Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Nishinoshima (Japan) Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Nyiragongo (DR Congo) Strong thermal anomalies and gas emission from lava lake through November 2020

Kerinci (Indonesia) Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Whakaari/White Island (New Zealand) Gas-and-steam emissions with some re-suspended ash in November 2020

Suwanosejima (Japan) Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Karangetang (Indonesia) Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Nevado del Ruiz (Colombia) Dome growth and ash emissions continue during July-December 2020

Ibu (Indonesia) Persistent daily ash emissions and thermal anomalies, July-December 2020

Etna (Italy) Strombolian explosions and ash plumes persist from multiple craters during August-November 2020

Copahue (Chile-Argentina) New eruption in June-October 2020 with crater incandescence, ash plumes, and local ashfall

Masaya (Nicaragua) Lava lake continues accompanied by gas-and-steam emissions during June-November 2020

Nevados de Chillan (Chile) Frequent explosions, a lava flow on the N flank, and lava dome growth during July-October 2020



Nishinoshima (Japan) — February 2021 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted for two years followed by two brief eruptions in 2017 and 2018. The next eruption, from early December 2019 through August 2020, included ash plumes, incandescent ejecta, and lava flows; it produced a large pyroclastic cone with a wide summit crater and extensive lava flows that significantly enlarged the island. This report covers the end of the eruption and cooling during September 2020-January 2021. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular observation overflights.

Ash emissions were last reported on 27 August 2020. The very high levels of thermal energy from numerous lava flows, ash, and incandescent tephra that peaked during early July decreased significantly during August and September. Continued cooling of the fresh lava and the summit crater lasted into early January 2021 (figure 107). Monthly overflights and observations by scientists confirmed areas of steam emissions at the summit and on the flanks and discolored water around the island, but no eruptive activity.

Figure (see Caption) Figure 107. High levels of thermal activity at Nishinoshima during June and July 2020 resulted from extensive lava flows and explosions of incandescent tephra. Although the last ash emission was reported on 27 August 2020, cooling of new material lasted into early January 2021. The MIROVA log radiative power graph of thermal activity covers the year ending on 3 February 2021. Courtesy of MIROVA.

Thermal activity declined significantly at Nishinoshima during August 2020 (BGVN 45:09). Only two days had two MODVOLC alerts (11 and 30), and four other days (18, 20, 21, 29) had single alerts. During JCG overflights on 19 and 23 August there were no ash emissions or lava flows observed, although steam plumes rose over 2 km above the summit crater during both visits. The last ash emission was reported by the Tokyo VAAC on 27 August 2020. No eruptive activity was observed by JMA during an overflight on 5 September, but steam plumes were rising from the summit crater (figure 108). No significant changes were observed in the shape of the pyroclastic cone or the coastline. Yellowish brown discolored water appeared around the western half of the island, and high temperature was still measured on the inner wall of the crater. Faint traces of SO2 plumes were present in satellite images in early September; the last plume identified was on 18 September. Six days with single MODVOLC alerts were recorded during 3-19 September, and the final thermal alert appeared on 1 October 2020.

Figure (see Caption) Figure 108. No eruptive activity was observed during a JMA overflight of Nishinoshima on 5 September 2020, but steam rose from numerous places within the enlarged summit crater (inset). Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, September 2020).

Steam plumes and high temperatures were noted at the summit crater on 28 October, and brown discolored water was present around the S coast of the island (figure 109), but there were no other signs of volcanic activity. Observations from the sea conducted on 2 November 2020 by researchers aboard the Maritime Meteorological Observatory marine weather observation ship "Ryofu Maru" confirmed there was no ongoing eruptive activity. In addition to steam plumes at the summit, they also noted steam rising from multiple cracks on the cooling surface of the lava flow area on the N side of the pyroclastic cone (figure 110). Only steam plumes from inside the summit crater were observed during an overflight on 24 November.

Figure (see Caption) Figure 109. On a JCG overflight above Nishinoshima on 28 October 2020 there were no signs of eruptive activity; steam plumes were present in the summit crater and brown discolored water was visible around the S coast of the island. Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, October 2020).
Figure (see Caption) Figure 110. Observations of Nishinoshima by staff aboard the Maritime Meteorological Observatory ship "Ryofu Maru" on 2 November 2020 showed a steam plume rising from the lava flow area on the N side of the pyroclastic cone (arrow) and minor steam above the cone. Courtesy of JMA (Monthly report of activity at Nishinoshima, November 2020).

JMA reduced the warning area around the crater on 18 December 2020 from 2.5 to 1.5 km due to decreased activity. On 7 December a steam plume rose from the inner wall of the summit crater and thermal imaging indicated the area was still hot. Brown discolored water was observed on the SE and SW coasts. Researchers aboard a ship from the Earthquake Research Institute at the University of Tokyo and the Marine Research and Development Organization reported continued steam plumes in the summit crater, around the lava flows on the N flank, and along the S coast during 15-29 December (figure 111). Steam plumes and elevated temperatures were still measured inside the summit crater during an overflight by the Japan Coast Guard on 25 January 2021, and discolored water persisted on the SE and SW coasts; there was no evidence of eruptive activity.

Figure (see Caption) Figure 111. Observations of Nishinoshima from the sea by researchers from the Earthquake Research Institute (University of Tokyo) and the Marine Research and Development Organization, which took place from 15-29 December 2020, showed fumarolic acitivity not only inside the summit crater, but also in the lava flow area on the N side of the pyroclastic cone (left, 20 December) and in places along the southern coast (right, 23 December). (Monthly report of activity at Nishinoshima, December 2020).

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); Volcano Research Center (VRC-ERI), Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyiragongo (DR Congo) — December 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Strong thermal anomalies and gas emission from lava lake through November 2020

Nyiragongo is a stratovolcano in the DR Congo with a deep summit crater containing a lava lake and a small active cone. During June 2018-May 2020, the volcano exhibited strong thermal signals primarily due to the lava lake, along with incandescence, seismicity, and gas-and-steam plumes (BGVN 44:05, 44:12, 45:06). The volcano is monitored by the Observatoire Volcanologique de Goma (OVG). This report summarizes activity during June-November 2020, based on satellite data.

Infrared MODIS satellite data showed almost daily strong thermal activity during June-November 2020 from MIROVA (Middle InfraRed Observation of Volcanic Activity), consistent with a large lava lake. Numerous hotspots were also identified every month by MODVOLC. Although clouds frequently obscured the view from space, a clear Sentinel-2 image in early June showed a gas-and-steam plume as well as a strong thermal anomaly (figure 76).

Figure (see Caption) Figure 76. Sentinel-2 satellite imagery of Nyiragongo on 1 June 2020. A gas-and-steam is visible in the natural color image (bands 4, 3, 2) rising from a pit in the center of the crater (left), while the false color image (bands 12, 11, 4) reveals a strong thermal signal from a lava lake (right). Courtesy of Sentinel Hub Playground.

During the first half of June 2020, OVG reported that SO2 levels had decreased compared to levels in May (7,000 tons/day); during the second half of June the SO2 flux began to increase again. High levels of sulfur dioxide were recorded almost every day in the region above or near the volcano by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite (figure 77). According to OVG, SO2 flux ranged from 819-5,819 tons/day during June. The number of days with a high SO2 flux decreased somewhat in July and August, with high levels recorded during about half of the days. The volume of SO2 emissions slightly increased in early July, based on data from the DOAS station in Rusayo, measuring 6,787 tons/day on 8 July (the highest value reported during this reporting period), and then declined to 509 tons/day by 20 July. The SO2 flux continued to gradually decline, with high values of 5,153 tons/day in August and 4,468 tons/day in September. The number of days with high SO2 decreased further in September and October but returned to about half of the days in November.

Figure (see Caption) Figure 77. TROPOMI image of SO2 plume on 27 June 2020 in the Nyiragongo-Nyamulagira area. The plume drifted SSE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During 12-13 July a multidisciplinary team of OVG scientists visited the volcano to take measurements of the crater using a TCRM1102 Plus2 laser. They noted that the crater had expanded by 47.3 mm in the SW area, due to the rise in the lava lake level since early 2020. The OVG team took photos of the small cone in the lava lake that has been active since 2014, recently characterized by white gas-and-steam emissions (figure 78). OVG noted that the active lava lake had subsided roughly 20 m (figure78).

Figure (see Caption) Figure 78. Photos (color corrected) of the crater at Nyiragongo showing the small active cone generating gas-and-steam emissions (left) and the active lava lake also characterized by white gas-and-steam emissions on 12 July 2020 (right). Courtesy of OVG (Rapport OVG Juillet 2020).

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Kerinci (Indonesia) — December 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Kerinci, located in Sumatra, Indonesia, has had numerous explosive eruptions since 1838, with more recent activity characterized by gas-and-steam and ash plumes. The current eruptive episode began in April 2018 and has recently consisted of intermittent brown ash emissions and white gas-and-steam emissions (BGVN 45:07); similar activity continued from June through November 2020. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity has been characterized by dominantly white and brown gas-and-steam emissions and occasional ash plumes, according to PVMBG. Near daily gas-and-steam emissions were observed rising 50-6,400 m above the crater throughout the reporting period: beginning in late July and continuing intermittently though November. Sentinel-2 satellite imagery showed frequent brown emissions rising above the summit crater at varying intensities and drifting in different directions from July to November (figure 21).

Figure (see Caption) Figure 21. Sentinel-2 satellite imagery of brown emissions at Kerinci from July through November 2020 drifting in multiple directions. On 27 July (top left) the brown emissions drifted SW. On 31 August (top right) the brown emissions drifted W. On 2 September (bottom left) slightly weaker brown emissions drifting W. On 4 November (bottom right) weak brown emissions mostly remained within the crater, some of which drifted E. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

During June through July the only activity reported by PVMBG consisted of white gas-and-steam emissions and brown emissions. On 4 June white gas-and-steam emissions rose to a maximum height of 6.4 km above the crater. White-and-brown emissions rose to a maximum height of 700 m above the crater on 2 June and 28 July.

Continuous white-and-brown gas-and-steam emissions were reported in August that rose 50-1,000 m above the crater. The number of ash plumes reported during this month increased compared to the previous months. In a Volcano Observatory Notice for Aviation (VONA) issued on 7 August at 1024, PVMBG reported an ash plume that rose 600 m above the crater and drifted E, SE, and NE. In addition, the Darwin VAAC released two notices that described continuous minor ash emissions rising to 4.3 km altitude and drifting E and NE. On 9 August an ash plume rose 600 m above the crater and drifted ENE at 1140. An ash plume was observed rising to a maximum of 1 km above the crater, drifting E, SE, and NE on 12 August at 1602, according to a PVMBG VONA and Darwin VAAC advisory. The following day, brown emissions rose to a maximum of 1 km above the crater and were accompanied by a 600-m-high ash plume that drifted ENE at 1225. Ground observers on 15 August reported an eruption column that rose to 4.6 km altitude; PVMBG described brown ash emissions up to 800 m above the crater drifting NW at 0731 (figure 22). During 20-21 August pilots reported an ash plume rising 150-770 m above the crater drifting NE and SW, respectively.

Figure (see Caption) Figure 22. Webcam image of an ash plume rising above Kerinci on 15 August 2020. Courtesy of MAGMA Indonesia.

Activity in September had decreased slightly compared to the previous month, characterized by only white-and-brown gas-and-steam emissions that rose 50-300 m above the crater; solely brown emissions were observed on 30 September and rose 50-100 m above the crater. This low level of activity persisted into October, with white gas-and-steam emissions to 50-200 m above the crater and brown emissions rising 50-300 m above the crater. On 16 October PVMBG released a VONA at 0340 that reported an ash plume rising 687 m above the crater and drifting NE. On 17 October white, brown, and black ash plumes that rose 100-800 m above the crater drifted NE according to both PVMBG and a Darwin VAAC advisory (figure 23). During 18-19 October white, brown, and black ash emissions rose up to 400 m above the crater and drifted NE and E.

Figure (see Caption) Figure 23. Webcam image of a brown ash emission from Kerinci on 17 October 2020. Courtesy of MAGMA Indonesia.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Whakaari/White Island (New Zealand) — December 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Gas-and-steam emissions with some re-suspended ash in November 2020

Whakaari/White Island, located in the Bay of Plenty 50 km offshore of North Island, has been New Zealand’s most active volcano since 1976. Activity has been previously characterized by phreatic activity, explosions, and ash emissions (BGVN 42:05). The most recent eruption occurred on 9 December 2019, which consisted of an explosion that generated an ash plume and pyroclastic surge that affected the entire crater area, resulting in 21 fatalities and many injuries (BGVN 45:02). This report updates information from February through November 2020, which includes dominantly gas-and-steam emissions along with elevated surface temperatures, using reports from the New Zealand GeoNet Project, the Wellington Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity at Whakaari/White Island has declined and has been dominated by white gas-and-steam emissions during the reporting period; no explosive eruptive activity has been detected since 9 December 2019. During February through 22 June, the Volcanic Activity Level (VAL) remained at a 2 (moderate to heightened volcanic unrest) and the Aviation Color Code was Yellow. GeoNet reported that satellite data showed some subsidence along the W wall of the Main Crater and near the 1914 landslide scarp, though the rate had reduced compared to previous months. Thermal infrared data indicated that the fumarolic gases and five lobes of lava that were first observed in early January 2020 in the Main Crater were 550-570°C on 4 February and 660°C on 19 February. A small pond of water had begun to form in the vent area and exhibited small-scale gas-and-steam-driven water jetting, similar to the activity during September-December 2019. Gas data showed a steady decline in SO2 and CO2 levels, though overall they were still slightly elevated.

Similar activity was reported in March and April; the temperatures of the fumaroles and lava in the Main Crater were 746°C on 10 March, the highest recorded temperature to date. SO2 and CO2 gas emissions remained elevated, though had overall decreased since December 2019. Small-scale water jetting continued to be observed in the vent area. During April, public reports mentioned heightened gas-and-steam activity, but no eruptions were detected. A GeoNet report issued on 16 April stated that high temperatures were apparent in the vent area at night.

Whakaari remained at an elevated state of unrest during May, consisting of dominantly gas-and-steam emissions. Monitoring flights noted that SO2 and CO2 emissions had increased briefly during 20-27 May. On 20 May, the lava lobes remained hot, with temperatures around 500°C; a nighttime glow from the gas emissions surrounding the lava was visible in webcam images. Tremor levels remained low with occasional slightly elevated episodes, which included some shallow-source volcanic earthquakes. Satellite-based measurements recorded several centimeters of subsidence in the ground around the active vent area since December 2019. During a gas observation flight on 28 May there was a short-lived gas pulse, accompanied by an increase in SO2 and CO2 emissions, and minor inflation in the vent area (figure 96).

Figure (see Caption) Figure 96. Photo of a strong gas-and-steam plume rising above Whakaari/White Island on 28 May 2020. Courtesy of GeoNet.

An observation flight made on 3 June reported a decline in gas flux compared to the measurements made on 28 May. Thermal infrared images taken during the flight showed that the lava lobes were still hot, at 450°C, and continued to generate incandescence that was visible at night in webcams. On 16 June the VAL was lowered to 1 (minor volcanic unrest) and on 22 June the Aviation Color Code had decreased to Green.

Minor volcanic unrest continued in July; the level of volcanic tremors has remained generally low, with the exception of two short bursts of moderate volcanic tremors in at the beginning of the month. Temperatures in the active vents remained high (540°C) and volcanic gases persisted at moderate rate, similar to those measured since May, according to an observation flight made during the week of 30 July. Subsidence continued to be observed in the active vent area, as well as along the main crater wall, S and W of the active vents. Recent rainfall has created small ponds of water on the crater floor, though they did not infiltrate the vent areas.

Gas-and-steam emissions persisted during August through October at relatively high rates (figures 97 and 98). A short episode of moderate volcanic tremor was detected in early August, but otherwise seismicity remained low. Updated temperatures of the active vent area were 440°C on 15 September, which had decreased 100°C since July. Rain continued to collect at the crater floor, forming a small lake; minor areas of gas-and-steam emissions can be seen in this lake. Ongoing subsidence was observed on the Main Crater wall and S and W of the 2019 active vents.

Figure (see Caption) Figure 97. Photo of an observation flight over Whakaari/White Island on 8 September 2020 showing white gas-and-steam emissions from the vent area. Photo courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 98. Image of Whakaari/White Island from Whakatane in the North Island of New Zealand showing a white gas-and-steam plume on 26 October 2020. Courtesy of GeoNet.

Activity during November was primarily characterized by persistent, moderate-to-large gas-and-steam plumes that drifted downwind for several kilometers but did not reach the mainland. The SO2 flux was 618 tons/day and the CO2 flux was 2,390 tons/day. New observations on 11 November noted some occasional ash deposits on the webcams in conjunction with mainland reports of a darker than usual plume (figure 99). Satellite images provided by MetService, courtesy of the Japan Meteorological Agency, confirmed the ash emission, but later images showed little to no apparent ash; GNS confirmed that no eruptive activity had occurred. Initial analyses indicated that the ash originated from loose material around the vent was being entrained into the gas-and-steam plumes. Observations from an overflight on 12 November showed that there was no substantial change in the location and size of the active vents; rainfall continued to collect on the floor of the 1978/90 Crater, reforming the shallow lake. A small sequence of earthquakes was detected close to the volcano with several episodes of slightly increased volcanic tremors.

During 12-14 November the Wellington VAAC issued multiple advisories noting gas, steam, and ash plumes that rose to 1.5-1.8 km altitude and drifted E and SE, based on satellite data, reports from pilots, and reports from GeoNet. As a result, the VAL was increased to 2 and the Aviation Color Code was raised to Yellow. Scientists on another observation flight on 16 November reported that small amounts of ash continued to be present in gas-and-steam emissions, though laboratory analyses showed that this ash was resuspended material and not from new eruptive or magmatic activity. The SO2 and CO2 flux remained above background levels but were slightly lower than the previous week’s measurements: 710 tons/day and 1,937 tons/day. Seismicity was similar to the previous week, characterized by a sequence of small earthquakes, a larger than normal volcanic earthquake located near the volcano, and ongoing low-level volcanic tremors. During 16-17 November plumes with resuspended ash were observed rising to 460 m altitude, drifting E and NE, according to a VAAC advisory (figure 99). During 20-24 November gas-and-steam emissions that contained a minor amount of resuspended ash rose to 1.2 km altitude and drifted in multiple directions, based on webcam and satellite images and information from GeoNet.

Figure (see Caption) Figure 99. Left: Photo of a gas observation flight over Whakaari/White Island on 11 November 2020 showing some dark particles in the gas-and-steam plumes, which were deposited on some webcams. Photo has been color corrected and straightened. Courtesy of GeoNet. Right: Photo showing gas, steam, and ash emissions rising above the 2019 Main Crater area on 16 November 2020. Courtesy of GNS Science (17 November 2020 report).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of eleven low-power thermal anomalies during January to late March 2020; a single weak thermal anomaly was detected in early July (figure 100). The elevated surface temperatures during February-May 2020 were detected in Sentinel-2 thermal satellite images in the Main Crater area, occasionally accompanied by gas-and-steam emissions (figure 101). Persistent white gas-and-steam emissions rising above the Main Crater area were observed in satellite imagery on clear weather days and drifting in multiple directions (figure 102). The small lake that had formed due to rainfall was also visible to the E of the active vents.

Figure (see Caption) Figure 100. Low-power, infrequent thermal activity at Whakaari/White Island was detected during January through late March 2020, as reflected in the MIROVA data (Log Radiative Power). A single thermal anomaly was shown in early July. Courtesy of MIROVA.
Figure (see Caption) Figure 101. Sentinel-2 thermal satellite images in the Main Crater area of Whakaari/White Island show residual elevated temperatures from the December 2019 eruption, accompanied by gas-and-steam emissions and drifting in different directions during February-May 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 102. Sentinel-2 images showing persistent white gas-and-steam plumes rising from Main Crater area of Whakaari/White Island during March-November 2020 and drifting in multiple directions. A small pond of water (light blue-green) is visible in the vent area to the E of the plumes. On 11 November (bottom right), the color of the plume is gray and contains a small amount of ash. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brad Scott, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: https://twitter.com/Eruptn).


Suwanosejima (Japan) — January 2021 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ashfall. Continuous activity since October 2004 has included intermittent explosions which generate ash plumes that rise hundreds of meters above the summit to altitudes between 1 and 3 km. Incandescence is often observed at night and ejecta periodically reaches over a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. Ongoing activity for the second half of 2020, which includes significantly increased activity in December, is covered in this report with information provided by the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

A steady increase in activity was reported during July-December 2020. The number of explosions recorded increased each month from only six during July to 460 during December. The energy of the explosions increased as well; ejecta was reported 600 m from the crater during August, but a large bomb reached 1.3 km from the crater at the end of December. After an increased period of explosions late in December, JMA raised the Alert Level from 2 to 3 on a 5-level scale. The MIROVA graph of thermal activity indicated intermittent anomalies from July through December 2020, with a pulse of activity in the second half of December (figure 48).

Figure (see Caption) Figure 48. MIROVA thermal activity for Suwanosejima for the period from 3 February through December 2020 shows pulses of activity in February and April, with intermittent anomalies until another period of frequent stronger activity in December. Courtesy of MIROVA.

Six explosions were recorded during July 2020, compared with only one during June. According to JMA, the tallest plume rose 2,000 m above the crater rim. Incandescent ejecta was occasionally observed at night. The Tokyo VAAC reported a number of ash plumes that rose to 1.2-2.7 km altitude and drifted NW and W during the second half of the month (figure 49). Activity increased during August 2020 when thirteen explosions were reported. The Tokyo VAAC reported a few ash plumes during 1-6 August that rose to 1.8-2.4 km altitude and drifted NW; a larger pulse of activity during 18-22 August produced plumes that rose to altitudes ranging from 1.8 to over 2.7 km. Ashfall was reported on 19 and 20 August in the village located 4 km SSW of the crater; incandescence was visible at the summit and ash plumes drifted SW in satellite imagery on 19 August (figure 50). A MODVOLC thermal alert was issued on 19 August. On 21 August a large bomb was ejected 600 m from the Otake crater in an explosion early in the day; later that afternoon, an ash plume rose to more than 2,000 m above the crater rim. During 19-22 August, SO2 emissions were recorded each day by the TROPOMI instrument on the Sentinel-5P satellite (figure 51).

Figure (see Caption) Figure 49. An ash emission at Suwanosejima rose to 2.7 km altitude and drifted NW on 27 July 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, July 2020).
Figure (see Caption) Figure 50. Ash drifted SW from the summit crater of Suwanosejima on 19 August 2020 and a bright thermal anomaly was present at the summit. Residents of the village 4 km SW reported ashfall that day and the next. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. A period of increased activity at Suwanosejima during 19-22 August 2020 produced SO2 emissions that were measured by the TROPOMI instrument on the Sentinel-5P satellite. Nishinoshima, was also producing significant SO2 at the same time. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Thirteen explosions were recorded during September 2020, with the highest ash plumes reaching 2,000 m above the crater rim, and bombs falling 400 m from the crater. Ashfall was recorded on 20 September in the community located 4 km SSW. The Tokyo VAAC reported intermittent ash plumes during the month that rose to 1.2-2.1 km altitude and drifted in several directions. Incandescence was frequently observed at night (figure 52). Explosive activity increased during October with 22 explosions recorded. Ash plumes rose over 2,000 m above the crater rim, and bombs reached 700 m from the crater. Steam plumes rose 2,300 m above the crater rim. Ashfall and loud noises were confirmed several times between 2 and 14 October in the nearby village. A MODVOLC thermal alert was issued on 6 October. The Tokyo VAAC reported multiple ash plumes throughout the month; they usually rose to 1.5-2.1 km altitude and drifted in many directions. The plume on 28 October rose to over 2.7 km altitude and was stationary.

Figure (see Caption) Figure 52. Incandescence at night and ash emissions were observed multiple times at Suwanosejima during September and October 2020 including on 21 and 26 September (top) and 29 October 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, September and October 2020).

Frequent explosions occurred during November 2020, with a sharp increase in the number of explosions to 105 events compared with October. Ash plumes rose to 1,800 m above the crater rim and bombs were ejected 700 m. Occasional ashfall and loud noises were reported from the nearby community throughout the month. Scientists measured no specific changes to the surface temperature around the volcano during an overflight early on 5 November compared with the previous year. At 0818 on 5 November a small ash explosion at the summit crater was photographed by the crew during an observation flight (figure 53). On 12 and 13 November, incandescent ejecta fell 600 m from the crater and ash emissions rose 1,500 m above the crater rim (figure 54).

Figure (see Caption) Figure 53. A minor explosion produced a small ash plume at Suwanosejima during an overflight by JMA on the morning of 5 November 2020. The thermal activity was concentrated at the base of the explosion (inset). Image taken from off the E coast. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).
Figure (see Caption) Figure 54. On 12 and 13 November 2020 incandescent ejecta from Suwanosejima reached 600 m from the crater (top) and ash emissions rose 1,500 m above the crater rim (bottom). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).

During December 2020 there were 460 explosions reported, a significant increase from the previous months. Ash plumes reached 1,800 m above the summit. Three MODVOLC thermal alerts were issued on 25 December and two were issued the next day. The number of explosions increased substantially at the Otake crater between 21 and 29 December, and early on 28 December a large bomb was ejected to 1.3 km SE of the crater (figure 55). A second explosion a few hours later ejected another bomb 1.1 km SE. An overflight later that day confirmed the explosion, and ash emissions were still visible (figure 56), although cloudy weather prevented views of the crater. Ashfall was noted and loud sounds heard in the nearby village. A summary graph of observations throughout 2020 indicated that activity was high from January through May, quieter during June, and then increased again from July through the end of the year (figure 57).

Figure (see Caption) Figure 55. Early on 28 December 2020 a large explosion at Suwanosejima sent a volcanic bomb 1.3 km SE from the summit (bright spot on left flank in large photo). Thermal imaging taken the same day showed the heat at the eruption site and multiple fragments of warm ejecta scattered around the crater area (inset). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 56. Ash emissions were still visible midday on 28 December 2020 at Suwanosejima during a helicopter overflight by the 10th Regional Coast Guard. Image taken from the SW flank of the volcano. Two large explosions earlier in the day had sent ejecta more than a kilometer from the crater. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 57. Activity summary for Suwanosejima for January-December 2020 when 764 explosions were recorded. Black bars represent the height of steam, gas, or ash plumes in meters above the crater rim, gray volcano icons represent explosions, usually accompanied by an ash plume, red icons represent large explosions with ash plumes, orange diamonds indicate incandescence observed in webcams. Courtesy of JMA (Suwanosejima volcanic activity annual report, 2020).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Karangetang (Indonesia) — December 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Karangetang (also known as Api Siau) is located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia and consists of two active summit craters: a N crater (Kawah Dua) and a S crater (Kawah Utama, also referred to as the “Main Crater”). More than 50 eruptions have been observed since 1675. The current eruption began in November 2018 and has recently been characterized by frequent incandescent block avalanches, thermal anomalies in the crater, and gas-and-steam plumes (BGVN 45:06). This report covers activity from June through November 2020, which includes dominantly crater anomalies, few ash plumes, and gas-and-steam emissions. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and various satellite data.

Activity decreased significantly after mid-January 2020 and has been characterized by dominantly gas-and-steam emissions and occasional ash plumes, according to PVMBG. Daily gas-and-steam emissions were observed rising 25-600 m above the Main Crater (S crater) during the reporting period and intermittent emissions rising 25-300 m above Kawah Dua (N crater).

The only activity reported by PVMBG in June, August, and October was daily gas-and-steam emissions above the Main Crater and Kawah Dua (figure 47). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power thermal anomalies during June through late July, which includes a slight increase in power during late July (figure 48). During 14-15 July strong rumbling from Kawah Dua was accompanied by white-gray emissions that rose 150-200 m above the crater. Crater incandescence was observed up to 10 m above the crater. According to webcam imagery from MAGMA Indonesia, intermittent incandescence was observed at night from both craters through 25 July. In a Volcano Observatory Notice for Aviation (VONA) issued on 5 September, PVMBG reported an ash plume that rose 800 m above the crater.

Figure (see Caption) Figure 47. Webcam image of gas-and-steam plumes rising above the two summit craters at Karangetang on 16 June 2020. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 48. Intermittent low-power thermal anomalies at Karangetang were reported during June through July 2020 with a slight increase in power in late July, according to the MIROVA graph (Log Radiative Power). No thermal activity was detected during August to late October; in mid-November a short episode of increased activity occurred. Courtesy of MIROVA.

Thermal activity increased briefly during mid-November when hot material was reported extending 500-1,000 m NW of the Main Crater, accompanied by gas-and-steam emissions rising 200 m above the crater. Corresponding detection of MODIS thermal anomalies was seen in MIROVA graphs (see figure 48), and the MODVOLC system showed alerts on 13 and 15 November. On 16 November blue emissions were observed above the Main Crater drifting W. Sentinel-2 thermal images showed elevated temperatures in both summit craters throughout the reporting period, accompanied by gas-and-steam emissions and movement of hot material on the NW flank on 19 November (figure 49). White gas-and-steam emissions rose to a maximum height of 300 m above Kawah Dua on 22 November and 600 m above the Main Crater on 28 November.

Figure (see Caption) Figure 49. Persistent thermal anomalies (bright yellow-orange) at Karangetang were detected in both summit craters using Sentinel-2 thermal satellite imagery during June through November 2020. Gas-and-steam emissions were also occasionally detected in both craters as seen on 17 June (top left) and 20 September (bottom left) 2020. On 19 November (bottom right) the Main Crater (S) showed a hot thermal signature extending NW. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — January 2021 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Dome growth and ash emissions continue during July-December 2020

Colombia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, including documented observations since 1570. Ruiz remained quiet for 20 years after the deadly September 1985-July 1991 eruption until a period of explosive activity from February 2012 into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a slowly growing lava dome inside the Arenas crater in August 2015. Additional information has caused a revision to earlier reporting that eruptive activity ended in May 2017 and began again that December (BGVN 44:12); activity appears to have continued throughout 2017 with intermittent ash emissions and thermal evidence of dome growth. Periods of increased thermal activity alternated with periods of increased explosive activity during 2018-2019 and into 2020; SO2 emissions persisted at significant levels. The lava dome has continued to grow through 2020. This report covers ongoing activity from July-December 2020 using information from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued throughout July-December 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 6.7 km altitude on 7 December. SGC interpreted repeated episodes of “drumbeat seismicity” as an indication of continued dome growth throughout the period. Satellite thermal anomalies also suggested that dome growth continued. The MIROVA graph of thermal activity suggests that the dome was quiet in July and early August, but small pulses of thermal energy were recorded every few weeks for the remainder of 2020 (figure 115). Plots of the cumulative number and magnitude of seismic events at Nevado del Ruiz between January 2010 and November 2020 show a stable trend with periodic sharp increases in activity or magnitude throughout that time. SGC has adjusted the warning levels over time according to changes in the slope of the curves (figure 116).

Figure (see Caption) Figure 115. Thermal energy shown in the MIROVA graph of log radiative power at Nevado del Ruiz from 3 February 2020 through the end of the year indicates that higher levels of thermal energy lasted through April 2020; a quieter period from late May-early August was followed by low-level persistent anomalies through the end of the year. Courtesy of MIROVA.
Figure (see Caption) Figure 116. Changes in seismic frequency and energy at Nevado del Ruiz have been monitored by SGC for many years. Left: the cumulative number of daily VT, LP-VLP, TR, and HB seismic events, recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest number of seismic events; the number and type of event is shown under the date. Right: The cumulative VT and HB seismic energy recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest energy; the local magnitude of the event is shown below the date. SGC has adjusted the warning levels over time (bar across the bottom of each graph) according to changes in the slope of the curves. Courtesy of SGC (INFORME TÉCNICO – OPERATIVO DE LA ACTIVIDAD VOLCÁNICA, SEGMENTO VOLCÁNICO NORTE DE COLOMBIA – NOVIEMBRE DE 2020).

Activity during July-December 2020. Seismic energy increased during July compared to June 2020 with events localized around the Arenas crater. The depth of the seismicity varied from 0.3-7.8 km. Some of these signals were associated with small emissions of gas and ash, which were confirmed through webcams and by reports from officials of the Los Nevados National Natural Park (NNNP). The Washington VAAC reported a possible ash emission on 8 July that rose to 6.1 km altitude and drifted NW. On 21 July a webcam image showed an ash emission that rose to the same altitude and drifted W; it was seen in satellite imagery possibly extending 35 km from the summit but was difficult to confirm due to weather clouds. Short- to moderate-duration (less than 40 minutes) episodes of drumbeat seismicity were recorded on 5, 13, 17, and 21 July. SCG interprets this type of seismic activity as related to the growth of the Arenas crater lava dome. Primarily WNW drifting plumes of steam and SO2 were observed in the webcams daily. The gas was occasionally incandescent at night. The tallest plume of gas and ash reached 1,000 m above the crater rim on 30 July and was associated with a low-energy tremor pulse; it produced ashfall in parts of Manizales and nearby communities (figure 117).

Figure (see Caption) Figure 117. Images captured by a traditional camera (top) and a thermal camera (bottom) at Nevado del Ruiz showed a small ash emission in the early morning of 30 July 2020. Ashfall was reported in Manizales. The cameras are located 3.7 km W of the Arenas crater. Courtesy of SGC (Emisión de ceniza Volcan Nevado del Ruiz Julio 30 de 2020).

Seismicity increased in August 2020 with respect to July. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC received a report from the Bogota MWO of an ash emission on 1 August that rose to 6.1 km altitude and drifted NW; it was not visible in satellite imagery. Various episodes of short duration drumbeat seismicity were recorded during the month. The tallest steam and gas plume reached 1,800 m above the rim on 31 August. Despite the fact that in August the meteorological conditions made it difficult to monitor the surface activity of the volcano, three ash emissions were confirmed by SGC.

Seismicity decreased during September 2020 with respect to August. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel and the Washington VAAC. The Washington VAAC reported an ash emission on 16 September that rose to 6.1 km altitude and drifted NW. A minor ash emission on 20 September drifted W from the summit at 5.8 km altitude. A possible emission on 23 September drifted NW at 6.1 km altitude for a brief period before dissipating. Two emissions were reported drifting WNW of the summit on 26 September at 5.8 and 5.5 km altitude. Continuous volcanic tremors were registered throughout September, with the higher energy activity during the second half of the month. One episode of drumbeat seismicity on 15 September lasted for 38 minutes and consisted of 25 very low energy earthquakes. Steam and gas plumes reached 1,800 m above the crater rim during 17-28 September (figure 118). Five emissions of ash were confirmed by the webcams and park officials during the month, in spite of difficult meteorological conditions; three of them occurred between 15 and 20 September.

Figure (see Caption) Figure 118. A dense plume of steam rose from Nevado del Ruiz in the morning of 17 September 2020. Courtesy of Gonzalo.

Seismicity increased during October with respect to September. A few of the LP and tremor seismic events were associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC issued advisories of possible ash emissions on 2, 6, 9, 11, 15, 17, 18, and 21 October. The plumes rose to 5.6-6.4 km altitude and drifted primarily W and NW. Steam plumes were visible most days of the month (figure 119). Only a few were visible in satellite data, but most were visible in the webcams. Several episodes of drumbeat seismicity were recorded on 13, 22-25, and 27 October, which were characterized by being of short duration and consisting of very low energy earthquakes. The tallest plume during the month rose about 2 km above the crater rim on 18 October. Ash emissions were recorded eight times during the month by SGC.

Figure (see Caption) Figure 119. A steam plume mixed with possible ash drifted SE from Nevado del Ruiz on 7 October 2020. Courtesy of vlucho666.

