Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Reventador (Ecuador) Continued ash emissions and incandescent blocks avalanches; new dome and lava flow emerge in August 2020

Popocatepetl (Mexico) Daily low-intensity emissions with ash and persistent tremor during August 2020-January 2021

Pacaya (Guatemala) Explosions continue, and effusive activity increases during August-November 2020

Stromboli (Italy) Explosions, incandescent ejecta, lava flows, and pyroclastic flows during September-December 2020

Saunders (United Kingdom) Elevated crater temperatures and gas emission through May 2020; research expedition

Santa Maria (Guatemala) Frequent explosions and avalanches August 2020-January 2021; lava extrusion in September 2020

Tengger Caldera (Indonesia) Ash plumes during 26-28 December 2020 with ashfall to the NE

Lewotolok (Indonesia) New eruption in late November 2020 consisting of ash plumes, crater incandescence, and ashfall

Soufriere St. Vincent (Saint Vincent and the Grenadines) New lava dome on the SW edge of the main crater in December 2020

Erta Ale (Ethiopia) Brief increase in strong thermal activity during late November-early December 2020

Bagana (Papua New Guinea) Ongoing thermal anomalies possibly indicating lava flows during May-December 2020

Kadovar (Papua New Guinea) Occasional ash and gas-and-steam plumes along with summit thermal anomalies



Reventador (Ecuador) — February 2021 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Continued ash emissions and incandescent blocks avalanches; new dome and lava flow emerge in August 2020

The andesitic Volcán El Reventador lies almost 100 km E of the main axis of active volcanoes in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. An eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and multiple lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Similar activity continued during August 2020-January 2021, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Near-daily emissions of gas and ash often rose 500-1,000 m above the summit and drifted mostly in a westerly direction throughout August 2020-January 2021. Incandescence at night was produced by explosions of ejecta that sent blocks rolling hundreds of meters down the flanks of the pyroclastic cone inside the summit caldera. IG-EPN reported the presence of a new dome inside the crater in early August. A small lava flow about 400 m long persisted on the NE flank through at least the end of 2020; another flow was observed on the N flank in January. Small pyroclastic flows were reported a few times, and ashfall occurred in the San Rafael region (10 km SSE) at the end of October. After a relatively quiet June 2020, thermal activity increased to moderate levels and remained there throughout the period (figure 132).

Figure (see Caption) Figure 132. Thermal activity at Reventador was consistent at moderate to high levels from late June 2020 through January 2021, according to this MIROVA project graph of log radiative power at the volcano. Courtesy of MIROVA.

Gas and ash emissions rose 500-1,000 m above the summit almost every day during August 2020 (figure 133). Incandescence and explosions at the summit crater, visible at night, were accompanied many nights by incandescent blocks that rolled 500-700 m down various flanks. The Washington VAAC issued 1-4 alerts most days, reporting ash observed in satellite data that rose 700-1,400 m above the summit. Drift directions were generally NW, W, or SW. IG reported a pyroclastic flow on the NE flank on 4 August, and a new 200-m-long lava flow near the summit on the NE flank was seen on 10 August (figure 134). By 19 August the lava flow had reached 350 m long; it remained active for the rest of the month but didn’t increase in length. Based on the analysis of webcam photographs and infrared images, they confirmed the growth of a new dome on 17 August (figure 135). MODVOLC thermal alerts were recorded on 3 and 11 August.

Figure (see Caption) Figure 133. Gas and ash rose 500-1,000 m above the summit of Reventador most days during August 2020, as seen here on 17 August. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-231, LUNES, 17 AGOSTO 2020).
Figure (see Caption) Figure 134. IG-EPN reported a new lava flow on the NE flank of Reventador on 10 August 2020. It was about 400 m long and persisted through the end of 2020. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-224, LUNES, 10 AGOSTO 2020).
Figure (see Caption) Figure 135. Infrared images show volcanic activity at Reventador during August 2020, including a pyroclastic flow on 4 August (top right), a lava flow on 6 August (middle left), and a lava dome on 17 August (middle right and bottom row). Courtesy of IG-EPN (Prepared by Cámar IR, S Vallejo; Informe Especial del Volcán El Reventador No. 2-2020).

Incandescence from summit explosions was visible most nights in September 2020; explosions sent glowing blocks 500-800 m down multiple flanks on many nights. The lava flow on the NE flank remained active, growing slightly from 350 to 400 m in length. Three or four VAAC alerts were issued each day for ash plumes that rose usually 700-1,400 m above the summit and drifted NW. IG webcams captured images of ash emissions rising 600-900 m above the summit on most days; a few exceeded 1,000 m in height. IG reported pyroclastic flows on the N flank on 3 and 4 September, and on the W flank on 6 September. Pyroclastic deposits were observed on the E flank of the cone on 26 September, and the webcams captured a pyroclastic flow in the early morning of 29 September along the WSW flank that reached 600 m from the summit (figure 136). All of the pyroclastic flows remained inside the summit caldera. MODVOLC thermal alerts were recorded on 11, 12, and 20 September.

Figure (see Caption) Figure 136. A pyroclastic flow was visible on the WSW flank of Reventador on 29 September 2020 along with an ash plume that rose hundreds of meters above the summit. Courtesy of IG-EPN (IGAlInstante Informativo VOLCÁN REVENTADOR No. 005, MARTES, 29 SEPTIEMBRE 2020).

The 400- to 450-m-long lava flow that first emerged on the NE flank in early August remained active, as seen in thermal imagery, throughout October 2020 (figure 137). Emissions of gas and ash continued rising daily 500-1,000 m above the summit and drifting in multiple different directions. Multiple VAAC reports were issued on most days; the plumes increased in height and frequency during the second half of the month, reaching 1,400 m above the summit. Incandescent blocks rolled 500-800 m down the flanks on most nights. MODVOLC thermal alerts were issued on five days during the month, on 2, 11, 14, 25, and 27 October; five alerts were issued on 25 October. Occasional pyroclastic flows were recorded on the N flank on 21 October. Fine-grained ashfall was reported in the San Rafael region (on the border between the Napo and Sucumbios provinces, 10 km ESE) on 28 and 30 October (figure 138).

Figure (see Caption) Figure 137. The lava flow on the NE flank of Reventador was about 450 m long and active throughout October 2020. In this 6 October 2020 infrared image incandescent ejecta rose from the summit and the lava flow was visible on the NE flank. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-281, MARTES, 6 OCTUBRE 2020).
Figure (see Caption) Figure 138. IGEPN official S. Vallejo reported ashfall on a vehicle in the San Rafael region on the border between the Napo and Sucumbios provinces, 10 km ESE of Reventador on 28 and 30 October. US penny for scale. Photo by S. Vallejo, courtesy of IG-EPN (IGAlInstante Informativo VOLCÁN REVENTADOR No. 007, VIERNES, 30 OCTUBRE 2020).

Steam, gas, and ash emissions continued throughout November 2020, with many plumes rising 800-1,000 m above the summit and drifting NW (figure 139). Multiple daily VAAC reports indicated plumes visible in satellite imagery 1,000-1,400 m above the summit on most days. The lava flow remained active on the NE flank with thermal imagery indicating a strong heat signal 400-450 m from the summit. The explosions that produced the incandescent blocks were strongest during 5-7 November when the blocks rolled as far as 1,000 m from the summit. Cloudy weather and rain obscured views of activity at the end of the month, and a lahar was measured by seismic instruments on 27 November, but no damage was reported. MODVOLC alerts were issued on 3, 10, 26, and 30 November. Cloudy weather during the first week of December prevented many observations, but clearer skies later in the month indicated ongoing activity that included gas and ash emissions rising about 1,000 m and drifting NW; incandescent blocks rolled 500 m down the flanks following explosions inside the crater. Only a single MODVOLC alert was issued on 25 December. The 450-m-long lava flow on the NE flank remained active.

Figure (see Caption) Figure 139. Many ash plumes at Reventador rose 800-1,000 m above the summit during November 2020. They were visible on some days when the mountain was not; clear days revealed blocks rolling down the NE flank and raising ash clouds as they rolled (bottom left). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR Nos. 2020-312, 2020-315, 2020-323, and 2020-327).

A new pulse of lava was first reported from a vent on the N flank on 10 January 2021 and remained active for the rest of the month. That same day incandescent blocks traveled 700 m down the NE flank. Pyroclastic flows were observed on the night of 14 January on the N flank. Satellite imagery on 16 January showed multiple areas of thermal activity at the summit and on the NNE flank (figure 140). On 21 January the ejecta from the explosions rose a hundred meters or more into the air over the pyroclastic cone in addition to traveling several hundred meters down the NE flank (figure 141). MODVOLC thermal alerts were issued on 4, 13, and 31 January.

Figure (see Caption) Figure 140. Sentinel-2 satellite imagery of Reventador on 16 January 2021 indicated strong thermal anomalies at the summit and on the NE flank, even through the frequently dense cloud cover. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 141. On 21 January 2021 the ejecta from explosions at Reventador could be seen rising a hundred meters or more over the pyroclastic cone in addition to traveling several hundred meters down the NE flank. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-021, Quito, jueves 21 de enero de 2021).

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Popocatepetl (Mexico) — February 2021 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Daily low-intensity emissions with ash and persistent tremor during August 2020-January 2021

Volcán Popocatépetl is an active stratovolcano near Mexico City that has had frequent historical eruptions dating back to the 14th century. The current eruption has been ongoing since January 2005 and has more recently consisted of lava dome growth and destruction, frequent explosions, and emissions of ash plumes and incandescent ejecta. Activity through July 2020 was characterized by hundreds of daily low-intensity emissions that included gas-and-steam and small amounts of ash, and multiple daily minor and moderate explosions that sent ash plumes more than 1 km above the crater (BGVN 45:08). This report covers somewhat decreased activity from August 2020 through January 2021 using information from México's Centro Nacional de Prevención de Desastres (CENAPRED), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Popocatépetl had ongoing water vapor, gas, and ash emissions throughout August 2020-January 2021, but far fewer minor and moderate explosions than during the period of the previous report. Ash emissions generally rose to 5.8-7.1 km altitude and drifted in many different directions. Ashfall was reported in multiple communities during August, October, and numerous times in January 2021. Thermal anomalies were recorded in satellite images inside the summit crater a few times each month. The MIROVA thermal anomaly data indicated persistent, low levels of activity throughout the reporting period (figure 162). CENAPRED reported the number of low-intensity emissions or ‘exhalations’ and the number of minutes of tremor in their daily reports (figure 163). Tremor activity was very high at the beginning of August, and then again during January 2021. The daily number of exhalations was highest during late October and November 2020.

Figure (see Caption) Figure 162. MIROVA thermal anomaly data for Popocatépetl for the year ending on 3 February 2021 showed persistent low levels of activity from August 2020 through January 2021, the period covered in this report. Courtesy of MIROVA.
Figure (see Caption) Figure 163. CENAPRED reported the number of exhalations (low-intensity emissions) and the number of minutes of tremor at Popocatépetl in their daily reports. Tremor activity was very high at the beginning of August, and then again during January 2021 (yellow columns). The daily number of exhalations was highest during late October and November 2020 (blue columns). Data courtesy of CENAPRED daily monitoring reports.

During August 2020 daily water vapor and gas emissions often contained small quantities of ash. In addition, low-intensity emissions or exhalations with larger quantities of ash occurred tens of times per day. The daily number of minutes of tremor was over 1,000 at the beginning of the month but dropped back to lower levels of a few tens or hundreds of minutes later in the month. Slight amounts of ashfall were reported in Amecameca and Ozumba in the State of Mexico on 1 August. On 2 August the 1159 minutes of tremor were sometimes accompanied by incandescent ejecta that fell into and a short distance from the summit crater. The Washington VAAC observed an ash emission drifting NE at 6.1 km altitude on 2 August that later rose to 7.6 km altitude. It fanned out from the summit to the N and E for about 15 km. Similar observations were made virtually every day of the month; ash or gas-and-ash emissions generally rose to 5.8-7.6 km altitude and drifted a few tens of kilometers in different directions before dissipating. Constant gas emissions and incandescence were reported at night during 10-23 August; an ash emission that rose to 600 m above the crater rim and drifted W on 14 August was captured in the webcam (figure 164). The largest SO2 emissions during the period were captured by the TROPOMI instrument on the Sentinel-5P satellite during 2-5 August (figure 165).

Figure (see Caption) Figure 164. An ash emission at Popocatépetl rose to 600 m above the crater rim and drifted W on 14 August 2020. Dense steam emissions also drifted just above the summit. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 14 de Agosto).
Figure (see Caption) Figure 165. The largest SO2 emissions at Popocatépetl during the period were captured by the TROPOMI instrument on the Sentinel-5P satellite during 2-5 August 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Gas and occasional weak ash emissions accompanied the tens of daily low-intensity emissions during September 2020; thermal activity was very low with weak anomalies inside the summit present in satellite images on 3, 8, and 13 September. Ash emissions were visible from a webcam on 18 September and in satellite imagery on 23 September (figure 166). Weak incandescence above the crater was only reported by CENAPRED during 26 and 27 September. The Washington VAAC reported intermittent ash emissions throughout the month that commonly rose to 6-7 km altitude and drifted over 50 km downwind before dissipating.

Figure (see Caption) Figure 166. Ash emissions were visible from a webcam at Popocatépetl on 18 September (left) and in satellite imagery on 23 September 2020 (right). Right image is from Sentinel-2 with natural color rendering (bands 4, 3, 2). Left image courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 18 de septiembre). Right image courtesy of Sentinel Hub Playground.

Water-vapor and gas emissions with small quantities of ash similar to those seen in September were also typical activity during October 2020. Tens or a few hundred daily low-intensity emissions often produced ash plumes visible in the webcams (figure 167). Ashfall was reported in Tetela del Volcano (20 km SW), in the state of Morelos, and in Amecameca (20 km NW), Atlautla (17 km W), Ayapango (22 km NW) and Ecatzingo (15 km SW), in the State of Mexico on 7 October; a small amount of ashfall was also reported in Amecameca on 13 October. The Washington VAAC issued multiple daily ash advisories throughout the month; many ash plumes were visible in satellite imagery. Incandescence appeared over the summit crater at night during 10-16 October, and was noted in satellite imagery on 3, 8, 18, 23, and 28 October. Incandescence and ash emissions were both captured in satellite imagery on 8 and 18 October (figure 168). Personnel from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Prevention (CENAPRED) conducted an overflight on 16 October and verified that the inner crater at the summit was covered in tephra and about 360-390 m in diameter and 120-170 m deep (figure 169).

Figure (see Caption) Figure 167. Ash plumes and steam rose hundreds of meters above Popocatépetl on 5 (left) and 10 (right) October 2020. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 5 de octubre y 10 de octubre de 2020).
Figure (see Caption) Figure 168. Thermal anomalies at the summit of Popocatépetl and ash plumes drifting SW were both present in satellite imagery on 8 (left) and 18 (right) October 2020. Images are using Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 169. Personnel from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Prevention (CENAPRED) conducted an overflight of Popocatépetl on 16 October 2020 and verified that the inner crater at the summit was covered in tephra, about 360-390 m in diameter, and 120-170 m deep. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 16 de octubre de 2020).

Activity during November 2020 consisted primarily of weak emissions of steam and gas with occasional small quantities of ash that rose a short distance above the summit crater (figure 170). The Washington VAAC reported ash emissions on 19 days during the month, most rising to 5.8-6.7 km altitude and drifting for a few tens of kilometers before dissipating. CENAPRED reported a few hundred low-intensity emissions daily, but only a few tens of minutes of tremor each day, significantly lower than previous months. Satellite imagery showed weak thermal anomalies inside the summit crater on 2, 7, 12, 22, and 27 November.

Figure (see Caption) Figure 170. Activity during November 2020 at Popocatépetl consisted primarily of weak emissions of steam and gas with occasional small quantities of ash that rose a short distance above the summit crater such as this one on 2 November. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 02 de noviembre).

Emissions of steam and gas with occasional low quantities of ash continued during December 2020. Six explosions on 5 December produced small ash plumes that rose 500-1,000 m above the crater. The next day two explosions produced plumes that rose less than 1,500 m above the crater and drifted NE. Incandescent ejecta was captured in the webcam on 14 December (figure 171). The Washington VAAC issued multiple aviation alerts nearly every day of the month; ash plumes generally rose to 6-7 km altitude and drifted 30-50 km before dissipating. Activity increased during the second half of the month (figure 172). Visible ejecta was seen in webcams during low-energy emissions on 24 December, accompanied by an ash plume that rose 1,000 m above the crater. The next day an ash emission rose 300 m. Ejecta was noted on the SE flank after an explosion on 27 December, and ash plumes rose to 500-1,400 m above the crater each day through the end of December and into January 2021. Thermal anomalies appeared in satellite data inside the summit crater on 2, 17, 22, and 27 December.

Figure (see Caption) Figure 171. Explosions at Popocatépetl produced dense ash emissions and incandescent ejecta. On 6 December the ash plume rose to 1,500 m above the crater and drifted NE (left). On 14 December 2020 incandescent ejecta rose a few hundred meters above the summit crater (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 7 de diciembre y 15 de Diciembre de 2020).
Figure (see Caption) Figure 172. Ash emissions occurred daily at Popocatépetl during December 2020. On 20 December the dense plume rose about one kilometer above the summit (left). On 31 December a thermal inversion was the likely reason that the ash from the summit flowed down the flank towards the webcam (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 20 de diciembre y 31 de Diciembre de 2020).

Daily ash emissions were reported by the Washington VAAC during January 2021, rising to 5.8-7.0 km altitude and drifting tens or hundreds of kilometers before dissipating (figure 173). Ash plumes rose 500-600 m above the crater on 1 and 2 January; at least one explosion each of those days produced incandescent ejecta in and around the crater. The Washington VAAC reported the ash plume from 1 January as visible in the webcam and satellite imagery over 200 km NE from the summit before dissipating, and one on 6 January visible about 100 km E of the volcano (figure 174). Ashfall was reported each day during 4-6 January in Puebla to the NW. On 8 January ashfall occurred in Atlixco (23 km SE), San Andrés Cholula (35 km E), San Nicolás de los Ranchos (15 km ENE) and Domingo Arenas (22 km NE), all in the state of Puebla. The following day ashfall was reported in San Salvador el Verde (30 km NNE) and San Nicolás de los Ranchos. Multiple explosions with ash plumes rising 500-700 m were reported on 14 and 15 January followed the next day by ashfall in San Nicolás de los Ranchos. Trace amounts of ash were reported in Tetela del Volcán (18 km SW) in the State of Morelos on 22 January. An explosion on 26 January ejected ash 700 m high and sent incandescent fragments a short distance from the crater rim. Ashfall on 28 January was reported in Ixtlacuixtla de Mariano, Nativitas and part of the center of Tlaxcala (50 km NE). The circular inner crater rim at the summit was sharply defined in a satellite image taken on 31 January 2021; a thermal anomaly was also present inside the crater (figure 175).

Figure (see Caption) Figure 173. Ash plumes were reported daily at Popocatépetl during January 2021, including on 19 (left) and 21 (right) January, some rising over a kilometer above summit and drifting for tens of kilometers before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 20 y 21 de Enero de 2021).
Figure (see Caption) Figure 174. The Washington VAAC reported an ash plume at Popocatépetl from 1 January 2020 as visible over 200 km NE from the summit before dissipating (left), and one on 6 January as visible about 100 km E of the volcano (right). Sentinel-2 satellite images are with Natural color (bands 4, 3, 2) and Atmospheric penetration (bands 12, 11, 8a) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 175. A thermal anomaly inside the summit crater of Popocatépetl seen in this Sentinel-2 image was surrounded by a distinct gray circle that was the rim of the inner crater on a clear 31 January 2021. Image uses Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/, Daily Report Archive https://www.gob.mx/cenapred/archivo/articulos); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Pacaya (Guatemala) — February 2021 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Explosions continue, and effusive activity increases during August-November 2020

Extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from Mackenney crater have characterized the persistent activity at Pacaya since 1961. The latest eruptive episode began with intermittent ash plumes and incandescence in June 2015; the growth of a new pyroclastic cone inside the summit crater was confirmed later that year. The pyroclastic cone has continued to grow, producing Strombolian explosions rising above the crater rim and frequent loud explosions. In addition, fissures on the flanks of the summit crater have produced an increasing number of lava flows traveling distances of over one kilometer down multiple flanks during 2019 and 2020 (figure 129). Increasing explosive and effusive activity during August-November 2020 is covered in this report with information provided by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), multiple sources of satellite data, and numerous photographs from observers on the ground.

Figure (see Caption) Figure 129. Lava flows traveled down the flank of Pacaya during July 2019 while ash emissions and incandescent ejecta marked the summit of Fuego located 30 km NW. The large edifice on the right is Agua, and the one between it and Fuego is Acatenango, which last erupted in the early 20th century. Photo courtesy David Rojas, used with permission.

After a brief pause in effusive activity at the end of July 2020, two lava flows appeared on the NW flank on 12 August. Another flow began on the NE flank ten days later, and multiple flows were active for the remainder of the month, some reaching 650 m long. Multiple lava flows issued from fissures on the N flank and elsewhere throughout September. A flow on the NE flank was reported as 1,200 m long and was visible from Guatemala City on 8 September. A new flow on the S flank was very active later in the month. Flows were persistent on most of the flanks throughout October; a flow appeared from a fissure on the W flank on 20 October and reached 1 km in length by 24 October. Block avalanches spalled off the front of the flows and generated small ash plumes. Multi-branched flows on the W and SW flanks from the W flank fissure remained active throughout November. The slowdown in effusive activity in late July and early August 2020 is apparent in the MIROVA thermal anomaly data, as is the significant increase in activity during September that persisted into November 2020 (figure 130).

Figure (see Caption) Figure 130. Thermal activity at Pacaya decreased in late July and early August 2020 but then increased significantly in early September and remained high through November 2020; numerous lava flows were reported during the periods of increased thermal activity. Thermal data is shown from 3 February through November 2020. Courtesy of MIROVA.

The break in the lava flow activity that began on 25 July 2020 (BGVN 45:08) lasted until 12 August. During that time, steam plumes were reported rising 25-75 m above the summit and drifting generally S or SW as far as 6 km before dissipating. Strombolian explosions rose 25-150 m above the rim of Mackenney crater and ejecta reached 50 m from the rim; noises as loud as a train engine were heard in nearby communities. Incandescence was observed nearly constantly along with persistent seismic tremor activity. On 12 August two lava flows emerged on the NW flank, each reaching about 150 m long. Incandescence from the flows was visible each day through 21 August on the NW flank in the area just above Cerro Chino (figure 131). The active flows were 100-200 m long during this period. A new lava flow appeared on the NE flank and grew to 300 m in length on 22 August.

Figure (see Caption) Figure 131. A thermal anomaly from a lava flow on the NNW flank of Pacaya was present in Sentinel-2 satellite imagery on 17 August 2020 in addition to a thermal anomaly at the center of the pyroclastic cone inside the summit crater. Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Multiple lava flows were active on the NW, N, and NE flanks for the rest of the August. Incandescence on 24 August from the NW-flank flow near Cerro Chino indicated it was 250-300 m long. During 27 and 28 August flows were reported on the N and NNE flanks, 600 and 300 m long, respectively (figure 132). Incandescent pulses were reported from the crater overnight on 28-29 August; the NW flank flow remained active and was 300 m long. MODVOLC reported three thermal alerts on 29 August. The next day, 30 August, incandescence from the 650-m-long N flank flow and 300-m-long NE flank flow continued. Constant crater incandescence accompanied dense gray ash emissions on 31 August; the lava flow on the N flank remained incandescent for 350-400 m, but there was no incandescence or degassing from the NE-flank flow on the last day of the month.

Figure (see Caption) Figure 132. A 600-m-long lava flow was visible on the N flank of Pacaya as seen from Villa Nueva, part of Guatemala City, late on 27 August 2020. Courtesy of Sh!ft.

White and blue steam and gas plumes were present daily throughout September 2020. They drifted in multiple directions as far as 8 km from the summit before dissipating. Strombolian activity was constant, building up the pyroclastic cone inside of Mackenney crater and sending ejecta as far as 50 m from the rim. Ejecta rose 50-150 m on most days; it was reported at 200 m high on 3, 9, and 14 September and was heard loudly and rattled windows nearby on 17 and 27 September. Constant crater incandescence with prolonged degassing of dense gray ash plumes was reported on 5, 10, 15, 17, and 21 September.

Multiple lava flows issued from fissures on the N flank and elsewhere throughout the month. Two lava flows on 1 September on the N flank were 50 and 350 m long. The next day three flows on the same flank were 300, 350, and 650 m long. On 3 September a new flow appeared on the E flank and extended 600 m from its source in addition to two flows on the N flank. For the next several days multiple flows were active on the N and NE flanks, reaching 450 m on the NE flank on 7 September. The next day the flow on the NE flank reached 1,200 m in length and was visible from Guatemala City. Activity continued with multiple flows 150-300 m long through 12 September (figure 133).

Figure (see Caption) Figure 133. Lava flows at Pacaya were active on multiple flanks on 11 September 2020, including one that reached over a kilometer in length on the NE flank. Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

On 13 September 2020 the flows on the N and NE flanks reached 600 and 300 m long, while a third flow reached 150 m down the S flank. The flow on the S flank was the most active during 14-23 September, extending 550 m from its source and producing numerous block avalanches from the flow front (figure 134). During the last week of the month the focus of the flow activity returned to the NE, N, and NW flanks where multiple flows were reported, some up to 550 m long, along with constant Strombolian activity (figures 135). Increased thermal activity resulted in MODVOLC thermal alerts reported on seven days during the second half of the month.

Figure (see Caption) Figure 134. A large lava flow on the S flank of Pacaya during 14-23 September 2020 produced block avalanches from the flow front. It was seen here in Sentinel-2 satellite imagery on 21 September 2020 using atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 135. Strombolian explosions sent ejecta 40-70 m above the crater at Pacaya on 26 September 2020. In addition, a lava flow 200 m long descended the N flank. Courtesy of CONRED.

Gas and steam plumes persisted throughout October 2020. They generally rose a few hundred meters above the summit and usually drifted S or W up to 10 km. Strombolian explosions continued daily, reported at 75-150 m high for most of the month. In a special report on 8 October INSIVUMEH noted increased Strombolian activity that sent bombs and fine ash 200-300 m above the crater, with ash emissions drifting 12 km W. During the last week of the month the ejecta reached 250 m high on several days. Loud noises and shock waves were periodically reported; vibrations were felt in San Francisco de Sales on 23 October and in areas to the S of Guatemala City on 27 October. INSIVUMEH reported ash emissions that drifted 8-10 km S and W from the summit on 23 October. The Washington VAAC reported ash emissions seen in satellite imagery drifting 15 km NE at 3.7 km altitude on 28 October. Weak sulfur dioxide emissions were recorded by the TROPOMI instrument on 6, 20, and 26 October (figure 136).

Figure (see Caption) Figure 136. Weak SO2 emissions from Pacaya were recorded by the TROPOMI instrument on the Sentinel 5P satellite on 6, 20, and 26 October 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Numerous lava flows were active throughout the month of October 2020 on multiple flanks (figure 137). During 1-4 October INSIVUMEH reported one or two flows active on the N and NE flanks that were 100-500 m long (figure 138). On 4 October there was a 200-m-long flow on the S flank, and another flow on the W flank. The S-flank flow grew to 250 m long by 8 October, had block avalanches spalling off the front, and fine ash that was stirred up by the wind. The next day three flows were active; they were 400 m long on the NE flank, 300 m on the N flank, and 200 m on the W flank. The N-flank flow was the most active during 11-15 October, reaching 650 m long. The W-flank flow was very active from 20 October through the end of the month, issuing from a fissure at mid-flank. It reached 1 km in length by 24 October and burned vegetation at the flow front (figures 139). A flow on the NE flank was 350 m long on 26 October (figure 140). MODVOLC issued thermal alerts on 7 days of the month, including seven alerts on 5 October.

Figure (see Caption) Figure 137. Numerous lava flows were active throughout the month of October 2020 on multiple flanks of Pacaya. On 1 October the flows were concentrated on the N flank (left), and on 31 October a long flow was active on the W flank in addition to strong thermal activity at the summit crater (right). Atmospheric penetration rendering (bands 12, 11, and 8a) of Sentinel-2 satellite data. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 138. A lava flow 125 m long on the N flank of Pacaya was active on 1 October 2020. Courtesy of CONRED.
Figure (see Caption) Figure 139. A flow on the W flank of Pacaya was over 1 km long by 24 October 2020 when it was burning vegetation as it traveled downslope. Courtesy of Noti7.
Figure (see Caption) Figure 140. An active flow on the SW flank of Pacaya issuing from a fissure on the W flank was over 1 km long on 26 October 2020 and had multiple branches flowing down the slope. Numerous people were camped on the slope below the flow. Photo by Mariana Lemus.

Although the weather was cloudy for much of November 2020, white steam and blue gas plumes were visible drifting S or W from the summit on many days, some reaching 10 km from the volcano before dissipating. Sporadic Strombolian explosions rose 100-200 m above the pyroclastic cone inside Mackenney crater; the explosions were often accompanied by small ash plumes that rose a few hundred meters and drifted downwind 8-10 km before dissipating. A small SO2 plume was recorded in the TROPOMI satellite data on 8 November, the same day that INSIVUMEH and the Washington VAAC reported an ash emission drifting NE at 3.4 km altitude over the village of Los Llanos and others in the area (figure 141). An increase in activity reported by INSIVUMEH on 15 November consisted of Strombolian explosions sending material up to 300 m above the summit and ejecting bombs up to 100 m outside the crater.

Figure (see Caption) Figure 141. Ash and steam emissions were observed at Pacaya on 8 November 2020. Courtesy of CONRED.

Lava flows were still very active on the SW flank throughout November, emerging from a fissure a few hundred meters down from the summit that initially opened on 20 October. The main flow was 600 m long on 1 November and grew to 1,200 m long by 11 November (figure 142). On 5 November there were four separate branches of the SW-flank flow that were active. Block avalanches were common at the flow front. On 14 November a second flow was observed emerging from a fissure higher up on the SW flank from the earlier flow; they both were active for several days. INSIVUMEH issued a special report indicating increased effusion on 15 November from the SW-flank fissure. Block avalanches were occurring from the front of the 1-km-long flow, which had several branches. The blocks were 1-3 m in diameter and created small plumes of ash when moving as far as 500 m down the slope. An explosion during the night of 14-15 November at the SW-flank fissure created incandescent ejecta and ash emissions for several hours (figure 143). The flow remained active throughout the rest of November; on 26 November two flows were active from the main fissure, 500 and 400 m long (figure 144). On 30 November the main flow on the SW flank had three branches and extended 600 m from the mid-flank fissure.

Figure (see Caption) Figure 142. A fissure on the W flank of Pacaya that opened on 20 October 2020 sent multiple flows down the W and SW flanks during November. The flow extended more than a kilometer on 10 November (left). It had moved in a SW direction by 20 November (center) and had three major branches active on 25 November (right). Atmospheric penetration rendering (bands 12, 11, and 8a) of Sentinel-2 satellite data. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 143. An explosion at the fissure on the W flank of Pacaya during the night of 14-15 November 2020 produced incandescent ejecta almost as bright as that coming from the Strombolian activity inside the summit crater. For several hours dense ash emissions were visible at the fissure vent (inset). Large copyrighted photo courtesy of David Rojas, used with permission; inset courtesy of Prensa Objetiva.
Figure (see Caption) Figure 144. Two flows with multiple branches were active on the W and SW flanks of Pacaya on 26 November 2020. Both copyrighted photos courtesy of David Rojas, used with permission.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php) (URL: https://twitter.com/ConredGuatemala/status/1310057080162844673, https://conred.gob.gt/monitoreo-a-flujo-de-lava-en-el-volcan-pacaya/) ; NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); David Rojas, Guatemala (URL: https://www.instagram.com/davidrojasgtfoto/, https://twitter.com/DavidRojasGt/); Mariana Lemus, Guatemala (URL: https://www.instagram.com/marianalemusgt/); Noti7 (URL: https://twitter.com/Noti7Guatemala/status/1320169410833883136); Sh!ft (URL: https://twitter.com/kevingt_/status/1299204020662304768); Prensa Objetiva (URL: https://twitter.com/noticiasprensa/status/1328102695832612865).


Stromboli (Italy) — February 2021 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Explosions, incandescent ejecta, lava flows, and pyroclastic flows during September-December 2020

Stromboli, located in the northeastern Aeolian Islands, is composed of two active summit craters: the Northern (N) crater and the Central-South (CS) crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano (figure 187). The current eruption period began in February 1934 and has been recently characterized by Strombolian explosions at both summit craters, ash plumes, and SO2 plumes (BGVN 45:09). This report covers activity consisting of dominantly Strombolian explosions, incandescent ejecta, and ash plumes from September to December 2020, with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Figure (see Caption) Figure 187. Photo of the summit craters at Stromboli showing the North and Central-South crater areas with the location of each active vent: N1 and N2 in the N crater and S1, S2, and C in the CS crater. Photo was taken from the Pizzo sopa la Fossa during an expedition on 22 August by INGV-OE personnel. Courtesy of INGV (Rep. No. 37/2020, Stromboli, Bollettino Settimanale, 31/08/2020 - 06/09/2020, data emissione 08/09/2020).

Activity was consistent during this reporting period. Explosion rates typically ranged from 1-14 events per hour and varied in intensity that ejected material 80-250 m above the N crater and 150-250 m above the CS crater (table 10). An ash plume on 16 November rose 1 km above the crater, accompanied by a pyroclastic flow descending the Sciara del Fuoco to the NW as far as 200 m. As a result, some ash and lapilli fell in the town of Stromboli (2 km NE). Strombolian explosions were often accompanied by gas-and-steam emissions, occasional spattering that deposited material on the Sciara del Fuoco, small lava flows, and small pyroclastic flows. According to INGV, the daily SO2 emissions measured 250-300 tons/day.

Table 10. Summary of activity at Stromboli during September-December 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2020 Strombolian activity and degassing continued. Explosion rates varied from 2-22 per hour in the N crater and 1-10 in the CS crater. Ejected material rose 80-200 m above the N crater and 250 m above the CS crater. The average SO2 emissions measured 250-300 tons/day.
Oct 2020 Strombolian activity and degassing continued, along with occasional spattering. Explosion rates varied from 2-13 per hour in the N crater and 1-4 per hour in the CS crater. Ejected material rose 80-250 m above the N crater and 150-250 m above the CS crater. The average SO2 emissions measured 250-300 tons/day.
Nov 2020 Strombolian activity and degassing continued. Explosion rates varied from 2-10 per hour in the N crater and 1-4 in the CS crater. Ejected material rose 80-250 m above the N crater and 150 m above the CS crater. The average SO2 emissions measured 250-300 tons/day.
Dec 2020 Strombolian activity and degassing continued, along with some spattering in the N crater. Explosion rates varied from 1-13 per hour in the N crater and 1-5 in the CS crater. Ejected material rose 80-150 m above the N crater and 150 m above the CS crater. The average SO2 emissions measured 250-300 tons/day.

During September the frequency of the Strombolian explosions in the N crater typically ranged from 2-14 per hour; in the CS crater there were 1-10 explosions per hour. N1 consisted of three points of emissions that produced low- to high-intensity explosions, launching lapilli and bombs, sometimes mixed with fine ash, 80-200 m above the N crater and were distributed radially (figure 188); N2 typically showed low-intensity explosions (less than 80 m above the crater). Medium- to high-intensity explosions ejected mostly fine material mixed with some coarse tephra 250 m above the CS crater. On 28 September the number of explosive events reached a high of 22 per hour.

Figure (see Caption) Figure 188. Webcam images of Strombolian activity at Stromboli in the N1 crater on 29 September (left) and in the CS crater on 4 October (right) 2020. Images captured by the SCV surveillance cameras. Courtesy of INGV (Rep. No. 41/2020, Stromboli, Bollettino Settimanale, 28/09/2020 - 04/10/2020, data emissione 06/10/2020).

Explosions with occasional spatter continued in October at a rate of 2-13 per hour in the N crater and 1-4 per hour in the CS crater. In the N crater, N1 consisted of 2-4 eruptive vents that produced explosions of variable intensity while N2 contained two vents that primarily produced low-intensity explosions. Lapilli and bombs, sometimes mixed with fine ash, were ejected 80-250 m above the N crater. Fine ash sometimes mixed with coarse-to-medium tephra rose 150-250 m above the CS crater. Spatter was reported from two hornitos that formed in the N1 crater (figure 189). On 11 October sporadic ash emissions and coarse ejecta were observed above the S2 crater, episodic ash emissions rose above the S1 crater, and occasional degassing with modest spattering were visible in the C crater.

Figure (see Caption) Figure 189. Drone images showing gas-and-steam emissions and Strombolian activity at Stromboli during 8-9 October 2020. The white annotations label the craters and the red show the active hornitos (H). The N2H2 label shows a small explosion (right). Images from the HPHT Lab from INGV-Roma 1. Courtesy of INGV (Rep. No. 42/2020, Stromboli, Bollettino Settimanale, 05/10/2020 - 11/10/2020, data emissione 13/10/2020).

Strombolian explosions persisted into November. The N1 crater consisted of 2-3 vents, producing explosions of variable intensity; the N2 crater also consisted of 2-3 active vents that produced low- to medium-intensity explosions. The frequency of explosions ranged from 2-10 per hour in the N crater and 1-4 per hour in the CS crater. Lapilli and bombs, sometimes mixed with fine ash, rose 80-250 m above the N crater and fine material was ejected 150 m above the CS crater. On 10 November an explosion was detected at 2104 in the S2 crater of the CS area, producing pyroclastic material that was distributed radially along the Sciara del Fuoco, followed by an ash plume (figure 190). Within 30 seconds, another pulse of activity from the C crater in the northern part of the CS area produced intense lava fountaining that ejected coarse incandescent material 300 m above the crater, lasting about two minutes. At 2106 a small explosion was detected in the N2 crater, ending the explosive sequence.

Figure (see Caption) Figure 190. Thermal (rows 1 and 3) and webcam (rows 2 and 4) images showing the evolution of the explosion at Stromboli on the evening of 10 November 2020 accompanied by an ash plume and incandescent ejecta. Images captured by the SCT and SQV surveillance cameras. Courtesy of INGV (Rep. No. 47/2020, Stromboli, Bollettino Settimanale, 09/11/2020 - 15/11/2020, data emissione 17/11/2020).

During an overflight by the 2nd Air Unit of the Coast Guard of Catania on 11 November, scientists identified degassing in the entire summit crater area; a small lava flow was observed in the S1 crater, originating from an intra-crater vent. Additional thermal anomalies were noted at the bottom of the C, N1, and N2 craters. Strong fumaroles were visible originating from a hornito located outside the S1 crater on the Sciara del Fuoco. A second hornito was visible on the slope of the Sciara del Fuoco near the N2 crater. On 16 November a major explosion was detected at 1017 in the N crater area and on the edge of the N2 crater. Thermal and visible images captured the resulting dense, gray ash plume that rose 1 km above the crater and the accompanying pyroclastic flow that descended the Sciara del Fuoco as far as 200 m (figure 191). Some ash and lapilli fell over the town of Stromboli, about 2 km away on the NE coast of the island. A sequence of explosive events at 0133 on 21 November was detected in three different craters: the first two events occurred in the N1 and N2 craters, and the third occurred in the C crater. Coarse material was ejected 300 m above the crater and was distributed radially, affecting the upper part of the Sciara del Fuoco. A small ash plume was also visible.

Figure (see Caption) Figure 191. Thermal (top row) and webcam (bottom row) images showing the evolution of the explosion at Stromboli on the morning of 16 November 2020 accompanied by a significant gray ash plume. Images captured by the SCT and SCV surveillance cameras. Courtesy of INGV (Rep. No. 48/2020, Stromboli, Bollettino Settimanale, 16/11/2020 - 22/11/2020, data emissione 24/11/2020).

During December, similar Strombolian explosions were reported. There were two eruptive vents in the N1 crater and 2-4 in the N2 crater that produced explosions of low intensity and low-to-medium intensity, respectively. The frequency of explosions ranged from 1-13 per hour in the N crater and 1-5 per hour in the CS crater. Fine ash mixed with some coarse material (lapilli and bombs) was ejected 80-150 m above the N crater and mostly fine material rose 150 m above the CS crater. Some spattering activity was reported in the N2 crater, which contributed to the formation of hornitos that produced incandescent material. On 6 December an explosive sequence of events was detected in the CS crater area at 0612. An explosion ejected material 300 m above the crater that were distributed radially, depositing on the upper Sciara del Fuoco. In addition, two small lava flows formed (figure 192). A second explosion was recorded at 0613, characterized by lava fountaining in the CS crater that reached a height of 200 m. Similar activity in the N and CS craters were also captured by webcam images on 21 and 27 December, which showed lava fountaining, accompanied by a small pyroclastic flow (figure 193).

Figure (see Caption) Figure 192. Thermal images of the explosion at Stromboli in the CS crater on 6 December 2020, accompanied by incandescent ejecta and two small lava flows. Some lava fountaining was visible in the bottom center image at 0513:47. Images captured by the SCT surveillance camera. Courtesy of INGV (Rep. No. 50/2020, Stromboli, Bollettino Settimanale, 30/11/2020 - 06/12/2020, data emissione 08/12/2020).
Figure (see Caption) Figure 193. Webcam (top row) and thermal (bottom row) images of Strombolian activity in the N (left column) and CS (right column) crater areas at Stromboli on 21 December (top right) and 27 December (top left and bottom row) 2020. This activity included a small pyroclastic flow and lava fountaining. Images captured by the SCV and SCT surveillance cameras. Courtesy of INGV (Rep. No. 53/2020, Stromboli, Bollettino Settimanale, 21/12/2020 - 27/12/2020, data emissione 29/12/2020).

Intermittent and low-power thermal activity was detected during September through December, according to the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 194). Though there were no detected MODVOLC thermal alerts during this reporting period, many thermal hotspots were visible in one or both summit craters on clear weather days using Sentinel-2 thermal satellite imagery, which is due to Strombolian activity (figure 195).

Figure (see Caption) Figure 194. Intermittent, low thermal activity at Stromboli was recorded by the MIROVA graph (Log Radiative Power) during September through December 2020. The frequency of the thermal anomalies had decreased compared to the previous months of May through August; a total of eleven thermal anomalies were detected during this reporting period. Courtesy of MIROVA.
Figure (see Caption) Figure 195. Weak thermal anomalies (bright yellow-orange) at Stromboli were visible in Sentinel-2 thermal satellite imagery from typically both summit craters during September through December 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Saunders (United Kingdom) — February 2021 Citation iconCite this Report

Saunders

United Kingdom

57.8°S, 26.483°W; summit elev. 843 m

All times are local (unless otherwise noted)


Elevated crater temperatures and gas emission through May 2020; research expedition

The glaciated Saunders Island is located in the remote South Sandwich Volcanic Arc in the South Atlantic between Candlemas (to the north) and Montagu (to the south) islands. The main volcanic features are Mount Michael, lava flows on the northern Blackstone Plain, and the Ashen hills complex near the eastern Nattriss Point (figure 31). The Ashen Hills complex is a group of overlapping craters formed through phreatomagmatic activity, with the largest crater opening towards the NW (figure 32). Gas emissions have been remotely observed from the ice-filled Old crater to the SE, with reports of gas plumes extending back to 1820 (LeMasurier et al., 1990; Patrick and Smellie, 2013; Liu et al., 2021). The current eruption period, centered at the 500-m-diameter Mount Michael summit crater, has been ongoing since at least 12 November 2014, based on remote sensing analysis (Gray et al., 2019). Activity consists of a lava lake, persistent degassing, and intermittent explosions producing ash plumes (Patrick and Smellie 2013; Gray et al. 2019). Visits are infrequent due to the remote location, and cloud and plume cover often prevents satellite observations. This report summarizes activity during June 2019 through May 2020 primarily using satellite data, as well as observations from visiting scientists.

Figure (see Caption) Figure 31. This 24 December 2019 satellite image (PlanetScope 3-Band scene) of Saunders Island shows the locations of the active Mount Michael summit crater and other features on the island. Courtesy of Planet Labs.
Figure (see Caption) Figure 32. Images of the southeastern area of Saunders Island taken in January 2020. The top left image shows Nattriss Point with Ashen Hills in the background. The other photos show the crater and flanks of the Ashen Hills complex with rill and gully features from fluvial erosion. White and black speckled features in the images are penguins. Photos courtesy of Emma Liu and the 2020 Pelagic Australis expedition group.

Activity during June-December 2019. Ashfall deposits on the flanks were sometimes visible on the snow and ice (figure 33). MIROVA thermal anomaly data during June 2019 through June 2020 showed few days where high temperatures were detected by this sensor, but the active summit crater floor is often obscured by cloud cover or condensed gas-and-steam plumes. The TROPOspheric Monitoring Instrument (TROPOMI) detected frequent sulfur dioxide (SO2) plumes of varying concentrations that are dispersed in different directions by wind (figure 34). Small condensed gas-and-steam plumes are often visible in satellite imagery within the crater, and some larger plumes are also imaged (figure 35). All satellite images where the summit crater was not obscured by either cloud cover or gas-and-steam plumes showed elevated temperatures within the summit crater, with three distinct areas visible possibly indicating multiple active vents (figure 36).

Figure (see Caption) Figure 33. This satellite image of Saunders Island acquired on 15 September 2019 shows the snow and ice-covered island and a recent ashfall deposit on the NE flank towards Cordelia Bay, with a green sediment plume in the water. Sentinel-2 image with Natural color (bands 4, 3, 2) rendering. Courtesy of Planet Labs.
Figure (see Caption) Figure 34. These images show data acquired by the TROPOspheric Monitoring Instrument (TROPOMI) that demonstrate detected SO2 (sulfur dioxide) from Mount Michael on Saunders Island on 2, 3, 25, and 29 September 2019. These are examples of gas plumes through the month with wind dispersing the plumes in different directions. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 35. This 10 October 2019 satellite image shows Saunders Island and the surrounding area with light cloud cover, and a condensed gas-and-steam plume from the summit crater drifting towards the E to SE. Sentinel-2 image with Natural color (bands 4, 3, 2) rendering. Courtesy of Planet Labs.
Figure (see Caption) Figure 36. These two Sentinel-2 thermal satellite images of Saunders Island acquired on 2 and 24 December 2019 show three distinct areas of elevated temperature within the Mount Michael summit crater (yellow to red). While the locations of the thermal anomalies look different in these images, the angle of the view into the crater is not specified. Blue is Ice, black is ocean water. Sentinel-2 image with False color (Urban) (bands 12, 11, 4) rendering. Courtesy of Sentinel Hub Playground.

Activity during January-May 2020. During January through May 2020 various remote sensing data showed the same activity as the previous seven months, with abundant cloud cover over the island. The Sentinel-2 satellite imaged a vertical plume on 13 March rising then being dispersed NE (figure 37). Intermittent observations of SO2 plumes continued through TROPOMI data analysis (figure 38). A clear view of the summit area on 29 May showed the ice-free active summit crater producing a weak gas-and-steam plume, and ash deposition on the NE to SE upper flanks (figure 39).

Figure (see Caption) Figure 37. This Sentinel-2 satellite image of the Mount Michael summit area on Saunders Island with a gas-and-steam plume rising from the summit crater above the cloud cover, and dispersing NE. The plume and clouds are casting dark shadows below them. Sentinel-2 image with False color (Urban) (bands 12, 11, 4) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Examples of SO2 gas plumes originating from Saunders detected by the TROPOMI instrument on 14 and 18 March 2020. The plumes are dispersing N to NNE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 39. This 29 May 2020 Planet Scope satellite image shows the summit area of Mount Michael above cloud cover with the active summit crater and the old crater to the SE. There is a weak gas plume rising from the crater and ashfall on the upper E flank. Courtesy of Planet Labs.

Research expedition in January 2020. The team of the 2020 Pelagic Australis expedition visited the island on 5-8 January 2020, with shore landings on the last three days, to quantify gas emissions from the island. The following information is from the published expedition results (Liu et al., 2021), with photos supplied by volcanologist Emma Liu.

Across the South Sandwich islands they used a combination of a ground-based and drone-mounted gas detectors (Multi-GAS), a UV imaging camera, sample collection, and NDIR spectrometer analyses to quantify gas output. They confirmed that the summit crater is a persistent source of gas emissions with 145 ± 59 tons per day of SO2 and a CO2 flux of 179 ± 76 tons per day. On the 5th they observed a vertical plume and on the 7th they observed the plume drifting down the E flank before rising (figure 40). They noted that the surface was steaming and was warm to the touch, suggesting widespread geothermal activity. The non-glaciated surfaces of the island contain tephra deposits, with units exposed by erosion and preserved within snow and ice (figure 41). Explosions have emplaced tephra layers across the island as well as ballistic blocks and bombs on the E flank (figure 42; Liu et al., 2021).

Figure (see Caption) Figure 40. These images show the gas emissions from Mount Michael on Saunders Island in January 2020. The top right image is a vertical gas plume rising from the summit crater on the evening of the 5th. The two photos on the right are looking towards the E on the 7th. The bottom left image is a low-lying condensed gas plume on the 8th travelling down the E flank before rising. Courtesy of Emma Liu, and Liu et al. (2021).
Figure (see Caption) Figure 41. Tephra layers are preserved within the stratigraphy of snow and ice on Saunders Island. Scale shown by penguins (top) and volcanologist Kieran Wood (right). Photos courtesy of Emma Liu.
Figure (see Caption) Figure 42. Dense volcanic blocks up to a meter in size are widespread on Saunders Island. The block in the foreground has a height of approximately 35 cm; the Chinstrap penguin in the foreground is around 50 cm tall. Courtesy of Emma Liu and Liu et al. (2021).

References: Liu E J, Wood K, Aiuppa A, Giudice G, Bitetto M, Fischer T P, McCormick Kilbride B T, Plank T, Hart T, 2021. Volcanic activity and gas emissions along the South Sandwich Arc. Bull Volcanol 83. https://doi.org/10.1007/s00445-020-01415-2

LeMasurier W E, Thomson J W, Baker P E, Kyle P R, Rowley P D, Smellie J L, Verwoerd W J, 1990. Volcanoes of the Antarctic Plate and Southern Ocean. American Geophysical Union, Washington, D.C.

Lachlan-Cope T, Smellie J L, Ladkin R, 2001. Discovery of a recurrent lava lake on Saunders Island (South Sandwich Islands) using AVHRR imagery. J. Volcanol. Geotherm. Res. 112: 105-116.

Gray D M, Burton-Johnson A, Fretwell P T, 2019. Evidence for a lava lake on Mt. Michael volcano, Saunders Island (South Sandwich Islands) from Landsat, Sentinel-2 and ASTER satellite imagery. J. Volcanol. Geotherm. Res. 379:60-71. https://doi.org/10.1016/j.volgeores.2019.05.002

Derrien A, Richter N, Meschede M, Walter T, 2019. Optical DSLR camera- and UAV footage of the remote Mount Michael Volcano, Saunders Island (South Sandwich Islands), acquired in May 2019. GFZ Data Services. http://doi.org/10.5880/GFZ.2.1.2019.003

Patrick M R, Smellie J L, 2013. Synthesis A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000–10. Antarct Sci 25:475–500. https://doi.org/10.1017/S0954102013000436

Geologic Background. Saunders Island is a volcanic structure consisting of a large central edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young constructional Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of parasitic cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Analysis of satellite imagery available since 1989 (Gray et al., 2019; MODVOLC) suggests frequent eruptive activity (when weatehr conditions allow), volcanic clouds, steam plumes, and thermal anomalies indicative of a persistent, or at least frequently active, lava lake in the summit crater. Due to this observational bias, there has been a presumption when defining eruptive periods that activity has been ongoing unless there is no evidence for at least 10 months.

Information Contacts: Emma Liu, University College London, Kathleen Lonsdale Building, 5 Gower Place, London, WC1E 6BS, United Kingdom; Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — February 2021 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Frequent explosions and avalanches August 2020-January 2021; lava extrusion in September 2020

Santa Maria is one of the most active volcanoes in Guatemala. Major features are the Santa Maria edifice with the large crater that formed in the 1902 eruption, and the Santiaguito dome complex about 2.5 km down the SW flank that includes the currently active Caliente dome (figure 113). Activity typically includes ash plumes, gas emissions, lava extrusion, and avalanches. This report summarizes activity during August 2020 through January 2021 and is based on reports by Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH), Coordinadora Nacional para la Reducción de Desastres (CONRED), and satellite data.

Figure (see Caption) Figure 113. Main features of the Santa Maria complex are shown in this March 2021 Planet Labs satellite image monthly mosaic. The large scarp is the wall of the crater produced during the 1902 eruption. Within that the El Brujo, El Monje, La Mitad domes, and the currently active Caliente dome, are from W to E. Courtesy of Planet Labs.

Throughout August weak to moderate explosions were reported most days, some days occurring 2-4 times per hour. These produced ash plumes to an altitude of 3.5 km, typically reaching 3.4 km. The plumes were dispersed mostly W and SW, sometimes S, SE, and NW. Degassing was reported throughout the month, with plumes reaching 3.5 km, but most often 3-3.1 km altitude. On the 3rd, ashfall was reported in San Marcos Palajuno (8 km SW), Loma Linda (6 km WSW) and others in that direction, and again on the 29th. It was also reported in Monte Claro (S of the summit) on the 12th and light ashfall occurred on the flanks through the month. Explosions on the 23rd produced weak pyroclastic flows that traveled down the SW flank of the dome. The activity produced frequent avalanches on the S, SW, and SE flanks of the dome, some reaching the base of the dome and some depositing fine ash onto the flanks. The sound of explosions and degassing were reported most days and incandescence was frequently seen at the crater at night.

This activity continued through September, maintaining the same eruptive pattern of weak and moderate explosions, gas emission, lava extrusion, and avalanches. Incandescence continued to be visible at the crater. There was ashfall reported in Monte Claro, Aldea San Marcos Palajunoj and other surrounding communities on the 7th, Monte Claro on the 11th, and across the Palajunoj area on the 28th. On the afternoon of 25 September lahars occurred in the Cabello de Ángel and Nimá I drainages. Lava extrusion was reported on the morning of the 29th along with resulting block-and-ash flows.

Throughout October explosions, gas emission, avalanches, and elevated crater temperatures producing nighttime incandescence (figure 114) continued in the same manner as the previous months. From the 9th the extrusion of lava was observed over the dome, generating block-and-ash flows mainly down the W flank. Ashfall was reported in of Loma Linda and El Rosario Palajunoj and others in the area on the 13th, 7 km SW on the 18th, and in San Marcos Palajunoj and nearby areas on the 23rd. Lava extrusion generated constant avalanches down multiple flanks from the 23rd, with some producing small ash plumes as they descended.

Figure (see Caption) Figure 114. This Shortwave Infrared (SWIR) image of Santa Maria acquired on 19 October by the Landsat 8 satellite shows elevated temperatures at the Caliente dome. The contour intervals are 30 m. Courtesy of USGS and INSIVUMEH.

Throughout November gas emissions and explosions continued to produce gas-and-steam and ash plumes that rose up to 3.4 km altitude. Lava extrusion also continued down the W flank, producing incandescence and frequent avalanches down the SE, S, SW, and W flanks, as well as less frequent block-and-ash flows (figure 115). An increase in thermal energy detected towards the end of the month resulted from this extrusion (figure 116). Ashfall occurred around the volcano from explosions and avalanches. Ashfall was reported SE within the villages of Las Marías, Calaguache and others nearby on the 12th and 22nd, and SSW over the village of San Marcos Palajunoj, Loma Linda and Fincas in the Palajunoj area on the 27th. Degassing and explosions were intermittently heard in nearby communities with reports of sounds similar to an airplane turbine. An explosion on the 16th produced an ash plume up to 3.6 km altitude and pyroclastic flows down the flanks (figure 117).

Figure (see Caption) Figure 115. This nighttime Landsat 8 Shortwave Infrared (SWIR) satellite image of Santa Maria with the contours of the Caliente dome overlain was acquired on 20 November 2020. There are elevated temperatures within the summit crater and lava is flowing down a channel on the western flank. The contour intervals are 20 m. Courtesy of USGS and INSIVUMEH.
Figure (see Caption) Figure 116. This MIROVA log radiative power plot shows the thermal energy released at Santa Maria between April 2020 to February 2021. There was a decrease in energy emitted from May to November, followed by an increase in the frequency and the energy released on some days. The black vertical lines like the two in January-February are more than 5 km from the summit and are likely not a result of volcanic activity. Courtesy of MIROVA.
Figure (see Caption) Figure 117. An explosion from the Caliente dome of Santa Maria is seen here at 0715 on 16 November 2020. The photo shows the ash plume that rose to 3.6 km altitude and pyroclastic flows descending the flanks. The seismogram shows the explosion in the center of the bottom line (the times on the left are given in UTC). Courtesy of INSIVUMEH.

Gas emissions and weak to moderate explosions continued throughout December, producing plumes reaching 3.4 km altitude along with ongoing lava extrusion producing avalanches (figures 118 and 119). Ash from explosions and avalanches was intermittently emplaced onto the flanks, and ashfall was reported in the villages of San Marcos and Loma Linda Palajunoj on the 7th, and in Loma Linda and Finca Montebello on the 11th. Activity increased from 0430 on 11 December 2020 with the generation of moderate to powerful avalanches as well as block-and-ash flows from lava extrusion and accumulation, with 13 events recorded between that time and when a report was released at 0900. The intensity continued with block-and-ash flows and pyroclastic flows moving down the W and SW flanks that generated ash plumes which extended 20 km downwind.

Figure (see Caption) Figure 118. Plumes rise from the Caliente dome at Santa Maria on 9 (top left) and 15 (top right) December 2020. A faint plume rises from the summit of the Caliente dome and another plume rises from a possible avalanche down the SW flank (bottom). Courtesy of INSIVUMEH (Fotografías Recientes de Volcanes).
Figure (see Caption) Figure 119. A gas-and-steam plume rises from the degassing Caliente dome at Santa Maria on 30 December 2020. Around this time weak and moderate explosions produced ash plumes up to 3-3.4 km altitude, resulting in ashfall on the flanks. Courtesy of CONRED.

The high level of background activity associated with lava extrusion continued through January. Satellite images show the lava flow advancing down the W-flank channel (figure 120), reaching approximately 250 m by the 11th. Avalanches also continued, producing ash that was emplaced nearby (figure 121). On the 22nd the collapse of dome material produced a pyroclastic flow to the E and SE. Explosions ejected ash to 3.4 km altitude, with ashfall that was reported in the Aldeas de San Marcos and Loma Linda Palajunoj on the 1st, Aldeas de San Marcos and Loma Linda Palajunoj on the 11th, Aldeas de San Marcos y Loma Linda Palajunoj, Fca. El Patrocinio during the 20-21st. Ashfall was again reported on the 31st to the west on farms, in Aldeas de San Marcos, and in Loma Linda Palajunoj. Sounds generated by explosions were sometimes heard around 10 km away.

Figure (see Caption) Figure 120. PlanetScope satellite images of Santa Maria acquired on 20 December 2020 and 10 and 11 January 2021 show the development of a lava flow down a channel on the W flank (white arrows). In the latest image the flow is approximately 250 m long. Courtesy of Planet Labs.
Figure (see Caption) Figure 121. Thermal infrared satellite images of Santa Maria acquired on 12 and 22 January 2021 show higher temperatures on the Caliente dome. Top: Elevated thermal areas are detected at the summit and hot material is emplaced down the W-flank channel. Bottom: Elevated temperatures at the summit of the lava dome, with a possible avalanche on the E flank. Sentinel-2 thermal satellite images with false color (urban) (bands 12, 11, 4) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Tengger Caldera (Indonesia) — February 2021 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Ash plumes during 26-28 December 2020 with ashfall to the NE

Activity at Bromo, the youngest and only active cone within the 16-km-wide Tengger caldera in East Java, is characterized by occasional explosions with ash plumes followed by periods of relative quiet with only gas-and-steam emissions (BGVN 44:05). There have been more than 30 eruptive periods since 1900. During the first seven months of 2019, ash explosions occurred on 18 February 2019 and became especially numerous in March and April, with more explosive activity in July 2019 (BGVN 44:05, 44:08). The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and by the Darwin Volcanic Ash Advisory Centre (VAAC).

Following the ash explosion on 28 July 2019, satellite observations frequently showed a white gas-and-steam plume in the Bromo crater (figure 19). No additional eruptive activity was reported until 26-27 December 2020 when PVMBG reported white-and-gray plumes rose 50-700 m above the summit of Bromo’s cone. The next day, at 0550 on 28 December, an observer spotted a gas-and-ash emission rising at least 500 m above the summit. The Darwin VAAC was unable to confirm if there was ash in the plume based on satellite data, but ashfall was reported in the Ngadirejo area, about 5 km NE. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay outside a 1-km radius of the crater.

Figure (see Caption) Figure 19. Satellite image of the Tengger Caldera on 12 September 2020, with a typical white plume visible in the Bromo crater. Sentinel-2 image with natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Lewotolok (Indonesia) — February 2021 Citation iconCite this Report

Lewotolok

Indonesia

8.274°S, 123.508°E; summit elev. 1431 m

All times are local (unless otherwise noted)


New eruption in late November 2020 consisting of ash plumes, crater incandescence, and ashfall

Lewotolok (also known as Lewotolo) is located on the eastern end of a peninsula connected to Lembata (formerly Lomblen) that extends north into the Flores Sea. Eruptions date back to 1660, characterized by explosive activity in the summit crater. Typical activity has consisted of seismicity and thermal anomalies near the summit crater (BGVN 36:12 and 41:09). A new eruption that began in late November 2020 was characterized by increased seismicity, dense, gray ash plumes, nighttime crater incandescence, and ashfall. This report covers activity through January 2021 using information primarily from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and satellite data.

Summary of activity during February 2012-October 2020. Activity from February 2012 to November 2020 was relatively low and consisted primarily of a persistent thermal anomaly in the summit crater since at least March 2016 and occasional white gas-and-steam emissions. During January 2012 intermittent white gas-and-steam plumes rose 15-500 m above the crater, accompanied by crater incandescence; no thermal anomalies were reported during 16-24 January. On 6 January there were 500 people in the Lembata district evacuated due to reports of ash plumes that were observed by local residents, the smell of sulfur, and the sound of rumbling (BGVN 36:12).

Thermal activity dates back to 13 October 2014 using MODIS data in MODVOLC satellite data (BGVN 41:09; figure 3). According to the MODVOLC algorithm, a total of seven thermal alerts were detected on 13 October 2014 (1), 27 September 2015 (1), 2, 3, and 4 (2) October 2015, and 5 November 2017 (1). The number of thermal alerts in both MODVOLC and Sentinel-2 satellite data had increased slightly in 2020 compared to 2018 and 2019, though cloud cover often prevented visual confirmation for the latter (figure 3). Sentinel-2 thermal satellite imagery captured occasional thermal anomalies in the summit crater during 2016-2019 (figure 4). White gas-and-steam plumes were intermittently reported from September 2017 through 2 March 2018 that rose as high as 500 m above the crater and drifted dominantly E and W, according to PVMBG.

Figure (see Caption) Figure 3. Graph comparing the number of thermal anomalies using MODVOLC alerts and Sentinel-2 satellite data for Lewotolok during January 2014-January 2021 for MODVOLC and 20 March 2016-January 2021 for Sentinel-2 thermal satellite data. Data courtesy of HIGP - MODVOLC Thermal Alerts System and Sentinel Hub Playground.

Brief seismicity, which included shallow and deep volcanic earthquakes was detected during October 2017. On 9 October 2017 PVMBG issued a VONA (Volcano Observatory Notice for Aviation) reporting that white gas-and-steam emissions rose 500 m above the crater. On 10 October BNPB (Badan Nacional Penanggulangan Bencana) reported that five earthquakes 10-30 km below Lewotolok and ranging in magnitude of 3.9-4.9 as recorded by Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). These seismic events were felt by local populations and resulted in an evacuation of 723 people. The only activity reported between January 2018 and October 2020 was white gas-and-steam plumes that rose 5-100 m above the crater drifting primarily E and W and an occasional thermal anomaly in the summit crater (figure 4).

Figure (see Caption) Figure 4. Sentinel-2 thermal satellite imagery shows a thermal anomaly in the summit crater of Lewotolok during 20 March 2016 (top left), 8 July 2017 (top right), 13 July 2018 (bottom left), and 12 August 2019 (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

New eruption starting in November 2020. On 26 November 2020 a continuous tremor began at 1943, followed by a series of volcanic earthquakes at 1947 and deep volcanic earthquakes at 1951, 1952, 1953, and 2255; white gas-and-steam emissions rose 20 m above the crater. Deep volcanic earthquakes were again recorded at 0242, 0537, 0556 on 27 November. At 0557 an explosion produced a gray ash plume that rose 500 m above the crater and drifted W; by 0630 the plume turned white, according to PVMBG (figure 5). Seismicity decreased slightly after the explosion, but tremor continued. During 27-28 November dense white gas-and-steam plumes rose as high as 500 m above the crater and nighttime crater incandescence was observed.

Figure (see Caption) Figure 5. Webcam image of a dense gray ash plume rising 500 m above the crater of Lewotolok on 27 November 2020. Courtesy of MAGMA Indonesia.

During the morning of 29 November seismicity increased again and consisted of six deep volcanic earthquakes, continuous tremor occurred around 0930. A second explosion was recorded at 0945 that produced an ash plume 4 km above the crater, accompanied by incandescent material that was ejected above the crater (figure 6). The ash plume consisted of two levels: the lower-level drifted W and NW and the upper-level drifted E and SE. The large, gray ash plume was captured in a satellite image as it spread generally E and W (figure 7). Ashfall and a sulfur odor was reported in several surrounding villages; videos from social media showed tephra falling onto the roofs of residential areas. BPBD evacuated residents in 28 villages in two sub-districts; by 29 November at 1300 about 900 people had been evacuated. At 1900 Strombolian activity was observed and during the night, crater incandescence was visible.

Figure (see Caption) Figure 6. Photos of the eruption at Lewotolok on 29 November 2020 that produced a dense, gray ash plume 4 km above the crater. Courtesy of Devy Kamil Syahbana, PVMBG (left) and MAGMA Indonesia (right).
Figure (see Caption) Figure 7. Satellite image showing a strong gray ash plume above Lewotolok on 29 November 2020, expanding roughly E and W. Courtesy of Sentinel Hub Playground and the European Space Agency, Copernicus.

The eruption continued from 29 November into 1 December, where the white-and-gray ash plumes rose 700-2,000 m above the crater and drifted SE and W, accompanied by incandescent material that was ejected above the crater and the smell of sulfur, according to PVMBG (figure 8). A large sulfur dioxide plume was reported drifting SE and extending over the N half of Australia by 30 November (figure 9). By 1300 that day, 4,628 people had been evacuated. Incandescent lava flows near the summit were visible and incandescent material traveled down the flanks during 30 November and 1 December.

Figure (see Caption) Figure 8. Webcam image of the continuous eruption at Lewotolok showing a dense gray ash plume rising above the cloud-covered summit on 30 November 2020. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 9. SO2 plume from Lewotolok captured by the Sentinel-5P/TROPOMI instrument on 30 November 2020 drifting SE and along the N part of Australia. Courtesy of Simon Carn and the NASA Global Sulfur Dioxide Monitoring Page.

White-and-gray plumes continued frequently through January 2021, rising 100-1,500 m above the crater, drifting in multiple directions, accompanied by nighttime crater incandescence and occasional incandescent ejecta (figure 10). During 1-8 December gray plumes rose 100-1,000 m above the crater and drifted E, W, and SW accompanied by nightly crater incandescence and incandescent material ejected as high as 20 m above the crater. By 5 December at 2200 about 9,028 residents had been evacuated to 11 evacuation centers, according to BNPB. Black, gray, and brown ash plumes were visible daily during 9-15 December, rising 1 km above the crater, accompanied by nightly Strombolian explosions that ejected material above the crater. More Strombolian explosions on most nights over 16-29 December ejected material 100-300 m above the crater; in addition, the sounds of rumbling and banging could be heard. The material was deposited as far as 1 km from the crater E and SE during 24-25 and 27-31 December and 4-7 January 2021. Strombolian activity continued into January, accompanied by frequent gray-and-white ash plumes, rumbling and banging sounds, and incandescent ejecta up to 600 above the crater that extended as far as 500 m E, SE, and W. Crater incandescence was visible up to 600 m above the crater.

Figure (see Caption) Figure 10. Webcam images showing continuing dense gray ash plumes from Lewotolok on 1 December 2020 (top) and 8 January 2021 (bottom). Courtesy of MAGMA Indonesia.

A consistent level of thermal activity was recorded in the Sentinel-2 MODIS Thermal Volcanic Activity from February 2019 through October 2020; in early December 2020 a slight increase in thermal anomalies were detected (figure 11). This data reflects the start of the new eruption in late November 2020. According to the MODVOLC thermal algorithm, five thermal hotspots were detected between January 2020 and January 2021 on 3 September (1), 29 November (2), 24 December (1), and 5 January 2021 (1). Some of this thermal activity was also observed in Sentinel-2 thermal satellite imagery in the summit crater (figure 12).

Figure (see Caption) Figure 11. Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A) shows consistent thermal activity (red dots) at Lewotolok during February 2020 through December 2020. Stronger thermal anomalies in early December is likely due to the new eruption that began in late November 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 12. Sentinel-2 thermal satellite imagery showing a thermal anomaly in the summit crater of Lewotolok on 25 October (top left), 9 November (top right), and 3 January 2021 (bottom right). On 14 December (bottom left) a Natural Color image showed a gray ash emission above the clouds and drifted E. On 3 January 2021 (bottom right) two thermal anomalies were visible in the summit crater accompanied by gas-and-steam emissions drifting NE. Sentinel-2 satellite images with “Natural Color” rendering (bands 4, 3, 2) on 14 December 2020, all other images use “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); European Space Agency (ESA), Copernicus (URL: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Simon Carn, Dept of Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA (URL: https://so2.gsfc.nasa.gov/).


Soufriere St. Vincent (Saint Vincent and the Grenadines) — March 2021 Citation iconCite this Report

Soufriere St. Vincent

Saint Vincent and the Grenadines

13.33°N, 61.18°W; summit elev. 1220 m

All times are local (unless otherwise noted)


New lava dome on the SW edge of the main crater in December 2020

Soufrière St. Vincent is the northernmost stratovolcano on St. Vincent Island in the southern part of the Lesser Antilles. The NE rim of the 1.6-km-wide summit crater is cut by a crater (500 m wide and 60 m depth) that formed in 1812. Recorded eruptions date back to 1718, with notable eruptions occurring in 1812, 1902, and 1979. The eruption of 1979 was characterized by ashfall, pyroclastic flows, and lahars, in addition to a series of Vulcanian explosions during 13-26 April 1979 that destroyed the lava dome in the summit crater, which had formed during a 1971 effusive eruption (SEAN 04:04). As a result, more than 20,000 people were evacuated. Beginning around 3 May 1979 another lava dome began to form in the main crater (SEAN 04:05; Shepherd et al., 1979) that continued to grow until the end of October 1979, expanding to 850 m in diameter and 120 m high (SEAN 04:11; Cole et al., 2019).

No further eruptive activity took place until December 2020, when a new lava dome began to grow SW of the pre-existing 1979 lava dome, accompanied by increased seismicity, crater incandescence, and gas-and-steam emissions. This report reviews information through February 2021 using bulletins from the University of the West Indies Seismic Research Centre (UWI-SRC), the National Emergency Management Organisation (NEMO), and various satellite data. Soufrière St. Vincent is monitored by the SRC assisted by the Soufrière Monitoring Unit (SMU) from the Ministry of Agriculture in Kingstown. As of 2004, the monitoring network had consisted of five seismic stations, eight GPS stations, and several dry tilt sites. Seismic data are transmitted from field sites to the Belmont Observatory (9 km SSW), which is operated by the SMU (figure 4). On 1 January 2021 a new seismic station was installed at Georgetown, on 10 January one was installed in Owia, followed on 15 January by another on the upper S flank, station SSVA at the summit on 18 January, and in Fancy on 21 January. In February 2021 the USGS-USAID (US Geological Survey-US Agency for International Development), through the Volcano Disaster Assistance Program (VDAP), donated equipment to build four more seismic stations.

Figure (see Caption) Figure 4. Location map of the Belmont Observatory (yellow star) located in Rosehall, St. Vincent, 9 km SSW from the Soufrière St. Vincent summit crater (red triangle). Base map satellite imagery courtesy of Google Earth.

A spike in seismicity was recorded during June-July 2019 (figure 5), though no cause was reported. The number of events sharply declined after July but continued intermittently through November 2020. Seismicity began to increase in early November through 23 December 2020, which included 126 earthquakes described as volcano-tectonic events and rockfall signals that were captured on one reliable seismic station (SVB) located 9 km from the volcano. The maximum daily count was 11 events on 16 November. After 23 December a total of eight events were detected before seismicity briefly subsided.

Figure (see Caption) Figure 5. Daily count of volcanic earthquakes recorded at Soufrière St. Vincent during 1 January 2019 through February 2021. Increased seismicity was detected during June-July 2019 and mid-October 2020 through February 2021. An installation of station SVV on 6 January 2021 at Wallibou is annotated on this graph. Data courtesy of UWI-SRC.

Activity during December 2020. Staff members of the Soufrière Monitoring Unit (SMU) made visual observations of the crater on 16 December and reported minor changes in fumarolic activity and a small lake on the E side of the crater floor. On 27 December UWI-SRC and NEMO reported that an effusive eruption had begun, which was characterized by a new lava dome in the main crater on the SW perimeter of the 1979 dome (figures 6 and 7). A thermal hotspot in the crater was also detected that day using satellite data by NASA FIRMS. As a result, the Volcanic Alert Level (VAL) was raised to Orange (the second highest level on a four-color scale) on 29 December (figure 8). The Volcano Ready Communities Project, a collaboration between NEMO SVG and UWI Seismic Research Centre, distributed their volcano hazard map for the surrounding communities, in preparation for a potential evacuation (figure 9).

Figure (see Caption) Figure 6. Photo of the first documented observation of the new lava dome at Soufrière St. Vincent on 27 December 2020 taken from the E side of the summit. Courtesy of Melanie Grant, IG, UWI-SRC.
Figure (see Caption) Figure 7. Photo of an early observation of the new lava dome at Soufrière St. Vincent on 29 December 2020 growing WSW of the 1979 lava dome on the SW edge of the summit crater, accompanied by gas-and-steam emissions. The dome was estimated to be 60 m high on 30 December. Courtesy of Kemron Alexander (color corrected), SMU, UWI-SRC.
Figure (see Caption) Figure 8. Volcanic Hazard Alert Level System for Soufriere St. Vincent. Courtesy of UWI-SRC.
Figure (see Caption) Figure 9. Volcanic hazard map for Soufrière St. Vincent, showing different areas that are likely to experience hazardous volcanic events which would require evacuations. The hazard map is divided into four zones: Zone 1 (Red), which is a very high hazard location; Zone 2 (Orange), which is a high hazard location; Zone 3 (Yellow), which is a moderate hazard location; and Zone 4 (Green), which is a low hazard location. This poster was created prior to the current eruption as part of the Volcano Ready Communities Project, a collaboration between NEMO SVG and UWI Seismic Research Centre. Courtesy of UWI-SRC and NEMO.

Activity during January-February 2021. Observations made during a field visit on 5 January, during a helicopter overflight on 6 January, and based on 9 January drone video noted that the new dome was expanding to the W on the WSW edge of the 1979 lava dome and continued to gradually grow through February 2021 (figure 10). Growth of the 2020/21 lava dome produced small, hot rockfalls and gas-and-steam emissions that were visible from the Belmont Observatory. The gas emissions were most notable from a small depression at the top of the dome. Two seismic stations were installed on the flank of the volcano at Wallibou (SVV) and at the summit (SSVA) on 6 and 18 January, respectively.

Figure (see Caption) Figure 10. Map showing the growth of the new 2020/21 lava dome at Soufrière St. Vincent from 27 December 2020 to 12 February 2021. The dome is located on the SW edge of the crater rim and WSW of the 1979 lava dome that is covered in vegetation. Courtesy of UWI-SRC.

Seismic stations recorded 573 events through 0730 on 30 January; this number continued to grow into February (up to 703 events by 0830 on 4 February) (figure 5). Observations on 14 January showed that the dome was growing taller and expanding to the E and W. An overflight on 15 January showed extensive vegetation damage on the E, S, and W inner crater walls; damage previously noted on the upper SW crater rim had expanded downslope (figure 11). Scientists visited on 16 January and recorded temperatures of 590°C at the dome surface (figure 12). During 15-17 January residents to the W of the volcano reported nighttime crater incandescence. Persistent gas-and-steam emissions were observed rising above the dome, as well as from the contact between the 2020/21 and 1979 domes during the rest of the month and through February.

Figure (see Caption) Figure 11. Oblique aerial view of the lava dome at Soufrière St. Vincent between the 1979 dome and the SW crater rim on 15 January 2021, accompanied by gas-and-steam emissions. On this day, the dome was 340 m long, 160 m wide, and 80 m high. Courtesy of Adam Stinton, MVO, UWI-SRC.
Figure (see Caption) Figure 12. Thermal measurements were taken at the base of the freshly extruded lava dome at Soufrière St. Vincent on 16 January 2021. Top: Photo (color corrected) of the base of the new lava dome. Bottom: Thermal FLIR (Forward-Looking InfraRed) image of the base of the new lava dome showing a maximum temperature of 590.8°C. Courtesy of Adam Stinton, MVO, UWI-SRC.

Sulfur dioxide emissions were first detected on 1 February using a Multi-Gas Instrument and a filter pack; the dome had reached an estimated volume of 5.93 million cubic meters. Vegetation on the NW part of the crater (N of the dome) was damaged, likely due to fire. The dome continued to expand laterally to the N and S, according to reports issued on 6 and 8 February. After that it grew about 15 m to the NW and SE, according to 11 and 15 February reports (figure 13). NEMO reported that the growth rate of the lava dome ranged from 1.9 to 2.13 m3/s (figure 14). Active gas-and-steam emissions originated dominantly at contact areas between the pre-existing 1979 dome and the 2020/21 dome, as well as at the top of the new dome.

Figure (see Caption) Figure 13. Photo of the 2020/21 lava dome (dark mass at left) at Soufrière St. Vincent on 12 February 2021 showing continuous gas-and-steam emissions and damaged vegetation on the 1979 lava dome (right). On this day, the dome was 618 m long, 232 m wide, 90 m high, and an estimated volume of 6.83 million cubic meters. Courtesy of Kemron Alexander, SMU, UWI-SRC.
Figure (see Caption) Figure 14. Estimated lava extrusion rates and added volume of material at Soufrière St. Vincent’s 2020/21 lava dome during 27 December 2020 through 3 February 2021. Calculations were based on UAV photography and photogrammetry. Data courtesy of UWI-SRC.

Thermal satellite data. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows the beginning of thermal activity in late December 2020 and continuing at a lower power into early February (figure 15). A single MODVOLC thermal alert was detected on 29 December. This activity marks the beginning of the effusive eruption and the formation of the new lava dome. Sentinel-2 thermal satellite imagery detected a thermal anomaly on the SW side of the main crater during clear weather days in January 2021, which represents the active 2020/21 lava dome (figure 16). Fresh, hot material is also visible surrounding the thermal anomaly, which demonstrates the growth of the lava dome over time.

Figure (see Caption) Figure 15. Thermal activity at Soufrière St. Vincent was detected beginning in late December 2020 and continued through early February 2021, as reflected in the MIROVA data (Log Radiative Power). The power of the thermal anomalies had slightly decreased after December. Courtesy of MIROVA.
Figure (see Caption) Figure 16. Sentinel-2 thermal satellite imagery showing a persistent thermal anomaly (bright yellow-orange) in Soufrière St. Vincent’s growing lava dome on the WSW edge of the main crater during 3 January through 28 January 2021. The dark black color is the freshly cooled material from the effusive activity, which also demonstrates the increasing size of the lava dome. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Field work during mid-January 2021. SRC collected rock samples from the new lava dome and sent them to scientists from the University of East Anglia, University of Plymouth, and University of Oxford on 16 January 2021 as a collaborative project to analyze their composition and compare them with the composition of rocks erupted in 1902, 1971, and 1979. Analyses showed that the new 2020/21 lava dome was basaltic andesite, similar in composition to the earlier domes (figure 17).

Figure (see Caption) Figure 17. Backscattered electron image of a sample from the 2020/21 lava dome showing groundmass texture. Low-contrast dark gray crystals are feldspar microlites in glass (darkest gray). Some of the larger feldspar crystals have Ca-rich cores (paler gray). Clinopyroxenes also make up the groundmass (brighter gray) and some are breaking down to Fe-oxides (small oxides at edges of clinopyroxene bottom center and bottom right). In some areas dark glass is devitrifying (paler gray irregular shapes within dark gray glassy patches). Fe-Ti oxides are also common (bright white crystals). Total image width is about 0.3 mm. Image and description courtesy of Bridie Davies, UEA.

References: Cole P D, Robertson R E A, Fedele L, Scarpati C, 2019. Explosive activity of the last 1000 years at La Soufrière, St Vincent, Lesser Antilles. J. Volcanol. Geotherm. Res., 371:86-100.

Shepherd, J. B., Aspinall, W. P., Rowley, K. C., Pereira, J., Sigurdsson, H., Fiske, R. S., Tomblin, J. F., 1979. The eruption of Soufrière volcano, St Vincent April–June 1979. Nature, 282 (5734), 24–28. doi:10.1038/282024a0.

Geologic Background. Soufrière St. Vincent is the northernmost and youngest volcano on St. Vincent Island. The NE rim of the 1.6-km wide summit crater is cut by a crater formed in 1812. The crater itself lies on the SW margin of a larger 2.2-km-wide caldera, which is breached widely to the SW as a result of slope failure. Frequent explosive eruptions after about 4,300 years ago produced pyroclastic deposits of the Yellow Tephra Formation, which cover much of the island. The first historical eruption took place in 1718; it and the 1812 eruption produced major explosions. Much of the northern end of the island was devastated by a major eruption in 1902 that coincided with the catastrophic Mont Pelée eruption on Martinique. A lava dome was emplaced in the summit crater in 1971 during a strictly effusive eruption, forming an island within a lake that filled the crater. A series of explosive eruptions in 1979 destroyed the 1971 dome and ejected the lake; a new dome was then built.

Information Contacts: University of the West Indies Seismic Research Centre (UWI-SRC), University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies (URL: http://www.uwiseismic.com/); National Emergency Management Organisation (NEMO), Government of Saint Vincent and the Grenadines, Biseé, PO. Box 1517, Castries, Saint Lucia, West Indies (URL: http://nemo.gov.lc/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Google Earth (URL: https://www.google.com/earth/); Bridie Davies, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK (URL: https://people.uea.ac.uk/bridie_davies).


Erta Ale (Ethiopia) — February 2021 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Brief increase in strong thermal activity during late November-early December 2020

Erta Ale, located in Ethiopia, is a highly active volcano that contains a 0.7 x 1.6 km, elliptical summit caldera with multiple pit craters that frequently host active lava lakes. Another larger 1.8 x 3.1 km wide depression SE of the summit is bounded by curvilinear fault scarps on the SE side. Recent activity has been characterized by lava flow outbreaks (BGVN 45:05) and thermal anomalies detected from pit craters in the summit caldera (BGVN 45:05 and 45:10). This report covers activity from October 2020 through February 2021 and is characterized by a brief period of strong thermal anomalies in late November, which sharply declined in December. Information primarily comes from satellite data.

Activity at Erta Ale had gradually decreased compared to previous months; thermal activity during this reporting period remained primarily in the N summit caldera. MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of four low-power thermal anomalies from October through most of November. At the end of November, a brief surge of strong thermal activity was detected in the S pit crater of the summit caldera, followed by a sharp decrease the following days (figure 102). Similarly, the MODVOLC system detected a total of eight thermal alerts; two were detected on 29 November and six were detected on 30 November, primarily focused in the summit caldera. Only two thermal anomalies were recorded in the MIROVA graph after this surge of activity; one in mid-December and one in early January. Thermal data from NASA VIIRS detected hotspots on 28-30 November, 1-3 December, and 8 December.

Figure (see Caption) Figure 102. A total of four low-power thermal anomalies were recorded at Erta Ale during October through most of November 2020. Beginning in late November into early December a strong but brief surge of thermal activity was detected according to the MIROVA system (Log Radiative Power). Only two low-power thermal anomalies were recorded after the activity in early December; one in mid-December and one in early January 2021. Courtesy of MIROVA.

According to Sentinel-2 thermal satellite images, a weak thermal anomaly was first visible on 20 October in the summit caldera. Intermittent, weak anomalies were also detected in the summit caldera on 25 and 30 October and 4, 9, 19, and 24 November. On 29 November the thermal activity increased significantly, detected as a strong hotspot in the S pit crater of the summit caldera (figure 103). This brief increase in power was also recorded in the MIROVA graph and by the MODVOLC thermal algorithm. By 4 December the size and power of this thermal activity decreased significantly, though it was still visible in the summit caldera. Thermal activity was no longer observed after 4 December until clear weather days on 2 and 12 February when a faint anomaly was detected.

Figure (see Caption) Figure 103. Sentinel-2 thermal satellite images of Erta Ale during 30 October 2020 to 12 February 2021 showing a single thermal anomaly (bright yellow-orange) in the S pit crater of the summit caldera that varies in strength. Top left: 30 October 2020 shows a faint thermal anomaly in the S pit crater. Top right: 29 November 2020 shows the strongest thermal anomaly in the S pit crater during the reporting period and is also reflected in the MIROVA graph and detected by the MODVOLC system. Bottom left: 4 December 2020 shows that the thermal anomaly from activity in late November remains hot but begins to decrease in strength. Bottom right: 12 February 2021 again shows thermal activity from the S pit but weaker than the previous November and December. Sentinel-2 images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Bagana (Papua New Guinea) — January 2021 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ongoing thermal anomalies possibly indicating lava flows during May-December 2020

Bagana is a remote volcano located in central Bougainville Island in Papua New Guinea with eruptions dating back to 1842. The current eruption period began in February 2000, with more recent activity characterized by thermal anomalies along with gas-and-steam and ash plumes (BGVN 44:12 and 45:07). Typical activity consists of episodes of lava flows and intermittent strong passive degassing, especially sulfur dioxide. This report covers activity from May-December 2020 using primarily thermal data and satellite imagery.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed a cluster of intermittent low-power thermal anomalies during June through early August, followed by a period of quiescence during August to mid-October, with the exception of two anomalies detected in early September (figure 44). Thermal activity slightly increased again by mid-October and continued infrequently through December at low levels. This pattern of thermal activity is also reflected in three Sentinel-2 thermal satellite images that showed faint, roughly linear, thermal anomalies, indicative of lava flows trending NE and NW on 21 June, NE on 1 July, and W on 23 November (figure 45). On clear weather days, gas-and-steam emissions could be seen in satellite imagery on 30 August, 4 October, and 23 November, each of which drifted W (figure 45). Gas-and-steam emissions on 13 December drifted E.

Figure (see Caption) Figure 44. Intermittent low-power thermal anomalies were detected at Bagana during late May-December 2020 as recorded by the MIROVA system (Log Radiative Power). Relatively higher power and frequency anomalies were detected during June-early August. Thermal activity declined after early August into mid-October, with the exception of two thermal anomalies in early September. Activity increased again slightly by mid-October and continued through December, but at a lower power and frequency. Courtesy of MIROVA.
Figure (see Caption) Figure 45. Sentinel-2 thermal satellite imagery showing weak thermal anomalies at Bagana during June through December 2020. Top left: Faint, linear thermal anomalies on 21 June 2020 on the NE and NW flanks, which could represent lava effusion, though clouds covered much of the area. Top right: Hot material traveling down the NE flank on 1 July 2020. Middle left and right: Gas-and-steam emissions rising from the summit crater and drifting W on 30 August and 4 October 2020; very faint thermal anomalies can be observed in the crater. Bottom left: Gas-and-steam emissions in the summit crater drifted W on 23 November 2020, and a probable lava flow is visible extending down the NW flank. Bottom right: Gas-and-steam emissions rose above the summit crater on 13 December 2020 and drifted E. Sentinel-2 images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — January 2021 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Occasional ash and gas-and-steam plumes along with summit thermal anomalies

Kadovar is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed eruption began in early January 2018, characterized by ash plumes and a lava extrusion that resulted in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). Activity has recently consisted of intermittent ash plumes, gas-and-steam plumes, and thermal anomalies (BGVN 45:07). Similar activity continued during this reporting period of July-December 2020 using information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

RVO issued an information bulletin on 15 July reporting minor eruptive activity during 1-5 July with moderate light-gray ash emissions rising a few hundred meters above the Main Crater. On 5 July activity intensified; explosions recorded at 1652 and 1815 generated a dense dark gray ash plume that rose 1 km above the crater and drifted W. Activity subsided that day, though fluctuating summit crater incandescence was visible at night. Activity increased again during 8-10 July, characterized by explosions detected on 8 July at 2045, on 9 July at 1145 and 1400, and on 10 July at 0950 and 1125, each of which produced a dark gray ash plume that rose 1 km above the crater. According to Darwin VAAC advisories issued on 10, 16, and 30 July ash plumes were observed rising to 1.5-1.8 km altitude and drifting NW.

Gas-and-steam emissions and occasional ash plumes were observed in Sentinel-2 satellite imagery on clear weather days during August through December (figure 56). Ash plumes rose to 1.2 and 1.5 km altitude on 3 and 16 August, respectively, and drifted NW, according to Darwin VAAC advisories. On 26 August an ash plume rose to 2.1 km altitude and drifted WNW before dissipating within 1-2 hours. Similar activity was reported during September-November, according to several Darwin VAAC reports; ash plumes rose to 0.9-2.1 km altitude and drifted mainly NW. VAAC notices were issued on 12 and 22 September, 4, 7-8, and 18 October, and 18 November. A single MODVOLC alert was issued on 27 November.

Figure (see Caption) Figure 56. Sentinel-2 satellite data showing a consistent gas-and-steam plume originating from the summit of Kadovar during August-December 2020 and drifting NW. On 21 September (top right) a gray plume was seen drifting several kilometers from the island to the NW. Images with “Natural color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power anomalies during July through December 2020 (figure 57). Some of this thermal activity in the summit crater was observed in Sentinel-2 thermal satellite imagery, accompanied by gas-and-steam emissions that drifted primarily NW (figure 58).

Figure (see Caption) Figure 57. Intermittent low-power thermal anomalies at Kadovar were detected in the MIROVA graph (Log Radiative Power) during July through December 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 58. Sentinel-2 satellite data showing thermal anomalies at the summit of Kadovar on 23 July (top left), 7 August (top right), 1 September (bottom left), and 21 September (bottom right) 2020, occasionally accompanied by a gas-and-steam plume drifting dominantly NW. Two thermal anomalies were visible on the E rim of the summit crater on 23 July (top left) and 7 August (top right). Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 36, Number 04 (April 2011)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Activity and seismicity decrease; new analysis of acid-rain

Endeavour Segment (Canada)

Acoustic imaging of ongoing hydrothermal venting

Eyjafjallajokull (Iceland)

Eruption ended in late 2010; sample of growing literature on the eruption

Irazu (Costa Rica)

Crater lake dries and regional acid-rain report

Machin (Colombia)

Seismic and non-eruptive unrest detected in 2004, 2008, 2009, and again in 2010

Poas (Costa Rica)

Photos of phreatic eruptions from acid lake; surrounding vegetation damaged by gases

Ranau (Indonesia)

Fish kill in April 2011 strikes hot-spring areas of intra-caldera lake

Rincon de la Vieja (Costa Rica)

Fumarolically active but non-eruptive through January 2011

Sheveluch (Russia)

Ongoing dome growth into early 2011; and pyroclastic flows of 27 October 2010



Arenal (Costa Rica) — April 2011 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Activity and seismicity decrease; new analysis of acid-rain

Our previous report about Arenal discussed ongoing sporadic eruptive behavior, preliminary information about the 24 May 2010 dome collapse, and the higher frequency of rockfalls through September 2010 (BGVN 35:07). Since October 2010, volcanic activity at Arenal appears to be decreasing. Events like the explosion on 24 July 2010, discussed below (see figure 110) have become rare. Reports from Costa Rica's Volcanological and Seismological Observatory and National University (OVSICORI-UNA) include direct observations of summit activity, seismic analysis, and acid-rain data and provide the basis for this report covering the 24 May, 2010 event in addition to activity from October 2010 to May 2011.

Figure (see Caption) Figure 110. At 0538 on 24 July 2010 (local time) an ash explosion at Arenal was recorded seismically and its resulting cloud was photographed. In the lower left-hand corner is the seismic trace of the event, which began suddenly and saturated the record (seismic station VACR; OVSICORI-UNA). Courtesy of Phil Slosberg (OVSICORI-UNA).

Incandescent avalanche of 24 May 2010. Sudden activity down Arenal's SW flank on 24 May 2010 produced long, incandescent avalanches and pyroclastic flows, forcing the National Park to evacuate visitors on this day. No injuries or damage to infrastructure had been reported during Arenal's activity in May 2010. Previous pyroclastic events had also caused evacuations in June 2009, June 2008, and September 2007.

Beginning at noon on 24 May, incandescent avalanches descended from the summit dome. They affected a sector that has been subject to avalanches in the last 3 years (see figure 111). A field investigation by OVSICORI on 31 May found that material fell from the summit down to 1,200 m elevation and accumulating in a toe 400 m x 80 m. The majority of blocks surpassed 2 m in diameter. Deposits from the dome collapse were still hot when they arrived at the forest that borders Río Agua Caliente. The OVSICORI-UNA field report of 31 May 2010 contains photos and additional details. Several sections of the river scarp show signs of being struck and eroded by direct impact of the incandescent blocks that arrived with high speed. The dome that supplied the block-and-ash flows became visibly deflated but activity culminated through the week with the formation of a new dome toward the E side of the summit. The formation and destruction of domes at the top of Crater C is very common. These domes reach ten's of meters in size and frequently collapse violently, especially when they are destabilized at the crater rim.

Figure (see Caption) Figure 111. Changes in morphology at Arenal's Crater C are visible owing to the 24 May 2010 dome collapse. Located on the eastern side of the summit, the point of failure was attributed to the "Unstable area." Courtesy of E. Duarte (OVSICORI-UNA).

Decreasing activity. The number of explosive events peaked in February 2010, became regular up to October, but since mid-October they have become sporadic. No lava flows or night-time incandescence was observed on the flanks. Gas emission continued at the active Crater C and fumarolic activity was continuous at Crater D, the pre-1968 summit crater.

Acid-rain affected Arenal's flanks and the NE, E, and SE flanks showed a loss of vegetation. These conditions plus the high amounts of rainfall aggravated erosion on the steep slopes; rockfalls and landslides continued to occur in these valleys: Calle de Arenas, Manolo, Guillermina, and Río Agua Caliente. OVSICORI-UNA released a report on acid-rain measurements that began on 9 April 2003 and ended on 30 November 2010; data from four stations showed generally decreasing acidity with time (figure 112). The trend steadily increased from pH ~4 to ~4.5 for all stations. Although irregular spikes are recorded, the low outliers were generally less acidic with time.

Figure (see Caption) Figure 112. Variation of the pH (level of acidity) of rain-water collected from four stations on Arenal. Data points represent measurements from 9 April 2003 to 30 November 2010. Courtesy of OVSICORI-UNA.

Waldo Taylor assessed seismic data from the local network. The 2010 mid-year ICE report discussed seismicity and the general trend shown in table 26. The large spike in seismic events from 2009 dropped off abruptly the following year.

Table 26. Earthquakes counted at Arenal during 2005-2010. Courtesy of ICE.

Year Number of earthquakes
2005 3
2006 12
2007 15
2008 47
2009 239
2010 56

Gerardo J. Soto discussed Arenal seismicity. "In general terms, the average magnitude increased from 2.0 in 2006 to 2.3 in 2010. The biggest was M 4.1 in 1 November 2009. Mean [focal] depth deepened from 5.5 km in 2006 to about 2 km in 2010. Most of them were between 2 and 5 km deep in 2009-2010, and down to 9 km deep in 2010.

"The number of [respective] earthquakes from September through December 2010 decreased monthly [in the sequence] 24, 12, 9, 3. Epicenters shifted from SE to NW quadrangle of the volcano through time.

"We preliminarily interpret this as a possible withdrawal of magma below the volcano, [on the basis of] focal mechanisms."

Secondary hazards. With Arenal's decrease in explosive activity, no ash collection has been possible this year (2011). A network of seven stations exists for regular sampling. The most effusive event occurred in 1968 when roughly 2 x 105 metric tons of ash fell on the flanks. Later, a hydroelectric project was completed in the 1970s and filled the basin below the volcano with 2.416 x 106 m3 of water (the maximum storage capacity), forming Lake Arenal. From 1992 to 1997, the annual sediment load into the lake contained 1.4% remobilized material from Arenal.

Future activity at Arenal within the next 100 years may include large eruptions with the potential to produce 10 million metric tons of volcanic sediments; within the next 200 years an extreme event could contribute 107 metric tons of volcaniclastics to Lake Arenal (Soto, 1998). The distribution of volcaniclastic sediments is largely controlled by the Río Agua Caliente, a drainage connecting tributaries from Arenal's southern flank. Roughly every 2-5 years there are relatively large debris flows along this river. As recently as the first week of May 2011, intense flooding damaged a bridge by severely undermining the concrete abutments (G.J. Soto, personal communication).

Satellite thermal alerts. Since 15 September 2010 there have been no MODVOLC satellite thermal alerts through February 2011.

References. Soto, G.J., 1998, Cálculo de ceniza eyectada por el Volcán Arenal y ceniza caída en el embalse durante el período 1992-1997; Informe OSV.98.05.ICE, 18 pp. (in Spanish)

OVSICORI-UNA, 2010, Cambios Morfológicos y Avalanchas Incandescentes del 24 de Mayo en el Volcán Arenal. (in Spanish) (URL: http://www.ovsicori.una.ac.cr/vulcanologia/informeDeCampo/2010/InfcampAremayo10.pdf)

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: Phil Slosberg and Eliecer Duarte, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Gerardo J. Soto, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica; Waldo Taylor, Sismológico y Vulcanológico de Arenal y Miravalles (OSIVAM), Oficina de Sismología y Vulcanología (OSV), Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Endeavour Segment (Canada) — April 2011 Citation iconCite this Report

Endeavour Segment

Canada

47.95°N, 129.1°W; summit elev. -2050 m

All times are local (unless otherwise noted)


Acoustic imaging of ongoing hydrothermal venting

The Grotto vent cluster contains an assemblage of black smoker vents that lie within the Main Endeavour Field on the northern Juan de Fuca ridge (Bemis, 2001; Rona and others, 2001, 2010a; Bobbitt, 2007) (figure 4). New imagery of submarine plume behavior and properties was achieved with a new acoustic system that extends underwater observational distances beyond those of light to image buoyant plumes of submarine black smokers in 3-dimensions and image areas of diffuse flow seeping from the sea floor in 2-dimensions (Rona, 2011; Rona and others, 2010a, 2010b, and 2011).

Figure (see Caption) Figure 4. Map of Main Endeavour Field, Juan de Fuca Ridge (grid system in meters), showing the location of the Grotto Vent at grid coordinates of about 6115 and 4920. Note scale-the entire Endeavour Field is only ~400 m long. According to Merle (2006) Grotto vent resides at 47.95°N latitude, 129.10°W longitude, and at a depth of ~2,196 m.

The Cabled Observatory Vent Imaging Sonar (COVIS) was installed in September 2010 (Light, 2011). Operations were initiated with in situ sensors in the NEPTUNE (North-East Pacific Time-Series Underwater Networked Experiments) Canada Program cabled observatory on the Main Endeavour Field (MEF) of the Juan de Fuca Ridge, nearly 370 km (200 nautical miles) off British Columbia, Canada, in the NE Pacific Ocean (figures 5 and 6). NEPTUNE is a Canadian research facility designed for regional-scale underwater ocean investigations focusing on continuous monitoring of temperature, chemistry, biodiversity, and motion. This data will be broadcast via the Internet for scientists, students, educators and the public to collaborate and promote investigations into: underwater volcanic processes; earthquakes and tsunamis; minerals, metals, and hydrocarbons; ocean-atmosphere interactions; climate change; greenhouse gas cycling in the ocean; marine ecosystems; long-term changes in ocean productivity; marine mammals; fish stocks; pollution and toxic blooms. The public can gain a more in-depth understanding of the seafloor, while ocean scientists can run deep-water experiments from labs and universities anywhere around the world.

Figure (see Caption) Figure 5. Map of NEPTUNE Canada Program's six submarine sites with multiple sensors connected to a high-speed optical cable linked with University of Victoria in British Columbia, Canada. The Main Endeavour Field, labeled as Endeavor (in red), one of the instrumented sites, is ~350 km WSW from Port Alberni. Over the project's 25-year lifespan, Endeavor will collect data for underwater volcanic processes, seismicity, plate tectonics, hydrothermal vent systems, and deep sea ecosystems. Courtesy of NEPTUNE Canada (2011).

During a research cruise in September-October 2010, scientists from the University of Washington and Rutgers University connected COVIS to the NEPTUNE Canada cable system for the first time and initiated data acquisition on 29 September 2010. COVIS, equipped with a customized multibeam sonar, 400/200 kHz projectors, and a rotator system to orient acoustic transducers, was positioned to acquire acoustic data from a fixed site on the floor of the ridge's axial valley at a range of tens of meters from the Grotto vent cluster in the MEF (figure 6).

Figure (see Caption) Figure 6. COVIS acoustic image, oriented NE on the left to NW on the right, made at 0600 UTC on 11 October 2010, looking S at black smoker plumes and areas of diffuse flow draped over bathymetry of the Grotto vent cluster (Jackson and others, 2003) in the Main Endeavour Field, Juan de Fuca Ridge. The image was made when tidal currents were minimal (e.g., near slack tide). The larger plume is from the N tower edifice at the NW end, and the smaller plumes are from the NE end of Grotto vent at the in-situ experiments. The legend (at the upper left) specifies isosurfaces of plume volume scattering strengths (in decibels per meter) related to particle content and temperature-density discontinuities. The vertical color bar (at the far right) gives normalized decorrelation of backscatter (0-1) due to diffuse flow from the sea floor at 0.8-sec lag. The plumes decrease in acoustic backscatter intensity as they mix with surrounding seawater with height (in meters) above vents. From Rona (2011).

The purpose of the COVIS experiment was to acoustically image, quantify, and monitor seafloor hydrothermal flow on time scales of hours (response to ocean tides) to weeks-months-years (response to volcanic and tectonic events); this advances our understanding of these interrelated processes. According to Rona and others (2003), net volume flux of a plume can be calculated by integrating the vertical flux through a plume cross-section, which can then be converted to heat and particle flux if coordinated with in-situ measurements of temperature and particle properties (concentration, size distribution, density). To achieve this, COVIS acquired acoustic data from a projector mounted on a tripod ~4 m above the seafloor at a fixed position. A computer controlled, 3- degrees-of-freedom (yaw, pitch, and roll), positioning system was used to point the sonar transducers providing a large coverage area at the site. Sonar data is collected at ranges of tens of meters from targets to make three types of measurements: 1) volume backscatter intensity from suspended particulate matter and temperature fluctuations in black smoker plumes which was used to reconstruct the size and shape of the buoyant portion of a plume; 2) Doppler phase shift which was used to obtain the flow rise velocity at various levels in a buoyant plume; 3) scintillation which was used to image the area of diffuse flow seeping from the seafloor.

References. Bemis, K.G., Rona, P.A., Jackson, D.R., Jones, C., Mitsuzawa, K., Palmer, D., Silver, D., and Gudlavalletti, R., 2001, Time-averaged images and quantifications of seafloor hydrothermal plumes from acoustic imaging data: a case study at Grotto Vent, Endeavour Segment Seafloor Observatory, Abstract OS21B-0446 presented at American Geophysical Union, Fall Meeting 2001, San Francisco, CA, December.

Bobbitt, A., 2007, NeMO 2007 Cruise Report: Axial Volcano, Endeavour Segment, and Cobb Segment, Juan de Fuca Ridge, R/V Atlantis Cruise AT 15-21, August 3-20, 2007, Astoria, Oregon, to Astoria Oregon, Jason dives J2-286 to J2-295, unpublished report (URL: http://www.pmel.noaa.gov/vents/nemo/NeMO2007-cruise-report.pdf)

Jackson, D.R., Jones, C.D., Rona, P.A., and Bemis, K.G., 2003, A method for Doppler acoustic measurement of black smoker flow fields, Geochemistry Geophysics Geosystems (G3), v. 4, no. 11, p. 1095 (DOI: 10.1029/2003GC000509, 2003).

Light, R., Miller, V., Rona, P., and Bemis, K., 2010, Acoustic Instrumentation for Imaging and Quantifying Hydrothermal Flow in the NEPTUNE Canada Regional Cabled Observatory at Main Endeavour Field (unpublished paper - URL: http://www.apl.washington.edu/projects/apl_presents/topics/covis/covis.php).

Light, R., Miller, V., Jackson, D.R., Rona, P.A., and Bemis, K.G., 2011, Cabled observatory vent imaging sonar (abstract of presentation), Journal of the Acoustical Society of America, v. 129, no. 4, p. 2373.

Merle, S. (compiler), 2006, NeMO 2006 Cruise Report, NOAA Vents Program, Axial Volcano and the Endeavour Segment, Juan de Fuca Ridge, R/V THOMPSON Cruise TN-199, August 22 - September 7, 2006. Seattle WA to Seattle WA; ROPOS dives R1008 - R1014 (URL: http://www.pmel.noaa.gov/vents/nemo2006/nemo06-crrpt-final.pdf).

NEPTUNE Canada, 2011, Transforming Ocean Science; Ocean Networks Canada. (URL: http://www.neptunecanada.ca/about-neptune-canada/neptune-canada-101/)

Rona, P.A., Bemis, K.G., Jackson, D.R., Jones, C.D., Mitsuzawa, K., Palmer, D.R., and Silver, D., 2001, Acoustic Imaging Time Series of Plume Behavior at Grotto Vent, Endeavour Observatory, Juan de Fuca Ridge, Abstract OS21B-0445 presented at American Geophysical Union, Fall Meeting 2001, San Francisco, CA, December.

Rona, P.A., Jackson, D.J., Bemis, K.G., Jones, C.D., Mitsuzawa, K., Palmer, D.R., and Silver, D., 2003, A New Dimension in Investigation of Seafloor Hydrothermal Flows, Ridge 2000 Events, v. 1, no. 1, p. 26 (URL: http://ridge2000.bio.psu.edu).

Rona, P.A., Bemis, K.G., Jones, C., Jackson, D. R., Mitsuzawa, K, and Palmer, D. R., 2010a, Partitioning Between Plume and Diffuse Flow at the Grotto Vent Cluster, Main Endeavour Vent Field, Juan de Fuca Ridge: Past and Present, Abstract OS21C-1519 presented at American Geophysical Union, Fall Meeting 2010, San Francisco, Calif., December.

Rona, P., Light, R., Miller, V., Jackson, D., Bemis, K., Jones, C., and KenneyM., 2010b, Cabled Observatory Vent Imaging Sonar (COVIS) Connected to NEPTUNE Canada Cabled Observatory (poster abstract), 2010 R2K (Ridge 2000) Community Meeting, Portland, OR, 29-31 October 2010 (URL: http://ridge2000.marine-geo.org/community-meeting/october-2010/2010-r2k-community-meeting).

Rona, P., 2011, Sonar images hydrothermal vents in seafloor observatory, EOS Transactions, American Geophysical Union, v. 92, no., 20, p. 169-170.

Rona, P.A., Benis, K.G., Jones, C.D., and Jackson, D.R., 2011, Multibeam sonar observations of hydrothermal flows at the Main Endeavour Field (abstract of presentation), Journal of the Acoustical Society of America, v. 129, no. 4, p. 2373.

Geologic Background. The Endeavour Segment (or Ridge) lies near the northern end of the Juan de Fuca Ridge, west of the coast of Washington and SW of Vancouver Island. The northern end is offset to the east with respect to the West Valley Segment, which extends north to the triple junction with the Sovanco Fracture Zone and the Nootka Fault. The 90-km-long, NNE-SSW-trending segment lies at a depth of more than 2000 m and is the site of vigorous high-temperature hydrothermal vent systems that were first discovered by scientists in 1981. Five major vent fields that include sulfide chimneys and black smoker vents, first seen from the submersible vehicle Alvin in 1984, are spaced at about 2-km intervals in a 1-km-wide axial valley at the center of the ridge. Preliminary uranium-series dates of Holocene age were obtained on basaltic lava flows, and other younger "zero-age" flows were sampled. Seismic swarms were detected in 1991 and 2005.

Information Contacts: Peter Rona, Institute of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ; NEPTUNE Canada (URL: http://www.oceannetworks.ca/).


Eyjafjallajokull (Iceland) — April 2011 Citation iconCite this Report

Eyjafjallajokull

Iceland

63.633°N, 19.633°W; summit elev. 1651 m

All times are local (unless otherwise noted)


Eruption ended in late 2010; sample of growing literature on the eruption

Gudmundsson and others (2010a) noted that the last day of sustained activity at Eyjafjallajökull took place on 22 May 2010. By 23 June 2010, the Iceland Meteorological Office (IMO) and the University of Iceland Institute of Earth Sciences (IES) ceased issuing regular status reports. In addition to discussing the eruption and its final stages, this report also cites a small sample of abstracts and papers from the numerous conferences, sessions, and publications that have thus far emerged on the eruption.

The eruption's initial phase, 20 March-12 April 2010, occurred at Fimmvörðuháls, a spot on the E flanks of Eyjafjallajökull (figure 16, and "F" and "E" on figure 17). Venting at Fimmvörðuháls took place on an exposed ridge cropping out in a region with extensive glaciers to the E and W. Eruptions began in the initially ice-capped summit crater of Eyjafjallajökull on 14 April 2010 (BGVN 35:03 and 35:04). After melting overlying portions of the icecap, the summit crater then emitted clouds of fine-grained ash that remained suspended in the atmosphere for long distances. The ash blew both over the Atlantic and for considerable intervals passed directly over Europe, halting flights of most commercial aircraft for nearly a week in a controversial shutdown with economic impacts in the billions.

Figure (see Caption) Figure 16. Index map showing Iceland, some major plate-tectonic features and generalized spreading directions, and the location of Eyjafjallajökull volcano. Note proximity of Eyjafjallajökull to Katla and to the volcanoes of the Vestmann island area (Vestmannaeyjar), Surtsey and Heimaey. Courtesy of USGS.
Figure (see Caption) Figure 17. A shaded-relief map showing Eyjafjallajökull (E), and 9 km to its E, the flank vent Fimmvörðuháls (F). Stars indicate 2010 eruptive sites (map scale at top left). Glaciers cover extensive portions of both Eyjafjallajökull and Katla volcanoes (light pattern). During 14-29 April 2010 many earthquakes struck with epicenters along the N-S axis of Eyjafjallajökull (black dots). The map includes a small slice of the Atlantic ocean along the lower left-hand margin. Two of four geodetic (GPS) stations are shown (STE2 and THEY). Revised from a map by Sigmundsson and others (2010).

In terms of satellite thermal data on the overall eruption, the MODVOLC system measured extensive (multi-pixel) daily alerts during 21 March-21 May 2010, but the alerts became absent thereafter.

Venting at Fimmvörðuháls. At a 15-19 September 2010 conference on the eruption, Höskuldsson and others (2010a) characterized the course of events during the 20 March to 12 April basaltic Fimmvörðuháls flank eruption at Eyjafjallajökull as follows: "At the beginning the eruption featured as many as 15 lava fountains with maximum height of 150 m. On March 24 only four vents were active with fountains reaching to heights of 100 m. On March 31 and April 1 the activity was characterized by relatively weak fountaining through a forcefully stirring pool of lava. The vents were surrounded by 60-80 m high ramparts and the level of lava stood at approximately 40 m. This high stand led to opening of a new fissure trending northwest from the central segment of the original fissure. As activity on the new fissure intensified, the discharge from the original fissure declined and stopped on April 7.

"The intensity of the lava fountains varied significantly on the time scale of hours and was strongly influenced the level of the lava pond in the vents, producing narrow, gas-charged, piston-like fountains during periods of low lava levels, but spray-like fountains when the lava level was high . . ..

"The eruption produced a fountain-fed lava flow field with an area of about 1.3 km2. Initially (20-25 March), the lava advanced towards northeast, but on March 26 the lava began advancing to the west and northwest, especially after April 1 when the activity became concentrated on the new fissure. The flow field morphology is dominantly 'a'a, but domains of pahoehoe and slabby pahoehoe are present, particularly in the western sector of the flow field. The advance of the lava from the vents was episodic; when the lava stood high the lava surged out of the vents, but at low stand there was a lull in the advance. The lava discharged from the vents through open channels as well as internal pathways. The open channels were the most visible part of the transport system, feeding lava to active 'a'a flow fronts and producing spectacular lava falls when cascading into deep gullies just north of the vents. The role of internal pathways was much less noticeable, yet an important contribution to the overall growth of the flow field as it fed significant surface breakouts emerging on the surface of what otherwise looked like stagnant lava. When activity stopped on April 12 the fissure had issued about 0.025 km3 of magma, giving a mean discharge of 13 m3/s."

Summit eruption. The second eruption occurred within the initially ice-covered caldera of Eyjafjallajökull. Opening of the ice cover and explosivity into the atmosphere was amplified by magma-ice interaction that produced a fine ash capable of suspension in the atmosphere for prolonged periods.

Höskuldsson and others (2010b) described the eruption at Eyjafjallajökull's summit (beginning 14 April 2010) as consisting of three phases (table 2). They also stated that at the summit the "Total amount of tephra produced in the eruption is about 0.11 km3 and that of lava 0.025 km3 DRE [dense-rock equivalent]. Average discharge rate in the eruption was about 40 m3/s DRE or about 4 times that of Fimmvörðuháls eruption."

Table 2. Three phases of the eruption at Eyjafjallajökull volcano's summit beginning 14 April 2010 as summarized and condensed by Höskuldsson and others (2010b).

Dates Phase Description of Activity
14 Apr-17 Apr 2010 I Plumes often under 6 km but up to ~9 km altitude.
18 Apr-04 May 2010 II High tremor with lava flows; generally weak and ash-poor plumes. Pulsating activity with small discrete explosions every few seconds. Tephra grains had fluidal shapes suggesting magmatic fragmentation and decreased viscosity of erupting magma. Plumes on 28th to 7 km altitude.
05 May-22 May 2010 III Plumes up to 5 km altitude.

The summit area was still steaming and geothermally active, and the eruption channel was still very hot in October 2010 (figure 18). Investigators expected that cooling to ambient temperatures would take a few years . As noted below, during June 2010, hot lava could still be seen in cracks in the cooled rock on Fimmvörðuháls, and inside craters, but that was not the case at the ice-engulfed summit caldera.

Figure (see Caption) Figure 18. The summit crater complex of Eyjafjallajökull taken after the first winter snow, as seen from the air at 0810 on 9 October 2010. The scene helps explain the high degree of water and ice interaction with the erupting lavas. Snow had melted from numerous ash and lava-covered surfaces (black areas). Although portions of the crater emitted steam, evidence of substantial ongoing lava emissions were absent at this point in time. Photo courtesy of Ólafur Sigurjónsson, IMO.

According to Gudmundsson and others (2010b) the summit eruption produced 0.1-0.2 km3 (dense rock equivalent) of tephra. IES reported that by 11 June 2010 a lake about 300 m in diameter had formed in the large summit crater, and by 23 June water was slowly accumulating in the crater because ice was no longer in contact with hot material.

Intrusion triggering. Sigmundsson and others (2010) noted that the 2010 eruptions came after 18 years of intermittent volcanic unrest. The deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single source. Deformation was rapid before the flank eruption (0.5 mm per day after 4 March 2010), but negligible during it.

During the summit eruption (beginning 14 April 2010) gradual contraction of a source, distinct from the pre-eruptive inflation sources, was evident from geodetic data. Thus, clear signals of volcanic unrest may occur over years to weeks, indicating reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.

Figure 19 shows a cross-sectional model of the shallow crust by Sigmundsson and others (2010) based deformation and seismic analyses of the 2010 event. A previous issue of the Bulletin (BGVN 35:03) contained an alternate model by Paul Einarsson.

Figure (see Caption) Figure 19. Schematic E-W cross-section across the Eyjafjallajökull summit area, with deformation sources plotted at their best-fit depth (vertical exaggeration of 2). Gray shaded background indicates source-depth uncertainties (95% confidence interval), which overlap. Courtesy of Sigmundsson and others (2010).

Processed satellite image. Vincent J. Realmuto created two composite figures generated from the MODIS-Terra satellite data acquired 15 April 2010 at 1135 UTC (figure 20). Outlined in black in each image are Iceland on the upper left side (W), Faroe Islands in the center, Scotland and N Ireland in the lower center, and part of the Scandinavian peninsula on the right side (E). An ash plume can be seen in each image extending from Iceland SW toward Europe. The left-hand image is the true-color RGB (red-green-blue) composite and the right-hand image is a false-color composite; in the right-hand rendition the ash plume appears red and the ice-rich clouds appear blue. The right-hand image puts obvious emphasis on the ash plume and shows it streaming and more or less intact for several hundreds of kilometers E of Iceland.

Figure (see Caption) Figure 20. Graphics generated from the MODIS-Terra satellite data acquired 15 April 2010 at 1135 UTC. The left-hand graphic is a true-color RGB (red-green-blue) composite, and the right-hand image is a false-color composite of Bands 32, 31, and 29 (12, 11, and 8.5 um, respectively) displayed in red, green, and blue, respectively. These data were processed with the decorrelation stretch (D-stretch), a technique for enhancing spectral contrast based on principal components analysis. In this rendition the ash plume appears red and the ice-rich clouds appear blue. The D-stretch was based on scene statistics and was intended to be a quick method for discriminating material that may be volcanic in origin. Courtesy of Vincent J. Realmuto, Jet Propulsion Laboratory, California Institute of Technology.

Conference field trip. Following The Atlantic Conference on Eyjafjallajökull and Aviation in Iceland, 15-16 September 2010 (discussed below), a field trip brought scientists to accessible areas on the volcano, including the flank vent on Fimmvörðuháls ridge where the eruption began. John and Liudmila Eichelberger provided some photographs from this trip (figure 21). The same base map appeared in BGVN 35:03, with the key and other data. The horseshoe shape of the lava distribution in this figure is the feature imaged by an ASTER satellite thermal signature as active lava flows on 19 April 2010 in BGVN 35:03.

Figure (see Caption) Figure 21. (Central panel) Map showing fissures at Fimmvörðuháls (thin red lines) and the distribution of new scoria and lava deposited at various points in time (shaded areas) during 21 March-7 April 2010. Marked arrows on the map give locations of labeled photos (A-E) taken 18 September 2010. (A) Fresh lava (darker) seen looking N. In the distance appear fresh black lava flows, some portions of which formed the lava falls down the valley walls. (B) View showing the elongate ridge as seen from the upslope perspective (people in the distance for scale). (C, looking down) Glowing lava (~1.5 m long and ~0.3 m wide) at the bottom of a fissure. This photo was taken with a flash, otherwise the fissure walls would have been very dark. (D) The fracture indicated on the map as it appeared near the rim of the ridge of newly erupted lava. (E) The same fracture seen in D from another perspective. Courtesy of John and Ludmilla Eichelberger.

More on conferences and publications. Recently, several conferences have been held and many publications have been issued relevant to the eruption. What follows is a mere sample of the available resources, many of which emphasized plume research. At the American Geophysical Union (AGU) 2010 Fall Meeting, several sessions focused on the 2010 eruption (eg., Carn and others, 2010; see References for the link to abstracts volume).

The Workshop on Ash Dispersal Forecast and Civil Aviation held in Geneva, 18-20 October 2010, addressed the characteristics and range of application of different volcanic ash transport and dispersal models (VATDM), identifying the needs of the modeling community, investigating new data acquisition strategies, and discussing how to improve communication between the volcanology community and operational agencies (eg., Bonadonna and others, 2011).

The Cities on Volcanoes conference (COV-6; Tenerife, Canary Islands, Spain, 31 May-4 June 2010) included both papers (eg. Fischer and others, 2010) and a forum on the "Assessment of volcanic ash threat: learning and considerations from the Eyjafjallajökull eruption."

In addition, several other papers relevant to the eruption were presented during this meeting, as well as at the Annual Meeting of the American Meteorological Society (AMS) in Seattle, WA, in January 2011, and at the European Geosciences Union (EGU) 2011 General Assembly in Vienna, Austria.

The journal Atmospheric Chemisrty and Physics published multiple issues with a section entitled "Atmospheric implications of the volcanic eruptions of Eyjafjallajökull, Iceland 2010." These and other papers discussed various means of plume detection, and in some cases, sampling, including on the ground, in ultralight aircraft, and on satellites; models of plume dispersion were evaluated (Flentje and others, 2010; Emeis and others, 2011; Vogel and others, 2011; Fischer and others, 2010).

According to Loughlin (2010), scientists from the British Geological Survey found large ash particles from the eruption in the United Kingdom. Most of the very small ash particles in volcanic plumes fell as clusters of particles known as aggregates. The aggregation could have resulted from a number of mechanisms, including electrostatic attraction, particle collisions, condensation of liquid films and secondary mineralization. The process of aggregation effectively removed very small particles from the plume and was therefore one variable on how long ash particles stay in the atmosphere. Ripley (2010) and Chivers (2010) published articles on the U.K. Met Office's tracking and prediction of movements of volcanic ash based on observations from the Eyjafjallajökull eruption.

Gislason and others (2011) reported on analyses of two sets of fresh, comparatively dry ash samples that fell in Iceland and were collected rapidly on 15 and 27 April, during more and less explosive phases, respectively. Both sets of samples were kept dry and analyzed swiftly to minimize issues with hydration and alteration, particularly to salts on the ash surfaces. The ash was dominantly glass of andesitic composition (57-58% SiO2). They found the ash particles especially sharp and abrasive over their entire size range, from submillimeter to tens of nanometers.

References. Bonadonna, C., Folch, A., and Loughlin, S., 2011, Future Developments in Modeling and Monitoring of Volcanic Ash Clouds, Eos, Transactions of the American Geophysical Union (AGU), v. 92, no. 10; pp. 85-86, DOI: 10.1029/2011EO100008 (URL: http://www.agu.org/pub/eos/).

Carn, S.A., Karlsdottir, S., and Prata, F., 2010, The 2010 Eruption of Eyjafjallajokull: A Landmark Event for Volcanic Cloud Hazards I, II, and III, Abstracts V41E, V53F, and V54C presented at 2010 Fall Meeting, American Geophysical Union, San Francisco, CA, 13-17 December 2010 (URL: http://www.agu.org/meetings/fm10/program/index.php).

Chivers, H., 2010, Dark Cloud: VAAC and predicting the movement of volcanic ash, Meterological Technology International, June 2010, pp. 62-65.

Emeis, S., Forkel, R., Junkermann, W., Schäfer, K., Flentje, H., Gilge, S., Fricke, W., Wiegner, M., Freudenthaler, V., Groß, S., Ries, L., Meinhardt, F., Birmili, W., Münkel, C., Obleitner, F., and Suppan, P., 2011, Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region, Atmospheric Chemistry and Physics, v. 11, pp. 2689-2701.

Fischer, C., van Haren, G., Pohl, T., Vogel, A., and Weber, K., 2010, Airborne in-situ measurements of the volcanic ash dust plume over a part of Germany caused by the volcano eruption of the Eyjafjallajökull (Iceland) by means of an optical particle counter and a light

sport aircraft, Abstract, Session 1.3, p. 229, Cities on Volcanoes 6 Conference (URL: http://www.citiesonvolcanoes6.com/ver.php).

Flentje, H., Claude, H., Elste, T., Gilge, S., Köhler, U., Plass-Dülmer, C., Steinbrecht, W., Thomas, W., Werner, A., and Fricke W., 2010, The Eyjafjallajökull eruption in April 2010 - detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles, Atmospheric Chemistry and Physics, v. 10, pp. 10085-10092, DOI: 10.5194.

Gasteiger, J., Groß, S., Freudenthaler, V., and Wiegner, M., 2011, Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmospheric Chemistry and Physics, v. 11, pp. 2209-2223.

Gislason, S.R., Hassenkam, T., Nedel, S., Bovet, N., Eiriksdottir, E.S., Alfredsson, H.A., Hem, C.P., Balogh, Z.I., Dideriksen, K., Oskarsson, N., Sigfusson, B., Larsen, G., and Stipp, S.L.S., 2011, Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment, Proceedings of the National Academy of Sciences, v. 108, no. 18, p. 7303-7312.

Gudmundsson, M. T., Pedersen, R., Vogfjörd, K., Thorbjarnardóttir, B., Jakobsdóttir, S., and Roberts, M.J., 2010a, Eruptions of Eyjafjallajökull Volcano, Iceland, Eos, Transactions of the American Geophysical Union (AGU), v. 91, no. 21, p. 190, DOI: 10.1029/2010EO210002.

Gudmundsson, M.T., Thordarson, T., Hoskuldsson, A., Larsen, G., Jónsdóttir, I., Oddsson, B., Magnusson, E., Hognadottir, T., Sverrisdottir, G., Oskarsson, N., Thorsteinsson, T., Vogfjord, K., Bjornsson, H., Pedersen, G.N., Jakobsdottir, S., Hjaltadottir, S., Roberts, M.J., Gudmundsson, G.B., Zophoniasson, S., and Hoskuldsson, F., 2010b, The Eyjafjallajökull eruption in April-May 2010; course of events, ash generation and ash dispersal, EOS, Transactions of the American Geophysical Union (AGU), V. 91, no. 21, Abstract V53F-01, 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 December (URL: http://www.agu.org/cgi-bin).

Heue, K.-P., Brenninkmeijer,C.A.M., Baker, A. K., Rauthe-Schöch, A., Walter, D., Wagner, T., Hörmann, C., Sihler, H., Dix, B., Frieß, U., Platt, U., Martinsson, B. G., van Velthoven, P.F.J., Zahn, A., and Ebinghaus, R., 2011, SO2 and BrO observation in the plume of the Eyjafjallajökull volcano 2010: CARIBIC and GOME-2 retrievals, Atmospheric Chemistry and Physics, v. 11, pp. 2973-2989.

Höskuldsson, A., Magnusson, E., Guðmundsson, M.T., Sigmundsson, F., and Sigmarsson, O., 2010a, The 20 March to 12 April basaltic Fimmvörðuháls flank eruption at Eyjafjallajökull volcano, Iceland: Course of events, abstract of presentation in Program of the Eyjafjallajökull and Aviation Conference (15-16 September 2010) and associated Eyjafjallajökull Eruption Workshop (Hotel Hvolsvellir, 17-19 September 2010); (URL: http://en.keilir.net/keilir/conferences/eyjafjallajokull/volcanological-workshop).

Höskuldsson, Á., Larsen, G., Gudmundsson, M.T., Oddsson, B., Magnússon, E., Sigmarsson, O., Óskarsson, N., Jónsdóttir, I., Sigmundsson, F., Einarsson, P., Hreinsdóttir, S., Pedersen, R., Högnadóttir, Þ., Thordarson, T., Hayward, C., Hartley, M., Meara, R., Arason, Þ., Karlsdóttir, S., and Petersen, G.N., 2010b, The Eyjafjallajökull eruption April to May 2010: Magma fragmentation, plume and tephra transport, and course of events, abstract of presentation in Program of the Eyjafjallajökull and Aviation Conference (15-16 September 2010) and associated Eyjafjallajökull Eruption Workshop (17-19 September 2010); (URL: http://en.keilir.net/keilir/conferences/eyjafjallajokull/volcanological-workshop).

Laursen, L., 2010, Iceland eruptions fuel interest in volcanic gas monitoring, Science, v. 328, no. 5977, p. 410-411.

Loughlin, S., 2010, Modelling of Iceland volcanic ash particles, news item from British Geological Survey (URL: http://www.bgs.ac.uk/research/highlights/IcelandAshParticles.html?src=sfb).

Ripley, T., 2010, Cloud Busting: How the UK is tracking the volcanic ash cloud, Meterological Technology International, June 2010, pp. 6-10.

Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C., Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H., Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., Freudenthaler, V., Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., and Sturm, K., 2011, Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmospheric Chemistry and Physics, v. 11, pp. 2245-2279.

Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Árnadóttir, T., Pedersen, R., Roberts, M.J., Óskarsson, N., Auriac, A., Decriem, J., Einarsson, P., Geirsson, H., Hensch, M., Ófeigsson, B.G., Sturkell, E., Sveinbjörnsson, H., and Feigl, K.L., 2010, Letter: Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption, Nature, v. 468, pp. 426-430.

Stohl, A., Prata, A.J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N.I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H.E., Thorsteinsson, T., Tørseth, K., and Weinzierl, B., 2011, Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmospheric Chemistry and Physics, v. 11, pp. 4333-4351.

Vogel, A., Weber, K., Fischer, C., van Haren, G., Pohl, T., Grobety, B., and Meier, M., 2011, Airborne in-situ measurements of the Eyjafjallojökull ash plume with a small aircraft and optical particle spectrometers over north-western Germany - comparison between the aircraft measurements and the VAAC-model calculations, European Geophysical Union General Assembly, Geophysical Research Abstracts, v. 13, p. EGU2011-13253.

Geologic Background. Eyjafjallajökull (also known as Eyjafjöll) is located west of Katla volcano. It consists of an elongated ice-covered stratovolcano with a 2.5-km-wide summit caldera. Fissure-fed lava flows occur on both the E and W flanks, but are more prominent on the western side. Although the volcano has erupted during historical time, it has been less active than other volcanoes of Iceland's eastern volcanic zone, and relatively few Holocene lava flows are known. An intrusion beneath the S flank from July-December 1999 was accompanied by increased seismic activity. The last historical activity prior to an eruption in 2010 produced intermediate-to-silicic tephra from the central caldera during December 1821 to January 1823.

Information Contacts: Institute of Earth Sciences (IES), University of Iceland, Sturlugata 7, Askja , 101 Reykjavík (URL: http://www.earthice.hi.is/); Icelandic Meteorological Office (IMO) (URL: http://en.vedur.is/earthquakes-and-volcanism/articles/nr/1884); U.K. Meteorological Office (URL: http://www.metoffice.gov.uk); ármann Höskuldsson, Institute of Earth Sciences (IES), University of Iceland, Sturlugata 7, Askja , 101 Reykjavík (URL: http://www.earthice.hi.is); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sue C. Loughlin, The British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, Scotland, UK (URL: http://www.bgs.ac.uk/); Vincent J. Realmuto, Jet Propulsion Laboratory, California Institute of Technology, M/S 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109 USA; John Eichelberger, U.S. Geological Survey, Volcano Hazards Program, Reston, VA (URL: http://volcanoes.usgs.gov/); Ludmilla Eichelberger, Global Volcanism Program, National Museum of Natural History, 10th and Constitution Ave., NW, Washington, DC 20560 USA; Iceland Review (URL: http://icelandreview.com/icelandreview/daily_news/).


Irazu (Costa Rica) — April 2011 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Crater lake dries and regional acid-rain report

In April 2010 the lake within Irazú's crater dwindled to only a few centimeters depth and from May to August the lake was dry enough to allow plants to grow up to 10 cm high. Water began to accumulate in September 2010 but disappeared again during the following month. Since November 2010 water returned to the crater and as late as April 2011, a shallow turquoise-blue lake was maintained. Continuous monitoring of acid rain on Irazú's flanks reflected contributions from Turrialba. Often called Irazú's "twin volcano," Turrialba is less than 10 km to the ENE and during the past 4 years it has caused a region-wide increase in acid rain. Covering January 2004 through September 2007, the last Bulletin report on Irazú (BGVN 32:11) highlighted decreasing lake levels, fumarolic changes, and minor mass wasting on the crater walls during January 2004 to March 2007 (see table 8 for a summary of lake changes).

Table 8. Changing lake conditions based on observations of Irazú's crater. Double asterisks indicate times when the lake disappeared; "--" fills cells where no data is available; lake levels are reported qualitatively except for the 7 October to 12 March 2010 time interval when absolute values were measured. This summary is based on ICE data and OVSICORI Monthly Reports.

Date Lake level Temp. °C Water color Notes
** Apr 1990 Empty -- -- --
1991-1994 Stable -- green Infrequent Bubbles
08 Dec 1994 ~VEI 2 explosion from the NW outer flank fumarole~ -- -- --
1994-1996 Stable -- green Bubbles
May 2000 Decreasing 18 yellow-green Bubbles
Jan 2001 ~30 -- green Bubbles
08 Feb 2003 Stable 15 reddish Rockslide into lake
Jan-Dec 2004 Stable -- green Convection cells at edges
Jan-Nov 2005 Stable -- green Convection cells in center
Mar-Dec 2006 Stable -- increasingly yellow-green Convection cells in various locations
Mar-Sep 2007 Decreasing 145 light-green Convection cells at edges and center; bubbles
20 Sep 2007-Mar 2008 Decreasing 17 -- Bubbles
05 Mar 2008-07 Oct 2009 Decreasing 14 dark green Bubbles
07 Oct 2009-12 Mar 2010 1.4 m 16 dark-to-light green --
Apr 2010 Only few cm -- -- --
** May-Aug 2010 Empty -- -- Plants on crater floor
Sep 2010 Re-forming -- -- --
** Oct 2010 Empty -- -- --
Nov 2010-Jan 2011 Forming -- turquoise --
Feb-Apr 2011 Few meters -- turquoise-to-blue --

On 22 July 2010 a team of investigators from Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) descended to the dry crater floor. They documented changes in vegetation, fumaroles, and clay deposition on the crater floor. Photos taken during prior trips provided comparisons with previous conditions (figure 14). Rockfalls and minor mass wasting had been occurring regularly and the long runout of debris across the crater floor was visible during this investigation. Most of the debris fell from the E and SW walls. On the NE side of the dry crater a rocky area emitted low temperature (24°C) sulfur-smelling gases from three aligned vents. Higher temperatures (86°C) were measured from fumaroles on the N side of the crater but they appeared to be releasing gas with less energy than observed in the past years when bubbles were visible within the lake. Another interesting finding was a waterfall on the inside of the crater on the SW wall; this small waterfall did not have sufficient volume to pool on the crater floor and instead soaked directly into the surrounding clay.

Figure (see Caption) Figure 14. Views taken from Irazú's S rim. (top) The crater on 24 April 2004 contained a turquoise lake. (bottom) A repeat photo taken on 22 July 2010 shows the lake had disappeared; the former lake level and the clay base on the crater floor are marked. Since November 2010 water had accumulated and as of April 2011, was several meters deep. Courtesy of Eliecer Duarte, OVSICORI-UNA.

The water level in Irazú's crater has been variable throughout time; the Bulletin recorded a dry crater during February 1977 and June 1987 (SEAN 12:07), and April 1990 (BGVN 15:04). Factors highlighted during the IAVCEI CVL-7 ("Commission of Volcanic Lakes" Costa Rica, 10-19 March 2010) included complex connections with Turrialba, seasonal effects, infiltration within the crater, and the role of mass wasting. The mechanism for the recent disappearance of the lake is still under investigation by OVSICORI-UNA and ICE investigators (Guillermo Alvarado, personal communication).

Erosion. Mass wasting had been an ongoing process for at least 10 years. Material is primarily shed from the E and SW walls and the lake contained islands of black and red material formed from the debris. In February 2003 a major rockslide into the lake caused the water color to change from green to shades of red. An analysis of seismicity during that month showed no correlation to these slope failures (BGVN 28:12). Cracks along the NW rim formed and widened since December 2007; these cracks caused blocks up to 3 x 20 m to fall from the rim in March 2008.

Local gas measurements. Since the large phreatic explosion in December 1994 (BGVN 19:12), the NW fumarole has been releasing low gas emissions regularly. Different temperature measurements recorded since June 2010 ranged between 90°C to 86°C. To monitor changes in sulfur dioxide output from Irazú, a network of three stations collected rain samples from sites along the volcano's flanks.

The pH data from September 2004 through July 2010 were plotted in the OVSICORI-UNA July 2010 monthly report. The results correlate pH changes to much larger degassing events occurring at Turrialba, a neighboring volcano that began major degassing in 2007. Only the "Borde Sur" station was sampling continuously but the other two stations reflected similar trends in acidity. Despite irregular fluctuations, a decreasing pH trend began in 2007. The lowest point of the trend was measured by "Borde Este" at approximately pH 3.25. Where there "Pacayas" station data began, the trend appeared to have stabilized between pH 3.25 and 4.75.

References. D. Rouwet, R.A. Mora-Amador, C.J. Ramírez-Umaña, G. González, Seepage of "aggressive" fluids reduce volcano flank stability: the Irazú and Turrialba case, Costa Rica, Abstract, CVL 7 Workshop Costa Rica, IAVCEI-Commission of Volcanic Lakes, March 2010.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Duarte, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); G. Alvarado and G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San Jose, Costa Rica.


Machin (Colombia) — April 2011 Citation iconCite this Report

Machin

Colombia

4.487°N, 75.389°W; summit elev. 2749 m

All times are local (unless otherwise noted)


Seismic and non-eruptive unrest detected in 2004, 2008, 2009, and again in 2010

This is the first Bulletin report on Cerro Machín volcano, the site of seismic unrest for many years, most recently, 1992, 1999, 2002, 2004, 2008, 2009, and 2010. This activity did not lead to eruptions. Instrumental monitoring by INGEOMINAS began in 1987 and has determined Machín's background seismicity ranged from 1 to10 earthquakes/day, but during intervals of unrest, seismicity sometimes reached several hundred earthquakes per day.

This is a small but explosive volcano located at the S end of the Ruiz-Tolima massif, 185 km NNE of the Nevado del Huila volcano and 147 km WSW of Bogotá, the capital (figure 1). (Tolima volcano, not shown, lies ~22 km NNE of Machín.)

Figure (see Caption) Figure 1. Map of Colombia showing the location of the Machín volcano. Note the Departments (states) of Tolima (1) and Huila (2) are shaded regions. Courtesy of the IFRC and Relief Web.

Machín caldera contains three dacitic domes; the 3-km-wide caldera is breached to the S. According to Mendez and others (2002), there have been six eruptions within the past 10,000 years. In the same report, the authors noted geomorphological similarities between Machín and Pinatubo prior to its large 1991 eruption. The seismic events have drawn increased attention to Machín from the Volcanic and Seismological Observatory of Manizales, Colombia Institute of Geology and Mining (INGEOMINAS).

According to news articles published in mid-May 2004, INGEOMINAS reported that there had been an increase in seismicity at Machín in April. About 60 earthquakes were recorded daily (in comparison to the 1-10 earthquakes normally recorded); however, no surface changes were seen at that time at the volcano.

There was no further significant seismic activity until the first week of January 2008 when INGEOMINAS reported unusual seismicity at Machín during 6-8 January. Long-period earthquakes were detected S of the main lava dome. On 7 January, the volcano-tectonic seismic signals were occasionally felt and reported by nearby residents. The simultaneous occurrence of both types of seismic signals was unusual for Machín. Again, the activity diminished to the previous background levels until 9 November when INGEOMINAS reported a cluster of ~375 earthquakes, the majority of which were located towards the E sector and below the dome of the volcano with depths between 2.5 and 5 km. The earthquake activity occurred underneath the central and E parts of the lava dome complex in the summit caldera and fumarolic activity in the area increased. During 8-10 November 2008, Machín registered 1,210 volcano-tectonic earthquakes, 9 of which were M 2.5. According to news articles, approximately 400-450 people evacuated to shelters or other safe areas. There were also reports of landslides that blocked a highway.

Table 1 and figure 2 detail the local villages in proximity to Machín.

Table 1. Villages in proximity to Machín and the respective distances from the caldera (approximate). Taken from web sources such as Google Earth.

Village/town Crater distance (km) Direction
El Rodeo 96 NNW
Santa Marte 15 NNE
Aguacaliente 23 SSW
Toche 62 NW
Cajamarca 8 SSW
Ibague 17 ESE
Salento 24 NW
Circasia 31 WNW
Calarca 30 W
Figure (see Caption) Figure 2. A regional map showing population centers and paved and unpaved roads. Courtesy of INGEOMINAS.

On 10 November the seismic activity of the volcano diminished to background conditions. On 17 December INGEOMINAS reported that a swarm of 98 earthquakes occurred at Machín SE of the lava domes at depths of 2-6 km. The largest earthquake was M 2.6 at a depth of ~4 km.

There were two significant seismic events at Machín during 2009. On 31 July there was in increase in seismic activity, which consisted of ~200 events. Initially the increase was gradual, however, during the last hour the activity increased abruptly and included an earthquake of M 2.7. This subsided to a background level until early December when INGEOMINAS detected 54 earthquakes, some M ~ 1.3. Authorities issued a "Yellow" alert (Yellow; "changes in the behavior of volcanic activity") for Machín. The Tolima Regional Emergency Committee conducted evacuation training with local communities as a precaution.

INGEOMINAS reported that on 24 July 2010 a seismic crisis at Machín was characterized by volcano-tectonic earthquakes. An M 2.6 earthquake was located S of the main lava dome at a depth of ~4 km. The next day an M 4.1 volcano-tectonic earthquake occurred 0.8 km S of the main dome at a depth of ~3.9 km. The Yellow alert remained in effect following the increase in registered seismic activity in the area. On 29 July the number of volcano-tectonic events again increased; the earthquakes were a maximum M 1.7 and between 3 and 4 km depth, S of the main dome.

On 17 September 2010, INGEOMINAS again reported increased seismicity. About 140 volcano-tectonic earthquakes as large as M 1.85 were located S and SW of the main lava dome at depths of 2-4 km. On 4 October there was an M 3.5 tectonic earthquake located 0.37 km S of the main dome at a depth of ~4.14 km. Residents near the volcano felt this earthquake. The Alert Level remained at Yellow.

On 3 December 2010 about 340 volcano-tectonic earthquakes with low magnitudes were located SW of the main lava dome, at an average depth of 4 km. The largest event, a M 3.7 earthquake located SW of the dome at a depth of about 3.5 km, was felt by local residents. On 31 December INGEOMINAS reported a period of increased seismicity. A total of 346 volcano-tectonic events no stronger than M 2.1 were located S and SW of the main lava dome.

On 1 January 2011 seismicity again increased, and at the time of the report, 367 events had been detected. The low-magnitude events were located S and SW of the main dome at depths between 2.5 and 4.5 km. The largest event, M 2.3, was located S of the dome at a depth of about 3.3 km and felt by residents near the volcano and in the municipality of Cajamarca, 8 km SSW. On 13 January an increased number of earthquakes were located to the W and SW of the main dome at depth of 2.5-3.5 km. The largest event registered M ~2.6 and was reported to have been felt by residents near the volcano.

Since 1989, INGEOMINAS noted a gradual increase in seismicity has been following the events closely in order to report any changes on the volcano's activities (figure 3). All the local emergency committees were activated in the area near Machín volcano in addition to the regional emergency committees in Tolima District.

Figure (see Caption) Figure 3. Map showing potential hazards from hypothetical future activity at Machín. Thicknesses of potential ash fall to the W are shown (in cm) as modeled by computer-aided dispersion modeling (VAFTAD); PF stands for pyroclastic flow deposits. Adaped from INGEOMINAS (2007).

References. Méndez, RA; Cortés, GP; and Cepeda, H; [Calvache, ML, Project Chief], 2002, Evaluacíon de la Amenaza Volcánica Potencial del Cerro Machín (Departamento del Tolima, Colombia), Manizales, Sept. 2002, INGEOMINAS, 66 p. (in Spanish).

Méndez, RA, Cortés, GP, and Cepeda, H., 2007, Evaluacíon amenazas potencial de volcan Cerro Machín [Large map in Spanish taken from 2002 report of same name. Name in English, 'Evaluation of potenial hazards from volcan Cerro Machín'] Mapa Amenaza Volcán Machín, INGEOMINAS (URL: http://intranet.ingeominas.gov.co/manizales/images/5/55/MAPA_AMENAZA_VOLCAN_MACHIN.jpg)

Geologic Background. The small Cerro Machín stratovolcano lies at the southern end of the Ruiz-Tolima massif about 20 km WNW of the city of Ibagué. A 3-km-wide caldera is breached to the south and contains three forested dacitic lava domes. Voluminous pyroclastic flows traveled up to 40 km away during eruptions in the mid-to-late Holocene, perhaps associated with formation of the caldera. Late-Holocene eruptions produced dacitic block-and-ash flows that traveled through the breach in the caldera rim to the west and south. The latest known eruption of took place about 800 years ago.

Information Contacts: Instituto Colombiano de Geologia y Mineria (INGEOMINAS), Observatorio Vulcanológico y Sismológico de Manizales, Manizales, Colombia; Relief Web (URL: https://reliefweb.int/); International Federation of Red Cross And Red Crescent Societies (IFRC) (URL: http://www.ifrc.org/); Caracol Radio; El Tiempo:Portafolio (URL: http://columbiareports.com).


Poas (Costa Rica) — April 2011 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Photos of phreatic eruptions from acid lake; surrounding vegetation damaged by gases

Occasional, typically minor phreatic eruptions occurred at Poás through at least early February 2011 (BGVN 35:12). They emerged from the active crater lake, Lago Caliente. The Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) illuminated intervals of phreatic eruptions and relations on the chemistry of Lago Caliente's waters over a period of more than 30 years (figure 94). This report includes photos of phreatic eruptions in 2009, 2010, and early 2011, and reviews events through March 2011.

Figure (see Caption) Figure 94. Plots of the sulfur, chlorine, and fluorine concentrations, as well as the temperature, pH, and gas volumes in the Lago Caliente waters at Poás, with respect to time. The data on the time axis extends from early 1978 to late 2009. Arrows along the top indicate periods with frequent phreatic eruptions. Notice the low pH, often well below pH 1.5. Courtesy of OVSICORI-UNA.

Volcanic gases and associated condensate and rainfall led to increasing areal extent and degree of damage to vegetation in nearby areas. In studying the Lago Caliente's waters, Martinez and others (2011) found in solution a variety of oxo-anions of sulfur called polythionates (SnO6-2, where n can be 20 or larger), which they found to vary in concentration from undetectable to 8,000 mg/L. They considered polythionates to be "highly relevant for monitoring purposes at Poás, in particular because they may signal impending phreatic eruptions."

More on the 25 December 2009 phreatic eruption. A previous report (BGVN 35:12) discussed a phreatic eruption on 25 December 2009 but some further comments are worth adding. As previously noted (BGVN 35:12), "Steam and lake water mixed with sediment and blocks were ejected 550-600 m above Laguna Caliente and fell in the vicinity of the lake, within the crater." No mention was previously made of a 24 December 2009 phreatic eruption discussed by OVSICORI-UNA. It took place in the morning at 0808 and all erupted material fell back in the crater.

Photos taken on 25 December 2009 and recently posted on the Picasa website have come to our attention. The four photos on figure 95 come from a set of nine taken from the S rim. The earliest of the set depict a very tranquil lake with steaming at or near the dome (not shown here). The next photo, taken 129 seconds after that tranquil scene, portrays the advancing eruption (figure 95a). The subsequent two photos (figure 95b and c) captured the interval closest to the peak of the eruptive vigor.

Figure (see Caption) Figure 95. Four sequential photos taken looking N at Poás of a phreatic eruption from the center of Lago Caliente on 25 December 2009. The time intervals between the four photos was as follows: photos (a) to (b), 5 sec; photos (b) to (c), 5 sec; and photos (c) to (d), 11 sec. Photo descriptions below: (a) The earliest available photo of the eruption cloud, which, based on the next photo in this set, was clearly still emerging energetically. It advanced with the leading portions of the plume chiefly dark. At the plume's base, white steam clouds mask the lake. (b and c) The shots taken closest to the maximum point of the eruption's thrust phase, with dark material still conspicuous. White tufts expanded and began to cap most of the advancing jets. The clouds engulfing the base of the plume now contain more discolored zones. (d) As the plume evolves and the vigorous exhalative part of the eruption ends or wanes, a steam-rich cloud envelops the eruption cloud. Note the gray-colored rain falling out of the plume. Taken from Cindy and JM's Gallery (undated) on the Picasa photo sharing website (see References and Information Contacts below).

An exact assessment of the photos is complicated by several factors. There were shifts in the focal length of the lens (documented in camera metadata found on the website). Also, in detail, the camera's time record indicated 0252 hrs, clearly incorrect for this daylight scene. That problem is reconciled by a photo featured in the OVSICORI-UNA report, which showed a plume photo by another photographer at a stage nearly identical to figure 95b and the text indicated the eruption occurred at 0952 hrs local time.

An email response from Cindy Doire provided these comments about witnessing the phreatic eruption.

"We arrived at the volcano early in the morning. We were one of the first to arrive that day. Our group and a few other tourists were looking at it and NOTHING was happening. The people finished looking and started leaving that spot. It was just about 4 of us still there, when suddenly the volcano started to erupt. There was NO warning at all. Even the rangers were surprised. At the beginning, white steam (gas?) shot up, then black rock and dirt started exploding out. I believe that everything that shot up, fell back into the crater . . . the gas could be smelled and was strong . . .."

In an email to GVP regarding the 25 December 2009 eruption, Eliecer Duarte commented: "It seems that this [25 December 2009] eruption opened a more permanent vent at the bottom of the lake. Since that event the frequency of phreatic ones increased and remained like this for [a] year and a half. We still have dozens of smaller ones daily.

More on crater degassing. Field visits during 2010 and 2011 allowed scientists to see the expanding effects of Poás volcanic gases on vegetation (figures 96 and 97). Dry conditions resulted in winds carrying the gases considerable distances from the volcano. The area most affected was an elongate zone downwind of the active crater and extending ~4 km SW. Figure 97 portrays transitional zones with intermediate effects.

Figure (see Caption) Figure 96. A commercial airline pilot and amateur photographer took this and other photos of Poás on 28 April 2010. The active crater and its discolored lake (Lago Caliente) reside at the right-hand side of this shot. It is part of an elongate zone of barren rock stretching ~4 km across the otherwise lushly vegetated landscape. As is typical, the plume's orientation on this day lies directly over the barren zone. From "Len" (undated), (see Reference below).
Figure (see Caption) Figure 97. Oblique view highlighting the area to the S of Poás (note volcano's crater lakes, including the active "Lago Caliente") On color versions of this figure, the pink rhombuses show sites for collecting acid rain. Providencia is shown in the lower left. The crater lake at upper right, "Botos" is ~0.5 km across in the long direction but the scale on this image varies with distance towards the foreground. Courtesy E. Duarte, OVSICORI-UNA.

Starting just beyond the elongate zone of harsh effects, the areas of discolored vegetation had increased impact and areal extent. One such impacted area was a nature preserve called Providencia, which is seen in figure 97 to the left of Poás. Farther from the volcano lies Cerro Pelón (2.5 km distance and direction SW of the crater) , which also showed the effects of chemical burning from volcanic gases (figure 97).

In the past, activity centers have migrated within the crater. OVSICORI-UNA reported that, for at least the past year (ending March 2011), the points of degassing have been concentrated in the hot crater lake and dome (figure 98). The emanating steam and gases, often carried by wind, have affected areas up to several hundred meters around the crater (figures 96-98).

Figure (see Caption) Figure 98. The active crater at Poás, showing pronounced steam release both from fractures in the dome as well as from the lake's surface. Conditions like this (with more or less steam) often prevailed in recent times (including just a few seconds prior to the eruption sequence shown in figure 95). The crater lake (Lago Caliente) rests behind (N of) the dome and steam clouds. Courtesy E. Duarte, OVSICORI-UNA.

OVSICORI-UNA reported that through at least March 2011 small phreatic eruptions occurred daily at Lago Caliente. These eruptions sometimes only reached the lake's surface, but at other times reached a few meters above the lake, and occasionally, tens of meters above the lake. The majority of the erupted sediments fell back into the lake. The fine sediments sometimes remained suspended in the lake water and caused its gray color. The majority of eruptions occurred in the central part of the crater, with a few originating slightly more to the N or S of the center. Because of the phreatic activity and high temperature of the lake (57°C), strong evaporation occurred and plumes traveled long distances in the wind (figure 99).

Figure (see Caption) Figure 99. At Poás, a phreatic eruption at Lago Caliente reaching several meters high, in a manner typical of daily activity during recent months. View from the active crater's N side (opposite the viewpoint). Photo taken sometime in January 2011. Courtesy E. Duarte, OVSICORI-UNA.

A comparison of vegetation in the area between Cerro Pelón and Providencia (designated "F1" in figure 97) made during August 2010 to January 2011 found that most plant species were resistant at certain levels of acidification. However, when their tolerance thresholds were reached, the affected species decayed quickly and were sometimes unable to recover. Certain species, including eucalyptus, pine, alder, and cypress, were particularly sensitive to the volcanic gases. Minor effects from gases were observed on Cypress trees as far as 9 km SW of the emission source. OVSICORI-UNA reports contained several photos showing more details on the effects of acidic gases on vegetation. One of their later reports, from April 2011, discussed ongoing phreatic eruptions and dome temperature of 560°C.

References. Cindy and JM's Gallery, undated, "Poas volcano eruption, December 25th, 2009" [9 photos] Picassa (URL: https://picasaweb.google.com/cjmdoire); [includes camera-related metadata].

Len (Barfbag), undated, "Wednesday, April 28, 2010, Mt Poas, Costa Rica" ; in Viewsfrom the left seat, A look at the airline world ... ride along in the cockpit (URL: http://viewsfromtheleftseat.blogspot.com/2010/04/mt-poas-costa-rica.html)

Martínez, M., van Bergen, M.J., Fernández, E., and Takano, B., 2011, Polythionates monitoring at the acid crater lake of Poás Volcano, IAVCEI-COMMISSION OF VOLCANIC LAKES, CVL7 Workshop, Costa Rica, 10-19 March 2010, Online Abstracts volume (May 2011), p. 12 (URL: http://www.ulb.ac.be/sciences/cvl/)

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Duarte and E. Fernández, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Cindy Doire (address withheld by request).


Ranau (Indonesia) — April 2011 Citation iconCite this Report

Ranau

Indonesia

4.871°S, 103.925°E; summit elev. 1854 m

All times are local (unless otherwise noted)


Fish kill in April 2011 strikes hot-spring areas of intra-caldera lake

This report on Ranau, a Pleistocene caldera that lies along the Great Sumatran fault, is based on accounts of fish kills, including one on 4 April 2011. The fish died near hot springs in Lake Ranau, a large caldera lake, and their deaths were attributed to seismically induced H2S releases by the Center of Volcanology and Geological Hazard Mitigation (CVGHM). CVGHM reported the surface area of Lake Ranau to be ~127 km2, and noted that the Lake Ranau complex is geothermally active, with hot springs that emerge at the foot of Mount Seminung on the banks of Lake Ranau. In addition to the 2011 event, fish kills have been recorded in Lake Ranau (figure 1) for the past five decades (table 1).

Figure (see Caption) Figure 1. Photo of Lake Ranau with Mount Seminung in the background. Posted by blogger "masternewstoday" in May 2011.

Table 1. Previous fish kills in Lake Ranau reported during the past five decades. (Note that there is no mention of any correlation between seismicity and geochemical anomalies.) Courtesy of CVGHM.

Year Description
1962  Residents in Sende Simpang Village noted that the lake water became milky white in color and all of the fish died.
1993 One or more fish kills over 3 months.
1995 Small-scale fish kill accompanied by a rotten smell (presumably H2S).
1998 Large-scale fish kill occurred. According to the head of the village, the event began with turbulent water in Lake Ranau that lasted for approximately 30 minutes.

Reports stated that the 4 April 2011 fish kill was large in scale. According to the head of a nearby village, Sugih Sane, the event began with turbulent water in Lake Ranau that lasted for approximately 30 minutes. Local residents reported that the fish kill occurred during a relatively short time in portions of the lake surrounding hot springs. At the time of the incident, the water in the affected areas appeared milky white, and wind spread the smell of sulfur to surrounding areas.

Geochemistry. Scientists conducted field work near the three hot springs Kota Batu, Ujung, and Way Wahid during 16-19 April 2011. At that time they reported the following: No dead algae were found on the lake's surface. There was no smell of sulfur, the water was clear, and the water around the hot springs was bubbling and warm. * Dead fish were no longer present. The pH of the lake water was 7.74, and the temperature was 26.1°C. The water near the hot springs had a pH of 6.32-7.06, with a temperature of 47.8-62°C. The water of the river that empties into Lake Ranau (input) had a pH of 8.07-8.10, and the lake water discharge (output) had a pH of 7.86. The result of ambient gas examination showed no gases associated with magmatic gases, such as CH4, CO2, CO, and H2S, in the vicinity of the hot springs discharge. The degree to which the above measurements were anomalous was unstated.

Seismicity. Seismic data recorded during 16-20 April 2011 showed microearthquake activity around Lake Ranau. The earthquakes were located along a fault line oriented in the SE-NW direction along Lake Ranau, at depths of 0.6 and 10 km below the surface of the lake. The Berkelulusan location coincides with the location of the Kota Batu hot springs. Prior to the fish kill at Lake Ranau on 4 April, an M 5.1 earthquake was recorded on 29 March 2011 in Bengkulu, ~160 km W of Lake Ranau.

Cause of the fish kill. CVGHM concluded that, based on the results of the field work (location of dead fish near hot springs, sulfur smell carried by wind up to 3 km away, absence of dead algae, and changing color of the lake water to milky white during the event), the fish kill in Lake Ranau was caused by the release of H2S gas into the lake water, which caused imbalances in lake water chemistry. They said that hydrothermal gas was trapped over time and escaped to the surface after the pressure due to tectonic disturbances. CVGHM concluded that the M 5.1 earthquake in Bengkulu on 29 March 2011 led to increased pressure on the fault in the vicinity of Lake Ranau; then, H2S gas was released to the surface in the vicinity of the hot springs. According to CVGHM, the occurrence of microearthquakes is a result of the fault in the vicinity of Lake Ranau, and are neither dangerous nor destructive. However, CVGHM asked residents to report future fish kills to the local government.

Geologic Background. Ranau is an 8 x 13 km Pleistocene caldera partially filled by the crescent-shaped Lake Ranau. The caldera lies along the Great Sumatran Fault that extends the length of Sumatra. Incremental formation of the caldera culminated in the eruption of the voluminous Ranau Tuff about 0.55 million years ago. A morphologically young post-caldera stratovolcano, Gunung Semuning, was constructed within the SE side of the caldera to a height of more than 1,200 m above the lake surface. The volcano has not been mapped in sufficient detail to determine the age of its latest eruptions, although fish kills and sulfur smells in the late 19th and early 20th centuries may be related to volcanism.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Masternewstoday (URL: http://hot-breaking-news-masternewstoday.blogspot.com).


Rincon de la Vieja (Costa Rica) — April 2011 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Fumarolically active but non-eruptive through January 2011

Low-frequency earthquakes and tremor were reported at Rincón de la Vieja during the first half of 2008 (BGVN 33:07). Since then, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) had issued intermittent reports of activity through January 2011. Those reports are summarized in the following sections, with much of the discussion centered around fumaroles and behavior of the geothermally warmed lake in the active crater. Occasional, typically small phreatic eruptions had occurred here in past years, for example in the 1990s (eg., BGVN 21:02, 21:03, 22:01, and 23:03) but were absent in the current reporting interval (last half of 2008 through January 2011).

August 2008. OVSICORI-UNA reported that the level of the lake was at a high level, with a bluish color, generated convection cells with evaporation, and had sulfur particles visible on it's surface. Sulfur deposition and fumarolic activity continued along the SW wall.

March 2009. In mid-March 2009, scientists visited the S and SW flank, collected samples, and noted some temperatures of 75-78°C. Because the visit occurred during the dry season, most areas encountered were dry. The scientists examined an area of acidification to the W of Von Seebach crater, ~3 km SW of the active crater. Strong winds common in that direction sometimes carried volcanic gases. Consequently, most of this narrow expanse only contained patches of grassland and shrubs that barely covered the rocky surface.

October 2009. OVSICORI-UNA reported that seismographic station RIN3, located ~5 km SW of the main crater, registered volcano-tectonic events and tremor lasting for minutes.

Weak ongoing fumarolic activity during 2010 through January 2011. OVSICORI-UNA reported that the level of the crater lake remained high during 2010, with constant evaporation. Geochemical, seismic, and deformation data did not show significant changes in physico-chemical parameters during 2010. The changing color of the lake, from blue to gray, was attributed to intense rains and fumarolic activity in the crater.

Later reporting. Reports during 2010 through at least January 2011 described fumarolic activity along the S and SW walls of the crater, with sulfur deposition and moderate gas discharge. The lake remained a gray color, with sulfur particles in suspension. Figure 15 shows a photo taken in April of the crater looking at the SW wall with fumarolic activity along with sulfur deposition. In April 2010, OVSICORI-UNA reported that the temperature of the lake was 49°C. A fumarole sometimes seen active along the N flank had stopped discharging gas.

Figure (see Caption) Figure 15. Photo of the active crater lake of Rincón de la Vieja on 29 April 2010 showing yellow sulfur deposits and fumarolic activity along the SW wall of the crater. This kind of activity was typical throughout the reporting interval (last half of 2008 through January 2011). Photo by E. Fernandez, OVSICORI-UNA.

OVSICORI-UNA reported that 2010 was unusual in that four domestic volcanoes were active: Arenal, Poás, Turrialba, and Rincón de la Vieja. Irazú was comparatively inactive (see separate report in this issue of the Bulletin).

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernández, W. Sáenz, E. Duarte, M. Martínez, S. Miranda, F. Robichaud, T. Marino, M. Villegas, and J. Barquero, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Sheveluch (Russia) — April 2011 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Ongoing dome growth into early 2011; and pyroclastic flows of 27 October 2010

This report first describes activity seen at Shiveluch during December 2010-March 2011. Data from that interval included several ash plumes visible as they blew to over 100 km from the volcano. Thermal imagery analysis showed the character of the dome and the path of pyroclastic-flow deposits during that interval. After that, we provide a follow-up to the 27 October 2010 eruption (BGVN 35:11), adding some previously unmentioned details. That eruption destroyed the dome's SE sector and generated pyroclastic flows.

During December 2010-March 2011, KVERT reported that Shiveluch both underwent moderate seismicity and emitted bright thermal anomalies conspicuous in satellite imagery (figure 27). Details of significant explosions and ash plumes during that time appear on table 10. Figure 28 shows a photo with the distant skyline dominated by a long Shiveluch ash plume.

Table 10. An inexhaustive synopsis of significant plumes at Shiveluch visible on satellite imagery from December 2010 through 26 March 2011 (times and dates are UTC). Courtesy KVERT.

Date Comments
03 Dec 2010 Ash plumes drifted 322 km SE.
14 Dec 2010 Ash plume drifted 230 km NE, 2-km-long pyroclastic flow.
23-24 Dec 2010 Ash plumes rose to altitudes as high as 4.5 km
02 Jan 2011 Ash plumes rose to altitudes as high as 8 km and drifted 92 km S.
18 Jan 2011 Ash plumes rose to altitudes as high as 7 km and drifted W.
26 Jan 2011 Ash plume drifted 54 km S.
31 Jan-1 Feb, 4 Feb 2011 Ash plume drifted 120 km NE, E. Ash plumes rose 7.5 km
23-24 Feb 2011 Ash plumes altitudes below 6 km and drifted 220 km SE (figure 28).
26-27 Feb 2011 Ash plumes drifted over 140 km N.
10, 16 Mar 2011 Ash plumes drifted 312 km W, NW.
18-20 Mar 2011 Ash plumes drifted 373 km SE, N.
26 Mar 2011 Ash plumes drifted 57 km SE.
Figure (see Caption) Figure 27. Satellite thermal anomalies recorded at Shiveluch during December 2010-March 2011. Data from KB GS RAS, with cooperation from Alaska Volcano Observatory (AVO).
Figure (see Caption) Figure 28. A panoramic photo showing a long ash plume from Shiveluch, seen in the distant parts of the photo (volcano is on the left). Photo taken on 24 February 2011 from N slope of Kliuchevskoi volcano by Yuri Demyanchuk.

More on the 27 October 2010PFs. As previously reported, an explosive eruption on 27 October 2010 (BGVN 35:11) vented at the dome and destroyed its SE portion, generating pyroclastic flows laden with many fragments of dome material (figure 29). The associated eruptive plume extended more than 1,500 km from the volcano. The pyroclastic flows traveled SSE in a radial direction, as far as 20 km from the source.

Figure (see Caption) Figure 29. Two images showing the lava dome of Shiveluch. Photo (a) was taken before the eruption, on 7 October 2010. Photo (b) was taken a few days after the eruption, on 2 November 2010 and discloses enormous losses to the mass of the dome toward the SE (free face). The large ash clouds from the dome document ongoing explosions, processes associated with continued rebuilding of the lava dome. Both photos courtesy of Yuri Demyanchuk.

Near the dome, visiting scientists found agglomerate deposits of fragmental dome material spread widely down the SE slope. The character of the deposits was similar to debris avalanches, since so much dome material suddenly traveled down slope. The pyroclastic flow deposits retraced numerous upslope tributaries along the Kabeku River. The deposits filled small valleys and other low-lying areas, leveling landscapes that had prior to the eruption been rough (figure 30).

Figure (see Caption) Figure 30. Photo showing the fresh pyroclastic flow deposits filling Bekesh river valley to the point where the valley had become nearly flat in transverse profile. In the background appears the steaming, Shiveluch with its recently broken lava dome. Photo taken 2 November 2010 by Alexander Ovsyannikov.

Figures 31a and b, satellite images, illustrate the trail of hot material descending to the S. They formed a large, complex, and widely distributed deposit following the recent collapse of the lava dome. A sub-circular area about ~4 km in diameter at about 9-14 km distance from the dome may reflect denser deposition (figure 31a). The images make clear that pyroclastic flow deposits descended yet farther, leaving dense, thermally radiant tracks over narrower valleys trending to the SE. The images are from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Figure 31b shows the flow's heat signature as measured in thermal infrared energy. The white area at the lava dome was very hot, while the red areas on the edge of the flow were merely warmer than the surrounding snow.

Figure (see Caption) Figure 31. (a) False-color ASTER satellite image of Shiveluch showing the visible-wavelength information that discloses the remnants of the 27 October 2010 pyroclastic flow. Image taken 25 February 2011. (b) The hot pyroclastic flow appears in this ASTER image made using thermal infrared wave lengths. The white area at the lava dome is very hot, while the red areas on the edge of the flow are simply warmer than the surrounding snow. Image taken on 25 January 2011. Courtesy of NASA Earth Observatory.

Fieldwork in the distal area revealed that the most powerful pyroclastic flow went into the headwaters of two narrow valleys, then merged into a single stream down into the Kabeku Valley river almost to its confluence with the Bekesh river (5 km N of the Kluchi-Ust'-Kamchatsk road, figures 32 and 33).

Figure (see Caption) Figure 32. Images (a) and (b) show Shiveluch deposits of pyroclastic flows in the Bekesh river valley. Note person in distance in center of photo for scale. Courtesy Yuri Demyanchuk and Alexander Manevich.
Figure (see Caption) Figure 33. Results of pyroclastic surges, with small trees and shrubs knocked over and stripped of bark. Trees and shrubs showed signs of scorching up to 3-4 m high. Deposits of pyroclastic surges were found on the sides of the Bekesh river valley. Image taken 2 November 2010. Courtesy of Yuri Demyanchuk.

Water in the bed of the Bekesh river ran down the same path as thick pyroclastic flows and continued to be fed by melting snow on the upper slopes. Water also seeped through the loose pyroclastic flow deposit, resulting in large amounts of steam escaping at the surface in the form of fumaroles, degassing pipes, and zones of jetting emissions. This created the impression that the river water was boiling; on its surface rose a wall of steam (figure 34). Walking over the pyroclastic flow deposit was difficult and potentially dangerous, since the deposit's upper portion remained hot and gas saturated (figure 34b).

Figure (see Caption) Figure 34. At Shiveluch, fresh pyroclastic-flow deposits occurring on the Bekesh river. (a) Steam and gas pervade the atmosphere as the river makes its way across the fresh pyroclastic-flow deposits. (b) The still-hot deposits emitting abundant steam and gas. Photos courtesy of Yuri Demyanchuk.

Reference. Ovsyannikov, A., Manevich, A., 2010, Eruption Shiveluch in October 2010, Bulletin of Kamchatka Regional Association (Educational-Scientific Center); Earth Sciences (in Russian), IV&S FEB RAS, Petropavlovsk-Kamchatsky, 2010, vol. 2, no. 16, ISSN 1816-5532 (Online).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Institute Volcanolohy and Seismology Far East Division, Russian Academy of Sciences (IVS FED RAS), Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.iks.ru/index-e.php). 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Y. Demyanchuk, A. Ovsyannikov, A. Manevich (IVS FED RAS); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/); Tokyo Volcanic Ash Advisory Centre (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports