroles at F1 had a maximum temperature of 84°C, and at hornito T46, a maximum of 91°C (table 4). No change in distance was measured across the CR1, CR2, and CR3 cracks cutting the upper crater walls. Adding to visitor safety concerns, which include altitude sickness, burns, falls, and impact from ejecta, Weber's team saw a spitting cobra close to the summit. An overflight by plane on 14 February showed no subsequent change, but did give an excellent view of the crater and its central hornitos (figure 16).
A flight on 14 February failed to reveal subsequent changes. But the effort provided an excellent view of the crater and its central hornitos (figure 84).
Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.
Information Contacts: Christoph Weber, Volcano Expeditions International, Muehlweg 11, 74199 Untergruppenbach, Germany (URL: http://www.v-e-i.de/); Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617, USA (URL: http://blogs.stlawu.edu/lengai/); Frederick Belton, Developmental Studies Department, PO Box 16, Middle Tennessee State University, Murfreesboro, TN 37132, USA (URL: http://oldoinyolengai.pbworks.com/); Bernard Donth, Waldwiese 5, 66123 Saarbruecken, Germany.
Vailulu'u (United States) — April 2005
Cite this Report
Vailulu'u
United States
14.215°S, 169.058°W; summit elev. -592 m
All times are local (unless otherwise noted)
ALIA cruise discloses new cone in the summit crater
According to Hubert Staudigel (Scripps Institution of Oceanography) and Stanley Hart (Woods Hole Oceanographic Institute), Vailulu'u seamount, the most active Samoan submarine volcano, erupted between April 2001 and April 2005. It formed a 293-m-tall lava cone, which was named Nafanua after the Samoan Goddess of War. This new cone had been growing inside the 2-km-wide caldera of Vailulu'u at a minimum rate of about 20 cm/day since April 2001. Nafanua was discovered during a 2005 diving expedition with the National Oceanic and Atmospheric Agency (NOAA) research submersible Pisces V, launched from the University of Hawaii research vessel Kaimikai O Kanaloa (KOK). It is located in the originally 1,000-m-deep W crater of Vailulu'u (figures 5 to 8).
Seismic monitoring during April-June 2000 showed substantial seismicity, ~ 4 earthquakes per day with hypocenters beneath Nafanua (Konter and others, 2004; BGVN 26:06), which can now be interpreted as pre-eruption seismic activity. These observations are consistent with previous reports highlighting the volcanic and hydrothermal activity of Vailulu'u (Hart and others, 2000; Staudigel and others, 2004). The scientists suggested that continued volcanic activity could bring the summit region of Vailulu'u to a water depth of ~ 200 m. At that point, Nafanua would overtop the crater rim and further growth would require a build-up of the lower flanks, areas that rise from the 5,000-m-deep floor of the ocean.
Staudigel and Hart teamed up in April 2005 on the Hawaiian Research Vessel Kilo Moana to study the Samoan hotspot thought to underlie Vailulu'u. They named their expedition ALIA after the ancient twin-hulled canoe that Samoan warriors used to explore the SW Pacific. The Kilo Moana left Pago Pago on 4 April 2005 to study active and extinct underwater volcanoes along the chain of Samoan islands. The expedition investigated previously uncharted seamounts and the submarine portions of some islands, scattered over almost 600 nautical miles, from its most recent and quite active Vailulu'u submarine volcano in the E to Combe Island in the W.
The Nafanua cone was first mapped by using the center beam of the research vessel KOK in several crossings of the W crater. An active hydrothermal system was apparent from evidence such as the murky water that limited visibility during two submersible dives, several microbial biomats covering pillow lavas that were centimeters thick, and a large number of diffuse vents. A dive on 30 March 2005 to examine Nafanua reported "that it must have grown in the last 4 years because CTD (conductivity-temperature-depth) crossings in 2001 still were consistent with the old crater morphology ... the basal portion of the cone displayed relatively large pillows, and higher up pillows look almost like very fluid pahoehoe that collapsed and/or transitioned into aa flows. Nafanua . . . grew very fast with abundant breccia material from collapsing and draining pillows, in particular in the summit region."
On 1 April, another dive along the outer flanks of Vailulu'u found that during the up-slope transit, observers saw a few additional areas of active venting and many sites where there had been venting in the past. Large and perfectly formed pillow lavas were present in most sites, with a few areas being dominated by broken talus fragments and some having completely black glassy pillows with no oxidation, apparent evidence for relatively recent formation. The topography was extremely rough, the slope being punctuated with numerous fissure systems and edifices of pillow lava.
A primary plan for the ALIA expedition was to study the water in and around the seamount for several days using a CTD probe. To sample the inside of the volcano for a full tidal cycle, the scientists varied the depth of the CTD between 40 and 930 m (almost to the crater floor), collecting various data, including visibility. At Vailulu'u, the particulates given off by hydrothermal venting are flushed out of its caldera during each tidal cycle into the surrounding water. In 2005, a dense layer of particulates was found in the water within the crater, but the water was clear outside the crater rim. This contrasts with observations seen from the cruise in 2000, when there was a dense ring of particulates around the whole volcano. It appears that in 2005 the particulates were rising above the crater and then later sinking, instead of forming the widespread ring observed in 2000.
In addition, the expedition crew conducted dredging of the new summit of Nafanua. Staudigel and Hart noted that the rocks from the first dredge haul were quite newly formed, containing pristine olivine-phyric volcanic rocks. Abundant large vesicles in the rocks from Nafanua suggest a volatile-rich magma capable of submarine lava fountaining and explosive outgassing in shallower water. Dredging from a second site, outside of Vailulu'u, recovered rocks that were both much older and far less fragile.
References. Hart, S.R., Staudigel, H., Koppers, A.A.P., Blusztajn, J., Baker, E.T., Workman, R., Jackson, M., Hauri, E., Kurz, M., Sims, K., Fornari, D., Saal, A., and Lyons, S., 2000, Vailulu'u undersea volcano: The new Samoa: Geochemistry, Geophysics, Geosystems (G3), American Geophysical Union, v. 1, no. 12, doi: 10.1029/2000GC000108.
Konter, J.G., Staudigel, H., Hart, S.R., and Shearer, P.M., 2004, Seafloor seismic monitoring of an active submarine volcano: Local seismicity at Vailulu'u Seamount, Samoa: Geochemistry, Geophysics, Geosystems (G3), American Geophysical Union, v. 5, no. 6, QO6007, doi: 10.1029/2004GC000702.
Lippsett, L., 2002, Voyage to Vailulu'u: Searching for Underwater Volcanoes. Woods Hole Oceanographic Institution, Fathom online magazine (URL: http://www.fathom.com/feature/122477/).
Staudigel, H., Hart, S.R., Koppers, A., Constable, C., Workman, R., Kurz, M., and Baker, E.T., 2004, Hydrothermal venting at Vailulu'u Seamount: The smoking end of the Samoan chain: Geochemistry, Geophysics, Geosystems (G3), American Geophysical Union, v. 5, no. 2, QO2003, doi: 10.1029/2003GC000626.
Geologic Background. Vailulu'u, a massive basaltic seamount not discovered until 1975, rises 4,200 m from the sea floor to a depth of 590 m about one-third of the way between Ta'u and Rose islands at the E end of the American Samoas. It is considered to mark the current location of the Samoan hotspot. The summit contains a 2-km-wide, 400-m-deep oval-shaped caldera. Two principal rift zones extend E and W from the summit, parallel to the trend of the hotspot. A third less prominent rift extends SE of the summit. The rift zones and escarpments produced by mass wasting phenomena give the seamount a star-shaped pattern. On 10 July 1973, explosions were recorded by SOFAR (hydrophone records of underwater acoustic signals). An earthquake swarm in 1995 may have been related to an eruption. Turbid water above the summit shows evidence of ongoing hydrothermal plume activity.
Information Contacts: Hubert Staudigel, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, Univ. of California, San Diego, La Jolla, CA 92093-0225, USA (URL: https://earthref.org/whoswho/ER/hstaudigel/, https://igpp.ucsd.edu/); Stanley R. Hart, Woods Holes Oceanographic Institute, Geology and Geophysics Dept., Woods Hole, MA 02543, USA; ALIA Expedition, Samoan Seamounts, R/V Kilo Moana (KM0506), supported by the San Diego Supercomputer Center and the Scripps Institution of Oceanography (URL: https://earthref.org/ERESE/projects/ALIA/).