During November 2020, the number of seismic events decreased relative to October, but the amount of energy released increased. Some of the seismicity was associated with small emissions of gas and ash, confirmed by webcams around the volcano. The Washington VAAC reported ash emissions on 22 and 30 November; the 22 November event was faintly visible in satellite images and was also associated with an LP seismic event. They rose to 5.8-6.1 km altitude and drifted W. Various episodes of drumbeat seismicity registered during November were short- to moderate-duration, very low energy, and consisted of seismicity associated with rock fracturing (VT). Multiple steam plumes were visible from communities tens of kilometers away (figure 120).

Figure (see Caption) Figure 120. Multiple dense steam plumes were photographed from communities around Nevado del Ruiz during November 2020, including on 18 (top) and 20 (bottom) November. Top image courtesy of Jose Fdo Cuartas, bottom image courtesy of Efigas Oficial.

Seismic activity increased in December 2020 relative to November. It was characterized by continuous volcanic tremor, tremor pulses, long-period (LP) and very long-period (VLP) earthquakes. Some of these signals were associated with gas and ash emissions, one confirmed through the webcams. The Washington VAAC reported ash emissions on 5 and 7 December. The first rose to 5.8 km altitude and drifted NW. The second rose to 6.7 km altitude and drifted W. A single discrete cloud was observed 35 km W of the summit; it dissipated within six hours. Drumbeat seismic activity increased as well in December; the episode on 3 December was the most significant. Steam and gas emissions continued throughout the month; a plume of gas and ash reached 1,700 m above the summit on 20 December, and drifted NW.

Sentinel-2 satellite data showed at least one thermal anomaly inside the Arenas crater each month during August-December 2020, corroborating the seismic evidence that the dome continued to grow throughout the period (figure 121). Sulfur dioxide emissions were persistent, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite (figure 122).

Figure (see Caption) Figure 121. Thermal anomalies at Nevado del Ruiz were recorded at least once each month during August-December 2020 suggesting continued growth of the dome within the Arenas crater at the summit. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 122. Sulfur dioxide emissions were persistent at Nevado del Ruiz during August-December 2020, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite. Ecuador’s Sangay had even larger SO2 emissions throughout the period. Dates are at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Additional reports of activity during 2017. Activity appears to have continued during June-December 2017. Ash emissions were reported by the Bogota Meteorological Weather Office (MWO) on 13 May, and by SGC on 28 May. During June, some of the recorded seismic events were associated with minor emissions of ash; these were confirmed by webcams and by field reports from both the staff of SGC and the Los Nevados National Natural Park (PNNN). Ash emissions were confirmed in webcams by park officials on 3, 16, and 17 June. Gas emissions from the Arenas crater during July 2017 averaged 426 m above the crater rim, generally lower than during June. The emissions were mostly steam with small amounts of SO2. Emissions were similar during August, with most steam and gas plumes drifting NW. No ash emissions were reported during July or August.

SGC reported steam and gas plumes during September that rose as high as 1,650 m above the crater rim and drifted NW. On 21 September the Washington VAAC received a report of an ash plume that rose to 6.4 km altitude and drifted NNW, although it was not visible in satellite imagery. Another ash emission rising to 6.7 km altitude was reported on 7 October; weather clouds prevented satellite observation. An episode of drumbeat seismicity was recorded on 9 October, the first since April 2017. While SGC did not explicitly mention ash emissions during October, several of the webcam images included in their report show plumes described as containing ash and gas (figure 123).

Figure (see Caption) Figure 123. Plumes of steam, gas, and ash rose from Arenas crater at Nevado del Ruiz most days during October 2017. Photographs were captured by the webcams installed in the Azufrado Canyon and Cerro Gualí areas. Courtesy of SGC (INFORME DE ACTIVIDAD VOLCANICA SEGMENTO NORTE DE COLOMBIA, OCTUBRE DE 2017).

The Washington VAAC received a report from the Bogota MWO of an ash emission that rose to 6.1 km altitude and drifted NE on 8 November 2017. A faint plume was visible in satellite imagery extending 15 km NE from the summit. SGC reported that plumes rose as high as 2,150 m above the rim of Arenas crater during November. The plumes were mostly steam, with minor amounts of SO2. A diffuse plume of ash was photographed in a webcam on 24 November. SGC did not report any ash emissions during December 2017, but the Washington VAAC reported “a thin veil of volcanic ash and gases” visible in satellite imagery and webcams on 18 December that dissipated within a few hours. In addition to the multiple reports of ash emissions between May and December 2017, Sentinel-2 thermal satellite imagery recorded at least one image each month during June-December showing a thermal anomaly at the summit consistent with the slowly growing dome first reported in August 2015 (figure 124).

Figure (see Caption) Figure 124. Thermal anomalies from the growing dome inside Arenas crater at the summit of Nevado del Ruiz appeared at least once each month from June-December 2017. A strong anomaly was slightly obscured by clouds on 3 June (top left). On 2 August, a steam plume obscured most of the crater, but a small thermal anomaly is visible in its SE quadrant (top right). Strong anomalies on 30 November and 20 December (bottom) have a ring-like form suggestive of a growing dome. Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Gonzalo (URL: https://twitter.com/chaloc22/status/1306581929651843076); Jose Fdo Cuartas (URL: https://twitter.com/JoseFCuartas/status/1329212975434096640); Vlucho666 (URL: https://twitter.com/vlucho666/status/1313791959954268161); Efigas Oficial (URL: https://twitter.com/efigas_oficial/status/1329780287920873472).


Ibu (Indonesia) — January 2021 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Persistent daily ash emissions and thermal anomalies, July-December 2020

Mount Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. After a two-day eruption in 1911, Ibu was quiet until 1998-1999 when explosions produced ash emissions, a lava flow and dome growth began inside the summit crater. Although possible dome growth occurred in 2001 and 2004, little activity was reported until ash emissions began in April 2008. These were followed by thermal anomalies beginning the next month; ash emissions and dome growth have continued for 12 years and the dome now fills the summit crater (BGVN 45:07). Activity continued throughout 2020, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and small lava flows. This report updates activity through December 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite instruments.

Activity throughout July-December 2020 was very consistent and similar to activity reported earlier in the year. Tens of daily explosions produced white and gray ash emissions that rose 200-800 m above the summit (figure 25). Occasional larger explosions were reported in VONAs and VAAC notices. The MIROVA graph of log radiative power for the period shows consistent thermal anomalies the entire time (figure 26). Satellite imagery from Sentinel-2 identified thermal anomalies inside the summit crater every month, usually a larger central one and a smaller one to the NW, suggesting continued dome growth and lava flow activity (figure 27).

Figure (see Caption) Figure 25. Between 60 and 90 explosions occurred most days at Ibu during 1 July-31 December 2020. White and gray plumes rose 200-800 m above the summit crater every day. Data courtesy of PVMBG daily reports.
Figure (see Caption) Figure 26. The MIROVA graph of Log Radiative Power at Ibu from 3 February through December 2020 indicated a constant ongoing heat source from the summit of the crater. Courtesy of MIROVA.
Figure (see Caption) Figure 27. Thermal anomalies persisted at the summit of Ibu throughout July-December 2020. One central anomaly was usual accompanied by a smaller one slightly NW of the central spot. Atmospheric penetration rendering (bands 12, 11a, and 8), courtesy of Sentinel Hub Playground.

The Darwin VAAC observed multiple minor ash emissions in satellite imagery drifting W on 6 July 2020 at 1.8 km altitude. A series of discrete puffs of ash were observed on 15 July also at 1.8 km altitude drifting W. Ongoing minor emissions were discernible on visible and RGB imagery at 2.1 km altitude drifting W on 20 July. On 30 July ash plumes rose to 1.8 km altitude drifted NW and a hotspot was present at the summit. A single MODVOLC alert was issued on 8 July. Single MODVOLC alerts were also issued on 11, 18, and 27 August 2020. PVMBG issued a VONA on 5 August, reporting an ash cloud that rose to 1.8 km altitude and drifted N (figure 28). The Darwin VAAC reported an ash emission later that day that rose to 4.3 km altitude and drifted NW for several hours before dissipating. Multiple discrete emissions were identified in satellite imagery drifting N at 2.1 km altitude on 11 August; they dissipated quickly. During 22-25 August intermittent ash emissions rose to 1.5-1.8 km altitude and drifted NW and W. Minor continuous emissions were again reported on 28 August.

Figure (see Caption) Figure 28. Ash plumes rose from the summit of Ibu many days during July and August 2020, including on 8 July (top) and 5 August (bottom). Courtesy of PVMBG.

Many ash emissions during September and October 2020 were not accompanied by VONAs or VAAC advisories (figure 29). PVMBG issued a VONA on 20 September for an ash emission that rose to 1.5 km altitude and drifted N. Continuous discrete ash emissions over several days drifted SW to NW during 25-29 September at 1.8-2.1 km altitude, as reported in multiple VONAs and VAAC advisories. Single MODVOLC alerts were issued on 26 and 30 September. The Darwin VAAC issued an ash advisory on 8 October for intermittent ash emissions rising to 2.1 km altitude and drifting NW. A single MODVOLC alert was issued the next day. On 20 October ash emissions again rose to 2.1 km altitude and drifted NE.

Figure (see Caption) Figure 29. Ash emissions at Ibu were photographed in webcams on 6 September (left) and 12 October (right) 2020. Courtesy of PVMBG.

The Darwin VAAC reported intermittent ash emissions to 1.8 km altitude during 3-5, 12-13, 18-19, and 22 November 2020 that drifted SSW for several hours before dissipating. PVMBG also issued a VONA for an ash cloud on 27 November that rose to 2.1 km altitude and drifted W. They reported faint rumbling at the PGA Ibu station on 10 November and loud rumbling on 16 and 18 November. During December, minor ash emissions rose to 1.8-2.1 km altitude and drifted E on 4 and 6 December, SW on 11 December, and SE on 12-13 December. PVMBG issued a VONA on 19 December for a white to gray ash cloud drifting N at 1.7 km altitude. Single MODVOLC alerts were issued on 10, 13, and 22 December. Numerous ash emissions were captured by the webcams (figure 30).

Figure (see Caption) Figure 30. Ash emissions at Ibu were recorded in webcams on 17 November (top) and 5 December (bottom) 2020. Courtesy of PVMBG.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — December 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash plumes persist from multiple craters during August-November 2020

Etna, on the island of Sicily, Italy, and has had documented eruptions dating back 3,500 years. Its most recent eruptive period began in September 2013 and has continued through November 2020, characterized by frequent Strombolian explosions, effusive activity, and ash plumes. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This report from August through November 2020 updates activity consisting of frequent Strombolian explosions, ash plumes, summit crater incandescence, degassing, and some ashfall based on information primarily from weekly reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during August-November 2020. Intra-crater Strombolian explosions that varied in frequency and intensity throughout the reporting period, and the accompanying ash emissions that rose to a maximum altitude of 4.5 km, primarily originated from the Northeast Crater (NEC), the New Southeast Crater (NSEC), and intermittently from the Voragine Crater (VOR). Degassing of variable intensity typically occurred at the VOR and the Bocca Nuova (BN) Crater. At night, occasional summit crater incandescence was visible in webcam images, accompanied by explosions and gas-and-ash emissions. On 14 August strong Strombolian explosions produced an ash plume that rose to 4.5 km altitude and drifted SE, resulting in ashfall between Pedara, Trecastagni, and Viagrande. INGV reported that the central pit crater at the bottom of BN continued to widen, and on 9 September scientists observed that a new pit crater had formed NW of the central depression and was widening due to crater wall collapses. During late October to 1 November, INGV reported that small lava flows originated from scoria cones in the NEC and were visible from the edge of the crater but did not spill over.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity of varying strength throughout the reporting period (figure 308). In late October, the frequency of the thermal anomalies increased, and continued through November. According to the MODVOLC thermal algorithm, a total of 31 alerts were detected in the summit craters during August through November; thermal anomalies were reported for five days in August, four days in September, four days in October, and eight days in November. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in multiple directions (figure 309).

Figure (see Caption) Figure 308. Strong and frequent thermal activity at Etna was detected during August through November 2020, as reflected in the MIROVA data (Log Radiative Power). Beginning in late October, the frequency of the thermal anomalies increased compared to the previous months. Courtesy of MIROVA.
Figure (see Caption) Figure 309. Distinct SO2 plumes from Etna were detected on multiple days during August to November 2020 due to frequent Strombolian explosions, including 29 August (top left), 8 September (top right), 1 October (bottom left), and 11 November (bottom right) 2020. SO2 plumes were observed drifting in multiple directions. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during August-September 2020. During August, INGV reported intra-crater Strombolian explosions in the NEC, VOR, and NSEC (including the cono della sella) craters, which produced discontinuous ash emissions rising above each crater (figure 310). Gas-and-steam emissions were the dominant activity in the BN crater. INGV noted that the central pit crater on the floor of BN had been gradually widening since April. On 2 August a slight increase in explosivity resulted in minor ashfall in Trecastagni and Acicastello. Explosive activity occasionally ejected material above the crater rim up to several tens of meters. On the morning of 7 August incandescent Strombolian activity was visible in the NSEC (figure 311). During the evening of 10-11 August surveillance cameras showed the explosions ejecting incandescent material on the surrounding flanks. On 14 August intense Strombolian activity in the saddle cone of the NSEC produced an ash plume that rose to 4-4.5 km altitude and drifted SE, resulting in ashfall between Pedara, Trecastagni, and Viagrande. By the evening activity had sharply declined, according to a VONA (Volcano Observatory Notice for Aviation) report, though sporadic ash emissions continued. A new series of ash emissions associated with explosions of varying intensity began on 15 August in the NSEC. A resulting ash plume rose to 4-4.5 km altitude and drifted ESE. On 17 August gas-and-steam emissions were seen rising above the VOR crater, accompanied by persistent Strombolian explosions. Between the afternoon and early morning of 20-21 August surveillance cameras showed an increased intensity and frequency of ash emissions above the NSEC and NEC that rose to 4-4.5 km altitude and drifted SSE. INGV-OE scientists reported minor ashfall in Trecastagni, Viagrande, and Catania. During 24-30 August ground observers reported that the intra-crater explosions in the NEC originated from two explosive vents; the BN crater exhibited gas-and-steam emissions from the central pit crater, which continued to widen. During 25-26 August explosive activity increased at the NSEC with ash emissions rising to 4.5 km and drifting SSE, which resulted in modest ashfall in Catania, Viagrande, and Trecastagni; by morning, the volume of ash emissions had decreased, though explosions persisted. During 28-29 August discontinuous and modest ash emissions originating from the NSEC rose 4.5 km altitude drifting E and ENE but did not result in ashfall. Emissions had stopped by 1747 on 29 August, though intense gas-and-steam emissions continued, occasionally accompanied by mild explosive activity (figure 312).

Figure (see Caption) Figure 310. An ash plume accompanied Strombolian explosions at Etna on 3 August (top left) and 4 August (top right) and as seen from the Montagnola (EMOV) thermal camera in the NSEC. Continuous Strombolian activity and summit crater incandescence was observed on 7 August (bottom left); an ash plume was visible in the Monte Cagliato surveillance camera during the day on 9 August (bottom right). Courtesy of INGV (Report 33/2020, ETNA, Bollettino Settimanale, 03/08/2020 – 09/08/2020, data emissione 11/08/2020).
Figure (see Caption) Figure 311. Strombolian explosions and summit crater incandescence was observed at Etna’s New Southeast Crater (NSEC “cono della sella”) during the early morning of 7 August 2020 seen from Tremestieri Etneo. Photo by Boris Behncke, INGV.
Figure (see Caption) Figure 312. Photo of the S edge of the Bocca Nuova Crater at Etna on 29 August 2020 showing degassing in the pit crater. The main scoria cone within the Voragine Crater is visible in the background. Courtesy of INGV (Report 36/2020, ETNA, Bollettino Settimanale, 24/08/2020 – 30/08/2020, data emissione 01/09/2020).

Strombolian activity of varying intensity continued in the NSEC and NEC during September, producing sporadic ash emissions (figure 313). The BN and VOR craters were characterized by gas-and-steam emissions. Explosions in the NSEC ejected coarse pyroclastic material above the crater rim several tens of meters, some of which were deposited on the S flank, and accompanied by sporadic ash emissions; these explosions continued to widen the depression in the saddle cone of the NSEC. Intermittent nighttime crater incandescence was observed in the NSEC. Sporadic and weak ash emissions were observed in the VOR. On 9 September INGV scientists reported intense degassing from the center pit crater in the BN. To the NW of this center depression, a new pit crater had formed and began to widen due to the collapse of the crater walls (figure 314). On 26 September explosions in the NSEC produced an ash plume that rose to 4 km altitude and drifted E, though no ashfall was reported.

Figure (see Caption) Figure 313. Webcam image showing explosions in the New Southeast Crater and resulting ash emissions on 1 September 2020. Courtesy of INGV (Report 37/2020, ETNA, Bollettino Settimanale, 31/08/2020 – 06/09/2020, data emissione 08/09/2020).
Figure (see Caption) Figure 314. Photos of the bottom of the W edge of the Bocca Nuova Crater at Etna on 9 September 2020. Gas-and-steam emissions are visible rising above the pit crater in the background. In the foreground a new pit crater had formed to the NW of the central pit crater (yellow dotted line). Photo was taken from the S edge of the BN crater. Courtesy of INGV (Report 38/2020, ETNA, Bollettino Settimanale, 07/09/2020 – 13/09/2020, data emissione 15/09/2020).

Activity during October-November 2020. Similar variable Strombolian activity continued into October in the NSEC (cono della sella) and NEC; isolated and weak ash emissions were visible in the VOR crater and gas-and-steam emissions continued in both the VOR and BN craters. On 1 October an increase in explosive activity in the NSEC occurred around 0800, which produced an ash plume rising to 4.5 km altitude, drifting E. Ash emissions on 3 October were mostly confined to the summit crater, but some drifted toward the Valle del Bove. On 7 October Strombolian explosions in the NSEC generated an ash plume that rose to 4.5 km altitude drifting E and ESE. INGV personnel reported ashfall as a result in the Citelli Refuge. On 9 October drone observations showed at least three active scoria cones on the floor of the NEC with diameters of 30-40 m and heights of 10 m; a fourth vent was later reported in November (figure 315). INGV reported that activity characterized by Strombolian explosions and spatter was fed by these vents, accompanied by intense intra-crater fumarolic activity.

Figure (see Caption) Figure 315. Map of the summit craters of Etna showing the active vents and the area of cooled lava flows (light green) updated on 9 October 2020. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. The hatch marks indicate the crater rims: BN = Bocca Nuova; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 44/2020, ETNA, Bollettino Settimanale, 19/10/2020 – 25/10/2020, data emissione 27/10/2020).

During 12-18 October surveillance cameras captured incandescence in the NEC and pyroclastic material seen during more intense explosions. During the week of 19-25 October several thermal anomalies were detected on the NEC and BN crater floor. Particularly at night, thermal and surveillance cameras observed incandescent ejecta rising above the NSEC (figure 316). On 23 October a helicopter overflight along the W side of Etna showed continued explosions at the NSEC, which produced both ash emissions and incandescent shreds of lava. An associated ash plume rose to 4.5 km altitude and drifted SSE. Sporadic ash emissions were also observed in the BN crater (figure 316). During 26 October to 1 November occasional Strombolian activity resumed in the VOR which ejected material over the crater rim. The BN crater activity was characterized by small intra-crater collapses and consequent ash emissions. In the NEC, similar explosive activity persisted with the addition of small lava flows from the scoria cones, which were visible from the crater edge, though activity remained confined to the crater.

Figure (see Caption) Figure 316. Photos showing Strombolian activity at the New Southeast Crater at Etna on 25 October 2020 (top left); ash emissions were observed during 22 October 2020 (top right). Ash emissions rose above the Bocca Nuova Crater on 22 October (bottom left) and weak ash emissions were seen above the Voragine Crater on 22 October (bottom right). Courtesy of INGV (Report 44/2020, ETNA, Bollettino Settimanale, 19/10/2020 – 25/10/2020, data emissione 27/10/2020).

Activity in November continued with variable Strombolian explosions accompanied by discontinuous ash emissions from the NSEC, NEC, and BN. During more intense explosions, ejecta reached several tens of meters above the crater, sometimes falling just outside the crater rim. Intensive degassing in the BN crater revealed occasional reddish ash in the new W pit crater that formed in September. The central pit crater was primarily characterized by intense gas-and-steam emissions and intra-crater wall collapses. Four vents were observed on the bottom of the NEC during 2-8 November, though only three of them produced Strombolian explosions, the fourth was quiet. On 5 November Strombolian explosions in BN originated from the W pit crater; coarser material was ejected above the pit crater rim. By 12 November Strombolian activity had decreased, explosions in the BN had deposited material on the S flank. Out of the three active NEC scoria cones, only one was continuously exploding, the second had discontinuous explosions, and the third was primarily emitting gas-and-steam. On 15 November faint ash emissions from the E side of the NSEC were observed (figure 317). On 20 November sporadic explosive activity continued from the NSEC and BN, the former of which occasionally ejected material above the crater rim (figure 318).

Figure (see Caption) Figure 317. Webcam images of the New Southeast Crater at Etna on 14 (left) and 15 (right) November 2020 showing Strombolian activity in the cono della sella (left) and the E vent shown by the black arrow (right). Images were taken by the Montagnola webcam. Courtesy of INGV (Report 47/2020, ETNA, Bollettino Settimanale, 09/11/2020 – 15/11/2020, data emissione 17/11/2020).
Figure (see Caption) Figure 318. Drone image of the New Southeast Crater at Etna on 21 November 2020 showing an ash plume rising above the inner crater rim (black line). Fallout is visible within the crater rim (small red circles). Courtesy of INGV (Report 48/2020, ETNA, Bollettino Settimanale, 16/11/2020 – 21/11/2020, data emissione 24/11/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris).


Copahue (Chile-Argentina) — December 2020 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


New eruption in June-October 2020 with crater incandescence, ash plumes, and local ashfall

Copahue is an elongated composite cone located along the Chile-Argentina border. The E summit crater consists of an acidic 300-m-wide crater lake which is characterized by intense fumarolic activity. Previous activity consisted of continuous gas-and-ash emissions during early November 2019, accompanied by nighttime incandescence, minor SO2 plumes, and the reappearance of the lake in the El Agrio crater during early December 2019 (BGVN 45:03). This report, covering March-November 2020, describes an eruption with gas-and-ash plumes from mid-June through late October, accompanied by thermal anomalies visible in satellite imagery and small SO2 plumes. Primary information for this report comes from the Servicio Nacional de Geología y Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS), the Buenos Aires Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during March-May 2020 was relatively low and consisted primarily of seismicity, sulfur dioxide emissions, and occasional white gas-and-steam emissions rising 300-900 m above the El Agrio crater. On 20 March a series of volcano-tectonic seismic events were detected SSW of the volcano; satellite images showed a decrease in the size of the crater lake. SO2 emissions had daily averages of 487-636 tons, with the highest value reaching 1,884 tons/day on 16 May. During April slight subsidence was reported in the crater, occurring at a maximum rate of 0.3 cm/month.

Activity during most of June and July consisted of occasional white gas-and-steam emissions rising 350-500 m above the El Agrio crater and SO2 emissions averaging 592-1,950 tons/day; a high value of 1,897 tons/day was reported on 13 June. However, on 16 June a period of increased seismicity was accompanied by crater incandescence and gas emissions containing some ash. SO2 plumes increased slightly in July with values of 2,100 and 1,713 tons/day on 2 and 4 July, respectively. Another ash plume was observed by local residents on 16 July, accompanied by elevated seismicity and SO2 emissions of 4,684 tons/day. On 20 July residents of La Araucanía described an odor that indicated hydrogen sulfide gas emissions. A photo on 23 July showed an ash plume rising above the crater (figure 55).

Figure (see Caption) Figure 55. Photo of a gas-and-ash plume rising from Copahue on 23 July 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Beginning in early August, and continuing through September 2020, the Sentinel-2 MODIS Thermal Volcanic Activity graph provided by the MIROVA system identified a small cluster of thermal anomalies in the summit area (figure 56). Thermal anomalies during this time were also captured in Sentinel-2 thermal satellite imagery, showing a persistent hotspot of varying strength in the summit crater (figure 57). This thermal activity was accompanied by small sulfur dioxide plumes identified by the TROPOMI instrument on the Sentinel-5P satellite, which exceeded two Dobson Units (DU). Distinct SO2 emissions greater than two DUs were detected on 6, 11, 21, 22, and 29 August, 1 and 6 September, and 4 and 15 October (figure 58).

Figure (see Caption) Figure 56. A small cluster of thermal anomalies were detected in the summit area of Copahue (red dots) during early August through September 2020 as recorded by the Sentinel-2 MODIS Thermal Volcanic Activity data (bands 12, 11, 8A). Courtesy of MIROVA.
Figure (see Caption) Figure 57. Sentinel-2 thermal satellite imagery showed a thermal anomaly (bright yellow-orange) at Copahue during August-October 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 58. Small SO2 plumes were recorded at Copahue during August-October 2020. Top row: 11 August and 1 September 2020. Bottom row: 6 September and 15 October 2020. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

During August, approximately 133 explosive events were detected, in addition to the gas-and-steam and SO2 emissions (figure 59). On 3 August pulses of ash emissions were reported by SERNAGEOMIN, which resulted in a 2.2-km-long tephra deposit estimated to have a volume of 1 km3. Gray gas-and-ash emissions were observed on 6 August, followed by a thermal anomaly detected in satellite imagery beginning on 8 August. Sulfur dioxide emissions were elevated compared to previous months, measuring an average of 2,641 tons/day with high values of 4,498 tons/day on 12 August that increased to 4,627 tons/day by 27 August. During 16-31 August webcams recorded gas-and-ash plumes rising as high as 1.7 km altitude and were sometimes accompanied by nighttime crater incandescence. Plumes drifted in multiple directions as far as 4.3 km N, 9 km NE, 8 km E, 4 km SE, 4 km SW, 9 km W, and 4.4 km NW.

Figure (see Caption) Figure 59. Photo of a white gas-and-steam plume rising from Copahue on 12 August 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Elevated activity continued into September with 2-10 explosive events detected during the month; during 1-15 September webcams recorded gas-and-ash plumes rising to 1.1 km altitude, drifting 6-15 km SW and SE, which were sometimes accompanied by nighttime crater incandescence (figure 60). On 7 September a Buenos Aires VAAC advisory reported an ash plume rising to 3.7 km altitude drifting SE. On 11 September a webcam showed a weak gas emission, possibly containing some ash. Three episodes of gas-and-steam plumes were reported, rising 100-1,040 m above the crater, sometimes accompanied by incandescence. SO2 emissions were in the 1,499-1,714 tons/day range, with a high value of 4,522 tons/day on 28 September. SERNAGEOMIN reported repetitive explosions in the acid lake area alongside fumarolic activity, ejecting some material 1.7 km N, 1.2 km SE, and 4 km E of the crater.

Figure (see Caption) Figure 60. Photos of gas-and-steam plumes rising from Copahue on 6 September (top) and 28 September (bottom) 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.

Persistent activity in October consisted of gas-and-steam plumes, ash emissions, and SO2 emissions. The gas-and-steam plumes rose 1.4 km above the crater, occasionally accompanied by nighttime incandescence. On 5 October the SO2 emissions were at a high value of 3,824 tons/day. During 12-15 October ash emissions resulted in a wide distribution of ashfall that reached 6.8 km NE, 7 km SE, and 6.7 km SW (figure 61). A pilot reported an ash plume rose to 3.7 km altitude drifting SE, according to a VAAC advisory, though the plume was not visible in satellite data. Sentinel-2 satellite imagery recorded strong gas-and-ash plumes during August-October, drifting generally S and E, which resulted in ash deposits on the nearby flanks (figure 62). Continued emissions had covered all of the flanks with ash by late October.

Figure (see Caption) Figure 61. Photos of a gas-and-ash plume rising from Copahue on 13 October (top) and 15 October (bottom) 2020. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.
Figure (see Caption) Figure 62. Sentinel-2 images showing ash gas-and-ash plumes rising from Copahue during August-October 2020, resulting in some ashfall in the nearby areas. The ash plume on 31 August (top left) is drifting S with ashfall observed on the N and S flanks. The ash plume on 7 September (top right) is drifting SE with ashfall on the E and S flanks. The ash plume on 27 September (bottom left) is drifting E and N with ashfall on the NE flanks. The ash plume on 20 October (bottom right) is drifting S with ashfall on all the flanks due to continued activity. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Similar activity during November decreased, primarily characterized by gas-and-steam plumes and SO2 emissions. White gas-and-steam emissions, possibly with some ash content, were observed with a webcam on 9 and 12 November, accompanied by low but continuous seismicity. During 11-12 November SO2 emissions were at a high value of 904 tons/day. A white gas-and-steam plume was observed on 15 November rising 760 m above the crater; typical degassing rose 200-300 m above the crater, according to SERNAGEOMIN. The daily average of SO2 emissions ranged 366-582 tons.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Valentina Sepulveda, Hotel Caviahue, Caviahue, Argentina (URL: https://twitter.com/valecaviahue, Twitter: @valecaviahue).


Masaya (Nicaragua) — December 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake continues accompanied by gas-and-steam emissions during June-November 2020

Masaya, located in Nicaragua, includes the Nindirí, San Pedro, and San Juan craters, as well as the currently active Santiago crater. The Santiago crater has contained an active lava lake since December 2015 (BGVN 41:08), and often produces gas-and-steam emissions. Similar activity is described in this report which updates information from June through November 2020 using reports from the Instituto Nicareguense de Estudios Territoriales (INETER) and various satellite data.

Volcanism at Masaya has been relatively quiet and primarily characterized by an active lava lake and gas-and-steam emissions. From January to November 2020 there were 8,551 seismic events recorded. A majority of these events were described as low-frequency earthquakes, though a few were classified as volcano-tectonic. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed few low-power thermal anomalies during June through November (figure 87). A small cluster of low-power thermal activity was detected in July and consisted of seven thermal anomalies out of a total of thirteen thermal anomalies recorded during the reporting period. Thermal activity was also observed in Sentinel-2 satellite imagery, which showed a constant thermal anomaly in the Santiago crater at the lava lake during July through October, occasionally accompanied by a gas-and-steam plume (figure 88). Small and intermittent sulfur dioxide emissions appeared in satellite data during each month of the reporting period, excluding July, some of which exceeded two Dobson Units (DU) (figure 89). On 6 July, 11 and 13 August, 7 September, during October, and 9 and 13 November, INETER scientists took SO2 measurements by making several transects using a mobile DOAS spectrometer that sampled for gases downwind of the volcano. Average values during these months were 1,202 tons/day (t/d), 1,383 t/d, 2,089 t/d, 950 t/d, and 819 t/d, respectively, with the highest average reported in September.

Figure (see Caption) Figure 87. Few thermal anomalies were detected at Masaya between June and November 2020 with a small cluster of thermal activity in July. A total of thirteen low-power thermal anomalies were shown on the MIROVA graph (Log Radiative Power) during the reporting period. Courtesy of MIROVA.
Figure (see Caption) Figure 88. Sentinel-2 thermal satellite imagery showed the active lava lake at the summit crater of Masaya during July through October 2020, occasionally accompanied by gas-and-steam emissions, as seen on 27 July (top left) and 30 September (bottom left). Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Intermittent sulfur dioxide emissions were captured from Masaya during June through November 2020 by the TROPOMI instrument on the Sentinel-5P satellite. These images show SO2 emissions reaching up to 2 Dobson Units (DU). Top left: 9 June 2020. Top right: 23 August 2020. Bottom left: 7 September 2020. Bottom right: 15 November 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During June and July persistent gas-and-steam emissions were reported rising above the open lava lake in the Santiago crater (figure 90). On 20 June INETER scientists measured the gases on the S side, inside the Nindirí crater (SW side), and La Cruz (NW side). A perceptible gas-and-steam plume was noted rising above the Nindirí crater and drifting W. Crater wall collapses were observed on the E wall of the Santiago crater; the lava lake remained, but the level of the lake had decreased compared to previous months. During July, thermal measurements were taken of the fumaroles and near the lava lake using a FLIR SC620 thermal camera. INETER reported that the temperature measured 576°C, which had significantly increased from 163°C noted in the previous month.

Figure (see Caption) Figure 90. Images of the lava lake at Masaya during June 2020, accompanied by gas-and-steam emissions (left) and a gas-and-steam plume rising above the Santiago crater (right). Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Junio, 2020).

Small crater wall collapses were detected on the NW and E wall of the Santiago crater, accompanied by abundant gas-and-steam emissions during August (figure 91). On 7 August thermal measurements were taken of the fumaroles and near the lava lake, which showed another temperature increase to 771°C. Continuous collapse of the crater walls began to excavate depressions in the crater floor and along the walls. Similar activity was observed in September with abundant gas-and-steam emissions in the Santiago crater, as well as collapses of the E wall (figure 91). Temperature measurements taken during this month had decreased slightly compared to August, to 688°C.

Figure (see Caption) Figure 91. Photos of the Santiago crater at Masaya during August (left) and September (right) 2020 showing a) an internal collapse on the N wall of the crater floor; b) an internal collapse on the S wall of the crater floor, forming a depression; c) newly excavated crater floor due to wall collapses; and d) an internal collapse on the S wall. In September a significant amount of gas-and-steam emissions originating from the N side of the crater were observed compared to the previous months. Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Agosto and Septiembre, 2020).

Activity in October and November remained consistent with continued wall collapses in the Santiago crater, particularly on the S and E wall, due to fractures in the rocks and erosion, accompanied by gas-and-steam emissions. INETER reported that the level of the lava lake had decreased due to continuous internal wall collapses, which had caused some obstruction in the lava lake and allowed for material to accumulate within the crater. On 9 October thermal measurements were taken of the fumaroles and near the lava lake using a FLIR SC620 thermal camera (figure 92). The temperature had increased again compared to September, to 823°C. By 26 November, the temperature had decreased slightly to 800°C, though activity remained similar.

Figure (see Caption) Figure 92. Thermal measurements of the active lava lake and fumaroles taken in the Santiago crater at Masaya on 1 October 2020 with a FLIR SC620 thermal camera. Temperatures reached up to 823°C. Courtesy of INETER (Boletín Sismológico, Vulcanológico y Geológico Octubre, 2020).

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevados de Chillan (Chile) — November 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Frequent explosions, a lava flow on the N flank, and lava dome growth during July-October 2020

Nevados de Chillán, located in the Chilean Central Andes, is a volcanic complex composed of late-Pleistocene to Holocene stratovolcanoes. On 8 January 2016 an explosion created the Nicanor Crater on the NW flank of Volcán Viejo. Recent activity consists of explosions, ash plumes, pyroclastic flows, and a new lava dome in the Nicanor Crater (BGVN 45:07). This report covers July through October 2020; activity is characterized by frequent explosions, ash plumes, a lava flow on the N flank, and continued lava dome growth. The primary source of information comes from the Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), the Buenos Aires Volcanic Ash Advisory Center (VAAC), and satellite data.

Since 27 June webcams have showed an active lava flow that originated from the Nicanor Crater and descended the N flank. Activity during July consisted of 210-473 volcano-tectonic seismic events and 565-614 explosive events. Ash plumes rising 1.1-1.2 km above the crater and were accompanied by day and nighttime incandescence on the E edge of the Nicanor Crater. Due to these explosions, SERNAGEOMIN reported that tephra and other pyroclastic deposits were deposited within 400 m to the E of the crater. On 1 July a Buenos Aires VAAC advisory reported that a webcam showed ash emissions rising to 4.3 km altitude. Continuous explosions the next day produced ash plumes that rose 500 m above the crater. During 1-2 July the active lava flow had reached 40 m long and descended at a rate of 0.2 m3 per second. On 6 July an explosion at 0837 generated a gas-and-ash plume that rose 1.2 km above the crater and drifted SE; sporadic ash emissions were also observed on 7 July, according to a VAAC advisory. SERNAGEOMIN webcams showed that the lava flow that began on 27 June continued down the N flank, while a new lobe 55-194 m long moved toward the NE flank of Nicanor Crater. Gas plumes were also observed rising above the active crater, as noted on 20 July (figure 63). On 29 July weak ash emissions rose 3.9 km altitude and drifted SE, according to a VAAC report. During that day, the volume of the lava dome measured 400,000 m3 and grew at a rate of 0.1 m3 per second. Throughout the month, the lava flow continued to descend the N flank of the Nicanor Crater, reaching 520 m at a rate of 0.7-0.6 m per hour. Some unconsolidated blocks up to a meter in size detached from the front of the flow and moved up to 240 m. Sulfur dioxide emissions during the month averaged 823 tons/day with a high value of 1,815 tons/day reported on 29 July.

Figure (see Caption) Figure 63. A white gas-and-steam plume was observed at Nevados de Chillán on 20 July 2020. Courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

During August SERNAGEOMIN reported 68-75 volcano-tectonic seismic events and 497-578 explosive events, the latter of which ejected material as far as 300 m E and NE from Nicanor Crater. Associated ash plumes rose 800-980 m above the crater and were accompanied by day and nighttime crater incandescence. The lava dome continued to grow during the month, reaching a thickness of 41 m, according to SERNAGEOMIN. SO2 emissions were an average value of 134-205 tons/day with a high value of 245 tons/day reported on 3 August. On 15 August a VAAC advisory reported weak and sporadic gas-and-ash emissions at the summit; on 20 August a hotspot was detected in satellite imagery, though an ash plume was not observed. The active lava flow on the N flank extended 490-495 m and moved at a rate of 0.07-0.06 m per hour. On 31 August a webcam showed an ash plume rising above the volcano, accompanied by the advancing lava flow on the N flank (figure 64).

Figure (see Caption) Figure 64. An explosion at Nevados de Chillán produced an ash plume on 31 August 2020. A lava flow accompanies the ash plume on the N flank. Courtesy of SERNAGEOMIN.

Similar activity continued into September, with 45-48 volcano-tectonic and 591-621 explosive events. Ash plumes rose to 1.5 km above the crater and were accompanied by day and nighttime incandescence on the E edge of Nicanor Crater. During 1-15 September explosions at the lava dome produced ash plumes that rose to less than 1.5 km altitude, resulting in ashfall within 300 m E and NE of the crater; ejecta from larger explosions was also observed to the ESE. Satellite images showed partial destruction of the lava dome as well as loss of some material due to successive explosions at the beginning of the month. Overall, the dome continued to increase in size, reaching a volume of 180,000 m3 and a thickness of 45 m since August (41 m). The lava dome measured 93 m NW-SE and 104 m SW-NE. By 15 September the 500-m-long lava flow had descended the NNE flank and continued to advance at a rate of 1.7 m per hour. The W levee of the flow channel had ruptured, which caused the toe of the lava flow to thicken. On 20 September ash emissions rose to 3.7 km altitude and drifted NE and ENE, according to a VAAC advisory. On 22 September gas emissions, weak and sporadic ash emissions, and occasional explosions accompanied the lava flow. Through the remainder of the month, the lava flow persisted, measuring 615 m, and advancing at a rate of 0.4 m per hour; its volume was 487,000 m3 (figure 65). SO2 emissions were an average value of 111-358 tons/day with a high value of 503 tons/day reported on 22 September.

Figure (see Caption) Figure 65. Photo (color corrected) of the incandescent lava flow at night descending the NNE flank of Nevados de Chillán on 21 September 2020. Photo by Jose Fauna, courtesy of Volcanology Chile.

During October there were 34-61 volcano-tectonic seismic events reported, as well as 607-644 explosive events, seven of which generated ash plumes that rose 1-1.5 km above the crater. Day and nighttime incandescence in the E edge of Nicanor Crater remained. Ash deposits associated with the explosive activity were distributed to the E and NE as far as 300 m from the crater; denser pyroclastic deposits from stronger explosions were located to the N and NE. The lava flow on the N slope persisted, extending 614-683 m from the crater rim at a rate of 0.1-0.82 m per hour with a width of 80.2 m near the crater rim and up to 112.8 m near the toe. The lava dome also continued to grow since it was last measured in September; it was 115 m wide at the base by 107 m high. SO2 emissions were an average value of 167-355 tons/day with a high value of 588 tons/day reported on 26 October. On 29 October an ash plume was detected in satellite imagery and rose to 3.7 km altitude and drifted W, according to a VAAC advisory (figure 66). SERNAGEOMIN reported that a 25-m-diameter subcrater had formed on the E inner edge of Nicanor Crater at the top of the lava dome. On 30 October, intermittent gas-and-ash emissions were visible at the summit in satellite imagery, rising to 3.9 km altitude and drifting SE.

Figure (see Caption) Figure 66. Webcam image of an explosion at Nevados de Chillán on 29 October 2020 that produced an ash plume that rose 360 m above the crater and drifted SW. Courtesy of SERNAGEOMIN.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent low-power thermal activity beginning in early June and continuing through October 2020 due to frequent explosions, the continued lava dome growth in Nicanor Crater, and the lava flow that descended the N flank (figure 67). On clear weather days, two thermal anomalies in the summit craters are observed in Sentinel-2 thermal satellite imagery; one represents the growing lava dome and the other is the lava flow on the N flank (figure 68). On 25 September an ash plume was observed drifting S.

Figure (see Caption) Figure 67. Frequent low-power thermal activity at Nevados de Chillán continued during July through October 2020, according to the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 68. Sentinel-2 satellite imagery showed a persistent thermal anomaly (bright yellow-orange) in the summit crater of Nevados de Chillán during July through October 2020. On 29 July (top left), a third faint thermal anomaly was detected on the N flank, indicating a lava flow. On 25 September (bottom left) an ash plume was visible drifting S. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Volcanology Chile (URL: https://twitter.com/volcanologiachl); Jose Fauna, Caracol sector, San Fabián de Alicom, Chile (URL: https://twitter.com/josefauna).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 09 (September 2018)

Managing Editor: Edward Venzke

Alaid (Russia)

Small ash plume reported on 21 August 2018

Fournaise, Piton de la (France)

One-day eruptive events in April and July; 5-week eruption 27 April-1 June 2018

Great Sitkin (United States)

Small phreatic explosions in June and August 2018; ash deposit on snow near summit

Negra, Sierra (Ecuador)

Fissure opens on NNE caldera rim 26 June 2018, NW-flank lava flows reach the sea

Nishinoshima (Japan)

Quiescence interrupted by brief lava flow emission and small explosions in July 2018

Rincon de la Vieja (Costa Rica)

Intermittent weak phreatic explosions during January-March and July-August 2018

Semeru (Indonesia)

Small ash plumes in February, April, July, and August 2018; persistent thermal hotspot in the crater

Sinabung (Indonesia)

No significant ash plumes seen after 22 June 2018; minor ash in early July

Telica (Nicaragua)

Explosions on 21 June and 15 August 2018; local ashfall from June event

Turrialba (Costa Rica)

Ongoing variable ash emissions and crater incandescence through August 2018



Alaid (Russia) — September 2018 Citation iconCite this Report

Alaid

Russia

50.861°N, 155.565°E; summit elev. 2285 m

All times are local (unless otherwise noted)


Small ash plume reported on 21 August 2018

Sporadic ash and gas-and-ash plumes and strong thermal anomalies were reported from Alaid, in Russia's Kurile Islands, between 29 September 2015 and 30 September 2016 (figure 8). The Kamchatka Volcanic Eruptions Response Team (KVERT), which monitors the volcano, interpreted the thermal anomalies as Strombolian activity and a lava flow (BGVN 42:04). The current report summarizes activity during October 2016 through August 2018.

Figure (see Caption) Figure 8. Aerial photo of the Alaid summit area on 28 April 2016, with fresh lava filling the crater, a cinder cone in the southern part of the crater, and a lava flow on the SW flank. Photo by L. Fugura; courtesy of IVS FEB RAS, KVERT.

According to KVERT weekly reports, the Aviation Color Code for Alaid was Green (Volcano is in normal, non-eruptive state) throughout the reporting period. The only reported activity was from the Tokyo Volcanic Ash Advisory Center, which reported that on 21 August 2018, an ash plume identified in Himawari-8 satellite images rose to an altitude of 2.7 km (about 500 m above the summit) and drifted SE. The plume was clearly visible on imagery starting at 0830 Japan Standard Time (UTC + 9 hours), and remained noticeable for at least 4 hours. There were no other satellite or ground-based observations of this activity.

Figure (see Caption) Figure 9. Himawari-8 satellite image from 21 August 2018 at 1030 JST (UTC + 9 hours) showing a small ash plume drifting SE from Alaid towards Paramushir Island. Alaid is the small island NW of the larger Paramushi Island and directly W of the southern tip of the Kamchatka Peninsula. Courtesy of Himawari-8 Real-time Web.

Geologic Background. The highest and northernmost volcano of the Kuril Islands, 2285-m-high Alaid is a symmetrical stratovolcano when viewed from the north, but has a 1.5-km-wide summit crater that is breached widely to the south. Alaid is the northernmost of a chain of volcanoes constructed west of the main Kuril archipelago. Numerous pyroclastic cones dot the lower flanks of this basaltic to basaltic-andesite volcano, particularly on the NW and SE sides, including an offshore cone formed during the 1933-34 eruption. Strong explosive eruptions have occurred from the summit crater beginning in the 18th century. Reports of eruptions in 1770, 1789, 1821, 1829, 1843, 1848, and 1858 were considered incorrect by Gorshkov (1970). Explosive eruptions in 1790 and 1981 were among the largest in the Kuril Islands during historical time.

Information Contacts: Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Himawari-8 Real-time Web, developed by the NICT Science Cloud project in NICT (National Institute of Information and Communications Technology), Japan, in collaboration with JMA (Japan Meteorological Agency) and CEReS (Center of Environmental Remote Sensing, Chiba University) (URL: https://himawari8.nict.go.jp/).


Piton de la Fournaise (France) — September 2018 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


One-day eruptive events in April and July; 5-week eruption 27 April-1 June 2018

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on Reunion Island in the western Indian Ocean, for several thousand years. The most recent episode occurred during 14 July-28 August 2017 with a 450-m-long fissure on the S flank inside the Enclos Fouqué caldera about 850 m W of Château Fort. Three eruptive episodes occurred during March-August 2018, the period covered in this report; two lasted for one day each on the N flank in April and July, and one lasting from late April through May located on the S flank. Information is provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

The first of three eruptive events during March-August 2018 occurred during 3-4 April and was a 1-km-long fissure that opened in seven segments with two eruptive vents. It was located on the N flank of the central cone, just S of the Nez Coupé de Sainte Rose on the rim of the caldera. A longer lasting eruptive event began on 27 April and was located in the cratère Rivals area on the S flank of the central cone. The main fissure had three eruptive vents initially, only one of which produced lava that flowed in tunnels away from the site toward the S rim of the Enclos Fouqué caldera. The longest flow reached 3 km in length and set fires at the base of the rampart rim of the caldera. Flow activity gradually decreased throughout May, and seismic tremor ceased, indicating the end of the event, on 1 June 2018. A third, brief event on 13 July 2018 produced four fissures with 20-m-high incandescent lava and aa flows that traveled several hundred meters across the NNW flank of the central cone, covering a large section of the most popular hiking trail to the summit. The event only lasted for about 18 hours but caused significant geomorphologic change as the first flow activity in that area in several hundred years.

The MIROVA plot of thermal energy from 6 February-1 September 2018 clearly shows two of the three eruptive events that took place during that period. The 27 April to 1 June event produced an initial very strong thermal signature that decreased throughout May. Cooling after the flow ceased continued for most of June. The one-day eruptive event on 13 July was also recorded, but the similarly brief event on 3-4 April was not captured in the thermal data (figure 126).

Figure (see Caption) Figure 126. The MIROVA plot of thermal energy from Piton de La Fournaise from 6 February-1 September 2018 clearly shows two of the three eruptive events that took place during that period. The longest event, from 27 April to 1 June produced an initial very strong thermal signature that decreased throughout May. Cooling after the flow ceased continued for most of June. A brief one-day eruptive event on 13 July was also recorded. A similarly brief event on 3-4 April was not recorded. Courtesy of MIROVA.

Eruptive event of 3-4 April 2018. Minor inflation and seismicity were intermittent from the end of August 2017 when the last eruptive episode ended. Significant seismic activity around the summit resumed on 23 March 2018 and accelerated through the end of the month. Inflation continued throughout March as well. A change of composition was detected in the summit fumaroles on 23 March 2018; the fluids were enriched in CO2 and SO2. Beginning on 3 April around 0550 local time, OVPF reported a seismic swarm and deformation consistent with magma rising towards the surface. Seismic tremor began around 1040 in an area on the N flank near the Nez Coupé de Sainte Rose. The tremor intensity continued to increase throughout the day; OVPF visually confirmed the eruption around 1150 in the morning on the upper part of the N flank (figure 127).

Figure (see Caption) Figure 127. The eruptive site at Piton de la Fournaise on 3 April 2018 on the N flank near the Nez Coupé de Sainte Rose. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du 03 avril 2018 à 16h30 heure locale).

A helicopter overflight in mid-afternoon revealed a 1-km-long fissure that had opened in seven distinct segments; lava fountains emerged from two of the segments. The last active segment was just below the rampart of the Nez Coupé de Sainte Rose (figure 128). Both seismic and surface eruptive activity stopped abruptly the following day at 0400.

Figure (see Caption) Figure 128. The brief eruption of 3-4 April 2018 was located on the N flank of the central crater near the Nez Coupé de Sainte Rose, a point on the rampart rim of the Enclos. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du 03 avril 2018 à 16h30 heure locale).

Eruptive event of 27 April-1 June 2018. OVPF reported 2.5 cm of inflation in the 15 days after the 3-4 April eruption. Seismic activity resumed at the base of the summit area on 21 April, and a new seismic swarm began at 2015 local time on 27 April. This was followed three hours later by tremor activity indicating the beginning of a new eruptive event from fissures that opened on the S flank in the area of cratère Rivals (figure 129). Four fissures opened; one on each side of the crater and one cutting across it were initially active, but activity moved the next morning to a fourth fissure just downstream from Rivals crater and extended for less than 300 m. Fountains of lava rose to 30 m during a morning overflight on 28 April. Several streams of lava quickly coalesced into a single flow heading S towards the rampart at the rim of the Enclos Fouqué (figure 130). By 0830 on 28 April the flow was less than 300 m from the rim and had destroyed an OVPF seismic station and a GPS station. The OMI instrument on the Aura satellite recorded a significant SO2 plume from the event on 28 April (figure 131).

Figure (see Caption) Figure 129. A fissure extended about 300 m S from the Rivals crater on the S flank of the cone at Piton de la Fournaise on 28 April 2018 where a new eruptive event began the previous evening. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du samedi 28 avril 2018 à 10h00 heure locale).
Figure (see Caption) Figure 130. The flow from the new fissure near Rival crater at Piton de la Fournaise had flowed to within 300 m of the Enclos Fouqué caldera rim by 0830 on 28 April 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du samedi 28 avril 2018 à 10h00 heure locale).
Figure (see Caption) Figure 131. An SO2 plume of 9.51 Dobson Units (DU) drifted NW from Reunion Island on 28 April 2018 where Piton de la Fournaise began a new eruptive episode the previous evening. Courtesy of NASA Goddard Space Flight Center.

Tremor activity decreased throughout the day on 28 April while the flow continued. The surface flow rate was measured initially at 8-15 m3 per second; it had slowed to 3-7 m3 per second by late that afternoon. Three active vents were observed on the morning of 29 April that continued the next day with fountains rising about 15 m (figure 132). A small cone (less than 5 m high) had grown around the southernmost vent and the larger middle vent contained a small lava lake. Visible lava was flowing only from the middle vent. The flow consisted of three branches; the two spreading to the E were less than 150 m long while the third flow traveled W past the E Cassian crater and had reached 1.2 km in length by 1020 on 30 April. On 30 April OVPF observed a flow from the previous day that had traveled 2.6 km, reaching the foot of the S edge of the l'Enclos Fouqué rampart.

Figure (see Caption) Figure 132. Lava flowed from three active vents near the Rival crater at Piton de la Fournaise on 30 April 2018. A small cone (less than 5 m high) had grown around the southernmost vent (bottom center) and the larger middle vent contained a small lava lake. Lava was actively flowing from only the middle vent. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du lundi 30 avril 2018 à 16h00 heure locale).

OVPF noted on 2 May 2018 that the intensity of volcanic tremor remained stable, slight deflation was measured, and the surface flow rate was estimated from satellite data at 1-3 m3 per second. Field observations during the afternoon of 3 May indicated that most activity was occurring from the central vent which had grown into a small pyroclastic cone with incandescent ejecta and gas emissions (figure 133). A well-developed lava tunnel had a number of roof breakouts.

Figure (see Caption) Figure 133. The eruptive site at Piton de la Fournaise on 3 May 2018 had two main vents, the larger pyroclastic cone produced incandescent ejecta and dense gas plumes. Courtesy of OVPF (©IPGP/OVPF) (Bulletin d'activité du vendredi 4 mai 2018 à 15h00 heure locale).

Field reconnaissance during 6-7 May confirmed that most of the activity was concentrated at the central cone with incandescent ejecta rising less than 10 m from the top, and the only source of lava was enclosed in a tunnel. The front of the flow was still active with numerous fires reported at the base of the rampart at the rim of the Enclos Fouqué. The farthest upstream cone was still active, but weak with only occasional bursts of incandescent ejecta. By 10 May the intensity of the volcanic tremor had stabilized at a low level. Two cones remained active, the upstream cone had incandescent ejections rising 10-20 m high. Lava was contained in tunnels near the cones but was exposed below the Piton de Bert (figure 134). The frontal lobe of the flow was located 3 km from the eruptive site, downstream of Piton de Bert (figure 135) at the base of the rampart rim of the Enclos. Numerous fires continued at the base of the rampart due to fresh flows (figure 136).

Figure (see Caption) Figure 134. Lava flows were visible on the slope break below Piton de Bert at Piton de la Fournaise on 10 May 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).
Figure (see Caption) Figure 135. By 10 May 2018, the front of the flow from the 27 April eruptive event at Piton de la Fournaise was located 3 km from the eruptive site downstream from Piton de Bert. Courtesy of OVPF and Google Earth (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).
Figure (see Caption) Figure 136. Fires started by active lava flows affected the base of the rampart rim of the Enclos at Piton de la Fournaise on 10 May 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).

A minor spike in seismicity was recorded on 15 May 2018; at the same time inflation resumed underneath the caldera. The smaller, farthest upstream cone was the most active on 16 May, with 20-30 m high ejecta. A webcam view on 24 May showed that the vent on the larger pyroclastic cone was nearly closed, and that flow activity was largely contained in tunnels. Field observations that day also confirmed the overall decrease in activity; only a single incandescent zone in the lava field near the vent was observed at nightfall, although persistent degassing continued (figure 137).

Figure (see Caption) Figure 137. By 24 May 2018, activity at Piton de la Fournaise from the eruptive episode that began on 27 April had diminished significantly as seen in this view of the eruptive site near the Rival crater. Photo courtesy of Cité du Volcan and OVPF (Bulletin d'activité du vendredi 25 mai 2018 à 15h00 heure locale).

An overflight on 29 May confirmed the decreasing flow activity and continued inflation. Only rare tongues of lava could be observed in the flow field. The flow front had not progressed eastward for the previous 15 days. The main cone remained open at the top with a small eruptive vent less than 5 m in diameter. Small collapses and slumps were visible on the outer flanks of the cone (figure 138). The height of the main cone was estimated at 22-25 m on 31 May and the second vent was observed to be completely closed off. OVPF reported the end of the eruption at 1430 on 1 June 2018 based on the cessation of seismic tremor (figure 139). The MODVOLC thermal alert system recorded multiple thermal alerts from 27 April through 29 May.

Figure (see Caption) Figure 138. The main cone of the eruptive event at Piton de la Fournaise remained open at the top with a small eruptive vent less than 5 m in diameter on 29 May 2018 that produced abundant steam and gas. Small collapses and slumps were visible on the outer flanks of the cone. N is to the upper left of image. Courtesy of OVPF (© OVPF/IPGP ) (Bulletin d'activité du mercredi 30 mai 2018 à 15h30 heure locale).
Figure (see Caption) Figure 139. The evolution of the RSAM signal (indicator of the volcanic tremor and the intensity of the eruption) at Piton de l aFournaise between 27 April 2018 at 2000 and 1430 on 1 June at the seismic station of BOR, located at the summit of the central cone. Courtesy of OVPF (© OVPF/IPGP) (Bulletin exceptionnel du vendredi 1 juin 2018 à 15h00 heure locale).

Eruptive event of 13 July 2018. Throughout June 2018, very little activity was reported; only 23 shallow seismic events were recorded during the month and no significant deformation was measured by the OVPF deformation network. OVPF reported that inflation resumed around 1 July. A sharp increase in seismicity was observed beginning at 2340 local time on 12 July followed by a seismic swarm and rapid deformation around midnight. Tremor activity was recorded beginning about 0330 on 13 July and located on the N flank. The first images of the eruption were visible in a webcam at around 0430. Four eruptive fissures were observed in an overflight that morning around 0800 that opened over a 500-m-long zone, spreading from upstream of la Chapelle de Rosemont towards Formica Leo. Incandescent ejecta rose less than 20 m and the aa lava had flowed about 200 m from the fissures (figures 140 and 142). The lava flow propagation rate was estimated at about 6 m per minute during the first hour of activity. Thereafter, the rate continued to decrease to less than 1 m per minute at the end of the eruption. After a progressive decrease of tremor, and about 3 hours of "gas flushes" that are typically observed at the end of Piton de la Fournaise eruptions (according to OVPF), the eruption stopped on 13 July at 2200 local time. Both MIROVA and MODVOLC recorded thermal anomalies from the brief one-day event (figure 126).

Figure (see Caption) Figure 140. A new eruption at Piton de la Fournaise on 13 July 2018 lasted only a single day and produced a 500-m-long zone with four fissure vents located on the N flank of the cone near la Chapelle de Rosemont and flowing towards Formica Leo. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du vendredi 13 juillet 2018 à 10h30 heure locale).
Figure (see Caption) Figure 141. Four fissure vents on the N flank of the central cone near la Chapelle de Rosemont produced ejecta and lava flows for about 18 hours on 13 July 2018 at Piton de la Fournaise. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du vendredi 13 juillet 2018 à 10h30 heure locale).

The 13 July 2018 eruption lasted about 18 hours and produced about 0.3 million m3 of lava. Lava flows covered more than 400 m of the popular hiking trail leading to the summit (figure 142 and 143) and almost completely filled the Chapelle de Rosemont (figure 144), an old vent and a characteristic feature within the Enclos Fouqué landscape that was first described in reports of the early volcano expeditions at the end of the 18th century. This area of the volcano on the NNW flank had not experienced active eruptive events for at least the past 400 years. Despite the low volume of lava emitted and its short duration, this event significantly changed the geomorphology of the area, which was quite well known and popular with visitors. Inflation resumed after the eruptive event of 13 July and a brief pulse of seismic activity was reported by OVPF on 26 July. They noted on 13 August that after about a month of inflation, seismicity and inflation both ceased.

Figure (see Caption) Figure 142. The brief 13 July 2018 eruptive event covered an area on the NNW flank of the central cone that had not had active flow activity for at least 400 years. Photo taken midday on 13 July 2018. Courtesy of OVPF (© OVPF/IPGP) (July 2018 Monthly bulletin of the Piton de la Fournaise).
Figure (see Caption) Figure 143. The area of the lava flows covered during the 13 July 2018 eruption are shown in white, the fissures are shown in red, and the popular hiking trail to the summit is shown in yellow. Over 400 m of the trail was covered with fresh flows. The fissures were located on the NNW flank in the area of the Chapelle de Rosemont, an old vent. The base map was produced by OVPF using aerial and ground-based photographs that were processed by means of stereophotogrammetry. Courtesy of OVPF (July 2018 Monthly bulletin of the Piton de la Fournaise).
Figure (see Caption) Figure 144. Fresh, dark lava covers the Chapelle de Rosemont on 14 July 2018 after a one-day eruption at Piton de la Fournaise the previous day. The area was first described by explorers in the 18th century and had not seen recent flow activity. Courtesy of OVPF (© OVPF/IPGP) (July 2018 Monthly bulletin of the Piton de la Fournaise).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise (OVPF), Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Great Sitkin (United States) — September 2018 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small phreatic explosions in June and August 2018; ash deposit on snow near summit

Episodic recent and historic volcanic activity has been reported at Great Sitkin, located about 40 km NE of the community of Adak in the Aleutian Islands. Prior to the recent 2018 activity, the last confirmed eruption in 1974 produced at least one ash cloud that likely exceeded an altitude of 3 km (figures 1 and 2). This eruption extruded a lava dome that partially destroyed an existing dome from a 1945 eruption. Most recently, a small steam explosion was reported on 10 June 2018. In response, the Alaska Volcano Observatory (AVO) raised the Aviation Color Code (ACC) to Yellow (Advisory) from the previous Green (Normal).

Figure (see Caption) Figure 1. Eruption of Great Sitkin volcano in 1974. Photo taken from Adak Island, Alaska, located 40 km SW of the volcano. Photographer/Creator: Paul W. Roberts; courtesy of AVO/USGS (color corrected).
Figure (see Caption) Figure 2. Worldview-3 satellite image of Great Sitkin on 21 November 2017 showing the crater, areas of 1974 and 1945 lava flows, and steam (indicated by the red arrow) from the reported seismic swarm and steam event ending in 2017. Photographer/Creator: Chris Waytomas; image courtesy of AVO/USGS.

AVO had previously reported that a seismic swarm had been detected beginning in late July 2016 and continuing through December 2017. Steam from the crater was also observed during this time period, in late November 2017 (figure 2). The seismicity was characterized by earthquakes typically less than magnitude 1.0 and at depths from near the summit to 30 km below sea level. Most earthquakes were in one of two clusters, beneath the volcano's summit or just offshore the NW coast of the island. Possible explosion signals were observed in seismic data on 10 January and 21 July 2017, but no confirmed emissions were observed locally or detected in infrasound data or satellite imagery.

The most recent eruption at Great Sitkin produced a small steam explosion which was detected in seismic data at 1139 local time on 10 June 2018 (figure 3). The explosion was followed by seismic activity which began diminishing after 24 hours, and by 15-16 June had returned to background levels.

Figure (see Caption) Figure 3. View of Great Sitkin steaming on 10 July 2018. Photographed from Adak Island, Alaska, approximately 40 km SW. Photo by Alain Beauparlant; image courtesy of AVO/USGS (color corrected).

Due to heavy cloud cover on 10 June 2018, satellite views were obscured. Subsequent satellite data collected on 11 June showed an ash deposit on the surface of the snow extending to about 2 km SW from a vent in the summit crater (figure 4). Minor changes in the vicinity of the summit crater were observed from satellite data, including possible fumaroles north of the main crater. On 17 June an aerial photograph showed minor steaming at the vent (figure 5).

Figure (see Caption) Figure 4. Satellite view of the Great Sitkin crater at 2300 UTC on 11 June 2018 showing an ash deposit extending for about 2 km to the SW. Ash was likely deposited during the brief explosion on 10 June 2018. Minor steaming from a vent through the 1974 lava flow is also visible in this image. View is from the southwest. Photographer/Creator: David Schneider; image courtesy of AVO/USGS.
Figure (see Caption) Figure 5. Aerial photo showing minor steaming at the summit of Great Sitkin, 17 June 2018. A small ash deposit extends SW from the vent. Photographer: Alaska Airlines Captain Dave Clum; image courtesy of AVO/USGS.

Another small phreatic explosion was observed in seismic data at 1105 local time on 11 August. Small local earthquakes preceded the event but were not recorded following the explosion. The event is similar to three other phreatic explosions that have occurred over the past 2 years.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Sierra Negra (Ecuador) — September 2018 Citation iconCite this Report

Sierra Negra

Ecuador

0.83°S, 91.17°W; summit elev. 1124 m

All times are local (unless otherwise noted)


Fissure opens on NNE caldera rim 26 June 2018, NW-flank lava flows reach the sea

Sierra Negra shield volcano on the Galápagos Island of Isabela has erupted six times since 1948, most recently in 2005. The eruptions of 2005, 1979, 1963, and 1953 were located in the area known as 'Volcán Chico' near the NNE rim of the summit caldera, which extends about 9 km E-W and 7 km N-S (figure 12). The lava flows generated in these eruptions were directed mainly towards the N and NE flanks of Sierra Negra, in some cases reaching Elizabeth Bay to the N and in others filling the interior of the caldera (figure 13). A new effusive eruption that occurred from 26 June through August 2018 is covered in this report with information provided primarily by Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN). Additional information comes from the Washington Volcanic Ash Advisory Center (VAAC), and several sources of satellite information.

Figure (see Caption) Figure 12. Sierra Negra is located on the southern part of Isabela Island in the Galápagos National Park, Ecuador. Courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).
Figure (see Caption) Figure 13. The Sierra Negra caldera with the locations of GPS stations and the fissures, vents, and flows from the 2005 eruption. From Geist et al. (2005), courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).

Beginning in 2017, the Geophysical Institute of the National Polytechnic School (IGEPN) installed a surveillance network of six broadband seismic stations for the Galápagos volcanoes. One station is located on the NE edge of the Sierra Negra caldera and another on the SE flank. After 12 years of little activity, an increase in seismicity beneath and around the caldera became evident by July 2017 (figure 14). On 19 October 2017 (local time) the seismic monitors detected a 16-km-deep M 3.8 earthquake with an epicenter on the NE border of the caldera in the vicinity of Volcán Chico. Four additional similar earthquakes occurred within the next hour. Another earthquake of similar size occurred on 22 October; between 15 and 16 November, three earthquakes with M 3.0 or greater were recorded. The frequency of seismic activity increased significantly in December 2017, with over 550 events recorded during the first three weeks of December 2017; at least three had magnitudes greater than 3. GPS receivers showed uplift of the caldera floor of 80 cm between 2013 and 2017. InSAR interferometry data indicated substantial inflation of the caldera floor of about 70 cm between December 2016 and late November 2017, reaching a level higher than that which preceded the eruption of 2005 (figure 15).

Figure (see Caption) Figure 14. The number of daily seismic events at Sierra Negra between 13 May 2015 and 23 November 2017 show a distinct increase in activity by July 2017. The colors represent different types of earthquakes; red is VT or volcanotectonic, orange is LP or Long Period, and blue is HB or Hybrid. Courtesy of IG (Informe Especial Sierra Negra N.- 2, Actividad reciente del volcán Sierra Negra – Isla Isabela, 23 November 2017).
Figure (see Caption) Figure 15. Inflation of the caldera floor at Sierra Negra between December 2016 and November 2017 exceeded 70 cm. The left graph shows the displacement plotted in centimeters versus time, and the right image is the spatial deformation from the InSAR data showing inflation at the caldera (center) and on the SW coast of Isla Isabela. Figures courtesy of Falk Amelung (RSMAS) and IG (Informe Especial Sierra Negra N.- 2, Actividad reciente del volcán Sierra Negra – Isla Isabela, 23 November 2017).

By early January 2018, inflation over the preceding 12 months was close to 1 m, with a total inflation exceeding that prior to the 2005 eruption. Seismic activity, focused on two fracture zones trending NE-SW across the summit caldera, continued to increase until 26 June 2018 when a fissure opened near Volcán Chico on the NNE caldera rim. Over the next 24 hours four fissures opened on the N rim and the NW flank. Three of the fissures were active only for this period, but the fourth, on the NW flank about 7 km below the caldera rim, continued to effuse lava for all of July and most of August 2018. Lava flows reached the sea in early July. Several pulses of increased effusive activity corresponded with increased seismic, thermal, and gas-emission activity recorded by both ground-based and satellite instrumentation. By the last week of August active flows were no longer observed, although the cooling flows continued to emit thermal signals for several weeks.

Activity during January-early June 2018. Elevated seismicity continued into 2018 with a M 3.8 event recorded on 6 January 2018 that was felt by tourists, guides, and Galápagos National Park officials. Tens of additional smaller events continued throughout the month, reaching more than 100 seismic events per day a few times; the earthquakes were located below the caldera at a depth of less than 8 km. A M 4.1 event on 10 January was located at a depth of 7 km. By 12 January, the total inflation of the caldera since the beginning of 2017 was 98 cm (figure 16).

Figure (see Caption) Figure 16. Seismicity and deformation at Sierra Negra between 13 May 2015 and 28 December 2017. The orange line represents the cumulative VT earthquakes, and the blue points record the inflation in cm of the floor accumulated since the beginning of 2015. A change in slope of both curves is evident at the end of 2017 indicating the rate of increase of inflation and seismicity. Courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).

IG reported 14 seismic events with magnitudes ranging from 3.0-4.6 between 1 January and 19 March 2018. A M 4.4 event on 18 January was located less than 1 km below the surface with an epicenter on the S rim of the caldera. A M 4.1 event on 27 February was also located less than 1 km below the surface. A M 4.6 event on 14 March was the largest to date at Sierra Negra and was located only 0.3 km below the surface. Measurements of CO2, SO2, and H2S made at the Azufral fumarole field (figure 17) on the W rim of the caldera in early February did not have values significantly different compared to May 2014 and September 2017. With the continued increase in frequency and magnitude of shallow seismic activity, IG noted the increased risk of renewed eruptive activity, and noted that most of the active flows of the last 1,000 years were located on the N flank (figure 18).

Figure (see Caption) Figure 17. A fumarole field near Azufral on the W rim of the Sierra Negra caldera on 6 February 2018 remained unchanged after several months of increased seismicity in the area. Photo by M. Almeida, courtesy of IG-EPN (Informe Especial del Volcán Sierra Negra (Islas Galápagos) -2018 - Nº 3, Actualizado del estado de agitación interna y posibles escenarios eruptivos, 19 March 2018).
Figure (see Caption) Figure 18. Simplified geologic map of Sierra Negra with lava flows colored as a function of relative age (modified from Reynolds et al., 1995), courtesy of IG (Informe Especial del Volcán Sierra Negra (Islas Galápagos) -2018 - Nº 3, Actualizado del estado de agitación interna y posibles escenarios eruptivos, 19 March 2018).

Increases in seismicity continued into early June. IG noted that on 25 May 2018, 104 seismic events were recorded, the largest number in a single day since 2015. A M 4.8 event on 8 June was accompanied by over 40 other smaller earthquakes. The earthquake epicenters were mainly located on the edges of the crater in two NE-SW trending lineaments; the first covered the N and W edges of the crater and the second trended from the NE edge to the S edge. Deformation data indicated the largest displacements were at the caldera's center, compared with lower levels of deformation outside of the caldera.

Eruption of 26 June-late August 2018. IG reported an increase in seismicity and a M 4.2 earthquake on 22 June 2018. A larger M 5.3 earthquake was detected at 0315 on 26 June, 5.3 km below the caldera. The event was felt strongly on the upper flanks and in Puerto Villamil (23 km SE). About 8 hours later, at 1117, an earthquake swarm characterized by events located at 3-5 km depth was recorded. A M 4.2 earthquake took place at 1338 and was followed by increasing amplitudes of seismic and infrasound signals. Parque Nacional Galápagos staff then reported noises described as bellows coming from the Volcán Chico fissure vent, which, coupled with the seismicity and infrasound data, suggested the start of an eruption. About 20 minutes later IG described a thermal anomaly identified in satellite images in the N area of the caldera near Volcán Chico and Park staff observed lava flowing towards the crater's interior as well as towards the N flank in the direction of Elizabeth Bay (figure 19).

Figure (see Caption) Figure 19. Lava flows descended from the N flank of Sierra Negra to Elizabeth Bay on 26 June 2018 from four distinct fissure vents (numbered). Fissure 1 was located near Volcan Chico on the caldera rim, and fissures 2, 3, and 4 were located on the N flank. Details of the fissures are discussed later in the report. Video of the flow was captured by Nature Galápagos. Photo courtesy of AFP and BBC News, annotated and reprinted by IG (Informe Especial N° 16 – 2018, Volcán Sierra Negra, Islas Galápagos, Actualización de la Actividad Eruptiva, Quito, 23 de Julio del 2018).

The Washington VAAC reported an ash plume visible in satellite imagery late on 26 June at 10.6 km altitude drifting SW. By the following morning, a plume of ash mixed with SO2 was drifting W at 8.2 km altitude. IG reported a new ash emission late on 27 June drifting NW at 6.1 km altitude. A substantial SO2 plume emerged on 27 June and was recorded by the OMI and OMPS satellite-based instruments drifting SW that day and the next (figure 20). The MODVOLC thermal alert system confirmed the beginning of the eruption with over 100 alert pixels recorded on 27 June and over 50 the following day. The MIROVA system recorded an abrupt, very high thermal signal beginning on 26 June (figure 21). Seismic and acoustic data indicated a gradual decrease of activity after the initial outburst, but effusive lava flows continued on 27 June.

Figure (see Caption) Figure 20. A large plume of SO2 was emitted from Sierra Negra on 27 June 2018 at the beginning of the latest eruptive episode. It drifted SW the following day, as seen in these images captured by the OMPS instrument on the Suomi NPP satellite. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 21. The MIROVA project graph of thermal energy at Sierra Negra from 31 January 2018 through September 2108 shows the start of the lava flows on 27 June 2018 (UTC). Pulses of high thermal energy continued through late August when flow activity ceased; cooling of the flows continued into September 2018. Courtesy of MIROVA.

During 27 and 28 June, IG scientists were able to make a site visit to capture thermal, photographic, and physical evidence of the new lava flows (figure 22). A composite thermal image showed the extent of flows that traveled down the N flank as well as into the caldera (figure 23). A temperature of 580°C was measured near the eruptive fissure, and the surface temperatures averaged about 60°C, although some flows were measured as high as 200°C. The temperature inside a fracture on a lava flow was measured at 975°C (figure 24). Pelée hair and "spatter" bombs were visible around the eruptive fissures.

Figure (see Caption) Figure 22. The lava flows of 26 June 2018 at Sierra Negra emerged from a fissure on the N flank of the caldera rim and other fissures on the N flank and flowed N. N is to the right. Photo by Benjamin Bernard, courtesy of IG (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 23. Composite thermal images of the new lava flows at Sierra Negra taken on 27 June 2018 reveal the flows that emerged from the Volcán Chico fissure zone; most flows traveled N down the flank, a few (on the left) traveled down into the caldera. Images by Silvia Vallejo, courtesy of IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 24. The temperature of incandescent lava within a fresh flow at Sierra Negra was measured at 975°C on 27 June 2018. Left image by Francisco Vásconez; thermal image by Silvia Vallejo, courtesy of IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).

Pahoehoe and aa flows along with lava tunnels were visible in drone images. The visible fissures were slightly arcuate and aligned in a general ENE direction, similar to the fissures of 1979 and 2005 in the vicinity of Volcán Chico. The largest flow was more than 150 m long; they reached up to 130 m wide in the flat areas, but only between 25 and 35 m wide where they were channeled on the steeper slope. In the flatter areas they had characteristics of pahoehoe with a smooth surface, a sometimes rounded texture and lava tunnels (figure 25), while in the channelized areas with a steeper slope they had a rougher surface and were characterized as aa (figure 26). The flows averaged 0.5-1 m thick and in several places the lava filled fissures or previous depressions. The samples of pahoehoe that were collected were all aphanitic with no crystals, strongly iridescent, and vesiculated with fluid textures that indicated a high gas content and low viscosity.

Figure (see Caption) Figure 25. Pahoehoe flows, spatter, and a collapsing lava tunnel were visible near fissure 1 (above 'Spatter') at Sierra Negra when imaged by a drone during a field visit on 27-28 June 2018 shortly after the new eruptive episode began. This image covers the area near the top center of the image in figure 22 close to the fissure. Photos were taken by a drone flying 60 m above the flows by Benjamin Bernard, courtesy IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 26. Aa flows formed as lava traveled down the steeper parts of the N flank of Sierra Negra on 26 June 2018, seen in this drone image taken during a field visit on 27-28 June. This image general location can be seen in the bottom right area in figure 22. Photos were taken by a drone flying 60 m above the flows by Benjamin Bernard, courtesy IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).

A small seismic event followed by several hours of tremor was recorded at 1552 on 1 July; a short while later National Park staff observed active lava flows on the NW flank. On 4 July, IG reported a M 5.2 earthquake that was 5 km deep; it was followed by 68 smaller seismic events. On 7 July seismic tremor activity indicating another pulse of magmatic activity was recorded by a station on the NE edge of the caldera at 1700. At the same time, satellite data showed an increase in the intensity of the thermal anomaly on the NW flank; Parque Nacional Galápagos staff confirmed strong visible incandescence in an area near the beach. Tremor activity continued on 8 July, although the amplitude gradually decreased.

The Washington VAAC reported an ash plume visible in satellite imagery on 2 July at 6.1 km altitude drifting SW. Later in the day a concentrated plume interpreted to be primarily steam and gas extended about 260 km SW. On 8 July ash could be seen moving both W and SW in satellite imagery at 2.7-3.0 km altitude. Later that day ash was visible extending about 115 km SW from the summit and other gases extended 370 km W. That evening the ash plume extended about 190 km SW at 3.7 km altitude. Gas-and-ash plumes were observed continuously drifting SW for the next three days (9-11 July) at 3.7 km altitude to a distance of about 80 km. On 13 July, two areas of ash and gas were seen in satellite imagery moving 25 km NW from the summit and up to 45 km SW at altitudes of 3.9 and 2.4 km respectively. A low-level ash plume on 16 July extended 30 km SW from the summit at 2.4 km altitude; incandescence was also visible in the webcam. The next day ash and gas emissions extended about 120 km SW at a similar altitude. Ongoing steam, gas, and ash emissions were seen in satellite imagery and in the webcam extending 110 km NW from the summit on 19 July at 3.4 km altitude. The Washington VAAC reported an ash plume on 30 July that rose to 3.4 km altitude and drifted SW. Strong SO2 emissions were recorded by both the OMPS and OMI satellite instruments throughout July 2018 (figure 27).

Figure (see Caption) Figure 27. SO2 plumes from Sierra Negra exceeded 2 Dobson Units (DU) nearly every day during July 2018. Data gathered by the OMPS satellite instrument showed a large plume drifting SW on 2 July (top left), and a more narrow stream of SO2 drifting SW on 3 July (top right). The OMI satellite instrument captured large W-drifting plumes on 12 (bottom left) and 14 (bottom right) July. Courtesy of NASA Goddard Space Flight Center.

In a report issued by IGEPN covering activity through 23 July 2018, they noted that at least four fissures had initially opened on 26 June at the start of the eruption (see numbers in figure 19 at the beginning of this report, and figure 31 at the end). Fissure 1, the longest at 4 km, was located at the edge of the caldera in the area of Volcán Chico; lava flows from this fissure traveled 7 km down the flanks, and over 1 km within the interior of the caldera. NW-flank fissures 2, 3, and 4 were much smaller (about 250 m long). Fissures 1-3 were active only until 27 June; fissure 4 continued to be active throughout July. Lava from this fissure reached the ocean on 6 July.

Gas and possible volcanic ash extended 35 km SW of the summit on 4 August at 1.5 km altitude; this was the last report of an ash plume by the Washington VAAC for the eruption. Daily reports from IGEPN indicated that nightly incandescence from advancing flows continued into August. Occasional low-level steam and gas plumes were also visible. Pulses of lava effusion on 4 and 9 August were accompanied by major episodes of seismic tremor activity and substantial SO2 plumes (figure 28). On 15 August satellite images showed lava from fissure 4 continuing to enter the ocean. The area where the lavas entered the sea were far from any human population or agricultural activities and only accessible by boats.

Figure (see Caption) Figure 28. At Sierra Negra, large SO2 plumes were recorded by the OMPS instrument on the Suomi NPP satellite at the same time that an increase in seismic activity and effusion were noted on both 4 (left) and 9 (right) August 2018. Courtesy of NASA Goddard Space Flight Center.

Throughout the ongoing eruption, pulses of thermal activity detected by MODIS infrared satellite sensors correlated with increases in seismic activity and observed flow activity. The MIROVA plot showed a high level of heat flow from the onset of the eruption on 26 June gradually decreasing in intensity through mid-August (figure 21). This was followed by a significant drop in heat flow and gradual cooling thereafter. After the initial fissure activity near the crater rim on 26-27 June, all subsequent activity was concentrated farther down the N flank at fissure 4 and is reflected in the number of pixels concentrated in that area of the MODVOLC plot of thermal alerts from June-September 2018 (figure 29).

Figure (see Caption) Figure 29. MODVOLC thermal alert locations corresponded to the locations of the observed flow activity at Sierra Negra, showing the sustained thermal activity from the mid-flank fissure 4 that lasted from late June through mid-September 2018. Courtesy of HIGP - MODVOLC Thermal Alerts System .

The number of seismic events recorded during the eruptive episode had increased between 26 June and 30 July 2018 to an average of 265 per day. The peak was recorded on 29 June with 940 earthquakes. Between 31 July and 23 August, the average number was 121 per day, still higher than the level of 38 per day prior to the beginning of the eruption on 26 June. IG reported a continuous decline in activity during the last two weeks of August 2018. After the initial burst of effusive activity during 26-27 June, five additional pulses of increased thermal, seismic, and gas-emission activity were observed in multiple sources of data on 1-2, 7-8, and 31 July, and 4 and 9 August (figure 30).

Figure (see Caption) Figure 30. Multiple parameters of data from the eruption of Sierra Negra from 21 June to 30 August 2018. The dashed green line marks the start of the eruption, while the pale green vertical bars indicate the different eruptive pulses recorded throughout the eruption. a) Seismic energy data (RSAM) recorded by station VCH1, in a window between 1-8 Hz (location shown in figure 31); b) Time series of degassing of SO2 recorded by the OMI and OMPS satellites instruments; c) thermal anomalies recorded by MODVOLC. Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018), also published in Vasconez et al (2018).

In a summary report on 31 August 2018, IG reported that the eruption was divided into two main phases. The first and most energetic phase lasted one day (26 June) and was characterized by the opening of five fissures (table 2) located on the rim and N and NW flanks, and creation of lava flows that traveled as far as 7 km from the vents (figure 31). Lava was only active from all five fissures during the first day of the eruption, covering an area greater than 17 km2. During the rest of the eruption from 27 June-23 August, about 13 km2 of lava was produced from fissure 4, with lava reaching the sea on 6 July and expanding the coastline by 1.5 km2. Detailed descriptions of the fissures provided by IGEPN are given in the following section. By 25 August the lava flows covered an area of 30.6 square kilometers. Activity continued to decline the last week of August with decreased seismicity, gas emission, and no surficial activity visible.

Figure (see Caption) Figure 31. Map of the 26 June-August 2018 eruption of Sierra Negra volcano. The eruptive fissures are numbers and shown in yellow and described in detail in the next section. The coastline with Elizabeth Bay is shown in blue, and the lava flows appear in red. The green points include GPS and seismic stations, the epicenter of the earthquake of 5.3 MLV on 26 June, El Cura (control station of the Galápagos National Park) and the panoramic vista visited by tourists. Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018), also published in Vasconez et al (2018).

Table 2. Descriptions of the five fissures active during the June-August 2018 eruption of Sierra Negra (see figure 31 for locations). Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018)

Feature Location Description
Fissure 1 Edge of the caldera in the Volcán Chico area, trending WNW, tangential to the edge of the caldera. Four kilometers in length with lava flows that moved toward both the interior of the caldera and down the flank from the beginning of the eruption until 27 June, covering an area of 14.6 km2. The flows deposited outside the crater traveled 7 km downhill, without reaching the sea, while those inside it reached a maximum distance of 1.1 km.
Fissure 2 NW of the caldera about 3 km below its edge of the caldera at an elevation of 700 m. Approximately 250 m long and produced 4-km-long lava flows from the beginning of the eruption until 27 June, covering an area of 2.2 km2; its lava did not reach the sea.
Fissure 3 WNW of the caldera about 4 km below its edge at an elevation of 550 m. Approximately 250 m long and active from the beginning of the eruption until 27 June, emitting lava flows that covered an area of about 0.4 km2. The lava flows had a length of about 2 km and did not reach the sea.
Fissure 4 NW flank at an elevation of 100 m between 7 and 8 km below the rim of the caldera. Continuously emitting lava flows throughout the eruption. It was located on the On 6 July the lava flows from this fissure reached the ocean and modified the coastline of Isla Isabela by 1.5 km2. By 25 August when active flow ceased, its lavas had covered an area of approximately 13.3 km2.
Fissure 5 Western flank at an elevation of 840 m, 1.5 km downhill from the inner edge of the caldera. Length of 170 m and covered 0.026 km2.

References: Davidge L, Ebinger C, Ruiz M, Tepp G, Amelung F, Geist D, Cote D, Anzieta J, 2017, Seismicity patterns during a period of inflation at Sierra Negra volcano, Galápagos Ocean Island Chain. Earth and Planetary Science Letters. 462. DOI: 10.1016/j.epsl.2016.12.021.

Geist D, Naumann T R, Standish J J, Kurz M D, Harpp K S, White W M , Fornari D, 2005, Wolf Volcano, Galapagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. Journal of Petrology 46:2197-2224.

Vasconez F, Ramón P, Hernandez S, Hidalgo S, Bernard B, Ruiz M, Alvarado A., La Femina P, Ruiz G, 2018, The different characteristics of the recent eruptions of Fernandina and Sierra Negra volcanoes (Galápagos, Ecuador), Volcanica 1(2): 127-133. DOI: 10.30909/vol.01.02.127133.

Geologic Background. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nature Galápagos (Twitter: @natureGalápagos, https://twitter.com/natureGalápagos).


Nishinoshima (Japan) — September 2018 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Quiescence interrupted by brief lava flow emission and small explosions in July 2018

Nishinoshima is an active volcano in the Ogasawara Arc, about 1,000 km S of Tokyo, Japan. After 40 years of dormancy, activity increased in November 2013 and has since formed an island. The eruption has continued with subaerial activity that largely consists of lava flows and small gas-and-ash plumes. This report covers November 2017 through July 2018, and summarizes activity noted in reports issued by the Japan Meteorological Agency, and images and footage taken by the Japan Coast Guard (JCG).

No eruptive activity at Nishinoshima had been noted since mid-August 2017, when lava was last entering the ocean. Activity recommenced on 12 July and a 200-m-long lava flow was confirmed on 13 July. The lava flow was accompanied by explosive activity that ejected blocks and bombs out to 500 m from the vent, plumes and water discoloration (figures 60, 61, and 62). An aerial survey by the JCG on 30 July showed that activity had ceased and the lava flow had reached 700 m in length, terminating 100 m from the ocean.

Figure (see Caption) Figure 60. Aerial photo of Nishinoshima taken on 18 July 2018. The photo shows the active lava flow emanating from the vent along with a gas plume, and water discoloration. A closer view of the lava flow is given in figure 61. The island is approximately 1.9 x 1.9 km in size. Courtesy of the Japan Coast Guard.
Figure (see Caption) Figure 61. A view of the active Nishinoshima vent and 200-m-long lava flow on 13 July 2018. The vent is also producing a dilute ash plume from the eastern side of the cone. Courtesy of the Japan Coast Guard.
Figure (see Caption) Figure 62. Screenshot from a thermal infrared video of the active Nishinoshima vent taken on 13 July 2018. The video shows explosions ejecting incandescent material onto the flanks of the cone and the active lava flow. Courtesy of the Japan Coast Guard.

After the July activity, Nishinoshima again entered a phase of quiescence with activity limited to fumaroles around the vent. Himawari-8 satellite observations noted no increased thermal output following the July 2018 eruption. Thermal anomalies detected by satellite-based MODIS instruments were identified by the MODVOLC system from during 12-21 July 2018.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html, http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm); Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Rincon de la Vieja (Costa Rica) — September 2018 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Intermittent weak phreatic explosions during January-March and July-August 2018

The Rincón de la Vieja volcano complex has generated intermittent phreatic explosions since 2011; during 2017, weak phreatic explosions occurred during May, June, July, September, and October (BGVN 42:08 and 43:03). This activity continued through August 2018. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

According to OVSICORI-UNA, at 1758 on 9 January 2018, an explosion produced a plume that rose 1 km above the crater rim. On 12 January, OVSICORI-UNA reported some small phreatic explosions. The webcam detected weak explosions again in mid-February. Another weak explosion on 22 February confirmed the presence of a crater lake.

During the first week of March OVSICORI-UNA reported weak phreatic explosions of low amplitude that were only be detected by the webcam (figure 28), and not by seismic instruments. During the week of 5-11 March there were 2-4 weak phreatic explosions occurred per day, along with strong tremor on the 10th. Small eruptions were seen on unspecified days the week of 12-18 March.

Figure (see Caption) Figure 28. Webcam image of a phreatic explosion at Rincon de la Vieja on 3 March 2018. Courtesy of OVSICORI-UNA.

No phreatic activity was reported during the second half of March through June, though on 20 May a seismic swarm of about 30 earthquakes was recorded. After a tremor on 3 July, a possible weak phreatic explosion occurred on 4 July at 0044, followed by a pulse of tremor. On 28 July, at 1828, a small explosion followed by tremor was recorded.

On 3 August OVSICORI-UNA reported that two weak explosions occurred at dawn. On 14 August, another weak explosion began at 1828 and lasted three minutes. Foggy conditions prevented webcam views and an estimate of a plume height. Other weak explosions were recorded on 17 August at 1407 and 2015.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Semeru (Indonesia) — September 2018 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Small ash plumes in February, April, July, and August 2018; persistent thermal hotspot in the crater

Semeru volcano is the tallest volcano in Java (figure 33) and one of the most active in Indonesia. The Mahameru summit area contains the active Jonggring-Seloko vent where activity consists of dome growth and regular ash plumes, along with pyroclastic flows, avalanches, and lava flows that travel down the SE-flank ravine. The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) Volcano Alert level for Semeru throughout the report period is II (on a scale of I-IV). The last Volcano Observatory Notice for Aviation (VONA) was issued on 9 January 2017, and the status has not changed during the reporting period. This report summarizes the activity from January to 24 August 2018 and is based on Volcano Ash Advisory Center (VAAC) ash advisories and satellite data.

Figure (see Caption) Figure 32. View looking NW at the quiet Mahameru summit area of Semeru on 24 August 2018 taken by a webcam courtesy of MAGMA Indonesia via Ø.L. Andersen's Twitter feed.

While there were no observatory activity reports issued, the Darwin VAAC issued reports for five events that produced ash plumes to altitudes ranging 3.4 to 4.9 km (table 22). MIROVA (Middle InfraRed Observation of Volcanic Activity) thermal data indicate near-consistent low-level thermal activity at Semeru after a period of no detected thermal anomalies in late January through early February. This supports the elevated thermal energy detected by Sentinel-2 satellite data at the Jonggring-Seloko vent and along the SE-flank ravine (figure 34). The MODVOLC algorithm detected 16 high-temperature hotspots through the reporting period, six in January, two in March, three in April, one in July, and two in August through to the 24th.

Table 22. Summary of ash plumes (altitude and drift direction) and pyroclastic flows at Semeru, January to 24 August 2018. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC report.

Date Altitude (km) Drift direction Other notes
24 Feb 2018 4.6 20 km ESE and WSW --
29 Apr 2018 3.4 NW Short-lived discrete eruption
20 Jul 2018 4.9 SW Minor discrete eruption
30-31 Jul 2018 4.3 W --
23-24 Aug 2018 4.3 W and SW --
Figure (see Caption) Figure 33. MIROVA plot of Log Radiative Power showing the relative thermal energy at Semeru ending September 2018. The detected thermal activity is more intense before mid-January 2018 when there was a gap in detected data before regular low-level activity resumed. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 false color thermal satellite images showing the persistent elevated thermal anomaly in the Jonggring-Seloko crater of Semeru from January through to 24 August 2018. Hot material can sometimes be identified in the SE-flank ravine. The larger central image is annotated with the major morphological features. False color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Sinabung (Indonesia) — September 2018 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


No significant ash plumes seen after 22 June 2018; minor ash in early July

Sinabung volcano is located in the Karo regency of North Sumatra, Indonesia. The current eruptive episode commenced in late 2013, after phreatic activity in 2010, producing ash plumes, lava domes and flows, and pyroclastic flows that caused evacuation and relocation of nearby communities. This report covers activity from April through early July, and is based on information provided by MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), the Center for Volcanology and Geological Hazard Mitigation (CVGHM, also known as PVMBG), satellite data, and field photographs. Sinabung has been on Alert Level IV, the highest hazard status, since 2 June 2015.

The eruption has built a pyroclastic flow and lava fan to the SE (figure 60). This activity continued into 2018, with the last significant ash plume reported on 22 June (table 8). However, minor ash emissions continued at least through 5 July 2018.

Figure (see Caption) Figure 60. Satellite images showing Sinabung before and after the eruption with the newly-developed fan of pyroclastic flow, volcanic ash, and lava flow deposits. Top: Landsat-8 true color satellite image (pan-sharpened) acquired on 7 June 2013 before the eruption began. Bottom: Sentinel-2 natural color satellite image acquired on 16 July 2018, after the eruption ended. Courtesy of Sentinel Hub Playground.

Table 8. Summary of ash plumes (altitude and drift direction) and pyroclastic flows at Sinabung, April-June 2018. The summit is at 2,460 m elevation. Data courtesy of Darwin VAAC reports, MAGMA Indonesia VAAC reports, and CVGHM volcanic activity reports.

Date Ash plume altitude (km) Ash plume drift direction Pyroclastic flows
06 Apr 2018 7.5 W, S 3.5 km
12 Apr 2018 2.7 WNW Yes
19 Apr 2018 5.5 ESE 1 km
19 May 2018 3.2 NW --
20 May 2018 5.0 WNW --
15 Jun 2018 3.0 ESE --
22 Jun 2018 3.5 SE --

An eruption on 6 April 2018 at 1607 local time produced an ash plume that reached about 7.5 km above the summit. The eruption also produced pyroclastic flows that traveled about 3.5 km from the summit down the SE slope (figure 61). The eruption resulted in the closure of a nearby airport and ashfall affected hundreds of hectares of agricultural land. Two more notable ash plumes were reported on 12 and 19 April, to altitudes of about 2.7 and 5.5 km, respectively. A pyroclastic flow was reported during the 12 April eruption. Smaller ash and gas emissions occurred through the month.

Figure (see Caption) Figure 61. Eruption of Sinabung on 6 April 2018 at 1600 local time that produced an ash plume that reached over 5 km above the summit, and pyroclastic flows that reached about 3.5 km down the SE flank. Courtesy of Agence France-Presse via Straits Times.

Two ash plumes were recorded on 19 and 20 May, rising to about 3.2 and 5 km altitude, respectively. Throughout June small diffuse gas-and-ash plumes continued (figures 62 and 63). The last activity reported by the agencies was on the 15 and 22 June, when ash plumes reached 3 and 3.5 km altitude (figure 64). Activity after 22 June was limited to seismicity and ash, gas, and steam plumes to several hundred meters above the summit (figure 65). Although an elevated thermal signature was detected in Sentinel-2 satellite data on 30 August 2018, there were no reports of renewed activity.

Figure (see Caption) Figure 62. View of the Sinabung summit vent area during ash venting on 20 June 2018. This view from the SW shows the perched remains of the lava dome and collapse scar. Photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.
Figure (see Caption) Figure 63. Relatively consistent ash venting at Sinabung on 20 June 2018. This view shows the pyroclastic flow fan and the 2014 lava flow in the lower center of the photo. Drone photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.
Figure (see Caption) Figure 64. Small ash plume rising from Sinabung at 2106 on 22 June 2018. The ash plume reached about 1 km above the crater. Courtesy of BNPB (color adjusted).
Figure (see Caption) Figure 65. Minor ash venting at Sinabung on 5 July 2018. Photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia ); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/, Twitter: https://twitter.com/id_magma); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY (URL: https://www.ldeo.columbia.edu/user/bcarr); Agence France-Presse (URL: http://www.afp.com/); Straits Times (URL: https://www.straitstimes.com).


Telica (Nicaragua) — September 2018 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Explosions on 21 June and 15 August 2018; local ashfall from June event

The Telica volcano complex, which consists of several cones and craters, has had intermittent eruptions since the Spanish conquest, with emissions of gas and ash. According to The Instituto Nicaragüense de Estudios Territoriales (INETER), the volcano is monitored in real time by a permanent seismic station near the crater. It is also visited several times per year for visual observations, to measure sulfur dioxide emissions, and measure temperatures in the crater and fumaroles near the seismic station. A gas-and-ash explosion occurred in early May 2016 (BGVN 42:01). This report covers activity from September 2016 through June 2018.

INETER reported that local residents heard a small gas explosion on 10 September 2017, and warned the public to stay at least 2 km away from the crater. No ash emissions were reported related to this event.

According to INETER and the Sistema Nacional para la Prevención, Mitigación y Atención de Desastres (SINAPRED), an eruption began at 0708 on 21 June 2018. Explosions produced an ash plume that rose 500 m above the crater and drifted E, S, and SW. Ejected tephra was deposited within a 1-km-radius of the volcano, and ashfall was reported in nearby areas, including La Joya, Las Marías (7 km NNW), Pozo Viejo (10 km NNW), Ojo de Agua, San Lucas (11 km NNW), Las Higueras, Las Grietas (12 km NNW), and Posoltega (16 km WSW).

Another explosion on 15 August 2018 was reported by SINAPRED that generated an ash plume to 200 m above the crater rim.

Seismicity. INETER monthly reports indicated that during September through December 2016, between 3,500 and 3,900 monthly seismic events took place, with the majority having hybrid signatures. During 2017, the monthly number of seismic events ranged from 40,584 (September) to 105,555 (November), of which 50-90% were hybrid events, 9-10% long-period events (but 23 percent in January), and 0-35% multiple events. A few scattered volcanic-tectonic events occurred, and tremor was usually low. Seismic data for January and March consisted of percentages of different earthquake types similar to those during 2017.

About 5% of the monthly seismic signals between April 2017 and January 2018 were doublets, or paired earthquakes with two predominant frequencies. INETER did not mention doublets in their March 2018 report, and did not include seismic data in their February or April 2018 reports.

Sulfur dioxide measurements. According to INETER, during fieldwork on 8 and 11 May 2017 the sulfur dioxide level was measured at 368 ± 194 metric tons/day. This value was lower than those in November 2015 with an average of 765 ± 94 tons/day. On 28 February and 1 March 2018, measurements using the Mobile-DOAS technique found levels greater than 426 tons/day and a minimum value of 152 tons/day, with an average of 260 tons/day, higher than the value measured in September 2017 with 183 tons/day. On 16 and 19 April 2018, the minimum and maximum values were 229 and 567 tons/day, with an average of 353 tons/day.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Sistema Nacional para la Prevencion, Mitigacion y Atencion de Desastres (SINAPRED), Edificio SINAPRED, Rotonda Comandante Hugo Chávez 50 metros al Norte, frente a la Avenida Bolívar, Managua, Nicaragua (URL: http://www.sinapred.gob.ni/).


Turrialba (Costa Rica) — September 2018 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Ongoing variable ash emissions and crater incandescence through August 2018

This report summarizes activity at Turrialba during January-August 2018. Activity became more constant after September 2014, with cycles of explosions with numerous, sometimes persistent, weak and passive ash plumes and emissions usually rising no more than 500 m above the active crater. This activity continued during this reporting period (table 7). Most of the data were provided by monthly bulletins of the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) and alerts from the Washington Volcanic Ash Advisory Center (VAAC).

Table 7. Ash emissions at Turrialba, January-August 2018. Information was provided by OVSICORI-UNA, Washington VAAC, and RSN: UCR-ICE.

Date Time Max. Plume height above crater rim Drift Remarks
08 Jan 2018 0600 400-500 m NW --
08 Jan 2018 1319 400-500 m NE --
08 Jan 2018 2005 800 m SW --
09 Jan 2018 0630 300 m SW --
09 Jan 2018 1412 -- -- --
15 Jan 2018 0400 -- -- Ashfall in areas N of Pacayas (Pinos, Buenos Aires, and Santa Rosa de Oreamuno); sulfur odor noted in Santa Rosa de Oreamuno.
22 Jan 2018 0000 500 m NW --
26 Jan 2018 1101 100-200 m SW --
26 Jan 2018 1427 100-200 m SW --
30 Jan 2018 0920 100-200 m SW --
05 Feb 2018 0830 200 m SW --
06 Feb 2018 0730 1 km SW According to The Costa Rica Star, the activity continued for almost one hour; smaller explosion at 0832. Ashfall in several W-flank communities in San Jose (Goicoechea, Curridabat, Coronado) and Heredia.
27 Feb 2018 0800 100 m SW --
06 Mar 2018 2240 500 m NW Activity intensified around midnight with dense ash emissions and ejection of incandescent blocks, and remained elevated almost until 0300 on 7 March. At 1740 activity again intensified; emissions with increased ash volume occurred 1801-1820 drifting W.
08 Mar 2018 1515 300 m SW --
13 Mar 2018 0920 300 m NW --
23 Mar 2018 0605 100 m SW --
31 Mar 2018 1802 400 m SW --
01 Apr 2018 0838 500 m NW --
03 Apr 2018 0700 500 m NW --
05 Apr 2018 1230 500 m S --
09 Apr 2018 0609 300 m W --
11 Apr 2018 -- -- -- --
26 Apr 2018 0700 300 m W --
10 May 2018 -- -- -- Ashfall in La Pastora de Santa Cruz de Turrialba and Pacayas. No specific date: strong emissions of SO2, accompanied by vigorous fumarolic activity and jetting noises.
13 May 2018 0920 300-500 m -- Weak steam and gas, apparently no ash. Seismicity low, with low-amplitude long-period earthquakes and tremor. Continuous low-amplitude tremor.
21 May 2018 0900 -- -- --
28 May 2018 0930 300 m SE --
23 Jul-04 Aug 2018 -- 300 m NW, W, SW Series of weak, sporadic, and almost daily gas-and-ash emissions. On 24 July, ashfall in Coronado, Tibás (35 km WSW), Goicoechea (28 km WSW), Moravia (31 km WSW), and other areas in the Valle Central. On 31 July, ashfall in Tres Ríos (27 km SW). Sulfur odor occasionally reported.
02 Aug 2018 0023 1 km W --
02 Aug 2018 0700 300 m W --
04 Aug 2018 1600 300 m -- --
10 Aug 2018 -- -- W Pulsating, passive ash emissions. Strong sulfur odor in parts of Heredia (38 km W) and San José (36 km WSW) on 11 Aug.
27-28 Aug 2018 -- 200 m SW Continuous emissions.
30 Aug 2018 1340 200 m SW --
31 Aug-01 Sep 2018 -- 200 m SW, W Continuous gas-and-ash emissions.

According to an online news report (Q Costa Rica), a group of volcanologists called Volcanes sin Fronteras (Volcanos Without Borders) flew a drone over the volcano several times in December 2017 and first the two weeks of January 2018. On their Facebook page, they indicated that activity was dominated by intense degassing from the active crater, with sporadic explosions every 30-60 minutes, releasing gas and ash that rose to more than 300 m above the crater. They also observed phreato-magmatic explosions.

OVSICORI reported that pulses of ash emissions were common in January (figure 49), and incandescence was occasionally observed at night. Activity decreased after the middle of February, but strong incandescence was observed during early March.

Figure (see Caption) Figure 49. Webcam photo of an ash emission at Turrialba on 22 January 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE); published by the Costa Rica Star.

Eruptive activity resumed during the middle of May, but faded toward the end of the month to weak passive emissions, and finally ended. The volcano continued with a stable permanent Strombolian activity at the bottom of the crater. During June, the volcano was stable, with strong incandescence at night reflecting the presence of minor Strombolian activity that continued through at least early July.

On 3 July a weak explosion occurred and a thin layer of ash fell on the park ranger house and the Pica seismic station (2.5 km NW). A jet-like sound was heard on 4 July from a lookout. On 16 July incandescence continued at a low level. OVSICORI reported frequent weak ash emissions from 18 July through 2 August; the ash had a very low proportion of juvenile material and a high proportion of altered material. According to a news account (The Costa Rica Star) citing the RSN, persistent tremor accompanied these emissions, and a lahar descended the Toro Amarillo River on the W flank. Weak short-lived ash emissions resumed during the last half of August, and weak to moderate incandescence could still be observed.

Seismicity and deformation. During the first week of January, weak long-period (LP) earthquakes were recorded, but no volcanic-tectonic (VT) earthquakes or tremor. In February-April, weak VT earthquakes, a few LP earthquakes, and harmonic tremor were recorded. By May, seismic activity was almost non-existent, with VT signals below the crater and sporadic tremor. The latter disappeared by the end of May.

On 16 July, seismicity increased, particularly low-frequency earthquakes, to reach about 200 events the next day, but then decreased to normal on 18 July, with sporadic short tremor. During the last week of July, seismicity again increased until an internal explosion on 27 July, after which seismicity decreased. Tremor activity increased on 4 August, and by the middle of August, about 50 LP earthquakes per day were recorded, along with spasmodic tremor of low amplitude. This heightened activity continued during the following week.

Since June 2017, the volcano tended toward deflation, but then in early 2018 became stable until the middle of February, when inflation was recorded. By June, deformation was longer measured. No significant deformation was found in July or August.

Thermal anomalies. MODIS satellite instruments processed using the MODVOLC algorithm only recorded thermal anomalies on 22 March, 2 April, and 27 April (2 pixels). The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded one hotspot during February, numerous hotspots between mid-March and mid-May, and only several hotspots after mid-May through the end of August. All recorded MIROVA anomalies were within 2.5 km of the volcano and of low radiative power.

Sulfur dioxide measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments between 30 March and 3 June, especially between 6-15 April.

According to OVSICORI, the CO2/SO2 ratio increased to a peak of 8 during the night of 21-22 January, then remained stable until the first week of February, when it decreased. By 20 February, the ratio was stable at about 4. The ratio was low during the middle of March, but rose on 29 March. On 10 April, the SO2 flow was normal (below 1000 t/d) and remained low until the middle of May, when CO2 levels increased. High CO2/SO2 levels were measured at the end of May, but decreased in early June. On 12 and 25 June, SO2 levels were about 400 and 500 tons/day, respectively. During early July, the ratio remained low at 4, with short periods of high measurements (about 10 on 5 July). The ratio remained stable throughout the rest of July. The ratio increased on 6 August during the last phase of eruptive activity, but then decreased to normal and stable levels for the rest of the month. Near the end of August, the two gas monitoring stations were vandalized.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica and Instituto Costarricense de Electricidad (URL: http://rsn.ucr.ac.cr/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (URL: https://sO2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); Q Costa Rica (URL: https://qcostarica.com).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports