Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Erta Ale (Ethiopia) Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Rincon de la Vieja (Costa Rica) Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Manam (Papua New Guinea) Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Stromboli (Italy) Strombolian activity continues at both summit crater areas, September-December 2019

Semeru (Indonesia) Ash plumes and thermal anomalies continue during September 2019-February 2020

Popocatepetl (Mexico) Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Santa Maria (Guatemala) Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020



Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).


Erta Ale (Ethiopia) — May 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Erta Ale is a shield volcano located in Ethiopia and contains multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. Surficial lava flow activity continued within the southeastern caldera during November 2019 until early April 2020; source information was primarily from various satellite data.

The number of days that thermal anomalies were detected using MODIS data in MODVOLC and NASA VIIRS satellite data was notably higher in November and December 2019 (figure 96); the number of thermal anomalies in the Sentinel-2 thermal imagery was substantially lower due to the presence of cloud cover. Across all satellite data, thermal anomalies were identified for 29 days in November, followed by 30 days in December. After December 2019, the number of days thermal anomalies were detected decreased; hotspots were detected for 17 days in January 2020 and 20 days in February. By March, these thermal anomalies became rare until activity ceased. Thermal anomalies were identified during 1-4 March, with weak anomalies seen again during 26 March-8 April 2020.

Figure (see Caption) Figure 96. Graph comparing the number of thermal alerts using calendar dates using MODVOLC, NASA VIIRS, and Sentinel-2 satellite data for Erta Ale during November 2019-March 2020. Data courtesy of HIGP - MODVOLC Thermal Alerts System, NASA Worldview using the “Fire and Thermal Anomalies” layer, and Sentinel Hub Playground.

MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent strong thermal anomalies from 18 April through December 2019 (figure 97). Between early August 2019 and March 2020, these thermal signatures were detected at distances less than 5 km from the summit. In late December the thermal intensity dropped slightly before again increasing, while at the same time moving slightly closer to the summit. Thermal anomalies then became more intermittent and steadily decreased in power over the next two months.

Figure (see Caption) Figure 97. Two time-series plots of thermal anomalies from Erta Ale from 18 April 2019 through 18 April 2020 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently until early January 2020 when both the power and frequency visibly declined. The lower plot (B) shows these anomalies as a function of distance from the summit, including a sudden decrease in distance (measured in kilometers) in early August 2019, reflecting a change in the location of the lava flow outbreak. A smaller distance change can be identified at the end of December 2019. Courtesy of MIROVA.

Unlike the obvious distal breakouts to the NE seen previously (BGVN 44:04 and 44:11), infrared satellite imagery during November-December 2019 showed only a small area with a thermal anomaly near the NE edge of the Southeast Caldera (figure 98). A thermal alert was seen at that location using the MODVOLC system on 28 December, but the next day it had been replaced by an anomaly about 1.5 km WSW near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018 (BGVN 43:04). The thermal anomaly that was detected in the summit caldera was no longer visible after 9 January 2020, based on Sentinel-2 imagery. The exact location of lava flows shifted within the same general area during January and February 2020 and was last detected by Sentinel-2 on 4 March. After about two weeks without detectable thermal activity, weak unlocated anomalies were seen in VIIRS data on 26 March and in MODIS data on the MIROVA system four times between 26 March and 8 April. No further anomalies were noted through the rest of April 2020.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between November 2019 and March 2020 showing small lava flow outbreaks (bright yellow-orange) just NE of the southeastern calderas. A thermal anomaly can be seen in the summit crater on 15 November and very faintly on 20 December 2019. Imagery on 19 January 2020 showed a small thermal anomaly near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018. The last weak thermal hotspot was detected on 4 March (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Rincon de la Vieja (Costa Rica) — April 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Rincón de la Vieja is a remote volcanic complex in Costa Rica containing an acid lake that has regularly generated weak phreatic explosions since 2011 (BGVN 44:08). The most recent eruptive period occurred during late March-early June 2019, primarily consisting of small phreatic explosions, minor deposits on the N crater rim, and gas-and-steam emissions. The report period of August 2019-March 2020 was characterized by similar activity, including small phreatic explosions, gas-and-steam plumes, ash and lake sediment ejecta, and volcanic tremors. The most significant activity during this time occurred on 30 January, where a phreatic explosion ejected ash and lake sediment above the crater rim, resulting in a pyroclastic flow which gradually turned into a lahar. Information for this reporting period of August 2019-March 2020 comes from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins.

According to OVSICORI-UNA, a small hydrothermal eruption was recorded on 1 August 2019. The seismicity was low with a few long period (LP) earthquakes around 1 August and intermittent background tremor. No explosions or emissions were reported through 11 September; seismicity remained low with an occasional LP earthquake and discontinuous tremor. The summit’s extension that has been recorded since the beginning of June stopped, and no significant deformation was observed in August.

Starting again in September 2019 and continuing intermittently through the reporting period, some deformation was observed at the base of the volcano as well as near the summit, according to OVSICORI-UNA. On 12 September an eruption occurred that was followed by volcanic tremors that continued through 15 September. In addition to these tremors, vigorous sustained gas-and-steam plumes were observed. The 16 September weekly bulletin did not describe any ejecta produced as a result of this event.

During 1-3 October small phreatic eruptions were accompanied by volcanic tremors that had decreased by 5 October. In November, volcanism and seismicity were relatively low and stable; few LP earthquakes were reported. This period of low activity remained through December. At the end of November, horizontal extension was observed at the summit, which continued through the first half of January.

Small phreatic eruptions were recorded on 2, 28, and 29 January 2020, with an increase in seismicity occurring on 27 January. On 30 January at 1213 a phreatic explosion produced a gas column that rose 1,500-2,000 m above the crater, with ash and lake sediment ejected up to 100 m above the crater. A news article posted by the Universidad de Costa Rica (UCR) noted that this explosion generated pyroclastic flows that traveled down the N flank for more than 2 km from the crater. As the pyroclastic flows moved through tributary channels, lahars were generated in the Pénjamo river, Zanjonuda gorge, and Azufrosa, traveling N for 4-10 km and passing through Buenos Aires de Upala (figure 29). Seismicity after this event decreased, though there were still some intermittent tremors.

Figure (see Caption) Figure 29. Photo of a lahar generated from the 30 January 2020 eruption at Rincon de la Vieja. Photo taken by Mauricio Gutiérrez, courtesy of UCR.

On 17, 24, and 25 February and 11, 17, 19, 21, and 23 March, small phreatic eruptions were detected, according to OVSICORI-UNA. Geodetic measurements observed deformation consisting of horizontal extension and inflation near the summit in February-March. By the week of 30 March, the weekly bulletin reported 2-3 small eruptions accompanied by volcanic tremors occurred daily during most days of the week. None of these eruptions produced solid ejecta, pyroclastic flows, or lahars, according to the weekly OVSICORI-UNA bulletins during February-March 2020.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Luis Enrique Brenes Portuguéz, University of Costa Rica, Ciudad Universitaria Rodrigo Facio Brenes, San José, San Pedro, Costa Rica (URL: https://www.ucr.ac.cr/noticias/2020/01/30/actividad-del-volcan-rincon-de-la-vieja-es-normal-segun-experto.html).


Manam (Papua New Guinea) — May 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption, ongoing since June 2014, produced multiple large explosive eruptions during January-September 2019, including two 15-km-high ash plumes in January, repeated SO2 plumes each month, and another 15.2 km-high ash plume in June that resulted in ashfall and evacuations of several thousand people (BGVN 44:10).

This report covers continued activity during October 2019 through March 2020. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

A few modest explosions with ash emissions were reported in early October and early November 2019, and then not again until late March 2020. Although there was little explosive activity during the period, thermal anomalies were recorded intermittently, with low to moderate activity almost every month, as seen in the MODIS data from MIROVA (figure 71) and also in satellite imagery. Sulfur dioxide emissions persisted throughout the period producing emissions greater than 2.0 Dobson Units that were recorded in satellite data 3-13 days each month.

Figure (see Caption) Figure 71. MIROVA thermal anomaly data for Manam from 17 June 2019 through March 2020 indicate continued low and moderate level thermal activity each month from August 2019 through February 2020, after a period of increased activity in June and early July 2019. Courtesy of MIROVA.

The Darwin VAAC reported an ash plume in visible satellite imagery moving NW at 3.1 km altitude on 2 October 2019. Weak ash emissions were observed drifting N for the next two days along with an IR anomaly at the summit. RVO reported incandescence at night during the first week of October. Visitors to the summit on 18 October 2019 recorded steam and fumarolic activity at both of the summit craters (figure 72) and recent avalanche debris on the steep slopes (figure 73).

Figure (see Caption) Figure 72. Steam and fumarolic activity rose from Main crater at Manam on 18 October 2019 in this view to the south from a ridge north of the crater. Google Earth inset of summit shows location of photograph. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.
Figure (see Caption) Figure 73. Volcanic debris covered an avalanche chute on the NE flank of Manam when visited by hikers on 18 October 2019. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.

On 2 November, a single large explosion at 1330 local time produced a thick, dark ash plume that rose about 1,000 m above the summit and drifted NW. A shockwave from the explosion was felt at the Bogia Government station located 40 km SE on the mainland about 1 minute later. RVO reported an increase in seismicity on 6 November about 90 minutes before the start of a new eruption from the Main Crater which occurred between 1600 and 1630; it produced light to dark gray ash clouds that rose about 1,000 m above the summit and drifted NW. Incandescent ejecta was visible at the start of the explosion and continued with intermittent strong pulses after dark, reaching peak intensity around 1900. Activity ended by 2200 that evening. The Darwin VAAC reported a discrete emission observed in satellite imagery on 8 November that rose to 4.6 km altitude and drifted WNW, although ground observers confirmed that no eruption took place; emissions were only steam and gas. There were no further reports of explosive activity until the Darwin VAAC reported an ash emission in visible satellite imagery on 20 March 2020 that rose to 3.1 km altitude and drifted E for a few hours before dissipating.

Although explosive activity was minimal during the period, SO2 emissions, and evidence for continued thermal activity were recorded by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite captured evidence each month of SO2 emissions exceeding two Dobson Units (figure 74). The most SO2 activity occurred during October 2019, with 13 days of signatures over 2.0 DU. There were six days of elevated SO2 each month in November and December, and five days in January 2020. During February and March, activity was less, with smaller SO2 plumes recording more than 2.0 DU on three days each month. Sentinel-2 satellite imagery recorded thermal anomalies at least once from one or both of the summit craters each month between October 2019 and March 2020 (figure 75).

Figure (see Caption) Figure 74. SO2 emissions at Manam exceeded 2 Dobson Units multiple days each month between October 2019 and March 2020. On 3 October 2019 (top left) emissions were also measured from Ulawun located 700 km E on New Britain island. On 30 November 2019 (top middle), in addition to a plume drifting N from Manam, a small SO2 plume was detected at Bagana on Bougainville Island, 1150 km E. The plume from Manam on 2 December 2019 drifted ESE (top right). On 26 January 2020 the plume drifted over 300 km E (bottom left). The plumes measured on 29 February and 4 March 2020 (bottom middle and right) only drifted a few tens of kilometers before dissipating. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 75. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, and 8a) showed thermal anomalies at one or both of Manam’s summit craters each month during October 2019-March 2020. On 17 October 2019 (top left) a bright anomaly and weak gas plume drifted NW from South crater, while a dense steam plume and weak anomaly were present at Main crater. On 25 January 2020 (top right) the gas and steam from the two craters were drifting E; the weaker Main crater thermal anomaly is just visible at the edge of the clouds. A clear image on 5 March 2020 (bottom left) shows weak plumes and distinct thermal anomalies from both craters; on 20 March (bottom right) the anomalies are still visible through dense cloud cover that may include steam from the crater vents as well. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulkanologische Gesellschaft (URL: https://twitter.com/vulkanologen/status/1194228532219727874, https://twitter.com/vulkanologen/status/1193788836679225344); Claudio Jung, (URL: https://www.facebook.com/claudio.jung.1/posts/10220075272173895, https://www.instagram.com/jung.claudio/).


Stromboli (Italy) — April 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit crater areas, September-December 2019

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island (figure 168). Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; September-December 2019 is covered in this report.

Figure (see Caption) Figure 168. This shaded relief map of Stromboli’s crater area was created from images acquired by drone on 9 July 2019 (In collaboration with GEOMAR drone group, Helmholtz Center for Ocean Research, Kiel, Germany). Inset shows Stromboli Island, the black rectangle indicates the area of the larger image, the black curved and the red hatched lines indicate, respectively, the morphological escarpment and the crater edges. Courtesy of INGV (Rep. No. 50/2019, Stromboli, Bollettino Settimanale, 02/12/2019 - 08/12/2019, data emissione 10/12/2019).

Activity was very consistent throughout the period of September-December 2019. Explosion rates ranged from 2-36 per hour and were of low to medium-high intensity, producing material that rose from less than 80 to over 150 m above the vents on occasion (table 7). The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the Terrazza Craterica, and also down the Sciara del Fuoco towards the coast. After the explosions of early July and late August, thermal activity decreased to more moderate levels that persisted throughout the period as seen in the MIROVA Log Radiative Power data (figure 169). Sentinel-2 satellite imagery supported descriptions of the constant glow at the summit, revealing incandescence at both summit areas, each showing repeating bursts of activity throughout the period (figure 170).

Table 7. Monthly summary of activity levels at Stromboli, September-December 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2019 Explosion rates varied from 11-36 events per hour and were of low- to medium intensity (producing 80-120 m high ejecta). Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the terrace, and also down the Sciara del Fuoco towards the coast.
Oct 2019 Typical Strombolian activity and degassing continued. Explosions rates varied from 2-21 events per hour. Low intensity activity was common in the N area (ejecta less than 80 m high) and low to moderate intensity activity was typical in the CS area, with a few explosions rising over 150 m high. Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. Some of the explosions sent ejecta down the Sciara del Fuoco.
Nov 2019 Typical Strombolian activity and degassing continued. Explosion rates varied from 11-23 events per hour with ejecta rising usually 80-150 m above the vents. Occasional explosions rose 250 m high. In the N area, explosions were generally low intensity with coarse material (lapilli and bombs). In many explosions, ejecta covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. In the CS area, coarse material was mixed with fine and some explosions sent ejecta onto the upper part of the Sciara del Fuoco.
Dec 2019 Strombolian activity and degassing continued. Explosion rates varied from 12-26 per hour. In the N area, explosion intensity was mainly medium-low (less than 150 m) with coarse ejecta while in the CS area it was usually medium-high (more than 150 m) with both coarse and fine ejecta. In many explosions, debris covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. Spattering activity was noted in the southern vents of the N area.
Figure (see Caption) Figure 169. Thermal activity at Stromboli was high during July-August 2019, when two major explosions occurred. Activity continued at more moderate levels through December 2019 as seen in the MIROVA graph of Log Radiative Power from 8 June through December 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 170. Stromboli reliably produced strong thermal signals from both of the summit vents throughout September-December 2019 and has done so since long before Sentinel-2 satellite imagery was able to detect it. Image dates are (top, l to r) 5 September, 15 October, 20 October, (bottom l to r) 14 November, 14 December 2019, and 3 January 2020. Sentinel-2 imagery uses Atmospheric penetration rendering with bands 12, 11, and 8A, courtesy of Sentinel Hub Playground.

After a major explosion with a pyroclastic flow on 28 August 2019, followed by lava flows that reached the ocean in the following days (BGVN 44:09), activity diminished in early September to levels more typically seen in recent times. This included Strombolian activity from vents in both the N and CS areas that sent ejecta typically 80-150 m high. Ejecta from the N area generally consisted of lapilli and bombs, while the material from the CS area was often finer grained with significant amounts of lapilli and ash. The number of explosive events remained high in September, frequently reaching 25-30 events per hour. The ejecta periodically landed outside the craters on the Terrazza Craterica and even traveled partway down the Sciara del Fuoco. An inspection on 7 September by INGV revealed four eruptive vents in the N crater area and five in the S crater area (figure 171). The most active vents in the N area were N1 with mostly ash emissions and N2 with Strombolian explosions rich in incandescent coarse material that sometimes rose well above 150 m in height. In the S area, S1 and S2 produced jets of lava that often reached 100 m high. A small cone was observed around N2, having grown after the 28 August explosion. Between 11 and 13 September aerial surveys with drones produced detailed visual and thermal imagery of the summit (figure 172).

Figure (see Caption) Figure 171. Video of the Stromboli summit taken with a thermal camera on 7 September 2019 from the Pizzo sopra la Fossa revealed four active vents in the N area and five active vents in the S area. Images prepared by Piergiorgio Scarlato, courtesy of INGV (Rep. No. 37.2/2019, Stromboli, Bollettino Giornaliero del 10/09/2019).
Figure (see Caption) Figure 172. An aerial drone survey on 11 September 2019 at Stromboli produced a detailed view of the N and CS vent areas (left) and thermal images taken by a drone survey on 13 September (right) showed elevated temperatures down the Sciara del Fuoco in addition to the vents in the N and CS areas. Images by E. De Beni and M. Cantarero, courtesy of INGV (Rep. No. 37.5/2019, Stromboli, Bollettino Giornaliero del 13/09/2019).

Strombolian activity from the N crater on 28 September and 1 October 2019 produced blocks and debris that rolled down the Sciara del Fuoco and reached the ocean (figure 173). Explosive activity from the CS crater area sometimes produced ejecta over 150 m high (figure 174). A survey on 26 November revealed that a layer of ash 5-10 cm thick had covered the bombs and blocks that were deposited on the Pizzo Sopra la Fossa during the explosions of 3 July and 28 August (figure 175). On the morning of 27 December a lava flow emerged from the CS area and traveled a few hundred meters down the Sciara del Fuoco. The frequency of explosive events remained relatively constant from September through December 2019 after decreasing from higher levels during July and August (figure 176).

Figure (see Caption) Figure 173. Strombolian activity from vents in the N crater area of Stromboli produced ejecta that traveled all the way to the bottom of the Sciara del Fuoco and entered the ocean. Top images taken 28 September 2019 from the 290 m elevation viewpoint by Rosanna Corsaro. Bottom images captured on 1 October from the webcam at 400 m elevation. Courtesy of INGV (Rep. No. 39.0/2019 and Rep. No. 40.3, Stromboli, Bollettino Giornaliero del 29/09/2019 and 02/10/2019).
Figure (see Caption) Figure 174. Ejecta from Strombolian activity at the CS crater area of Stromboli rose over 150 m on multiple occasions. The webcam located at the 400 m elevation site captured this view of activity on 8 November 2019. Courtesy of INGV (Rep. No. 45.5/2019, Stromboli, Bollettino Giornaliero del 08/11/2019).
Figure (see Caption) Figure 175. The Pizzo Sopra la Fossa area at Stromboli was covered with large blocks and pyroclastic debris on 6 September 2019, a week after the major explosion of 28 August (top). By 26 November, 5-10 cm of finer ash covered the surface; the restored webcam can be seen at the far right edge of the Pizzo (bottom). Courtesy of INGV (Rep. No. 49/2019, Stromboli, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).
Figure (see Caption) Figure 176. The average hourly frequency of explosive events at Stromboli captured by surveillance cameras from 1 June 2019 through 5 January 2020 remained generally constant after the high levels seen during July and August. The Total value (blue) is the sum of the average daily hourly frequency of all explosive events produced by active vents.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semeru (Indonesia) — April 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes and thermal anomalies continue during September 2019-February 2020

Semeru is a stratovolcano located in East Java, Indonesia containing an active Jonggring-Seloko vent at the Mahameru summit. Common activity has consisted of ash plumes, pyroclastic flows and avalanches, and lava flows that travel down the SE flank. This report updates volcanism from September 2019 to February 2020 using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The dominant activity at Semeru for this reporting period consists of ash plumes, which were frequently reported by the Darwin VAAC. An eruption on 10 September 2019 produced an ash plume rising 4 km altitude drifting WNW, as seen in HIMAWARI-8 satellite imagery. Ash plumes continued to rise during 13-14 September. During the month of October the Darwin VAAC reported at least six ash plumes on 13, 14, 17-18, and 29-30 October rising to a maximum altitude of 4.6 km and moving primarily S and SW. Activity in November and December was relatively low, dominated mostly by strong and frequent thermal anomalies.

Volcanism increased in January 2020 starting with an eruption on 17 and 18 January that sent a gray ash plume up to 4.6 km altitude (figure 38). Eruptions continued from 20 to 26 January, producing ash plumes that rose up to 500 m above the crater that drifted in different directions. For the duration of the month and into February, ash plumes occurred intermittently. On 26 February, incandescent ejecta was ejected up to 50 m and traveled as far as 1000 m. Small sulfur dioxide emissions were detected in the Sentinel 5P/TROPOMI instrument during 25-27 February (figure 39). Lava flows during 27-29 February extended 200-1,000 m down the SE flank; gas-and-steam and SO2 emissions accompanied the flows. There were 15 shallow volcanic earthquakes detected on 29 February in addition to ash emissions rising 4.3 km altitude drifting ESE.

Figure (see Caption) Figure 38. Ash plumes rising from the summit of Semeru on 17 (left) and 18 (right) January 2020. Courtesy of MAGMA Indonesia and via Ø.L. Andersen's Twitter feed (left).
Figure (see Caption) Figure 39. Small SO2 plumes from Semeru were detected by the Sentinel 5P/TROPOMI instrument during 25 (left) and 26 (right) February 2020. Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively weak and intermittent thermal anomalies occurring during May to August 2019 (figure 40). The frequency and power of these thermal anomalies significantly increased during September to mid-December 2019 with a few hotspots occurring at distances greater than 5 km from the summit. These farther thermal anomalies to the N and NE of the volcano do not appear to be caused by volcanic activity. There was a brief break in activity during mid-December to mid-January 2020 before renewed activity was detected in early February 2020.

Figure (see Caption) Figure 40. Thermal anomalies were relatively weak at Semeru during 30 April 2019-August 2019, but significantly increased in power and frequency during September to early December 2019. There was a break in activity from mid-December through mid-January 2020 with renewed thermal anomalies around February 2020. Courtesy of MIROVA.

The MODVOLC algorithm detected 25 thermal hotspots during this reporting period, which took place during 25 September, 18 and 21 October 2019, 29 January, and 11, 14, 16, and 23 February 2020. Sentinel-2 thermal satellite imagery shows intermittent hotspots dominantly in the summit crater throughout this reporting period (figure 41).

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite imagery detected intermittent thermal anomalies (bright yellow-orange) at the summit of Semeru, which included some lava flows in late January to early February 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Popocatepetl (Mexico) — April 2020 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Frequent historical eruptions have been reported from Mexico's Popocatépetl going back to the 14th century. Activity increased in the mid-1990s after about 50 years of quiescence, and the current eruption, ongoing since January 2005, has included numerous episodes of lava-dome growth and destruction within the 500-m-wide summit caldera. Multiple emissions of steam and gas occur daily, rising generally 1-3 km above the summit at about 5,400 m elevation; many contain small amounts of ash. Larger, more explosive events with ash plumes and incandescent ejecta landing on the flanks occur frequently. Activity through August 2019 was typical of the ongoing eruption with near-constant emissions of water vapor, gas, and minor ash, as well as multiple explosions with ash plumes and incandescent blocks scattered on the flanks (BGVN 44:09). This report covers similar activity from September 2019 through February 2020. Information comes from daily reports provided by México's Centro Nacional de Prevención de Desastres (CENAPRED); ash plumes are reported by the Washington Volcanic Ash Advisory Center (VAAC). Satellite visible and thermal imagery and SO2 data also provide helpful observations of activity.

Activity summary. Activity at Popocatépetl during September 2019-February 2020 continued at the high levels that have been ongoing for many years, characterized by hundreds of daily low-intensity emissions that included steam, gas, and small amounts of ash, and periods with multiple daily minor and moderate explosions that produce kilometer-plus-high ash plumes (figure 140). The Washington VAAC issued multiple daily volcanic ash advisories with plume altitudes around 6 km for many, although some were reported as high as 8.2 km. Hundreds of minutes of daily tremor activity often produced ash emissions as well. Incandescent ejecta landed 500-1,000 m from the summit frequently. The MIROVA thermal anomaly data showed near-constant moderate to high levels of thermal energy throughout the period (figure 141).

Figure (see Caption) Figure 140. Emissions continued at a high rate from Popocatépetl throughout September 2019-February 2020. Daily low-intensity emissions numbered usually in the hundreds (blue, left axis), while less frequent minor (orange) and moderate (green) explosions, plotted on the right axis, occurred intermittently through November 2019, and increased again during February 2020. Data was compiled from CENAPRED daily reports.
Figure (see Caption) Figure 141. MIROVA log radiative power thermal data for Popocatépetl from 1 May 2019 through February 2020 showed a constant output of moderate energy the entire time. Courtesy of MIROVA.

Sulfur dioxide emissions were measured with satellite instruments many days of each month from September 2019 thru February 2020. The intensity and drift directions varied significantly; some plumes remained detectable hundreds of kilometers from the volcano (figure 142). Plumes were detected almost daily in September, and on most days in October. They were measured at lower levels but often during November, and after pulses in early and late December only small plumes were visible during January 2020. Intermittent larger pulses returned in February. Dome growth and destruction in the summit crater continued throughout the period. A small dome was observed inside the summit crater in late September. Dome 85, 210-m-wide, was observed inside the summit crater in early November. Satellite imagery captured evidence of dome growth and ash emissions throughout the period (figure 143).

Figure (see Caption) Figure 142. Sulfur dioxide emissions from Popocatépetl were frequent from September 2019 through February 2020. Plumes drifted SW on 7 September (top left), 30 October (top middle), and 21 February (bottom right). SO2 drifted N and NW on 26 November (top right). On 2 December (bottom left) a long plume of sulfur dioxide hundreds of kilometers long drifted SW over the Pacific Ocean while the drift direction changed to NW closer to the volcano. The SO2 plumes measured in January (bottom center) were generally smaller than during the other months covered in this report. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 143. Sentinel-2 satellite imagery of Popocatépetl during November 2019-February 2020 provided evidence for ongoing dome growth and explosions with ash emissions. Top left: a ring of incandescence inside the summit crater on 8 November 2019 was indicative of the growth of dome 85 observed by CENAPRED. Top middle: incandescence on 8 December inside the summit crater was typical of that observed many times during the period. Top right: a dense, narrow ash plume drifted N from the summit on 17 January 2020. Bottom left: Snow cover made ashfall on 6 February easily visible on the E flank. On 11 February, the summit crater was incandescent and nearly all the snow was covered with ash. Bottom right: a strong thermal anomaly and ash emission were captured on 21 February. Bottom left and top right images use Natural color rendering (bands 4, 3, 2); other images use Atmospheric penetration rendering to show infrared signal (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during September-November 2019. On 1 September 2019 minor ashfall was reported in the communities of Atlautla, Ozumba, Juchitepec, and Tenango del Aire in the State of Mexico. The ash plumes rose less than 2 km above the summit and incandescent ejecta traveled less than 100 m from the summit crater. Twenty-two minor and three moderate explosions were recorded on 4-5 September along with minor ashfall in Juchitepec, Tenango del Aire, Tepetlixpa, and Atlautla. During a flyover on 5 September, officials did not observe a dome within the crater, and the dimensions remained the same as during the previous visit (350 m in diameter and 150 m deep) (figure 144). Ashfall was reported in Tlalmanalco and Amecameca on 6 September. The following day incandescent ejecta was visible on the flanks near the summit and ashfall was reported in Amecameca, Ayapango, and Tenango del Aire. The five moderate explosions on 8 September produced ash plumes that rose as high as 2 km above the summit, and incandescent ejecta on the flanks. Explosions on 10 September sent ejecta 500 m from the crater. Eight explosions during 20-21 September produced ejecta that traveled up to 1.5 km down the flanks (figure 145). During an overflight on 27 September specialists from the National Center for Disaster Prevention (CENAPRED ) of the National Coordination of Civil Protection and researchers from the Institute of Geophysics of UNAM observed a new dome 30 m in diameter; the overall crater had not changed size since the overflight in early September.

Figure (see Caption) Figure 144. CENAPRED carried out overflights of Popocatépetl on 5 (left) and 27 September (right) 2019; the crater did not change in size, but a new dome 30 m in diameter was visible on 27 September. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 y 27 de septiembre).
Figure (see Caption) Figure 145. Ash plumes at Popocatépetl on 19 (left) and 20 (right) September 2019 rose over a kilometer above the summit before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19 y 20 de septiembre).

Fourteen explosions were reported on 2 October 2019. The last one produced an ash plume that rose 2 km above the summit and sent incandescent ejecta down the E slope (figure 146). Ashfall was reported in the municipalities of Atlautla Ozumba, Ayapango and Ecatzingo in the State of Mexico. Explosions on 3 and 4 October also produced ash plumes that rose between 1 and 2 km above the summit and sent ejecta onto the flanks. Additional incandescent ejecta was reported on 6, 7, 15, and 19 October. The communities of Amecameca, Tenango del Aire, Tlalmanalco, Cocotitlán, Temamatla, and Tláhuac reported ashfall on 10 October; Amecameca reported more ashfall on 12 October. On 22 October slight ashfall appeared in Amecameca, Tenango del Aire, Tlalmanalco, Ayapango, Temamatla, and Atlautla.

Figure (see Caption) Figure 146. Incandescent ejecta at Popocatépetl traveled down the E slope on 2 October 2019 (left); an ash plume two days later rose 2 km above the summit (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 2 y 4 de octubre).

During 2-3 November 2019 there was 780 minutes of tremor reported in four different episodes. The seismicity was accompanied by ash emissions that drifted W and NW and produced ashfall in numerous communities, including Amecameca, Juchitepec, Ozumba, Tepetlixpa, and Atlautla in the State of México, in Ayapango and Cuautla in the State of Morelos, and in the municipalities of Tlahuac, Tlalpan, and Xochimilco in Mexico City. A moderate explosion on 4 November sent incandescent ejecta 2 km down the slopes and produced an ash plume that rose 1.5 km and drifted NW. Minor ashfall was reported in Tlalmanalco, Amecameca, and Tenango del Aire, State of Mexico. Similar ash plumes from explosions occurred the following day. Scientists from CENAPRED and the Institute of Geophysics of UNAM observed dome number 85 during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick, with an irregular surface (figure 147). Multiple explosions on 6 and 7 November produced incandescent ejecta; a moderate explosion late on 11 November produced ejecta that traveled 1.5 km from the summit and produced an ash plume 2 km high (figure 148). A lengthy period of constant ash emission that drifted E was reported on 18 November. A moderate explosion on 28 November sent incandescent fragments 1.5 km down the slopes and ash one km above the summit.

Figure (see Caption) Figure 147. A new dome was visible inside the summit crater at Popocatépetl during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 de noviembre).
Figure (see Caption) Figure 148. Ash emissions and explosions with incandescent ejecta continued at Popocatépetl during November 2019. The ash plume on 1 November changed drift direction sharply a few hundred meters above the summit (left). Incandescent ejecta traveled 1.5 km down the flanks on 11 November (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 1 y 12 de noviembre).

Activity during December 2019-February 2020. Throughout December 2019 weak emissions of steam and gas were reported daily, sometimes with minor amounts of ash, and minor explosions were only reported on 21 and 27 December. On 21 December two new high-resolution webcams were installed around Popocatépetl, one 5 km from the crater at the Tlamacas station, and the second in San Juan Tianguismanalco, 20 km away. Ash emissions and incandescent ejecta 800 m from the summit were observed on 25 December (figure 149). Incandescence at night was reported during 27-29 December.

Figure (see Caption) Figure 149. Incandescent ejecta moved 800 m down the flanks of Popocatépetl during explosions on 25 December 2019 (left); weak emissions of steam, gas, and minor ash were visible on 27 December and throughout the month. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 25 y 27 de diciembre).

Continuous emissions of water vapor and gas with low ash content were typical daily during January 2020. A moderate explosion on 9 January produced an ash plume that rose 3 km from the summit and drifted NE. In addition, incandescent ejecta traveled 1 km from the crater rim. A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (figure 150). The first of two explosions late on 27 January produced ejecta that traveled 500 m and a 1-km-high ash plume. Constant incandescence was observed overnight on 29-30 January.

Figure (see Caption) Figure 150. Although fewer explosions were recorded at Popocatépetl during January 2020, activity continued. An ash plume on 19 January rose over a kilometer above the summit (top left). A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (top right). Smaller emissions with steam, gas, and ash were typical many days, including on 22 (bottom left) and 31 (bottom right) January 2019. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19, 21, 22 y 31 de enero).

A moderate explosion on 5 February 2020 produced an ash plume that rose 1.5 km and drifted NNE. Explosions on 10 and 13 February sent ejecta 500 m down the flanks (figure 151). During an overflight on 18 February scientists noted that the internal crater maintained a diameter of 350 m and its approximate depth was 100-150 m; the crater was covered by tephra. For most of the second half of February the volcano had a continuous emission of gases with minor amounts of ash. In addition, multiple explosions produced ash plumes that rose 400-1,200 m above the crater and drifted in several different directions.

Figure (see Caption) Figure 151. Ash emissions and explosions continued at Popocatépetl during February 2020. Dense ash drifted near the snow-covered summit on 6 February (top left). Incandescent ejecta traveled 500 m down the flanks on 13 February (top right). Ash plumes billowed from the summit on 18 and 22 February (bottom row). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 6, 15, 18 y 22 de febrero).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2020 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. Ash explosions, pyroclastic, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during September 2019-February 2020, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Constant fumarolic activity with steam and gas persisted from the Caliente dome throughout September 2019-February 2020. Explosions occurred multiple times per day, producing ash plumes that rose to altitudes of 3.1-3.5 km and usually drifted a few kilometers before dissipating. Several lahars during September and October carried volcanic blocks, ash, and debris down major drainages. Periodic ashfall was reported in communities within 10 km of the volcano. An increase in thermal activity beginning in November (figure 101) resulted in an increased number of observations of incandescence visible at night from the summit of Caliente through February 2020. Block avalanches occurred daily on the flanks of the dome, often reaching the base, stirring up small clouds of ash that drifted downwind.

Figure (see Caption) Figure 101. The MIROVA project graph of thermal activity at Santa María from 12 May 2019 through February 2020 shows a gradual increase in thermal energy beginning in November 2019. This corresponds to an increase in the number of daily observations of incandescence at the summit of the Caliente dome during this period. Courtesy of MIROVA.

Constant steam and gas fumarolic activity rose from the Caliente dome, drifting W, usually rising to 2.8-3.0 km altitude during September 2019. Multiple daily explosions with ash plumes rising to 2.9-3.4 km altitude drifted W or SW over the communities of San Marcos, Loma Linda Palajunoj, and Monte Claro (figure 102). Constant block avalanches fell to the base of the cone on the NE and SE flanks. The Washington VAAC reported an ash plume visible in satellite imagery on 10 September at 3.1 km altitude drifting W. On 14 September another plume was spotted moving WSW at 4.6 km altitude which dissipated quickly; the webcam captured another plume on 16 September. Ashfall on 27 September reached about 1 km from the volcano; it reached 1.5 km on 29 September. Lahars descended the Rio Cabello de Ángel on 2 and 24 September (figure 102). They were about 15 m wide, and 1-3 m deep, carrying blocks 1-2 m in diameter.

Figure (see Caption) Figure 102. A lahar descended the Rio Cabello de Ángel at Santa Maria and flowed into the Rio Nima 1 on 24 September 2019. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 21 al 27 de septiembre de 2019).

Througout October 2019, degassing of steam with minor gases occurred from the Caliente summit, rising to 2.9-3.0 km altitude and generally drifting SW. Weak explosions took place 1-5 times per hour, producing ash plumes that rose to 3.2-3.5 km altitude. Ashfall was reported in Monte Claro on 2 October. Nearly constant block avalanches descended the SE and S flanks, disturbing recent layers of fine ash and producing local ash clouds. Moderate explosions on 11 October produced ash plumes that rose to 3.5 km altitude and drifted W and SW about 1.5 km towards Río San Isidro (figure 103). The following day additional plumes drifted a similar distance to the SE. The Washington VAAC reported an ash emission visible in satellite imagery at 4.9 km altitude on 13 October drifting NNW. Ashfall was reported in Parcelamiento Monte Claro on 14 October. Some of the block avalanches observed on 14 October on the SE, S, and SW flanks were incandescent. Ash drifted 1.5 km W and SW on 17 October. Ashfall was reported near la finca Monte Claro on 25 and 28 October. A lahar descended the Río San Isidro, a tributary of the Río El Tambor on 7 October carrying blocks 1-2 m in diameter, tree trunks, and branches. It was about 16 m wide and 1-2 m deep. Additional lahars descended the rio Cabello de Angel on 23 and 24 October. They were about 15 m wide and 2 m deep, and carried ash and blocks 1-2 m in diameter, tree trunks, and branches.

Figure (see Caption) Figure 103. Daily ash plumes were reported from the Caliente cone at Santa María during October 2019, similar to these from 30 September (left) and 11 October 2019 (right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 28 de septiembre al 04 de octubre de 2019; Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 05 al 11 de octubre de 2019).

During November 2019, steam plumes rose to 2.9-3.0 km altitude and generally drifted E. There were 1-3 explosions per hour; the ash plumes produced rose to altitudes of 3.1-3.5 km and often drifted SW, resulting in ashfall around the volcanic complex. Block avalanches descended the S and SW flanks every day. On 4 November ashfall was reported in the fincas (ranches) of El Faro, Santa Marta, El Viejo Palmar, and Las Marías, and the odor of sulfur was reported 10 km S. Incandescence was observed at the Caliente dome during the night of 5-6 November. Ash fell again in El Viejo Palmar, fincas La Florida, El Faro, and Santa Marta (5-6 km SW) on 7 November. Sulfur odor was also reported 8-10 km S on 16, 19, and 22 November. Fine-grained ash fell on 18 November in Loma Linda and San Marcos Palajunoj. On 29 November strong block avalanches descended in the SW flank, stirring up reddish ash that had fallen on the flanks (figure 104). The ash drifted up to 20 km SW.

Figure (see Caption) Figure 104. Ash plumes rose from explosions multiple times per day at Santa Maria’s Santiaguito complex during November 2019, and block avalanches stirred up reddish clouds of ash that drifted for many kilometers. Courtesy of INSIVUMEH. Left, 11 November 2019, from Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 09 al 15 de noviembre de 2019. Right, 29 November 2019 from BOLETÍN VULCANOLÓGICO ESPECIAL BESTG# 106-2019, Guatemala 29 de noviembre de 2019, 10:50 horas (Hora Local).

White steam plumes rising to 2.9-3.0 km altitude drifted SE most days during December 2019. One to three explosions per hour produced ash plumes that rose to 3.1-3.5 km altitude and drifted W and SW producing ashfall on the flanks. Several strong block avalanches sent material down the SW flank. Ash from the explosions drifted about 1.5 km SW on 3 and 7 December. The Washington VAAC reported a small ash emission that rose to 4.9 km altitude and drifted WSW on 8 December, and another on 13 December that rose to 4.3 km altitude. Ashfall was reported up to 10 km S on 24 December. Incandescence was reported at the dome by INSIVUMEH eight times during the month, significantly more than during the recent previous months (figure 105).

Figure (see Caption) Figure 105. Strong thermal anomalies were visible in Sentinel-2 imagery at the summit of the Caliente cone at Santa María’s Santiaguito’s complex on 19 December 2019. Image uses Atmospheric Penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during January 2020 was similar to that during previous months. White plumes of steam rose from the Caliente dome to altitudes of 2.7-3.0 km and drifted SE; one to three explosions per hour produced ash plumes that rose to 3.2-3.4 km altitude and generally drifted about 1.5 km SW before dissipating. Frequent block avalanches on the SE flank caused smaller plumes that drifted SSW often over the ranches of San Marcos and Loma Linda Palajunoj. On 28 January ash plumes drifted W and SW over the communities of Calaguache, El Nuevo Palmar, and Las Marías. In addition to incandescence observed at the crater of Caliente dome at least nine times, thermal anomalies in satellite imagery were detected multiple times from the block avalanches on the S flank (figure 106).

Figure (see Caption) Figure 106. Incandescence at the summit and in the block avalanches on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was visible in Sentinel-2 satellite imagery on 8 and 13 January 2020. Atmospheric penetration rendering images (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

The Washington VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude drifting W on 3 February 2020. INSIVUMEH reported constant steam degassing that rose to 2.9-3.0 km altitude and drifted SW. In addition, 1-3 weak to moderate explosions per hour produced ash plumes to 3.1-3.5 km altitude that drifted about 1 km SW. Small amounts of ashfall around the volcano’s perimeter was common. The ash plumes on 5 February drifted NE over Santa María de Jesús. On 8 February the ash plumes drifted E and SE over the communities of Calaguache, El Nuevo Palmar, and Las Marías. Block avalanches on the S and SE flanks of Caliente dome continued, creating small ash clouds on the flank. Incandescence continued frequently at the crater and was also observed on the S flank in satellite imagery (figure 107).

Figure (see Caption) Figure 107. Incandescence at the summit and on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was frequent during February 2020, including on 2 (left) and 17 (right) February 2020 as seen in Sentinel-2 imagery. Atmostpheric Penetration rendering imagery (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 37, Number 09 (September 2012)

Managing Editor: Richard Wunderman

Bandaisan (Japan)

Mild, 45-second volcanic tremor in June 2012

Esan (Japan)

Minor steam plumes in March 2012

Havre Seamount (New Zealand)

Source of large pumice rafts traced to Havre seamount eruption

Popocatepetl (Mexico)

Intermittent ash plumes and diminished seismicity during July-October 2012

Purace (Colombia)

Expanded monitoring efforts and persistent seismicity in 2012

Sotara (Colombia)

Monitoring efforts and recent seismic unrest



Bandaisan (Japan) — September 2012 Citation iconCite this Report

Bandaisan

Japan

37.601°N, 140.072°E; summit elev. 1816 m

All times are local (unless otherwise noted)


Mild, 45-second volcanic tremor in June 2012

Our previous report on Bandai (also called Bandai-san) discussed a significant increase in seismicity during 14-16 August 2000 (BGVN 25:08). However, no eruption resulted and no large change in GPS data was noted. The volcano is located in Fukushima Prefecture, Japan, about 220 km N of Tokyo (figure 2). This report notes that volcanic tremor was recorded in June 2012.

Figure (see Caption) Figure 2. A map of the major volcanoes of Japan. Bandai is just N of Tokyo. Courtesy of the U.S. Geological Survey.

Recent monthly reports of volcanic activity from the Japan Meteorological Agency (JMA), translated into English, resumed in October 2010; the only recent report on Bandai was in June 2012. Thus, in this report, we lack JMA reports between January 2005 and May 2012 and only summarize activity during June 2012.

According to JMA, on 25 June 2012 volcanic tremor with a duration of 45 seconds was recorded, the first since 9 June 2009. No change in volcanic earthquakes, ground deformation, or fumarolic activity was observed. Volcanic earthquakes have remained at a low level at least through September 2012. A camera located at Kengamine (~7 km N of the summit) showed that gas emissions remained low, rising less than 100 m in height.

Geologic Background. One of Japan's most noted volcanoes, Bandaisan rises above the north shore of Lake Inawashiro. This complex is formed of several overlapping andesitic stratovolcanoes, the largest of which is Obandai. Kobandai volcano, which collapsed in 1888, was formed about 50,000 years ago. Obandai volcano was constructed within a horseshoe-shaped caldera that formed about 40,000 years when an older volcano collapsed, forming the Okinajima debris avalanche, which traveled to the SW and was accompanied by a plinian explosive eruption. The last magmatic eruption took place more than 25,000 years ago, but four major phreatic eruptions have occurred during the past 5000 years, two of them in historical time, in 806 and 1888. Seen from the south, Bandaisan presents a conical profile, but much of the north side of the volcano is missing as a result of the collapse of Ko-Bandai volcano during the 1888 eruption, in which a debris avalanche buried several villages and formed several large lakes.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/).


Esan (Japan) — September 2012 Citation iconCite this Report

Esan

Japan

41.805°N, 141.166°E; summit elev. 618 m

All times are local (unless otherwise noted)


Minor steam plumes in March 2012

E-san is located in S Hokkaido, the northernmost of Japan's 47 prefectures (figure 1). Recent monthly reports of volcanic activity from the Japan Meteorological Agency (JMA), translated into English, resumed in October 2010. The only recent JMA report on E-san was in March 2012. This is the first BGVN report discussing E-san.

Figure (see Caption) Figure 1. A map showing a few of the major volcanoes of Japan, with their respective Alert Levels in March 2012. E-san is in the northernmost prefecture of Japan, Hokkaido. Courtesy of JMA.

According to JMA, in March 2012 steam plumes rose to heights of less than 100 m above the crater rim. Aerial visual and infrared observations coducted in cooperation with Japan's Ministry of Land, Infrastructure, Transportation, and Tourism, and the Japan Coast Guard on 16 and 23 March, repectively, found no changes.

A small-amplitude and short-duration volcanic tremor occurred on 30 March. After that, the number of small volcanic earthquakes increased until early on 31 March. No steam plumes could be observed on 31 March due to cloud cover; however, JMA reported no change in air vibrations or crustal deformation data. Field surveys on 2 April found no change in either the steam plumes from the crater or crustal deformation (GPS).

Geologic Background. Esan, a small volcanic complex of seven overlapping andesitic-to-dacitic lava domes, is Hokkaido's southernmost active volcano. Esan occupies the eastern tip of the double-pronged Oshima Peninsula across the Tsugaru Strait from Honshu. The Esan volcanic complex consists of five late Pleistocene and two early Holocene lava domes, Esan and Misaki. A minor phreatic eruption in 1846 produced a mudflow that caused many fatalities. The latest activity was a small eruption in 1874. Active fumaroles occur at a thermal area on the upper NW flank.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/).


Havre Seamount (New Zealand) — September 2012 Citation iconCite this Report

Havre Seamount

New Zealand

31.08°S, 179.033°W; summit elev. -897 m

All times are local (unless otherwise noted)


Source of large pumice rafts traced to Havre seamount eruption

Large pumice rafts observed floating in the SW Pacific Ocean in the central Kemadec Islands, midway between North Island (New Zealand) and Tonga, have been traced by various investigators and monitoring systems to a mid-July 2012 eruption of the Havre submarine seamount (figure 1). The eruption was strong enough to result in thermal alerts and produce an ash plume that breached the ocean surface from a depth of at least 700 m.

Figure (see Caption) Figure 1. Map showing New Zealand and its territory that is associated with subduction along the Kermadec-Tonga trench system. A scale and key for features are shown in the bottom left. To the NNE reside the Kermadec chain of islands and associated rocks and seamounts (submarine volcanoes, closed triangles). Havre seamount, Havre Rock, and L'Esperance Rock appear in the central part of the Kermadecs. The insert in the lower right-hand corner shows the location of the map with respect to the S Pacific Ocean. The Kermadec Islands Marine Reserve is New Zealand's largest marine reserve, covering 7,450 km2 (Gardner and others, 2006). The areas of the marine reserve (gray circles), extend 22.2 km (12 nautical miles, nmi) out to the edge of the territorial sea from the cliffs and boulder beaches of various Kermadec Islands and rocks (Raoul and adjacent islands; Macauley, Curtis, and adjacent islands; and L'Esperance and Havre Rocks). The New Zealand Exclusive Economic Zone, prescribed under the 1982 United Nations Convention of the Law of the Sea, covers the areas within red arcs at a distance of ~370 km (200 nmi) from shorelines of the two major New Zealand islands and its smaller territorial islands. Courtesy of Pew Environment Group.

Early observations. Maggie de Grauw, resident of Paeroa, New Zealand, took photographs (one of which is shown in figure 2) on 31 July 2012, from a commercial airplane (Virgin Pacific flight ##DJ94 from Apia, Samoa to Auckland, New Zealand) of a "peculiar large mass floating on the ocean between Tonga and Auckland."

Figure (see Caption) Figure 2. Pumice raft photographed at 1440 on 31 July 2012 NZST between Tonga and Auckland, NZ. The rainbow effect is the result of the combination of a standard polarizer on the camera lens and the airplane window. Courtesy of Maggie de Grauw.

She noted that there was another larger mass nearby, but was unable to photograph it because of the difficult angle. Believing it to be a pumice raft, she emailed the photos to Scott Bryan, author of an article on pumice rafts (Bryan and others, 2012), who forwarded it to Bulletin staff.

de Grauw noted that "the date stamp on the photograph says 1441 NZST [New Zealand standard time], which meant we had another 1 hour and 15 minutes flying time to Auckland. Total flight time was estimated at 3 and a half to 4 hours. Looking at the map, that would have put us some where near the Kermadec trench/ridge or islands. (Though I did not see any islands nearby)."

On 4 August, Bryan commented that the source of the pumice, if in the Kermadecs, may be Raoul, Macauley, Giggenbach, or Volcano W. He suggested that Monowai seamount seemed too far away. Brad Scott, New Zealand's GNS Science, noted that around the same time North Island of New Zealand had two volcanoes erupting (Tongariro and White Island) and seismic signals indicated that Monowai seamount (in the Kermadec Islands) was erupting as well.

On 10 August 2012, the New Zealand Defence Force (NZDF) reported an area of floating pumice in the open ocean. The area where the pumice was abundant was 463 km (250 nmi) in length and 56 km (30 nmi) wide, for a total area of 25,700 km2 (7,500 nmi2). A photograph taken on 9 August 2012 shows an example of the pumice as seen from a Royal New Zealand Air Force (RNZAF) Orion patrol plane flying between Samoa and New Zealand (figure 3); video of the raft from this aircraft was shown in a press release from NZDF (2012).

Figure (see Caption) Figure 3. Pumice raft photographed by a Royal New Zealand Air Force (RNZAF) Orion patrol plane flying between Samoa and New Zealand (9 August 2012). Courtesy of NZDF.

The pilots relayed the information to the Royal New Zealand Navy vessel HMNZS Canterbury, which later that day encountered floating pumice ~160 km (85 nmi) WSW of Raoul island (29.27°S, 177.92°W). The Canterbury crew found that the pumice raft was ~0.6 m thick, 1 km wide, and extended to their right and left as far as the eye could see. The crew retrieved some pieces of pumice from the ship's water filters for later analysis and documentation. According to a news article by Priestley (2012) other samples of pumice were collected using buckets. These samples ranged from golf ball to soccer ball sized (figures 4 and 5). The pumice samples were "rough around the edges and irregular shapes." At that time, the origin of the pumice was still unknown.

Figure (see Caption) Figure 4. A handfull of pumice pebbles from a pumice raft, recovered from water filters of HMNZS Canterbury. From Priestley (2012).
Figure (see Caption) Figure 5. Large piece of pumice collected by the HMNZS Canterbury on 10 August 2012. From Priestley (2012).

In addition, Alain Bernard of the Laboratoire de Volcanologie, Université Libre de Bruxelles, Belgium, and Olivier Hyvernaud of the Laboratoire de Géophysique, Tahiti, observed the pumice raft in MODIS/Terra satellite images taken 3 August 2012.

Search for the pumice source. The search for the pumice source involved a number of investigators and their institutions, and several monitoring systems. Table 1 gives a summary of locations of the pumice source based on various observed phenomena associated with the July 2012 eruption as determined from various investigators.

Table 1. Summary of reported locations for events and features associated with tracking the source of the pumice rafts from the July 2012 eruption of Havre seamount. These locations may be compared with the location of Havre seamount (table 2) from Wright, Worthington and Gamble (2006). Compiled from listed references.

Source - Feature Coordinates (as reported) Coordinates (decimal degrees) Dates and comments Reference(s)
Seismic - source of pumice raft 31.13°S, 178.96°W 31.13°S, 178.96°W 17-18 July 2012, short seismic swarm Hyvernaud (2012), Laboratoire de Géophysique, Papeete, Polynesian Network (Scott, 2012)
MODIS satellite - hot spot 31°7'S, 179°12'W 31.1°S, 179.2°W 1050 on 18 July 2012 UTC; band 22, 3.959 µm Bernard (2012)
MODIS satellite - point of vapor plume 31°5'S, 179°1'W 31.1°S, 179.0°W 2150 on 18 July 2012 UTC; band 20, 3.75 µm; plume image "pointing to the source of the eruption" Bernard (2012)
Satellite - source of pumice 30.95°S, 179.13°W 30.95°S, 179.13°W 19 July 2012 UTC, satellite data, raft becomes visible after 0205 Laboratoire de Géophysique, Papeete, Polynesian Network (Scott, 2012)

Table 2. Locations of Havre seamount and other nearby features, for comparison with early locations of pumice rafts' source vent (table 1). Compiled from listed references.

Feature Coordinates (as reported) Coordinates (decimal degrees) Comments Reference(s)
Havre Seamount 31°6.500'S, 179°2.450'W 31.11°S, 179.04°W Summit depth 720 m, basal depth 1,750 m; used in this report and by Klemetti (2012a). Wright, Worthington, and Gamble (2006)
Havre Rock 31°17.3'S, 178°54.7'W 31.29°S, 178.9°W Summit elevation ~70 m. New Zealand Land Information (2008)
L'Esperance Rock 31°21.4'S, 178°48.4'W 31.36°S, 178.82°W Summit slightly above sea level. New Zealand Land Information (2008)

GNS Science issued a news bulletin on 11 August 2012 (Scott, 2012) noting that a report from the Laboratoire de Géophysique, Tahiti, confirmed two indications of eruptive activity in the Kermadec Islands, one from satellite tracking and another from seismic monitoring.

An examination of satellite data by the Laboratoire de Géophysique traced the pumice back to a source at 30.95°S, 179.13°W, 72 km SW of Curtis Island at 0205 on 19 July 2012 UTC. According to Olivier Hyvernaud (2012), between 0733 on 17 July 2012 UTC and 0300 on 18 July 2012 UTC, 157 hydroacoustic events from Kermadec ridge were measured. He noted that "the waveforms are all very similar, with a short length and a steep rise. For some events, seismic Rayleigh and Pn phases from regional seismic stations were associated." Among the 157 events of magnitudes between 3.0 and 4.8, 68 events were located (figures 6 and 7).

Figure (see Caption) Figure 6. Cumulative number of hydroacoustic events recorded by the Laboratoire de Géophysique for the period 0800 on 17 July 2012 UTC through 0900 on 18 July 2012 UTC. Courtesy of Olivier Hyvernaud.
Figure (see Caption) Figure 7. Locations in the Kermadec Islands from events having both seismic and hydroacoustic phases (red spots for epicenters and red error ellipses) and from events having only hydroacoustic phases (green dots for epicenters and green error ellipses) during the period from 0733 on 17 July 2012 UTC to 0300 on 18 July 2012 UTC. Havre seamount volcano (labeled 'Volcano') is located by a plus sign (+). Courtesy of Olivier Hyvernaud.

According to Hyvernaud, the "mean location is at 31.13°S, 178.96°W, a position in the vicinity of Havre seamount. The best locations are obtained with a mix of hydroacoustic and seismic phases. The focal depths are impossible to constrain, but we assume that they are shallow. Usually, we record several types of hydroacoustic events during volcanic submarine activity: submarine explosions, tremors and small earthquakes. Submarine explosions and tremors are never recorded in seismic [data] (unless you have a very close seismic station). For Havre, the strongest events have both seismic and hydroacoustic [signals], that's why I interpret them as small earthquakes. The weakest have only hydroacoustic phase[s], because seismic phases are below the detection threshold. Tremors and explosions have not been recorded for Havre: why?, I don't know...Perhaps the explosive sources are on the opposite side of the volcano and couldn't propagate towards French Polynesia?..."

Alain Bernard sent an email to the Bulletin reporting that he had analyzed nighttime imagery from a MODIS satellite and found a thermal hot spot from the eruption at 1050 on 18 July 2012 UTC, the earliest evidence of a hot spot from the Havre Seamount eruption reaching the ocean surface (figure 8a). He noted that "apparently, the first appearance of pumice rafting is on MODIS/Terra [satellite images] of July 18 [2012]...There is an intriguing feature associated with the raft, it looks like a plume of vapour(?) with a clear thermal contrast as seen in band 20 at 3.75µm [figure 8b]. I really don't know what this could be and if this feature is pointing to the source of the eruption. Anyway, the geographic location is close to 31°5'S and 179°1'W but as far as I know there is no identified submarine volcano there."

Figure (see Caption) Figure 8. (A) First appearance of thermal hot spot from MODIS/Terra satellite (band 22; 3.959 µm) at 1050 on 18 July 2012 UTC, showing a cold airborne eruptive plume (dark color) drifting toward the NW from a hot spot (2 white pixels, circled). The hot spot location was 31°7'S, 179°12'W. Sea surface temperatures were around 22-23°C for the hot pixels, with an average sea temperature around 17-18°C; pixels are 1 km2. (B) Brightness temperature image from MODIS/Terra satellite (band 20; 3.75 µm) at 2150 on 18 July 2012 UTC, showing white plume whose source appears to be located at 31°5'S, 179°1'W. Courtesy of Bernard (2012).

Havre identified as pumice source. According to a report by Erik Klemetti (2012), he and Robert Simmon, both working independently of GNS Science and using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua images, discovered the first signs of the eruption (discolored water, gray pumice, and a volcanic plume) in imagery from 0950 and 1410 on 19 July 2012 (local time) between Macauley Island and Volcano W. NASA satellite images acquired during 18-21 July 2012 show an obvious plume on both 18 and 19 July, then only the pumice raft on 20 July, suggesting the eruption may have only lasted a couple of days (figure 9). The eruption was strong enough to generate a thermal pulse from a depth of at least 700 m that could be measured at the ocean surface by satellite (figure 8a).

Figure (see Caption) Figure 9. (A) MODIS/Terra satellite imagery taken at 2150 on 18 July 2012 UTC. Site of the eruption is hidden by clouds, but a plume, pumice, and discolored water are clearly visible. (B) MODIS/Terra satellite image taken at 2220 on 21 July 2012 UTC. (C) MODIS/Terra satellite image taken at 2220 on 30 July 2012 UTC. Courtesy of NASA Earth Observatory.

To identify known features on the sea floor that might correspond to the source vent for the pumice, Klemetti overlaid the MODIS/Terra image on Google Earth to find the location relative to Macauley volcano and Volcano W. Bathymetric maps indicated that the source of the plume appeared to be a U-shaped edifice that had no label in the Smithsonian's Global Volcanism Program Google Earth layer. However, from a map of the Kermadec Islands (Smith and Price, 2006), it appeared that the edifice was Havre seamount (near Havre Rock), a relatively unknown seamount volcano without documented eruptive history.

Klemetti concluded his report saying that this event "shows how easily an eruption can happen in the middle of the ocean and not be noticed for 3 weeks - even in the 21st century!... Most eruptions will be noticed either as heat spots or sources of sulfur dioxide emissions if not visually on these satellite images. However, sometimes we get the evidence of an eruption well after it happened and have to backtrack through remote sensing data to find the source and in the case of Havre, this was the only way that the source could be found so quickly."

By 21 July 2012, the eruption appeared to have waned, leaving behind rafts of pumice. Winds and currents spread the pumice into a series of twisted filaments, spread over an area of ~450 by 250 km as of 13 August. A 31 August 2012 issue of New Zealand Notices to Mariners (New Zealand Land Information, 2012) announced a recent insertion, "Volcanic Activity," to Chart NZ 222 (SW Pacific - Kermadec Islands; New Zealand Land Information, 2008) at a position 30°57.00'S, 179°07.80'W (figure 10). This location is identical to the location for the source of the ash plume as identified from satellite images by the Laboratoire de Géophysique.

Figure (see Caption) Figure 10. Portion of Chart NZ 222 showing the location of Havre Rock, L'Esperance Rock, and, in the upper left, the recently inserted location at 30.95°S, 179.13°W, labeled "Volcanic Activity (2012)," an early location for the eruption site. From New Zealand Land Information (2008, 2012).

Fate of pumice rafts. According to Bernard, Hyvernaud, Klemetti, and Simmon, satellite images revealed that Havre seamount erupted a tightly-packed raft of floating pumice on 19 and 20 July 2012. Over several weeks, wind and waves dispersed the pumice to the W, NW, N, and then E. A 28 July image showed one pumice raft, twisted by ocean currents, appearing as a well-defined strand (figure 11). By 6 August, the pumice was largely dispersed, spread over an area at least 450 km wide (figure 12a). Filaments of pumice remained in the area on 13 August, and the pumice was spread over an area of ~450 by 258 km (figure 12b). None appeared to reach Raoul Island, site of a permanently staffed meteorological station.

Figure (see Caption) Figure 11. This satellite image taken on 28 July 2012 shows the pumice floating in cuniform elongate rafts over a wide area of the sea to the NW and NE of Havre seamount. The natural-color image was acquired by the MODIS/Aqua satellite. Courtesy of NASA Earth Observatory; image courtesy of Jeff Schmaltz; caption by Robert Simmon.
Figure (see Caption) Figure 12. (A) By 6 August, the pumice was largely dispersed, spread over an area at least 450 km wide. (B) Filaments of pumice remained in the area on 13 August. These natural-color satellite images were acquired by the MODIS/Terra satellite. Courtesy of NASA Earth Observatory; image courtesy of Jeff Schmaltz; caption by Robert Simmon.

The NASA Earth Observatory continued tracking the spread of the pumice from the Havre eruption. By 19 August 2012 the pumice was spread over an area of 270,000 km2 of the Pacific Ocean and was continuing to spread. This pumice will likely stay afloat for months if not longer and eventually make landfall wherever the currents dictate - potentially as far away as South America.

According to GNS, the crew on a flight between Auckland and Apia on 1 October 2012 reported "floating pumice in the Kermadec Islands NE of New Zealand. The GeoNet duty volcanologist received this from the MetService Aviation Forecaster as part of the routine exchange of volcano data and observations between the organisations and airline pilots." "It is most likely this pumice raft is the same one [generated in mid-July 2012 and attributed to Havre as a source], just more spread out now. We have no direct evidence that Havre has erupted again."

The fate of the Havre pumice is unknown at this time, but a recent study by Scott Bryan and others (2012) details what happened to pumice from the 2006 Home Reef eruption in Tonga (see BGVN 31:09, 31:10, 31:12, 32:04, 33:05, and 33:12). That 2006 eruption (VEI 2 where the main vent was likely tens of meters below the ocean surface) was strong enough to create an ash plume that likely reached as high as 15 km altitude at its maximum, and did produce a small island that might have been as high as 75 m above sea level (wave action quickly removed the tephra forming the island). For the Home Reef eruption, the drifting pumice quickly hosted upwards of 80 different species of marine life over the course of its journey. Pumice rafts might be one of the ways that the ocean can redistribute organisms throughout the world oceans. Within eight months of the eruption, some of the pumice clasts had traveled over 5,000 km. Many clasts stayed afloat for ~2 years (Bryan and others 2012).

October 2012 cruise confirms Havre as pumice source. On 26 October 2012 the New Zealand National Institute of Water and Atmospheric Research's (NIWA) Research Vessel Tangaroa mapped Havre submarine volcano. NIWA ocean geology scientist Joshu Mountjoy announced finding a new volcanic cone which has formed on the edge of the volcano, towering 240 m above the crater rim that was first mapped in 2002 (Wright and others, 2006). The 2012 Havre eruption was strong enough to breach the ocean surface from a depth of more than 700 m by producing an ash plume, thermal alert, and a pumice raft that covered an area of 22,000 km2, all visible by satellite.

According to a press release from NIWA (2012), the voyage leader, NIWA's volcanologist Richard Wysoczanski, said that "we know the shape of the volcano from previous research. Using the multibeam echosounder, we made a before and after comparison of the volcano to determine the size of the eruption and the change it has made to the seafloor." NIWA previously mapped Havre volcano in 2002 (Wright and others, 2006), showing a 1-km-high undersea mountain with a 5-km-wide, 800-m-deep central crater. This central steep-walled crater is a caldera, which is a collapse feature of volcanoes, like Lake Taupo, often known to produce large and violent eruptions.

Mountjoy noted that "One side of the caldera wall is bulging in towards the volcano's centre. The bulging may indicate where an eruption may occur in the future, or it might lead to an undersea avalanche." Several cubic kilometers of new material had been added to the volcano. Large volumes of freshly erupted pumice have accumulated on the caldera floor, raising the floor by up to 10 m. Glassy volcanic rocks were sampled from the fresh crater wall, typical of newly erupted material. Wysoczanski noted that there were new volcanic cones in one area. Volcanic rocks were collected, up to beach ball size, that vary in color and texture from black glassy material to white pumice. Round pebbles of pure sulphur were also retrieved.

Havre Seamount background. Smith and Price (2006) published one of the first bathymetric maps showing the main features of the Tonga-Kermadec arc/back-arc system and the location of Havre seamount (figure 13). Wright and others (2006) reported on the first full-scale mapping of Havre seamount in 2002 and some of its geology (figure 14). Table 2 lists locations for Havre seamount and other nearby features.

Figure (see Caption) Figure 13. (A) SW Pacific region showing the main features of the Tonga-Kermadec systems. (B) The Kermadec and Tonga arcs showing segmentation proposed by T.J. Worthington (University of Kiel, unpublished data); Kermadec segment S of 26°S latitude on the left, Tonga segment N of 26°S latitude on the right. Volcanoes are shown as conical symbols; note Havre volcano in middle of left map, Northern Kermadec segment. The ridge crests are defined by 500, 1,000, and 1,500 m bathymetric contours and the trench axis by the 8,000 and 7,000 m bathymetric contours. From Smith and Price (2006).
Figure (see Caption) Figure 14. (A) Regional setting of the Kermadec subduction system and the contiguous Tonga-New Zealand sectors to the N and S, respectively. (B-1, left) Regional setting of the S and central Kermadec subduction system, including newly discovered (2002) volcanoes (closed triangles) of the arc front. Dashed lines show location of the subduction and extensional plate boundaries, E and W of the Kermadec microplate, respectively, with grey arrows showing estimated relative Pacific-Kemadec plate motion and Kemadec-Australian plate motion in millimeters per annum. (B-2, right) Location of S and central Kermadec arc volcanoes relative to earthquake seismicity (from USGS catalog, January 1973-April 2003). (C) Bathymetry (in meters) and synoptic volcanic geology of Havre volcano. From Wright, Worthington, and Gamble (2006).

References. Anonymous, 2012. First sighting responsible for undersea eruption, Bay of Plenty Times, URL: http://www.bayofplentytimes.co.nz/news/first-sighting-responsible-undersea-eruption/1598061/, updated 27 October 2012, accessed 1 November 2012.

Bernard, A., 2012. Hot Spots from the July 18 Eruption in Kermadec volcanic arc, International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) Commission of Volcanic Lakes (CVL), URL: http://www.ulb.ac.be/sciences/cvl/havre/pumice_raft_Havre_eruption.html, updated 13 August 2012, accessed 13 August 2012.

Bryan, S.E., Cook, A.G., Evans, J.P., Hebden, K., Hurrey, L., Colla, P., Jell, J.S., Weatherley, D., and Firn, J., 2012. Rapid, Long-Distance Dispersal by Pumice Rafting. PLoS ONE, v. 7, no. 7: e40583 (DOI: 10.1371/journal.pone.0040583).

Bryner, J., 2012. Pumice 'raft' floating off New Zealand coast created by undersea volcano eruption, researchers say, Huffington Post Science, URL: http://www.huffingtonpost.com/2012/10/27/pumice-raft-volcano_n_2028058.html, updated 26 October 2012, accessed 1 November 2012.

de Grauw, M. and Stradling, S., 2012. Personal communication (email to GVP), 10 Septebmer 2012.

Gardner, J.P.A., Curwen, M.J., Long, J., Williamson, R.J., and Wood, A.R., 2006. Benthic community structure and water column characteristics at two sites in the Kermadec Islands Marine Reserve, New Zealand, New Zealand Journal of Marine and Freshwater Research, v. 40, pp. 179-194.

Hyvernaud, O., 2012. Personal communication, Havre seamount volcanic eruption (email to GVP), 10 October 2012.

Klemetti, E., 2012a. Havre Seamount: The source of Kermadec Island pumice raft?, Wired: Eruptions Blog, URL:http://www.wired.com/wiredscience/2012/08/source-of-kermadec-island-pumice-raft-eruption-identified, updated 13 August 2012, accessed 2 October 2012.

Klemetti, E., 2012b. What Is the Fate of Volcanic Pumice Rafts?, Wired: Eruptions Blog, URL: http://www.wired.com/wiredscience/2012/08/the-biology-of-volcanic-pumice-rafts/, updated 22 August 2012, accessed 2 October 2012.

Memmott, M., 2012. 7,500 square miles of pumice floating in the Pacific is 'weirdest thing I've seen', National Public Radio, URL: http://m.npr.org/story/158577099?url=/blogs/thetwo-way/2012/08/10/158577099/7-500-square-miles-of-pumice-floating-in-pacific-is-weirdest-thing-ive-seen, updated 10 August 2012, accessed 13 September 2012.

New Zealand Land Information (LINZ), 2012. New Zealand Notices to Mariners Notices NZ 151-154, Edition 18, pp. 6-9, New Zealand Hydrographic Authority, Wellington, NZ, URL: http://www.linz.govt.nz/docs/hydro/ntm/pdf12/nz18-3108-151-154.pdf, updated 31 August 2012, accessed 13 September 2012.

New Zealand Land Information (LINZ), 2008, Kermadec Islands, South Pacific Ocean, New Zealand, map NZ222, scale 1:300,000, Sourced from Land Information New Zealand data. Crown Copyright Reserved. URL: http://data.linz.govt.nz/layer/1267-chart-nz-222-kermadec-islands/##, updated 27 August 2012, accessed 13 September 2012.

New Zealand National Institute of Water and Atmospheric Research (NIWA), 2012. First sighting of volcano responsible for undersea eruption, Press Release, NIWA, URL: http://www.scoop.co.nz/stories/SC1210/S00054/first-sighting-of-volcano-responsible-for-undersea-eruption.htm, updated 27 October 2012, accessed 1 November 2012.

Priestley, R., 2012. The mystery of the pumice raft, Listener, issue 3774, URL: http://www.listener.co.nz/current-affairs/science/the-mystery-of-the-pumice-raft/, updated 8 September 2012, accessed 25 September 2012 (see also http://blogs.scientificamerican.com/expeditions/2012/08/10/kermadecs-islands-a-serendipitous-event/; http://rebeccapriestley.com/2012/08/12/kermadecs-voyage-2-the-mystery-of-the-floating-pumice).

Scott, B., 2012. Volcanic activity: Kermadec Islands, media release, Institute of Geological and Nuclear Sciences Limited, Wairakei Research Centre, Taupo, NZ.

Smith, I.E.M., and Price, R.C., 2006. The Tonga-Kermadec arc and Havre-Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific, Journal of Volcanology and Geothermal Research, v. 156 (3-4), p. 315-331.

Wright, I.C., Worthington, T.J., and Gamble, J.A., 2006. New multibeam mapping and geochemistry of the 30°-35° S sector, and overview, of southern Kermadec arc volcanism, Journal of Volcanology and Geothermal Research, v. 149 (3-4), p. 263-296.

Geologic Background. Havre Seamount has a caldera capping a 1-km-high edifice. Located on the Kermadec ridge of the Kermadec microplate, it is believed to have erupted in July 2012, the first historical evidence of activity. The caldera has an asymmetric morphology with the N rim comprising mostly a single inner topographic wall, and the S rim comprising both an outer topographic rim and inner wall separated by a 1.1-1.4-km-wide terrace. Smaller craters occur on this terrace. Rocks from the caldera wall include aphyric and plagioclase-bearing basalt-andesite, aphyric and plagioclase- and pyroxene-bearing dacite, gabbro, diorite, and pumice (Wright et al., 2006).

Information Contacts: Alain Bernard, Laboratoire de Volcanologie, Dept. Earth and Environmental Sciences CP160/02, Université Libre de Bruxelles 50, Ave. Roosevelt 1050 Brussels, Belgium; Bryan Scott, Queensland University of Technology, Brisbane, AU; Maggie de Grauw, Paeroa, New Zealand; Olivier Hyvernaud, Laboratorie de Géophysique, BP 640 Papeete, Tahiti, French Polynesia; Bradley J. Scott, Institute of Geological and Nuclear Sciences Limited (GNS) (URL: http://www.gns.cri.nz/); Eric Klemetti, Denison University (URL: https://www.wired.com/category/eruptions/); Roger Matthews, Unitec Institute of Technology, Auckland, NZ; NASA Earth Data Near Real Time (Orbit Swath) Images (URL: https://earthdata.nasa.gov/earth-observation-data/near-real-time); New Zealand Listener magazine (URL: http://www.noted.co.nz/the-listener/); New Zealand Defense Force (NZDF) (URL: http://www.nzdf.mil.nz/); Pew Environment Group (URL: http://www.pewenvironment.org); Rebecca Priestley, Victoria University of Wellington, New Zealand (URL: https://rebeccapriestley.com/); Robert Simmon and Jeff Schmaltz, NASA Earth Observatory (URL: http://earthobservatory.nasa.gov).


Popocatepetl (Mexico) — September 2012 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Intermittent ash plumes and diminished seismicity during July-October 2012

Since our last report discussing ash plumes and increased seismicity noted in April 2012 (BGVN 37:05), ash plumes from Popocatépetl's summit continued to be emitted at a reduced rate during July-October 2012. During this reporting period, the Centro Nacional de Prevención de Desastres (CENAPRED, based in Mexico City) noted persistent incandescence and gas emissions (sometimes containing ash). Seismicity decreased significantly in August and, on 1 September, CENAPRED reduced the Alert Level from Yellow, Phase Three to Yellow, Phase Two. New volcanic hazard maps were available from investigators focused on ejecta from the summit (Alatorre-Ibargüengoitia and others, 2012) and CENAPRED developed an interactive web interface for compiling layers of hazard zones based on volcanic phenomena expected from Popocatépetl.

Visual observations July-October 2012. From July through October 2012, CENAPRED reported that cloudcover frequently obscured the view of Popocatépetl's summit. During cloud-free conditions, incandescence from the crater could be observed at night and early in the morning. Moderate explosions (many containing incandescent tephra) occurred almost daily.

Several larger explosions were observed by CENAPRED on 21 July, in August (7, 17, 18, 20, 26 and 27), September (10, 14, and 15), and October (17, 18, 20, and 26). These events were captured by web cameras when incandescent tephra was ejected and traveled up to 1.5 km from the summit (figure 64).

Figure (see Caption) Figure 64. On 20 October 2012, the webcamera Altzomoni (located ~10 km to the NNW) captured moderate-sized explosions from Popocatépetl that ejected incandescent tephra across high elevation areas (within 1 km of the summit). From left to right, photos were captured at 05:34:25, 05:34:41, 07:24:23, and 09:36:44. Courtesy of CENAPRED.

When conditions permitted during July-October, gas-and-steam plumes (frequently containing ash), were observed reaching 0.5 to 2.5 km above the crater. Asfall was reported in the community of Ozumba (18 km W) on 21 July 2012. CENAPRED reported that an ash plume rose 4 km above the crater at 1758 on 6 August; incandescence from the crater was also observed that day.

Two lahars were detected in July 2012. The event on 3 July occurred at 1530 and was documented by the Tlamacas web camera (located ~5 km N of the crater). On 12 July, between 1938 and 2135, a lahar occurred on the N flank. Both of these events were attributed to glacial melt high on the flanks of Popocatépetl; no flooding was reported at low elevations.

VAAC ash detection during July-October 2012. The Washington Volcanic Ash Advisory Center (VAAC) announced observations of intermittent ash plumes from Popocatépetl during July-August 2012. At least five announcements were based on CENAPRED reports and imagery from local web cameras; cloud cover frequently obscured remote sensing images. During July-August, plume altitudes were in the range of 6.4-9.1 km (0.97-3.67 km above the crater); plumes tended to drift up to 130 km to the W, S, and SE.

No VAAC reports were released in September 2012 and five reports of observed ash were made in October 2012. During 11-26 October, maximum altitudes of ash plumes reached 7.6 km (~2.2 km above the crater) and tended to drift W, NW, and S.

Seismicity during July-October 2012. Decreasing seismicity was detected at Popocatépetl between July and October 2012. Approximately 30 hours of tremor were recorded by CENAPRED in July and ~18 hours in August, while approximately 9 and 10 hours were recorded in September and October, respectively. Volcano-tectonic (VT) earthquakes also occurred less frequently between July (~53 detected) and September (four detected). In October, ~15 VT events were reported in CENAPRED's online reports.

Hazard map for volcanic ejecta. A recent investigation by Alatorre-Ibargüengoitia and others (2012) highlighted the frequently-occurring Vulcanian eruptions of Popocatépetl and developed a volcanic ejecta risk assessment. Volcanic bombs have impacted the immediate summit area of the volcano as well as locations as distant as 3.7 km (the maximum distance considered in the simulations). The investigators combined video observations of past eruptions, field studies (between 1999 and 2010), and a ballistics model designed for simulating optimal launching conditions. One of the results from this investigation was a map defining three risk zones (figure 65).

Figure (see Caption) Figure 65. This map of Popocatépetl's summit, flanks, and local infrastructure includes hazard zonation for volcanic bombs. Locations with 5-point stars represent observed impact sites from 1998-2006; the 4-point star represents an impact site dating to 14,000 years before present. From Alatorre-Ibargüengoitia and others (2012).

An interactive hazard map for Popocatépetl was available online through the CENAPRED website (figure 66). Basemap options included terrain, streets with major towns, and satellite imagery. Users were able to choose from various volcanic phenomena (lava flows, ash fall, lahars, and pyroclastic flows) to view the predicted aerial extent of the relevant hazard. The flow paths and inundation areas for lava flows, lahars, and pyroclastic flows were determined with TITAN2D software based on data collected by CENAPRED. The zones representing high (red), medium (orange), and low (yellow) risk of ashfall (note the concentric zones in figure 66) were developed based on a 1995 study by CENAPRED (Macias and others, 1995).

Figure (see Caption) Figure 66. This map is a screenshot of CENAPRED's interactive hazard map, showing results from four scenarios; three types of lahar inundation parameters (highlighted drainages within ~40 km of the summit) and zones defining potential ashfall. Note that lahar hazards are within the orange zone of moderate ashfall hazards; the yellow zone indicating minor ashfall reaches Mexico City. The radius of the yellow zone (minor ashfall) is ~70 km. Courtesy of CENAPRED.

References. Alatorre-Ibargüengoitia, M.A., Delgado-Granados, H., and Dingwell, D.B., 2012. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico), Bulletin of Volcanology, 74(9) pp 2,155-2,169.

Macias, J.L., Carrasco, G., Delgado, H., Martin del Pozzo, A.L., Siebe, C., Hoblitt, R., Sheridan, M.F., and Tilling, R.I., 1995. Mapa de peligros volcanicos del Popocatépetl, Pub especial Inst Geofis, UNAM.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: https://www.gob.mx/cenapred/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Purace (Colombia) — September 2012 Citation iconCite this Report

Purace

Colombia

2.32°N, 76.4°W; summit elev. 4650 m

All times are local (unless otherwise noted)


Expanded monitoring efforts and persistent seismicity in 2012

Our previous report on Puracé (BGVN 25:05) described elevated seismicity and swarms from February through April 2000. The Popayán Observatory, part of the Instituto Colombiano de Geología y Minería (INGEOMINAS), released geochemical, geophysical, and visual observations of the volcano since our last report. Here we present the results from their field investigations focused on fumarolic sites, hot springs, and SO2 emissions. Low levels of seismicity persisted at Puracé during January-April 2008 and January 2010-August 2012, but tornillo and tremor events were frequently detected; elevated seismicity was detected in March 2012. Available maps include those for volcanic hazards, monitoring networks, and geomorphology. From January 2008-August 2012, the Alert Level for Puracé has remained at VI (Green; "volcanic behavior is in a typical background, noneruptive state"), the lowest level on a VI-I scale.

Hazard map for the Puracé region. A hazard map has been developed by INGEOMINAS for the Puracé region (figure 2). Three zones encompass the entire volcanic chain and one of the zones (delineating potential ashfall) reaches the town of Popayán (28 km NW).

Figure (see Caption) Figure 2. This hazard map delineates three zones around Puracé volcano (see text). The highest risk area (red) includes the volcanic centers Puracé and Curiquinga and also follows major drainages N and S. The moderate risk area (orange) includes most of the Coconucos volcanic chain and extends NW to include the town of Puracé. The lowest risk area (yellow) extends NW (including Popayán) and as far S as the town of Paletará. Courtesy of INGEOMINAS.

The red zone (highest risk area) indicates areas where lava flows may occur in the future, with inferred events including more than 1 m of ash fall and ballistic ejecta, lahars, volcanic gases, and elevated seismicity. Drainages surrounding the town of Puracé and the sulfur mine (Industrias Puracé) location are within the red zone.

The orange zone (moderate risk) would, in future eruptions, likely experience ashfall on the order of decimeters; pyroclastic flows could reach this region as well as lahars. The towns Coconuco, Puracé, and Pululó are within the orange zone; ~7 km SE of Purace volcano, the peak of Pan de Azúcar is at the boundary between the orange and yellow zones (figure 3).

Figure (see Caption) Figure 3. An aerial view looking SE along the Coconucos volcanic chain taken on 22 October 2011. Puracé is in the foreground and several craters are aligned in the distance. The tallest peak in the background is Pan de Azúcar. Courtesy of INGEOMINAS.

The yellow zone (low risk) distinguishes the largest hazard zone and encompasses Paletará, Paispamba, Timbio, Popayán, El Placer, Calibio, Paniquita, Polindara, Quintana, and other towns. This zone may experience centimeters to millimeters of ashfall in future eruptions. Flooding along rivers could also occur within this zone if volcanic material accumulated during an eruption. INGEOMINAS also noted that shock waves from a large eruption could be experienced within all three zones.

Ground deformation monitoring 1999-2012. In 1999, INGEOMINAS monitored deformation with an electronic tilt station located 1.24 km N of the crater (Guañarita station, 4,248 m a.s.l., GUAI). During January-April 2008, significant changes were absent. From January 2010-October 2011, the tiltmeter network was expanded to include two more electronic tiltmeters (figure 4), however, no major trends in ground deformation were noted during that time. INGEOMINAS noted a decreasing trend between October 2011 and April 2012 at the Lavas Rojas station (LAVI, 2.4 km WNW of the summit, 4,046 m a.s.l.). They calculated -90 µrad in total deflation from the N component and -70 µrad from the E component. At the Guañarita station (GUAI), deflation also began in October 2011 and continued through August 2012.

Figure (see Caption) Figure 4. The geophysical monitoring network for Puracé volcano in 2012 included electronic tiltmeters, GPS stations, line leveling benchmarks, and an EDM network concentrated NW of the edifice. In the lower-right-hand corner, three craters are visible (Puracé, Curiquinga, and Calambas). Courtesy of INGEOMINAS.

In August 2011, two permanent Global Positioning System (GPS) stations were installed on the flanks of Puracé located 1.24 km N (Guañarita, GUAG) and 2.48 km NW (Lavas Rojas, LAROG). A third GPS station, Agua Blanca (AGBG), was added to this network in November 2011, located 0.7 km W of the crater. During October 2011, deflation trends were observed with electronic tiltmeters; GPS and electronic distance measurement (EDM) campaigns showed few variations.

A magnetometer was installed near the Puracé edifice in December 2010 and, in January 2011, INGEOMINAS reported successful real-time transmissions to the Popayán Observatory (26 km NE of Puracé). The site location of the new instrument was 1.6 km N of the volcano in an area of andesitic lava flows emplaced during pre-Puracé development that remains undated. INGEOMINAS reported daily fluctuations in the magnetometer data and also identified anomalous solar activity that was confirmed with global datasets. Data sent from this station reported stable conditions persisting from January 2011 through August 2012.

Investigations at other volcanoes globally have shown successful correlations between magnetic fluctuations and magma intrusions, demonstrating the benefits of magnetometers in early warning systems. A basic unit of magnetism in the SI system is the tesla ("T"); this is a measure of magnetic field strength (a variable frequently denoted as B). [1 tesla = 1 weber/m2 = 1 newton/amp-m = 104 gauss = 109 gamma. Also, 1 nanotesla = 1 gamma (Sheriff, 1982)]. Hurst and others (2004) described examples:

"For instance, the basaltic andesite volcano Poas in Costa Rica showed changes of nearly 200 nanoTesla (Rymer and others, 2000), whereas the basaltic Japanese volcano Izu-Oshima showed changes of only tens of nanoTeslas in 1986 (Sasai and others, 1990). The latter case was one of the few in which magnetic changes clearly occurred before the volcanic activity started, a more marginal case was Unzen, where magnetic changes were recorded in the very early stages of an eruption (Tanaka, 1995)."

Geochemical monitoring. Between 1982 and 1993, INGEOMINAS carried out intermittent site visits to the fumaroles and hot springs located near the flanks and summit crater of Puracé (figure 5). Since 1994, they conducted periodic geochemical monitoring to evaluate the variations in fluid compositions from the hot springs and established a baseline of activity and characteristics.

Figure (see Caption) Figure 5. Photographed on 22 October 2011, a view of the N flank and crater rim of Puracé. Small, white plumes of gas rise from the fumarolic field located on the outside edge of the crater. The rugged peak of Chagarton, considered a pre-Puracé structure, is in view to the right of Puracé's summit (middle ground). In the background on the horizon is the tall, wide peak of Sotará volcano located ~32 km SW. Courtesy of INGEOMINAS.

On 16 April 2008, INGEOMINAS visited three sites located along the lower flanks of Puracé to determine radon-222 emissions: Agua Tibío, Tabío, and Agua Hirviendo. Relative to past records, values obtained from the soil at Agua Hirviendo were slightly higher: 2,035 pico Curies per Liter (pCi/L). Tabío and Agua Tibío respectively measured 323 and 790 pCi/L.

On 14 September 2011, INGEOMINAS scientists walked the crater rim to collect differential optical-absorption spectroscopy (DOAS) measurements to determine SO2 flux. The mobile DOAS campaign confirmed the concentration of gas was located within the fumarolic area on the N rim (figure 6). With a wind speed of 5.0 m/s from the W, total flux was 0.5 metric tons per day.

Figure (see Caption) Figure 6. The path traversed with a mobile DOAS instrument on 14 September 2011 around the crater rim of Puracé (note color coding). The background photo was taken by Colombia's national mapping agency, IGAC, in 1976. Courtesy of INGEOMINAS.

A field campaign to detect sulfur dioxide emissions was also conducted on 29 August 2012. Using a mobile Flyspec, a team of INGEOMINAS scientists focused on the Pozo Azul hot spring located ~8 km SW of the crater (also called PAFT in figure 7). This ultraviolet spectrometer sampled continuously for approximately five minutes while the scientists traversed the area around the hot spring (figure 7). There were four locations along the pathway where SO2 concentrations measured greater than 6.6 ppm-m. INGEOMINAS reported the total SO2 flux was 1.1 tons/day (windspeed of 7.7 m/s from the W).

Figure (see Caption) Figure 7. INGEOMINAS conducted a Flyspec traverse and calculated sulfur dioxide concentrations for the area around Pozo Azul, located ~8 km SW of Puracé's crater. Courtesy of INGEOMINAS.

Radon emissions had been monitored by INGEOMINAS from May 2011 through August 2012. Regular measurements were obtained from 13 stations located at sites around the volcanic edifice up to 12 km away (figure 8). Month-to-month variations tended to show rare correlations except for March-April 2012. In their monthly report from April 2012, INGEOMINAS highlighted this time period as significant for both seismic and radon assessments. Volcano-tectonic (VT) seismicity had been notably elevated during that time (an average of 116 earthquakes per month) and events were frequently occurring directly below the edifice. Long-period seismicity was also higher in March and April (an average of 290 earthquakes per month). Tremor, tornillo, and hybrid earthquakes occurred more frequently during these months compared with seismicity from the past two years.

Figure (see Caption) Figure 8. The geochemical monitoring network in August 2012 included radon emission detectors, hot spring sampling sites, and gas-sampling sites around the flanks of Puracé. (Top) This map shows the entire length of the Coconucos volcanic chain and sites within the monitoring network. (Bottom) Radon emissions were continuously monitored from 26 May 2011 through 18 August 2012, however, few datapoints were available between 23 October 2011 and February 2012. Courtesy of INGEOMINAS.

INGEOMINAS reported in their online August 2012 bulletin that field investigations of fumaroles and hot springs detected stable conditions without significant variations in geochemistry or temperatures. Continuous temperature readings from an in situ thermocouple were available from April 2012 to August 2012. This system was installed for monitoring changes in the fumarolic area located on the NW flank of the volcano in September 2011. Due to equipment problems related to equipment corrosion (a common problem in these extreme environments), the data was only successfully telemetered starting on 14 April 2012.

From January 2010 through August 2012, webcameras frequently captured images of the active fumarolic area located on the NW edge of the crater; small white plumes regularly rose from the fumaroles. During an overflight on 22 October 2011, INGEOMINAS observed small plumes of vapor from a crack in the crater floor and the fumarolic field (figure 9).

Figure (see Caption) Figure 9. Close-up views of vapor plumes observed during an overflight of Puracé on 22 October 2011. (Top) Two adjacent sources of steam merge into a single plume rising from a narrow fumarolic field located on the NW crater rim. Note the bright yellow surfaces where sulfur has precipitated. Past measurements of fumarole temperatures here had reached 128°C. (Bottom) INGEOMINAS noted white vapor rising from a crack within the crater floor. Vapor plumes within the crater were too small to rise above the rim and had not been visible with webcameras. Both features, the fumarolic field outside of the crater and the crack along the crater floor, trend roughly E-W. Courtesy of INGEOMINAS.

Overview of seismicity. Table 2 summarizes available seismic data for 2008-2012. More discussion appears in chronological subsections below.

Table 2. Seismicity at Puracé volcano during January-April 2008 and from January 2010 through August 2012. Volcano-tectonic (VT), long-period, tornillo, hybrid, and tremor events are reported per month. Depths and magnitudes (local magnitudes, ML) of VT events are mainly reported as ranges of dominant activity, however, many magnitudes are the largest events that occurred per month. Courtesy of INGEOMINAS.

Month Volcano-tectonic VT Depths (km) VT Magnitude (ML) Long-period Tornillo Hybrid Tremor
Jan 2008 246 1-20 -0.89-2.27 243 13 1 2
Feb 2008 95 1-24 -0.62-2.4 113 17 5 0
Mar 2008 91 1-6 -0.89-2.27 123 15 1 2
Apr 2008 51 1-4 -0.4-1.25 88 15 0 1
 
Jan 2010 77 1-15 1.7 167 0 0 0
Feb 2010 29 1-17 1.3 127 0 0 0
Mar 2010 76 1-15 2.0 182 30 7 0
Apr 2010 70 1-12 2.2 91 61 0 0
May 2010 54 1-15 2.04 85 45 0 0
Jun 2010 58 0.8-18 1.4 89 21 0 0
Jul 2010 33 0.8-2 1.14 113 37 0 0
Aug 2010 13 0.8-5 1.1 83 34 2 0
Sep 2010 49 5-15 1-4.4 81 28 0 0
Oct 2010 22 3-18 0.3-1.3 122 31 0 0
Nov 2010 112 1-7.5 0.2-2.1 157 31 0 0
Dec 2010 76 0.3-4 2.7 247 9 0 15
Jan 2011 49 0.7-4 1.8 210 7 0 10
Feb 2011 34 1.2-16 1.5 177 20 0 3
Mar 2011 68 1-12 1.6 152 17 0 3
Apr 2011 63 1-12 1.3 137 21 0 1
May 2011 45 1-15 1.7 197 19 0 2
Jun 2011 31 1-15 1.7 143 9 0 3
Jul 2011 26 1-13 2.4 116 13 0 13
Aug 2011 32 2-3 1.8 125 13 0 2
Sep 2011 15 1-2 1.5 154 1 0 2
Oct 2011 25 1-15 2.1 151 17 2 2
Nov 2011 25 1-4.5 1.3 125 15 2 2
Dec 2011 45 1-4.5 1.0 116 28 7 5
Jan 2012 67 0.8-5 0.1-1.8 184 54 17 4
Feb 2012 86 1-17 1.4 248 20 19 4
Mar 2012 143 1-3 2.2 332 46 30 32
Apr 2012 90 1-12 1.7 248 67 40 26
May 2012 31 1-12 1.9 219 29 4 8
Jun 2012 57 1-12 1.8 190 51 22 11
Jul 2012 33 1-12 1.5 181 35 7 2
Aug 2012 28 1-12 2.1 165 48 15 11

Seismicity during January-April 2008. In January 2008, INGEOMINAS reported increased seismicity within 15 km of the Puracé edifice. There were two regions of activity, along the Moras fault system and within the immediate area of the volcano (figure 10). The Moras fault crosses beneath Puracé and was indicated by earthquake locations to the NE (in the San Rafael lake area) and to the SW (in Paletará Valley) (figure 11). These locations were sites for earthquake swarms in February and April 2000 (BGVN 25:05).

Figure (see Caption) Figure 10. A map of epicenters for VT earthquakes located in the region of Puracé in January 2008. A total of 169 events were primarily located beneath the edifice and up to 5 km N in a sulfur mining district. The deepest and most distal earthquakes (to the NE and SW) were attributed to other portions of the Moras fault system, which also cuts through Puracé. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 11. Puracé is the most active and northernmost volcano along the NW-SE trending Coconucos ridge. Numbers correspond to cones with craters (red hashed circles) and major peaks (red triangles): 1 Puracé volcano, 2 Piocollo, 3 Curiquinga, 4 Calambas, 5 Paletará, 6 Quintin, 7 Shaka (a cluster of craters with ponded water), 8 Killa, 9 Machangara (contains a small pond), 10 Pan de Azúcar (a prominent peak with a small summit crater), 11 Pukará, 12 Piki, 13 Amancay, 14 Chagartón (a large crater and peak has been attributed to this structure). Major regional faults are short dashed lines (brown); the local Coconucos fault and Río Vinagre fault zones are long-dashed lines (brown). The shaded terrain was derived from a 90 m SRTM (Shuttle Radar Topography Mission) digital elevation model. Highest elevations (greater than 4,000 m) are indicated by orange shading and reach a maximum of ~4,650 m; lowest elevations (gray shading) begin at 2,500 m. This map was compiled by GVP based on INGEOMINAS Popayán reports, maps, and aerial photos. Place names are from Arcila (1996), Cardona (1998), Kelsey (2001), and Monsalve and Pulgarín (1999).

Another local structure, the 2-3 km wide Río Vinagre fault system, underlies Puracé and trends subparallel with the Coconucos fault. Sturchio and others (1993) described the thermal waters, gases and sulfur deposits from Puracé and concluded that sulfur precipitation was likely resulting from hot magmatic gas ascending through the Río Vinagre fault zone. The hot springs were attributed to descending meteoric water interacting with the magmatic system.

A total of 508 events were detected in January 2008, primarily volcano-tectonic (VT) and long-period (LP) earthquakes, 249 and 243 events respectively (table 2). Tornillo (13 in total), hybrid (1 identified), and tremor (2 events identified) were also detected that month. Magnitudes of VTs were in the range of -0.89 to 2.27 and magnitudes of LPs in the range of 0.09 to 1.59. Focal depths tended to be shallow for those events occurring beneath the edifice (1-6 km) and deeper elsewhere along the fault system (6-20 km).

From February through April 2008, INGEOMINAS reported that seismicity from Puracé was relatively low (table 2). Approximately 210 earthquakes were detected each month, primarily LP and VT earthquakes. Tornillo events were detected throughout this time period averaging ~15 per month. Few hybrid events were detected in February and March (1-5 events), and tremor was detected in March and April (1-2 events). Earthquake magnitudes were largest in February (up to ML 2.4 for VT and LP earthquakes) and depths of earthquake foci were characteristically shallow for those events beneath the volcanic edifice (1-7 km). In February, earthquakes (6-17 km deep) were detected within the Moras fault zone with events in a similar distribution to those located in January 2008 (figure 10).

Episode of seismicity in December 2008.On 13 December 2008, INGEOMINAS released a special report announcing a short period of elevated seismicity. Beginning on 12 December, 625 LP earthquakes were detected over 29 hours. These events were low-magnitude (M 0.5-1) and clustered within the sulfur mine area ~2.8 km N. While these earthquakes were very shallow (

Seismicity during January 2010-August 2012. In 2010 and 2011, seismicity detected at Puracé was generally relatively low (table 2). Magnitudes of VT events during 2010 rarely exceeded 2.0 and earthquake foci were rarely deeper than 15 km. Earthquakes deeper than 10 km were typically beyond the edifice and related to the local fault systems. LP events occurred more frequently than VT events; INGEOMINAS reported that 81-247 LP events were detected per month and 13-112 VT events per month. Up to 61 tornillo earthquakes were detected in April 2010, however, no tornillos were recorded in January and February and only nine were recorded in December. Hybrid and tremor events were also rare; several months passed without detecting these events. In March and August, hybrid earthquakes were detected, and tremor was only reported in December.

Seismicity remained low throughout 2011, however, tremor (1-13 events per month) and tornillo earthquakes (1-28 events per month) were detected every month. Hybrid earthquakes were only reported from October through December 2011. VT and LP events persisted, but at a lower rate compared with the previous year; magnitudes and depths were also in the same range.

From January through August 2012, seismicity was consistently higher than the previous eight months. VT and LP events were more numerous, at rates of 28-143 per month and 165-332 per month, respectively. Magnitudes and depths of earthquakes remained within similar ranges as previously recorded. Tremor and hybrid earthquakes were detected every month.

INGEOMINAS emphasized that seismicity was particularly high in March 2012, with more VT and LP events that month than in any month in the past two years. Numerous tornillo, hybrid, and tremor events were also reported (table 2). Seismicity was still comparatively elevated but less so in the five months that followed March 2012.

References. Arcila, M., 1996. Geophysical monitoring of the Puracé volcano, Colombia, Annali di Geofisica, vol. XXXIX, N. 2, pp. 265-272.

Cardona, C.E., 1998. Caracterización de fuentes sísmicas en el volcán Puracé, Geology thesis, Universidad de Caldas.

Hurst, A.W., Rickerby, P.C., Scott, B.J., and Hashimoto, T., 2004. Magnetic field changes on White Island, New Zealand, and the value of magnetic changes for eruption forecasting, Journal of Volcanology and Geothermal Research, 136, pp. 53-70.

Kelsey, M.R., 2001. Climber's and Hiker's Guide to the World's Mountains & Volcanoes, Kelsey Publishing, Provo, UT, 4th ed., p. 1248.

Monsalve, M.L. and Pulgarín, B., 1999. Cadena Volcánica de los Coconucos (Colombia): Centros eruptivos y producto recientes, Boletín Geológico, 37 (1-3): 17-51.

Sheriff, R.E., 1982. Encyclopedic Dictionary of Exploration Geophysics, Society of Exploration Geophysicists, Tulsa, OK, p. 266.

Sturchio, N.C., Williams, S.N., and Sano, Y., 1993. The hydrothermal system of Volcan Puracé, Colombia, Bulletin of Volcanology, 55, pp. 289-296.

Geologic Background. One of the most active volcanoes of Colombia, Puracé consists of an andesitic stratovolcano with a 500-m-wide summit crater that was constructed over a dacitic shield volcano. It lies at the NW end of a volcanic massif opposite Pan de Azúcar stratovolcano, 6 km SE. A NW-SE-trending group of seven cones and craters, Los Coconucos, lies between the two larger edifices. Frequent explosive eruptions in the 19th and 20th centuries have modified the morphology of the summit crater. The largest eruptions occurred in 1849, 1869, and 1885.

Information Contacts: Instituto Colombiano de Geologia y Mineria (INGEOMINAS), Observatorio Vulcanológico y Sismológico de Popayán, Popayán, Colombia.


Sotara (Colombia) — September 2012 Citation iconCite this Report

Sotara

Colombia

2.108°N, 76.592°W; summit elev. 4400 m

All times are local (unless otherwise noted)


Monitoring efforts and recent seismic unrest

Sotará is considered a recently-active volcano within the Sotará volcanic complex described by the Instituto Colombiano de Geología y Minería (INGEOMINAS) as a caldera with resurgent volcanism. Two volcanoes developed within the caldera, Sotará in the center and Cerro Gordo on the S edge (figure 1). Two smaller volcanic peaks, Cerro Negro and Cerro Azafatudo, have been identified on the NW flank of the caldera and described as pre-Sotará features. Monitoring efforts by INGEOMINAS's Popayán Observatory, beginning in 1993, documented persistent seismicity, active fumarolic sites, and thermal springs. Historic eruptions (within 500 years) have not been observed from this complex.

Figure (see Caption) Figure 1. Aerial photos of Sotará volcanic complex were taken on 18 October 2011. (Left) The two volcanic centers, Sotará and Cerro Gordo, are aligned in this photo, looking NW. The taller peak, Sotará, is in the middle-ground and Cerro Gordo is in the foreground. On the horizon to the right is the low, gray peak of Azafatudo volcano. (Right) Looking approximately E into the amphitheater of Sotará, dome rock appears gray, however, much of the talus has been vegetated by red and yellow groundcover. Courtesy of INGEOMINAS.

Expanded monitoring efforts. The INGEOMINAS observatory based in Popayán (37 km NW of Sotará) began monitoring volcanic activity at Sotará in 1993. A seismic station was installed on the NE flank of the volcano that year and in 1995, significant seismicity was detected by that station. A temporary seismic station was added to the area in 1995 and by 2007, the monitoring network was expanded with permanent stations. In August 2012 the network contained eight geophysical stations that included short period and broadband seismic stations, electronic tiltmeters, a webcamera, and electronic distance meter (EDM) measuring sites (reflectors and benchmarks) (figure 2).

Figure (see Caption) Figure 2. The station locations for geophysical monitoring at Sotará volcano. (Left) In August 2012, the deformation network included EDM stations (two benchmarks and two reflectors) and two electronic tiltmeters. (Right) The seismic network included three broadband stations (SOTB, OSOB, and CGOR) and one shortperiod station (SOSO). Courtesy of INGEOMINAS.

Since monitoring began in 1993, the largest earthquake that occurred in this region had a local magnitude (ML) of 4.4 with an epicenter 16 km NW of Sotará. INGEOMINAS recorded the event at 1537 (local time) on 6 June 2010 with a focal depth at 6.9 km. The shaking caused by this earthquake was reported in six communities located as far as 20 km N of the epicenter. There were five aftershocks with magnitudes ranging 0.5-2.6. One of these aftershocks, occurring at 1555, was felt in two towns, Chapa and Coconuco (located 5.5 km NW and 15 km N of the epicenter, respectively). The last aftershock (ML 2.4) was recorded on 7 June with a 6-km focal depth and epicenter 22.7 km NW of the volcano.

INGEOMINAS reported low levels of seismicity from January 2010 through May 2012 (table 1). Volcano-tectonic (VT) earthquakes occurred more frequently than long period (LP) events or events interpreted as rockfalls (RF). VT hypocenters were calculated for 1-14 earthquakes per month except during October 2011, when 50 VT events were located within the Paletará Valley (see subsection Paletará Valley seismicity for details). From 2010 through May 2012, local magnitudes were rarely greater than 2.

Figure (see Caption) Table 1. Earthquakes registered at Sotará volcano from 2010 through September 2012. The "LP or RF" column contains the number of long-period (LP) or rockfall (RF) events counted for that month. Depths are reported in km. The values reported in the volcano-tectonic (VT) events column are located earthquakes; however, several months in 2010 did not include located hypocenters and total VTs are reported instead (underlined, text in red). Note that located earthquakes are a subset of the total number of events classified as VT. In March 2011, LP and RF signatures were classified but not tallied ("undisc."). The range of local magnitudes (ML) per month is shown in the last column. Courtesy of INGEOMINAS.

Paletará Valley seismicity. Beginning in January 2010, INGEOMINAS reported earthquakes frequently occurring within the Paletará Valley. In a roughly circular region ~5 km in diameter, VT earthquakes clustered at a distance 15-25 km NE from Sotará's edifice (figure 3). Many of these events were too small to locate (ML 

Figure (see Caption) Figure 3. VT seismicity during January 2011 was concentrated in an area NE of Sotará volcano. The yellow oval highlights epicenters within the Paletará Valley, a typical location for earthquakes since 2010. Focal depths were between 4 and 7 km. Three seismic stations are labeled in blue text: SOBZ (NNW of Sotará), SOSO (on the NW flank of Sotará), and CGOR (on the NW flank of Cerro Gordo). Courtesy of INGEOMINAS.

In 2011, relatively large earthquakes were detected in October and December within Paletará Valley. INGEOMINAS reported elevated seismicity that began on 14 October at 1423. Low magnitude events, characterized as rockfalls, were also recorded on 14 October. Over the next 24 hours, ~38 earthquakes were recorded and by the end of the month, 54 VT earthquakes were registered with epicenters within ~7-10 km NE of Sotará. Local magnitudes ranged from 0.1-2.7. INGEOMINAS announced in a 15 October assessment that seismicity had not affected the Sotará volcanic system and communities located near the volcano were not at risk.

On 18 December 2011 at 0902 an ML 3.2 earthquake was detected by the INGEOMINAS seismic network. The epicenter was 21 km SW of Sotará and 17.5 km deep. Shaking was reported in the town of La Vega located ~20 km W of Sotará.

Seismic unrest in 2012. In early 2012, ~6 earthquakes were located per month and epicenters tended to cluster NE of the edifice (table 1). In April 2012, several earthquakes also appeared ~10 km SW of Sotará. From January through May 2012, VT earthquakes (no LPs occurred) were shallow (0.5-2 km), however, due to small magnitudes (ML 0.5-2.1), the events did not cause noticeable shaking in local communities.

In their June 2012 technical bulletin, INGEOMINAS noted increased seismicity clustered within 4 km NE of the summit. Local seismic stations detected 744 events and located 120 events classified as VTs. Epicenters were clustered in an elongate region striking 3 km NE. Local magnitudes ranged between -0.5-2.0 with depths ranging 2-6 km.

Seismicity decreased by 30 June; however, on 25 July, numerous VT events were registered. By 31 July, 1,232 VT earthquakes had been detected (575 of which were located), 2,295 events were detected but not classified, and nine LP events were detected. Epicenters were dispersed in a larger zone NE of the summit, however, magnitudes and depths were similar to those detected during the previous month.

A site visit conducted by INGEOMINAS in July included the NW sector of Sotará where hot springs were located. Investigators measured temperatures and assessed the geochemistry of the springs and determined that no significant changes had occurred.

Increased seismicity persisted in early August 2012 and by 8 August, INGEOMINAS reported that, on average, 150 earthquakes were occurring per day (figure 4). In a special bulletin, INGEOMINAS assessed the seismicity and also highlighted new conclusions from the tiltmeter network. They noted that from January 2010 through July 2012, no deformation was detected by the electronic tiltmeters. By early August 2012, an inflation trend was detected in the NE sector that was potentially linked to the cluster of earthquakes in the immediate area. No significant trends were interpreted from the SW sector. On 8 August 2012, INGEOMINAS announced that the Alert Level was raised to III (Yellow; "changes in the behavior of volcanic activity"), or the second lowest level.

Figure (see Caption) Figure 4. The number of VT earthquakes detected at Sotará dramatically increased in July 2012 and continued at a relatively high rate through early August 2012. (Top) In August 2012, earthquakes were clustered within 2 km NE of the edifice; the two cross-sections indicate shallow hypocenters in the range of 2-5 km. (Bottom) The histogram of VT events from June 2012 through August 2012 demonstrates three periods of increased seismicity; while minor LP events were detected during this time interval, they did not appear in the histogram. Courtesy of INGEOMINAS.

INGEOMINAS continued to monitor Sotará closely from September through early October 2012 and noted decreasing seismicity. Fewer earthquakes were registered (22-100 VTs) and magnitudes ranged 0.1-1.6. Clear images captured by the local webcamera (located 3 km NW) showed no morphological changes (figure 5).

Figure (see Caption) Figure 5. A view of Sotará's NW flank from the webcamera location on Cerro Crespo. From left to right, starting at the top, these images were taken on 5, 13, 21, and 26 July 2012. Courtesy of INGEOMINAS.

References. Cediel, F., Shaw, R.P., and Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79, p. 815-848.

Page, W.D., 1983, Popayán earthquake of 31 March 1983 geologic and seismologic aspects, Woodward Clyde Consultants, San Francisco Area Office, Walnut Creek, CA, USA, p. 51-59.

Geologic Background. Volcán Sotará, also known as Cerro Azafatudo, is an andesitic-dacitic stratovolcano about 25 km SSE of Popayán city in southern Colombia, SW of Puracé volcano. Three calderas, 4.5, 2.5, and 1 km in diameter, give the summit an irregular profile. No historical eruptions are known, though there is current fumarolic and hot spring activity.

Information Contacts: Instituto Colombiano de Geologia y Mineria (INGEOMINAS), Observatorio Vulcanológico y Sismológico de Popayán, Popayán, Colombia.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports