Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sangay (Ecuador) Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Karangetang (Indonesia) Incandescent block avalanches through mid-January 2020; crater anomalies through May

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020



Sangay (Ecuador) — July 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars reported since 1628. Its remoteness on the east side of the Andean crest make ground observations difficult; remote cameras and satellites provide important information on activity. The current eruption began in March 2019 and continued through December 2019 with activity focused on the Cráter Central and the Ñuñurco (southeast) vent; they produced explosions with ash plumes, lava flows, and pyroclastic flows and block avalanches. In addition, volcanic debris was remobilized in the Volcan river causing significant damming downstream. This report covers ongoing similar activity from January through June 2020. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery. Visitors also provided excellent ground and drone-based images and information.

Throughout January-June 2020, multiple daily reports from the Washington Volcanic Ash Advisory Center (VAAC) indicated ash plumes rising from the summit, generally 500-1,100 m. Each month one or more plumes rose over 2,000 m. The plumes usually drifted SW or W, and ashfall was reported in communities 25-90 km away several times during January-March and again in June. In addition to explosions with ash plumes, pyroclastic flows and incandescent blocks frequently descended a large, deep ravine on the SE flank. Ash from the pyroclastic flows rose a few hundred meters and drifted away from the volcano. Incandescence was visible on clear nights at the summit and in the ravine. The MIROVA log radiative power graph showed continued moderate and high levels of thermal energy throughout the period (figure 57). Sangay also had small but persistent daily SO2 signatures during January-June 2020 with larger pulses one or more days each month (figure 58). IG-EPN published data in June 2020 about the overall activity since May 2019, indicating increases throughout the period in seismic event frequency, SO2 emissions, ash plume frequency, and thermal energy (figure 59).

Figure (see Caption) Figure 57. This graph of log radiative power at Sangay for 18 Aug 2018 through June 2020 shows the moderate levels of thermal energy through the end of the previous eruption in late 2018 and the beginning of the current one in early 2019. Data is from Sentinel-2, courtesy of MIROVA.
Figure (see Caption) Figure 58. Small but persistent daily SO2 signatures were typical of Sangay during January-June 2020. A few times each month the plume was the same or larger than the plume from Columbia’s Nevado del Ruiz, located over 800 km NE. Image dates are shown in the header over each image. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 59. A multi-parameter graph of activity at Sangay from May 2019 to 12 June 2020 showed increases in many types of activity. a) seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN). b) SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (TROPOMI: red squares; source: MOUNTS) and by the IG-EPN (DOAS: green bars). c) height of the ash plumes (meters above crater) detected by the GOES-16 satellite sensor (source: Washington VAAC). d) thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimate of the accumulated lava volume (million M3, thin lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

Activity during January-March 2020. IG-EPN and the Washington VAAC reported multiple daily ash emissions throughout January 2020. Gas and ash emissions generally rose 500-1,500 m above the summit, most often drifting W or SW. Ashfall was reported on 8 January in the communities of Sevilla (90 km SSW), Pumallacta and Achupallas (60 km SW) and Cebadas (35 km WNW). On 16 January ash fell in the Chimborazo province in the communities of Atillo, Ichobamba, and Palmira (45 km W). Ash on 28 January drifted NW, with minor ashfall reported in Púngala (25 km NW) and other nearby communities. The town of Alao (20 km NW) reported on 30 January that all of the vegetation in the region was covered with fine white ash; Cebadas and Palmira also noted minor ashfall (figure 60).

Figure (see Caption) Figure 60. Daily ash plumes and repeated ashfall were reported from Sangay during January 2020. Top left: 1 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-2, JUEVES, 2 ENERO 2020). Top right: 20 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-21, MARTES, 21 ENERO 2020). Bottom left: 26 January-1 February 2020 expedition (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY). Bottom right: 30 January 2020, minor ashfall was reported in the Province of Chimborazo (#IGAlInstante Informativo VOLCÁN SANGAY No. 006, JUEVES, 30 ENERO 2020). Courtesy of IG-EPN.

A major ravine on the SE flank has been the site of ongoing block avalanches and pyroclastic flows since the latest eruption began in March 2019. The pyroclastic flows down the ravine appeared incandescent at night; during the day they created ash clouds that drifted SW. Satellite imagery recorded incandescence and dense ash from pyroclastic flows in the ravine on 7 January (figure 61). They were also reported by IG on the 9th, 13th, 26th, and 28th. Incandescent blocks were reported in the ravine several times during the month. The webcam captured images on 31 January of large incandescent blocks descending the entire length of the ravine to the base of the mountain (figure 62). Large amounts of ash and debris were remobilized as lahars during heavy rains on the 25th and 28th.

Figure (see Caption) Figure 61. Sentinel-2 satellite imagery of Sangay from 7 January 2020 clearly showed a dense ash plume drifting W and ash and incandescent material from pyroclastic flows descending the SE-flank ravine. Left image uses natural color (bands 4, 3, 2) rendering and right images uses atmospheric penetration (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 62. Pyroclastic flows at Sangay produced large trails of ash down the SE ravine many times during January 2020 that rose and drifted SW. Top left: 9 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-9, JUEVES, 9 ENERO 2020). Top right: 13 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-14, MARTES, 14 ENERO 2020). On clear nights, incandescent blocks of lava and pyroclastic flows were visible in the ravine. Bottom left: 16 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-17, VIERNES, 17 ENERO 2020). Bottom right: 31 January (#IGAlInstante Informativo VOLCÁN SANGAY No. 007, VIERNES, 31 ENERO 2020). Courtesy of IG-EPN.

Observations by visitors to the volcano during 9-17 January 2020 included pyroclastic flows, ash emissions, and incandescent debris descending the SE flank ravine during the brief periods when skies were not completely overcast (figure 63 and 64). More often there was ash-filled rain and explosions heard as far as 16 km from the volcano, along with the sounds of lahars generated from the frequent rainfall mobilizing debris from the pyroclastic flows. The confluence of the Rio Upano and Rio Volcan is 23 km SE of the summit and debris from the lahars has created a natural dam on the Rio Upano that periodically backs up water and inundates the adjacent forest (figure 65). A different expedition to Sangay during 26 January-1 February 2020 by IG personnel to repair and maintain the remote monitoring station and collect samples was successful, after which the station was once again transmitting data to IG-EPN in Quito (figure 66).

Figure (see Caption) Figure 63. Hikers near Sangay during 9-17 January 2020 witnessed pyroclastic flows and incandescent explosions and debris descending the SE ravine. Left: The view from 40 km SE near Macas showed ash rising from pyroclastic flows in the SE ravine. Right: Even though the summit was shrouded with a cap cloud, incandescence from the summit crater and from pyroclastic flows on the SE flank were visible on clear nights. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 64. The steep ravine on the SE flank of Sangay was hundreds of meters deep in January 2020 when these drone images were taken by members of a hiking trip during 9-17 January 2020 (left). Pyroclastic flows descended the ravine often (right), coating the sides of the ravine with fine, white ash and sending ash billowing up from the surface of the flow which resulted in ashfall in adjacent communities several times. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 65. Debris from pyroclastic flows that descended the SE Ravine at Sangay was carried down the Volcan River (left) during frequent rains and caused repeated damming at the confluence with the Rio Upano (right), located 23 km SE of the summit. These images show the conditions along the riverbeds during 9-17 January 2020. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 66. An expedition by scientists from IG-EPN to one of the remote monitoring stations at Sangay during 26 January-1 February 2020 was successful in restoring communication to Quito. The remote location and constant volcanic activity makes access and maintenance a challenge. Courtesy of IG-EPN (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY).

During February 2020, multiple daily VAAC reports of ash emissions continued (figure 67). Plumes generally rose 500-1,100 m above the summit and drifted W, although on 26 February emissions were reported to 1,770 m. Ashfall was reported in Macas (40 km SE) on 1 February, and in the communities of Pistishi (65 km SW), Chunchi (70 km SW), Pumallacta (60 k. SW), Alausí (60 km SW), Guamote (40 km WNW) and adjacent areas of the Chimborazo province on 5 February. The Ecuadorian Red Cross reported ash from Sangay in the provinces of Cañar and Azuay (60-100 km SW) on 25 February. Cebadas and Guamote reported moderate ashfall the following day. The communities of Cacha (50 km NW) and Punín (45 km NW) reported trace amounts of ashfall on 29 February. Incandescent blocks were seen on the SE flank multiples times throughout the month. A pyroclastic flow was recorded on the SE flank early on 6 February; additional pyroclastic flows were observed later that day on the SW flank. On 23 February a seismic station on the flank recorded a high-frequency signal typical of lahars.

Figure (see Caption) Figure 67. Steam and ash could be seen drifting SW from the summit of Sangay on 11 February 2020 even though the summit was hidden by a large cap cloud. Ash was also visible in the ravine on the SE flank. Courtesy of Sentinel Hub Playground, natural color (bands 4, 3, 2) rendering.

A significant ash emission on 1 March 2020 was reported about 2 km above the summit, drifting SW. Multiple ash emissions continued daily during the month, generally rising 570-1,170 m high. An emission on 12 March also rose 2 km above the summit. Trace ashfall was reported in Cebadas (35 km WNW) on 12 March. The community of Huamboya, located 40 km ENE of Sangay in the province of Morona-Santiago reported ashfall on 17 March. On 19 and 21 March ashfall was seen on the surface of cars in Macas to the SE. (figure 68). Ash was also reported on the 21st in de Santa María De Tunants (Sinaí) located E of Sangay. Ash fell again in Macas on 23 March and was also reported in General Proaño (40 km SE). The wind changed direction the next day and caused ashfall on 24 March to the SW in Cuenca and Azogues (100 km SW).

Figure (see Caption) Figure 68. Ashfall from Sangay was reported on cars in Huamboya on 17 March 2020 (left) and in Macas on 19 March (right). Courtesy IG-EPN, (#IGAlInstante Informativo VOLCÁN SANGAY No. 024, MARTES, 17 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 025, JUEVES, 19 MARZO 2020).

Incandescence from the dome at the crater and on the SE flank was noted by IG on 3, 4, and 13 March. Remobilized ash from a pyroclastic flow was reported drifting SW on 13 March. The incandescent path of the flow was still visible that evening. Numerous lahars were recorded seismically during the month, including on days 5, 6, 8, 11, 15, 30 and 31. Images from the Rio Upano on 11 March confirmed an increase from the normal flow rate (figure 69) inferred to be from volcanic debris. Morona-Santiago province officials reported on 14 March that a new dam had formed at the confluence of the Upano and Volcano rivers that decreased the flow downstream; by 16 March it had given way and flow had returned to normal levels.

Figure (see Caption) Figure 69. Images from the Rio Upano on 11 March 2020 (left) confirmed an increase from the normal flow rate related to lahars from Sangay descending the Rio Volcan. By 16 March (right), the flow rate had returned to normal, although the large blocks in the river were evidence of substantial activity in the past. Courtesy of IG (#IGAlInstante Informativo VOLCÁN SANGAY No. 018, MIÉRCOLES, 11 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 023, LUNES, 16 MARZO 2020).

Activity during April-June 2020. Lahar activity continued during April 2020; they were reported seven times on 2, 5, 7, 11, 12, 19, and 30 April. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported 9 April, likely due to a new dam on the river upstream from where the Volcan river joins it caused by lahars related to ash emissions and pyroclastic flows (figure 70). The flow rate returned to normal the following day. Ash emissions were reported most days of the month, commonly rising 500-1,100 m above the summit and drifting W. Incandescent blocks or flows were visible on the SE flank on 4, 10, 12, 15-16, and 20-23 April (figure 71).

Figure (see Caption) Figure 70. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported on 9 April 2020, likely due to a new dam upstream from lahars related to ash emissions and pyroclastic flows from Sangay. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 032, JUEVES, 9 ABRIL 2020).
Figure (see Caption) Figure 71. Incandescent blocks rolled down the SE ravine at Sangay multiple times during April 2020, including on 4 April (left). Pyroclastic flows left two continuous incandescent trails in the ravine on 23 April (right). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-95, SÁBADO, 4 ABRIL 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-114, JUEVES, 23 ABRIL 2020).

Activity during May 2020 included multiple daily ash emissions that drifted W and numerous lahars from plentiful rain carrying ash and debris downstream. Although there were only a few visible observations of ash plumes due to clouds, the Washington VAAC reported plumes visible in satellite imagery throughout the month. Plumes rose 570-1,170 m above the summit most days; the highest reported rose to 2,000 m above the summit on 14 May. Two lahars occurred in the early morning on 1 May and one the next day. A lahar signal lasted for three hours on 4 May. Two lahar signals were recorded on the 7th, and three on the 9th. Lahars were also recorded on 16-17, 20-22, 26-27, and 30 May. Incandescence on the SE flank was only noted three times, but it was cloudy nearly every day.

An increase in thermal and overall eruptive activity was reported during June 2020. On 1 and 2 June the webcam captured lava flows and remobilization of the deposits on the SE flank in the early morning and late at night. Incandescence was visible multiple days each week. Lahars were reported on 4 and 5 June. The frequent daily ash emissions during June generally rose to 570-1,200 m above the summit and drifted usually SW or W. The number of explosions and ash emissions increased during the evening of 7 June. IG interpreted the seismic signals from the explosions as an indication of the rise of a new pulse of magma (figure 72). The infrasound sensor log from 8 June also recorded longer duration tremor signals that were interpreted as resulting from the descent of pyroclastic flows in the SE ravine.

Figure (see Caption) Figure 72. Seismic and infrasound signals indicated increased explosive and pyroclastic flow activity at Sangay on 7-8 June 2020. Left: SAGA station (seismic component) of 7 and 8 June. The signals correspond to explosions without VT or tremor signals, suggesting the rise of a new magma pulse. Right: SAGA station infrasound sensor log from 8 June. The sharp explosion signals are followed a few minutes later (examples highlighted in red) by emergent signals of longer duration, possibly associated with the descent of pyroclastic material in the SE flank ravine. Courtesy if IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

On the evening of 8 June ashfall was reported in the parish of Cebadas and in the Alausí Canton to the W and SW of Sangay. There were several reports of gas and ash emissions to 1,770 m above the summit the next morning on 9 June, followed by reports of ashfall in the provinces of Guayas, Santa Elena, Los Ríos, Morona Santiago, and Chimborazo. Ashfall continued in the afternoon and was reported in Alausí, Chunchi, Guamote, and Chillanes. That night, which was clear, the webcam captured images of pyroclastic flows down the SE-flank ravine; IG attributed the increase in activity to the collapse of one or more lava fronts. On the evening of 10 June additional ashfall was reported in the towns of Alausí, Chunchi, and Guamote (figure 73); satellite imagery indicated an ash plume drifting W and incandescence from pyroclastic flows in the SE-flank ravine the same day (figure 74).

Figure (see Caption) Figure 73. Ashfall from Sangay was reported in Alausí (top left), Chunchi (top right) and Guamote (bottom) on 10 June 2020. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 049, MIÉRCOLES, 10 JUNIO 2020).
Figure (see Caption) Figure 74. Incandescent pyroclastic flows (left) and ash plumes that drifted W (right) were recorded on 10 June 2020 at Sangay in Sentinel-2 satellite imagery. Courtesy of Sentinel Hub Playground.

Ashfall continued on 11 June and was reported in Guayaquil, Guamote, Chunchi, Riobamba, Guaranda, Chimbo, Echandía, and Chillanes. The highest ash plume of the report period rose to 2,800 m above the summit that day and drifted SW. That evening the SNGRE (Servicio Nacional de Gestion de Riesgos y Emergencias) reported ash fall in the Alausí canton. IG noted the increase in intensity of activity and reported that the ash plume of 11 June drifted more than 600 km W (figure 75). Ash emissions on 12 and 13 June drifted SW and NW and resulted in ashfall in the provinces of Chimborazo, Cotopaxi, Tungurahua, and Bolívar. On 14 June, the accumulation of ash interfered with the transmission of information from the seismic station. Lahars were reported each day during 15-17 and 19-21 June. Trace amounts of ashfall were reported in Macas to the SE on 25 June.

Figure (see Caption) Figure 75. The ash plume at Sangay reported on 11 June 2020 rose 2.8 km above the summit and drifted W according to the Washington VAAC and IG (left). Explosions and high levels of incandescence on the SE flank were captured by the Don Bosco webcam (right). Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 055, JUEVES, 11 JUNIO 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-164, VIERNES, 12 JUNIO 2020).

During an overflight of Sangay on 24 June IG personnel observed that activity was characterized by small explosions from the summit vent and pyroclastic flows down the SE-flank ravine. The explosions produced small gas plumes with a high ash content that did not rise more than 500 m above the summit and drifted W (figure 76). The pyroclastic flows were restricted to the ravine on the SE flank, although the ash from the flows rose rapidly and reached about 200 m above the surface of the ravine and also drifted W (figure 77).

Figure (see Caption) Figure 76. A dense ash plume rose 500 m from the summit of Sangay on 24 June 2020 and drifted W during an overflight by IG-EPN personnel. The aerial photograph is taken from the SE; snow-covered Chimborazo is visible behind and to the right of Sangay. Photo by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 77. Pyroclastic flows descended the SE flank ravine at Sangay during an overflight by IG-EPN personnel on 24 June 2020. Ash from the pyroclastic flow rose 200 m and drifted W, and infrared imagery identified the thermal signature of the pyroclastic flow in the ravine. Photo by M Almeida, IR Image by S Vallejo, courtesy of IG EPN (Jueves, 25 Junio 2020 12:24, SOBREVUELO AL VOLCÁN SANGAY).

Infrared imagery taken during the overflight on 24 June identified three significant thermal anomalies in the large ravine on the SE flank (figure 78). Analysis by IG scientists suggested that the upper anomaly 1 (125°C) was associated with explosive activity that was observed during the flight. Anomaly 2 (147°C), a short distance below Anomaly 1, was possibly related to effusive activity of a small flow, and Anomaly 3 (165°C) near the base of the ravine that was associated with pyroclastic flow deposits. The extent of the changes at the summit of Sangay and along the SE flank since the beginning of the eruption that started in March 2019 were clearly visible when images from May 2019 were compared with images from the 24 June 2020 overflight (figure 79). The upper part of the ravine was nearly 400 m wide by the end of June.

Figure (see Caption) Figure 78. A thermal image of the SE flank of Sangay taken on 24 June 2020 indicated three thermal anomalies. Anomaly 1 was associated with explosive activity, Anomaly 2 was associated with effusive activity, and Anomaly 3 was related to pyroclastic-flow deposits. Image prepared by S Vallejo Vargas, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 79. Aerial and thermal photographs of the southern flank of the Sangay volcano on 17 May 2019 (left: visible image) and 24 June 2020 (middle: visible image, right: visible-thermal overlay) show the morphological changes on the SE flank, associated with the formation of a deep ravine and the modification of the summit. Photos and thermal image by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Arnold Binas (URL: https://www.doroadventures.com).


Karangetang (Indonesia) — June 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent block avalanches through mid-January 2020; crater anomalies through May

The Karangetang andesitic-basaltic stratovolcano (also referred to as Api Siau) at the northern end of the island of Siau, north of Sulawesi, Indonesia, has had more than 50 observed eruptions since 1675. Frequent explosive activity is accompanied by pyroclastic flows and lahars, and lava-dome growth has created two active summit craters (Main to the S and Second Crater to the N). Rock avalanches, observed incandescence, and satellite thermal anomalies at the summit confirmed continuing volcanic activity since the latest eruption started in November 2018 (BGVN 44:05). This report covers activity from December 2019 through May 2020. Activity is monitored by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and ash plumes are monitored by the Darwin VAAC (Volcanic Ash Advisory Center). Information is also available from MODIS thermal anomaly satellite data through both the University of Hawaii's MODVOLC system and the Italian MIROVA project.

Increased activity that included daily incandescent avalanche blocks traveling down the W and NW flanks lasted from mid-July 2019 (BGVN 44:12) through mid-January 2020 according to multiple sources. The MIROVA data showed increased number and intensity of thermal anomalies during this period, with a sharp drop during the second half of January (figure 40). The MODVOLC thermal alert data reported 29 alerts in December and ten alerts in January, ending on 14 January, with no further alerts through May 2020. During December and the first half of January incandescent blocks traveled 1,000-1,500 m down multiple drainages on the W and NW flanks (figure 41). After this, thermal anomalies were still present at the summit craters, but no additional activity down the flanks was identified in remote satellite data or direct daily observations from PVMBG.

Figure (see Caption) Figure 40. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling down multiple flanks of the volcano. This was reflected in increased thermal activity seen during that interval in the MIROVA graph covering 5 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 41. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling up to 1,500 m down drainages on the W and NW flanks of the volcano. Top left: large thermal anomalies trend NW from Main Crater on 5 December 2019; about 500 m N a thermal anomaly glows from Second Crater. Top center: on 15 December plumes of steam and gas drifted W and SW from both summit craters as seen in Natural Color rendering (bands 4,3,2). Top right: the same image as at top center with Atmospheric penetration rendering (bands 12, 11, 8a) shows hot zones extending WNW from Main Crater and a thermal anomaly at Second Crater. Bottom left: thermal activity seen on 14 January 2020 extended about 800 m WNW from Main Crater along with an anomaly at Second Crater and a hot spot about 1 km W. Bottom center: by 19 January the anomaly from Second Crater appeared slightly stronger than at Main Crater, and only small anomalies appeared on the NW flank. Bottom right: an image from 14 March shows only thermal anomalies at the two summit craters. Courtesy of Sentinel Hub Playground.

A single VAAC report in early April noted a short-lived ash plume that drifted SW. Intermittent low-level activity continued through May 2020. Small SO2 plumes appeared in satellite data multiple times in December 2019 and January 2020; they decreased in size and frequency after that but were still intermittently recorded into May 2020 (figure 42).

Figure (see Caption) Figure 42. Small plumes of sulfur dioxide were measured at Karangetang with the TROPOMI instrument on the Sentinel-5P satellite multiple times during December 2019 (top row). They were less frequent but still appeared during January-May 2020 (bottom row). Larger plumes were also detected from Dukono, located 300 km ESE at the N end of North Maluku. Courtesy of Global Sulfur Dioxide Monitoring Page.

PVMBG reported in their daily summaries that steam plumes rose 50-150 m above the Main Crater and 25-50 m above Second Crater on most days in December. The incandescent avalanche activity that began in mid-July 2019 also continued throughout December 2019 and January 2020 (figure 43). Incandescent blocks from the Main Crater descended river drainages (Kali) on the W and NW flanks throughout December. They were reported nearly every day in the Nanitu, Sense, and Pangi drainages, traveling 1,000-1,500 m. Incandescence from both craters was visible 10-25 m above the crater rim most nights.

Figure (see Caption) Figure 43. Incandescent block avalanches descended the NW flank of Karangetang as far as 1,500 m frequently during December 2019 and January 2020. Left image taken 13 December 2019, right image taken 6 January 2020 by PVMBG webcam. Courtesy of PVMBG, Oystein Anderson, and Bobyson Lamanepa.

A few blocks were noted traveling 800 m down Kali Beha Barat on 1 December. Incandescence above the Main crater reached 50-75 m during 4-6 December. During 4-7 December incandescent blocks appeared in Kali Sesepe, traveling 1,000-1,500 m down from the summit. They were also reported in Kali Batang and Beha Barat during 4-14 December, usually moving 800-1,000 m downslope. Between 5 and 14 December, gray and white plumes from Second Crater reached 300 m multiple times. During 12-15 December steam plumes rose 300-500 m above the Main crater. Activity decreased during 18-26 December but increased again during the last few days of the month. On 28 December, incandescent blocks were reported 1,500 m down Kali Pangi and Nanitu, and 1,750 m down Kali Sense.

Incandescent blocks were reported in Kali Sesepi during 4-6 January and in Kali Batang and Beha Barat during 4-8 and 12-15 January (figure 44); they often traveled 800-1,200 m downslope. Activity tapered off in those drainages and incandescent blocks were last reported in Kali Beha Barat on 15 January traveling 800 m from the summit. Incandescent blocks were also reported traveling usually 1,000-1,500 m down the Nanitu, Sense, and Pangi drainages during 4-19 January. Blocks continued to occasionally descend up to 1,000 m down Kali Nanitu through 24 January. Pulses of activity occurred at the summit of Second Crater a few times in January. Steam plumes rose 25-50 m during 8-9 January and again during 16-31 January, with plumes rising 300-400 m on 20, 29, and 31 January. Incandescence was noted 10-25 m above the summit of Second Crater during 27-30 January.

Figure (see Caption) Figure 44. Incandescent material descends the Beha Barat, Sense, Nanitu, and Pangi drainages on the NW flank of Karangetang in early January 2020. Courtesy of Bobyson Lamanepa; posted on Twitter on 6 January 2020.

Activity diminished significantly after mid-January 2020. Steam plumes at the Main Crater rose 50-100 m on the few days where the summit was not obscured by fog during February. Faint incandescence occurred at the Main Crater on 7 February, and steam plumes rising 25-50 m from Second Crater that day were the only events reported there in February. During March, steam plumes persisted from the Main Crater, with heights of over 100 m during short periods from 8-16 March and 25-30 March. Weak incandescence was reported from the Main Crater only once, on 25 March. Very little activity occurred at Second Crater during March, with only steam plumes reported rising 25-300 m from the 22nd to the 28th (figure 45).

Figure (see Caption) Figure 45. Steam plumes at Karangetang rose over 100 m above both summit craters multiple times during March, including on 26 March 2020. Courtesy of PVMBG and Oystein Anderson.

The Darwin VAAC reported a continuous ash emission on 4 April 2020 that rose to 2.1 km altitude and drifted SW for a few hours before dissipating. Incandescence visible 25 m above both craters on 13 April was the only April activity reported by PVMBG other than steam plumes from the Main Crater that rose 50-500 m on most days. Steam plumes of 50-100 m were reported from Second Crater during 11-13 April. Activity remained sporadic throughout May 2020. Steam plumes from the Main Crater rose 50-300 m each day. Satellite imagery identified steam plumes and incandescence from both summit craters on 3 May (figure 46). Faint incandescence was observed at the Main Crater on 12 and 27 May. Steam plumes rose 25-50 m from Second Crater on a few days; a 200-m-high plume was reported on 27 May. Bluish emissions were observed on the S and SW flanks on 28 May.

Figure (see Caption) Figure 46. Dense steam plumes and thermal anomalies were present at both summit craters of Karangetang on 3 May 2020. Sentinel 2 satellite image with Natural Color (bands 4, 3, 2) (left) and Atmospheric Penetration rendering (bands 12, 11, 8a) (right); courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Bobyson Lamanepa, Yogyakarta, Indonesia, (URL: https://twitter.com/BobyLamanepa/status/1214165637028728832).


Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 09 (September 2018)

Managing Editor: Edward Venzke

Alaid (Russia)

Small ash plume reported on 21 August 2018

Fournaise, Piton de la (France)

One-day eruptive events in April and July; 5-week eruption 27 April-1 June 2018

Great Sitkin (United States)

Small phreatic explosions in June and August 2018; ash deposit on snow near summit

Negra, Sierra (Ecuador)

Fissure opens on NNE caldera rim 26 June 2018, NW-flank lava flows reach the sea

Nishinoshima (Japan)

Quiescence interrupted by brief lava flow emission and small explosions in July 2018

Rincon de la Vieja (Costa Rica)

Intermittent weak phreatic explosions during January-March and July-August 2018

Semeru (Indonesia)

Small ash plumes in February, April, July, and August 2018; persistent thermal hotspot in the crater

Sinabung (Indonesia)

No significant ash plumes seen after 22 June 2018; minor ash in early July

Telica (Nicaragua)

Explosions on 21 June and 15 August 2018; local ashfall from June event

Turrialba (Costa Rica)

Ongoing variable ash emissions and crater incandescence through August 2018



Alaid (Russia) — September 2018 Citation iconCite this Report

Alaid

Russia

50.861°N, 155.565°E; summit elev. 2285 m

All times are local (unless otherwise noted)


Small ash plume reported on 21 August 2018

Sporadic ash and gas-and-ash plumes and strong thermal anomalies were reported from Alaid, in Russia's Kurile Islands, between 29 September 2015 and 30 September 2016 (figure 8). The Kamchatka Volcanic Eruptions Response Team (KVERT), which monitors the volcano, interpreted the thermal anomalies as Strombolian activity and a lava flow (BGVN 42:04). The current report summarizes activity during October 2016 through August 2018.

Figure (see Caption) Figure 8. Aerial photo of the Alaid summit area on 28 April 2016, with fresh lava filling the crater, a cinder cone in the southern part of the crater, and a lava flow on the SW flank. Photo by L. Fugura; courtesy of IVS FEB RAS, KVERT.

According to KVERT weekly reports, the Aviation Color Code for Alaid was Green (Volcano is in normal, non-eruptive state) throughout the reporting period. The only reported activity was from the Tokyo Volcanic Ash Advisory Center, which reported that on 21 August 2018, an ash plume identified in Himawari-8 satellite images rose to an altitude of 2.7 km (about 500 m above the summit) and drifted SE. The plume was clearly visible on imagery starting at 0830 Japan Standard Time (UTC + 9 hours), and remained noticeable for at least 4 hours. There were no other satellite or ground-based observations of this activity.

Figure (see Caption) Figure 9. Himawari-8 satellite image from 21 August 2018 at 1030 JST (UTC + 9 hours) showing a small ash plume drifting SE from Alaid towards Paramushir Island. Alaid is the small island NW of the larger Paramushi Island and directly W of the southern tip of the Kamchatka Peninsula. Courtesy of Himawari-8 Real-time Web.

Geologic Background. The highest and northernmost volcano of the Kuril Islands, 2285-m-high Alaid is a symmetrical stratovolcano when viewed from the north, but has a 1.5-km-wide summit crater that is breached widely to the south. Alaid is the northernmost of a chain of volcanoes constructed west of the main Kuril archipelago. Numerous pyroclastic cones dot the lower flanks of this basaltic to basaltic-andesite volcano, particularly on the NW and SE sides, including an offshore cone formed during the 1933-34 eruption. Strong explosive eruptions have occurred from the summit crater beginning in the 18th century. Reports of eruptions in 1770, 1789, 1821, 1829, 1843, 1848, and 1858 were considered incorrect by Gorshkov (1970). Explosive eruptions in 1790 and 1981 were among the largest in the Kuril Islands during historical time.

Information Contacts: Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Himawari-8 Real-time Web, developed by the NICT Science Cloud project in NICT (National Institute of Information and Communications Technology), Japan, in collaboration with JMA (Japan Meteorological Agency) and CEReS (Center of Environmental Remote Sensing, Chiba University) (URL: https://himawari8.nict.go.jp/).


Piton de la Fournaise (France) — September 2018 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


One-day eruptive events in April and July; 5-week eruption 27 April-1 June 2018

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on Reunion Island in the western Indian Ocean, for several thousand years. The most recent episode occurred during 14 July-28 August 2017 with a 450-m-long fissure on the S flank inside the Enclos Fouqué caldera about 850 m W of Château Fort. Three eruptive episodes occurred during March-August 2018, the period covered in this report; two lasted for one day each on the N flank in April and July, and one lasting from late April through May located on the S flank. Information is provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

The first of three eruptive events during March-August 2018 occurred during 3-4 April and was a 1-km-long fissure that opened in seven segments with two eruptive vents. It was located on the N flank of the central cone, just S of the Nez Coupé de Sainte Rose on the rim of the caldera. A longer lasting eruptive event began on 27 April and was located in the cratère Rivals area on the S flank of the central cone. The main fissure had three eruptive vents initially, only one of which produced lava that flowed in tunnels away from the site toward the S rim of the Enclos Fouqué caldera. The longest flow reached 3 km in length and set fires at the base of the rampart rim of the caldera. Flow activity gradually decreased throughout May, and seismic tremor ceased, indicating the end of the event, on 1 June 2018. A third, brief event on 13 July 2018 produced four fissures with 20-m-high incandescent lava and aa flows that traveled several hundred meters across the NNW flank of the central cone, covering a large section of the most popular hiking trail to the summit. The event only lasted for about 18 hours but caused significant geomorphologic change as the first flow activity in that area in several hundred years.

The MIROVA plot of thermal energy from 6 February-1 September 2018 clearly shows two of the three eruptive events that took place during that period. The 27 April to 1 June event produced an initial very strong thermal signature that decreased throughout May. Cooling after the flow ceased continued for most of June. The one-day eruptive event on 13 July was also recorded, but the similarly brief event on 3-4 April was not captured in the thermal data (figure 126).

Figure (see Caption) Figure 126. The MIROVA plot of thermal energy from Piton de La Fournaise from 6 February-1 September 2018 clearly shows two of the three eruptive events that took place during that period. The longest event, from 27 April to 1 June produced an initial very strong thermal signature that decreased throughout May. Cooling after the flow ceased continued for most of June. A brief one-day eruptive event on 13 July was also recorded. A similarly brief event on 3-4 April was not recorded. Courtesy of MIROVA.

Eruptive event of 3-4 April 2018. Minor inflation and seismicity were intermittent from the end of August 2017 when the last eruptive episode ended. Significant seismic activity around the summit resumed on 23 March 2018 and accelerated through the end of the month. Inflation continued throughout March as well. A change of composition was detected in the summit fumaroles on 23 March 2018; the fluids were enriched in CO2 and SO2. Beginning on 3 April around 0550 local time, OVPF reported a seismic swarm and deformation consistent with magma rising towards the surface. Seismic tremor began around 1040 in an area on the N flank near the Nez Coupé de Sainte Rose. The tremor intensity continued to increase throughout the day; OVPF visually confirmed the eruption around 1150 in the morning on the upper part of the N flank (figure 127).

Figure (see Caption) Figure 127. The eruptive site at Piton de la Fournaise on 3 April 2018 on the N flank near the Nez Coupé de Sainte Rose. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du 03 avril 2018 à 16h30 heure locale).

A helicopter overflight in mid-afternoon revealed a 1-km-long fissure that had opened in seven distinct segments; lava fountains emerged from two of the segments. The last active segment was just below the rampart of the Nez Coupé de Sainte Rose (figure 128). Both seismic and surface eruptive activity stopped abruptly the following day at 0400.

Figure (see Caption) Figure 128. The brief eruption of 3-4 April 2018 was located on the N flank of the central crater near the Nez Coupé de Sainte Rose, a point on the rampart rim of the Enclos. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du 03 avril 2018 à 16h30 heure locale).

Eruptive event of 27 April-1 June 2018. OVPF reported 2.5 cm of inflation in the 15 days after the 3-4 April eruption. Seismic activity resumed at the base of the summit area on 21 April, and a new seismic swarm began at 2015 local time on 27 April. This was followed three hours later by tremor activity indicating the beginning of a new eruptive event from fissures that opened on the S flank in the area of cratère Rivals (figure 129). Four fissures opened; one on each side of the crater and one cutting across it were initially active, but activity moved the next morning to a fourth fissure just downstream from Rivals crater and extended for less than 300 m. Fountains of lava rose to 30 m during a morning overflight on 28 April. Several streams of lava quickly coalesced into a single flow heading S towards the rampart at the rim of the Enclos Fouqué (figure 130). By 0830 on 28 April the flow was less than 300 m from the rim and had destroyed an OVPF seismic station and a GPS station. The OMI instrument on the Aura satellite recorded a significant SO2 plume from the event on 28 April (figure 131).

Figure (see Caption) Figure 129. A fissure extended about 300 m S from the Rivals crater on the S flank of the cone at Piton de la Fournaise on 28 April 2018 where a new eruptive event began the previous evening. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du samedi 28 avril 2018 à 10h00 heure locale).
Figure (see Caption) Figure 130. The flow from the new fissure near Rival crater at Piton de la Fournaise had flowed to within 300 m of the Enclos Fouqué caldera rim by 0830 on 28 April 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du samedi 28 avril 2018 à 10h00 heure locale).
Figure (see Caption) Figure 131. An SO2 plume of 9.51 Dobson Units (DU) drifted NW from Reunion Island on 28 April 2018 where Piton de la Fournaise began a new eruptive episode the previous evening. Courtesy of NASA Goddard Space Flight Center.

Tremor activity decreased throughout the day on 28 April while the flow continued. The surface flow rate was measured initially at 8-15 m3 per second; it had slowed to 3-7 m3 per second by late that afternoon. Three active vents were observed on the morning of 29 April that continued the next day with fountains rising about 15 m (figure 132). A small cone (less than 5 m high) had grown around the southernmost vent and the larger middle vent contained a small lava lake. Visible lava was flowing only from the middle vent. The flow consisted of three branches; the two spreading to the E were less than 150 m long while the third flow traveled W past the E Cassian crater and had reached 1.2 km in length by 1020 on 30 April. On 30 April OVPF observed a flow from the previous day that had traveled 2.6 km, reaching the foot of the S edge of the l'Enclos Fouqué rampart.

Figure (see Caption) Figure 132. Lava flowed from three active vents near the Rival crater at Piton de la Fournaise on 30 April 2018. A small cone (less than 5 m high) had grown around the southernmost vent (bottom center) and the larger middle vent contained a small lava lake. Lava was actively flowing from only the middle vent. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du lundi 30 avril 2018 à 16h00 heure locale).

OVPF noted on 2 May 2018 that the intensity of volcanic tremor remained stable, slight deflation was measured, and the surface flow rate was estimated from satellite data at 1-3 m3 per second. Field observations during the afternoon of 3 May indicated that most activity was occurring from the central vent which had grown into a small pyroclastic cone with incandescent ejecta and gas emissions (figure 133). A well-developed lava tunnel had a number of roof breakouts.

Figure (see Caption) Figure 133. The eruptive site at Piton de la Fournaise on 3 May 2018 had two main vents, the larger pyroclastic cone produced incandescent ejecta and dense gas plumes. Courtesy of OVPF (©IPGP/OVPF) (Bulletin d'activité du vendredi 4 mai 2018 à 15h00 heure locale).

Field reconnaissance during 6-7 May confirmed that most of the activity was concentrated at the central cone with incandescent ejecta rising less than 10 m from the top, and the only source of lava was enclosed in a tunnel. The front of the flow was still active with numerous fires reported at the base of the rampart at the rim of the Enclos Fouqué. The farthest upstream cone was still active, but weak with only occasional bursts of incandescent ejecta. By 10 May the intensity of the volcanic tremor had stabilized at a low level. Two cones remained active, the upstream cone had incandescent ejections rising 10-20 m high. Lava was contained in tunnels near the cones but was exposed below the Piton de Bert (figure 134). The frontal lobe of the flow was located 3 km from the eruptive site, downstream of Piton de Bert (figure 135) at the base of the rampart rim of the Enclos. Numerous fires continued at the base of the rampart due to fresh flows (figure 136).

Figure (see Caption) Figure 134. Lava flows were visible on the slope break below Piton de Bert at Piton de la Fournaise on 10 May 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).
Figure (see Caption) Figure 135. By 10 May 2018, the front of the flow from the 27 April eruptive event at Piton de la Fournaise was located 3 km from the eruptive site downstream from Piton de Bert. Courtesy of OVPF and Google Earth (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).
Figure (see Caption) Figure 136. Fires started by active lava flows affected the base of the rampart rim of the Enclos at Piton de la Fournaise on 10 May 2018. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du jeudi 10 mai 2018 à 18h30 heure locale).

A minor spike in seismicity was recorded on 15 May 2018; at the same time inflation resumed underneath the caldera. The smaller, farthest upstream cone was the most active on 16 May, with 20-30 m high ejecta. A webcam view on 24 May showed that the vent on the larger pyroclastic cone was nearly closed, and that flow activity was largely contained in tunnels. Field observations that day also confirmed the overall decrease in activity; only a single incandescent zone in the lava field near the vent was observed at nightfall, although persistent degassing continued (figure 137).

Figure (see Caption) Figure 137. By 24 May 2018, activity at Piton de la Fournaise from the eruptive episode that began on 27 April had diminished significantly as seen in this view of the eruptive site near the Rival crater. Photo courtesy of Cité du Volcan and OVPF (Bulletin d'activité du vendredi 25 mai 2018 à 15h00 heure locale).

An overflight on 29 May confirmed the decreasing flow activity and continued inflation. Only rare tongues of lava could be observed in the flow field. The flow front had not progressed eastward for the previous 15 days. The main cone remained open at the top with a small eruptive vent less than 5 m in diameter. Small collapses and slumps were visible on the outer flanks of the cone (figure 138). The height of the main cone was estimated at 22-25 m on 31 May and the second vent was observed to be completely closed off. OVPF reported the end of the eruption at 1430 on 1 June 2018 based on the cessation of seismic tremor (figure 139). The MODVOLC thermal alert system recorded multiple thermal alerts from 27 April through 29 May.

Figure (see Caption) Figure 138. The main cone of the eruptive event at Piton de la Fournaise remained open at the top with a small eruptive vent less than 5 m in diameter on 29 May 2018 that produced abundant steam and gas. Small collapses and slumps were visible on the outer flanks of the cone. N is to the upper left of image. Courtesy of OVPF (© OVPF/IPGP ) (Bulletin d'activité du mercredi 30 mai 2018 à 15h30 heure locale).
Figure (see Caption) Figure 139. The evolution of the RSAM signal (indicator of the volcanic tremor and the intensity of the eruption) at Piton de l aFournaise between 27 April 2018 at 2000 and 1430 on 1 June at the seismic station of BOR, located at the summit of the central cone. Courtesy of OVPF (© OVPF/IPGP) (Bulletin exceptionnel du vendredi 1 juin 2018 à 15h00 heure locale).

Eruptive event of 13 July 2018. Throughout June 2018, very little activity was reported; only 23 shallow seismic events were recorded during the month and no significant deformation was measured by the OVPF deformation network. OVPF reported that inflation resumed around 1 July. A sharp increase in seismicity was observed beginning at 2340 local time on 12 July followed by a seismic swarm and rapid deformation around midnight. Tremor activity was recorded beginning about 0330 on 13 July and located on the N flank. The first images of the eruption were visible in a webcam at around 0430. Four eruptive fissures were observed in an overflight that morning around 0800 that opened over a 500-m-long zone, spreading from upstream of la Chapelle de Rosemont towards Formica Leo. Incandescent ejecta rose less than 20 m and the aa lava had flowed about 200 m from the fissures (figures 140 and 142). The lava flow propagation rate was estimated at about 6 m per minute during the first hour of activity. Thereafter, the rate continued to decrease to less than 1 m per minute at the end of the eruption. After a progressive decrease of tremor, and about 3 hours of "gas flushes" that are typically observed at the end of Piton de la Fournaise eruptions (according to OVPF), the eruption stopped on 13 July at 2200 local time. Both MIROVA and MODVOLC recorded thermal anomalies from the brief one-day event (figure 126).

Figure (see Caption) Figure 140. A new eruption at Piton de la Fournaise on 13 July 2018 lasted only a single day and produced a 500-m-long zone with four fissure vents located on the N flank of the cone near la Chapelle de Rosemont and flowing towards Formica Leo. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du vendredi 13 juillet 2018 à 10h30 heure locale).
Figure (see Caption) Figure 141. Four fissure vents on the N flank of the central cone near la Chapelle de Rosemont produced ejecta and lava flows for about 18 hours on 13 July 2018 at Piton de la Fournaise. Courtesy of OVPF (© OVPF/IPGP) (Bulletin d'activité du vendredi 13 juillet 2018 à 10h30 heure locale).

The 13 July 2018 eruption lasted about 18 hours and produced about 0.3 million m3 of lava. Lava flows covered more than 400 m of the popular hiking trail leading to the summit (figure 142 and 143) and almost completely filled the Chapelle de Rosemont (figure 144), an old vent and a characteristic feature within the Enclos Fouqué landscape that was first described in reports of the early volcano expeditions at the end of the 18th century. This area of the volcano on the NNW flank had not experienced active eruptive events for at least the past 400 years. Despite the low volume of lava emitted and its short duration, this event significantly changed the geomorphology of the area, which was quite well known and popular with visitors. Inflation resumed after the eruptive event of 13 July and a brief pulse of seismic activity was reported by OVPF on 26 July. They noted on 13 August that after about a month of inflation, seismicity and inflation both ceased.

Figure (see Caption) Figure 142. The brief 13 July 2018 eruptive event covered an area on the NNW flank of the central cone that had not had active flow activity for at least 400 years. Photo taken midday on 13 July 2018. Courtesy of OVPF (© OVPF/IPGP) (July 2018 Monthly bulletin of the Piton de la Fournaise).
Figure (see Caption) Figure 143. The area of the lava flows covered during the 13 July 2018 eruption are shown in white, the fissures are shown in red, and the popular hiking trail to the summit is shown in yellow. Over 400 m of the trail was covered with fresh flows. The fissures were located on the NNW flank in the area of the Chapelle de Rosemont, an old vent. The base map was produced by OVPF using aerial and ground-based photographs that were processed by means of stereophotogrammetry. Courtesy of OVPF (July 2018 Monthly bulletin of the Piton de la Fournaise).
Figure (see Caption) Figure 144. Fresh, dark lava covers the Chapelle de Rosemont on 14 July 2018 after a one-day eruption at Piton de la Fournaise the previous day. The area was first described by explorers in the 18th century and had not seen recent flow activity. Courtesy of OVPF (© OVPF/IPGP) (July 2018 Monthly bulletin of the Piton de la Fournaise).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise (OVPF), Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Great Sitkin (United States) — September 2018 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small phreatic explosions in June and August 2018; ash deposit on snow near summit

Episodic recent and historic volcanic activity has been reported at Great Sitkin, located about 40 km NE of the community of Adak in the Aleutian Islands. Prior to the recent 2018 activity, the last confirmed eruption in 1974 produced at least one ash cloud that likely exceeded an altitude of 3 km (figures 1 and 2). This eruption extruded a lava dome that partially destroyed an existing dome from a 1945 eruption. Most recently, a small steam explosion was reported on 10 June 2018. In response, the Alaska Volcano Observatory (AVO) raised the Aviation Color Code (ACC) to Yellow (Advisory) from the previous Green (Normal).

Figure (see Caption) Figure 1. Eruption of Great Sitkin volcano in 1974. Photo taken from Adak Island, Alaska, located 40 km SW of the volcano. Photographer/Creator: Paul W. Roberts; courtesy of AVO/USGS (color corrected).
Figure (see Caption) Figure 2. Worldview-3 satellite image of Great Sitkin on 21 November 2017 showing the crater, areas of 1974 and 1945 lava flows, and steam (indicated by the red arrow) from the reported seismic swarm and steam event ending in 2017. Photographer/Creator: Chris Waytomas; image courtesy of AVO/USGS.

AVO had previously reported that a seismic swarm had been detected beginning in late July 2016 and continuing through December 2017. Steam from the crater was also observed during this time period, in late November 2017 (figure 2). The seismicity was characterized by earthquakes typically less than magnitude 1.0 and at depths from near the summit to 30 km below sea level. Most earthquakes were in one of two clusters, beneath the volcano's summit or just offshore the NW coast of the island. Possible explosion signals were observed in seismic data on 10 January and 21 July 2017, but no confirmed emissions were observed locally or detected in infrasound data or satellite imagery.

The most recent eruption at Great Sitkin produced a small steam explosion which was detected in seismic data at 1139 local time on 10 June 2018 (figure 3). The explosion was followed by seismic activity which began diminishing after 24 hours, and by 15-16 June had returned to background levels.

Figure (see Caption) Figure 3. View of Great Sitkin steaming on 10 July 2018. Photographed from Adak Island, Alaska, approximately 40 km SW. Photo by Alain Beauparlant; image courtesy of AVO/USGS (color corrected).

Due to heavy cloud cover on 10 June 2018, satellite views were obscured. Subsequent satellite data collected on 11 June showed an ash deposit on the surface of the snow extending to about 2 km SW from a vent in the summit crater (figure 4). Minor changes in the vicinity of the summit crater were observed from satellite data, including possible fumaroles north of the main crater. On 17 June an aerial photograph showed minor steaming at the vent (figure 5).

Figure (see Caption) Figure 4. Satellite view of the Great Sitkin crater at 2300 UTC on 11 June 2018 showing an ash deposit extending for about 2 km to the SW. Ash was likely deposited during the brief explosion on 10 June 2018. Minor steaming from a vent through the 1974 lava flow is also visible in this image. View is from the southwest. Photographer/Creator: David Schneider; image courtesy of AVO/USGS.
Figure (see Caption) Figure 5. Aerial photo showing minor steaming at the summit of Great Sitkin, 17 June 2018. A small ash deposit extends SW from the vent. Photographer: Alaska Airlines Captain Dave Clum; image courtesy of AVO/USGS.

Another small phreatic explosion was observed in seismic data at 1105 local time on 11 August. Small local earthquakes preceded the event but were not recorded following the explosion. The event is similar to three other phreatic explosions that have occurred over the past 2 years.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Sierra Negra (Ecuador) — September 2018 Citation iconCite this Report

Sierra Negra

Ecuador

0.83°S, 91.17°W; summit elev. 1124 m

All times are local (unless otherwise noted)


Fissure opens on NNE caldera rim 26 June 2018, NW-flank lava flows reach the sea

Sierra Negra shield volcano on the Galápagos Island of Isabela has erupted six times since 1948, most recently in 2005. The eruptions of 2005, 1979, 1963, and 1953 were located in the area known as 'Volcán Chico' near the NNE rim of the summit caldera, which extends about 9 km E-W and 7 km N-S (figure 12). The lava flows generated in these eruptions were directed mainly towards the N and NE flanks of Sierra Negra, in some cases reaching Elizabeth Bay to the N and in others filling the interior of the caldera (figure 13). A new effusive eruption that occurred from 26 June through August 2018 is covered in this report with information provided primarily by Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN). Additional information comes from the Washington Volcanic Ash Advisory Center (VAAC), and several sources of satellite information.

Figure (see Caption) Figure 12. Sierra Negra is located on the southern part of Isabela Island in the Galápagos National Park, Ecuador. Courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).
Figure (see Caption) Figure 13. The Sierra Negra caldera with the locations of GPS stations and the fissures, vents, and flows from the 2005 eruption. From Geist et al. (2005), courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).

Beginning in 2017, the Geophysical Institute of the National Polytechnic School (IGEPN) installed a surveillance network of six broadband seismic stations for the Galápagos volcanoes. One station is located on the NE edge of the Sierra Negra caldera and another on the SE flank. After 12 years of little activity, an increase in seismicity beneath and around the caldera became evident by July 2017 (figure 14). On 19 October 2017 (local time) the seismic monitors detected a 16-km-deep M 3.8 earthquake with an epicenter on the NE border of the caldera in the vicinity of Volcán Chico. Four additional similar earthquakes occurred within the next hour. Another earthquake of similar size occurred on 22 October; between 15 and 16 November, three earthquakes with M 3.0 or greater were recorded. The frequency of seismic activity increased significantly in December 2017, with over 550 events recorded during the first three weeks of December 2017; at least three had magnitudes greater than 3. GPS receivers showed uplift of the caldera floor of 80 cm between 2013 and 2017. InSAR interferometry data indicated substantial inflation of the caldera floor of about 70 cm between December 2016 and late November 2017, reaching a level higher than that which preceded the eruption of 2005 (figure 15).

Figure (see Caption) Figure 14. The number of daily seismic events at Sierra Negra between 13 May 2015 and 23 November 2017 show a distinct increase in activity by July 2017. The colors represent different types of earthquakes; red is VT or volcanotectonic, orange is LP or Long Period, and blue is HB or Hybrid. Courtesy of IG (Informe Especial Sierra Negra N.- 2, Actividad reciente del volcán Sierra Negra – Isla Isabela, 23 November 2017).
Figure (see Caption) Figure 15. Inflation of the caldera floor at Sierra Negra between December 2016 and November 2017 exceeded 70 cm. The left graph shows the displacement plotted in centimeters versus time, and the right image is the spatial deformation from the InSAR data showing inflation at the caldera (center) and on the SW coast of Isla Isabela. Figures courtesy of Falk Amelung (RSMAS) and IG (Informe Especial Sierra Negra N.- 2, Actividad reciente del volcán Sierra Negra – Isla Isabela, 23 November 2017).

By early January 2018, inflation over the preceding 12 months was close to 1 m, with a total inflation exceeding that prior to the 2005 eruption. Seismic activity, focused on two fracture zones trending NE-SW across the summit caldera, continued to increase until 26 June 2018 when a fissure opened near Volcán Chico on the NNE caldera rim. Over the next 24 hours four fissures opened on the N rim and the NW flank. Three of the fissures were active only for this period, but the fourth, on the NW flank about 7 km below the caldera rim, continued to effuse lava for all of July and most of August 2018. Lava flows reached the sea in early July. Several pulses of increased effusive activity corresponded with increased seismic, thermal, and gas-emission activity recorded by both ground-based and satellite instrumentation. By the last week of August active flows were no longer observed, although the cooling flows continued to emit thermal signals for several weeks.

Activity during January-early June 2018. Elevated seismicity continued into 2018 with a M 3.8 event recorded on 6 January 2018 that was felt by tourists, guides, and Galápagos National Park officials. Tens of additional smaller events continued throughout the month, reaching more than 100 seismic events per day a few times; the earthquakes were located below the caldera at a depth of less than 8 km. A M 4.1 event on 10 January was located at a depth of 7 km. By 12 January, the total inflation of the caldera since the beginning of 2017 was 98 cm (figure 16).

Figure (see Caption) Figure 16. Seismicity and deformation at Sierra Negra between 13 May 2015 and 28 December 2017. The orange line represents the cumulative VT earthquakes, and the blue points record the inflation in cm of the floor accumulated since the beginning of 2015. A change in slope of both curves is evident at the end of 2017 indicating the rate of increase of inflation and seismicity. Courtesy of IG (Informe Especial Nº 2, Volcán Sierra Negra- Islas Galápagos: Descripción del estado de agitación interna y posibles escenarios eruptivos, 12 January 2018).

IG reported 14 seismic events with magnitudes ranging from 3.0-4.6 between 1 January and 19 March 2018. A M 4.4 event on 18 January was located less than 1 km below the surface with an epicenter on the S rim of the caldera. A M 4.1 event on 27 February was also located less than 1 km below the surface. A M 4.6 event on 14 March was the largest to date at Sierra Negra and was located only 0.3 km below the surface. Measurements of CO2, SO2, and H2S made at the Azufral fumarole field (figure 17) on the W rim of the caldera in early February did not have values significantly different compared to May 2014 and September 2017. With the continued increase in frequency and magnitude of shallow seismic activity, IG noted the increased risk of renewed eruptive activity, and noted that most of the active flows of the last 1,000 years were located on the N flank (figure 18).

Figure (see Caption) Figure 17. A fumarole field near Azufral on the W rim of the Sierra Negra caldera on 6 February 2018 remained unchanged after several months of increased seismicity in the area. Photo by M. Almeida, courtesy of IG-EPN (Informe Especial del Volcán Sierra Negra (Islas Galápagos) -2018 - Nº 3, Actualizado del estado de agitación interna y posibles escenarios eruptivos, 19 March 2018).
Figure (see Caption) Figure 18. Simplified geologic map of Sierra Negra with lava flows colored as a function of relative age (modified from Reynolds et al., 1995), courtesy of IG (Informe Especial del Volcán Sierra Negra (Islas Galápagos) -2018 - Nº 3, Actualizado del estado de agitación interna y posibles escenarios eruptivos, 19 March 2018).

Increases in seismicity continued into early June. IG noted that on 25 May 2018, 104 seismic events were recorded, the largest number in a single day since 2015. A M 4.8 event on 8 June was accompanied by over 40 other smaller earthquakes. The earthquake epicenters were mainly located on the edges of the crater in two NE-SW trending lineaments; the first covered the N and W edges of the crater and the second trended from the NE edge to the S edge. Deformation data indicated the largest displacements were at the caldera's center, compared with lower levels of deformation outside of the caldera.

Eruption of 26 June-late August 2018. IG reported an increase in seismicity and a M 4.2 earthquake on 22 June 2018. A larger M 5.3 earthquake was detected at 0315 on 26 June, 5.3 km below the caldera. The event was felt strongly on the upper flanks and in Puerto Villamil (23 km SE). About 8 hours later, at 1117, an earthquake swarm characterized by events located at 3-5 km depth was recorded. A M 4.2 earthquake took place at 1338 and was followed by increasing amplitudes of seismic and infrasound signals. Parque Nacional Galápagos staff then reported noises described as bellows coming from the Volcán Chico fissure vent, which, coupled with the seismicity and infrasound data, suggested the start of an eruption. About 20 minutes later IG described a thermal anomaly identified in satellite images in the N area of the caldera near Volcán Chico and Park staff observed lava flowing towards the crater's interior as well as towards the N flank in the direction of Elizabeth Bay (figure 19).

Figure (see Caption) Figure 19. Lava flows descended from the N flank of Sierra Negra to Elizabeth Bay on 26 June 2018 from four distinct fissure vents (numbered). Fissure 1 was located near Volcan Chico on the caldera rim, and fissures 2, 3, and 4 were located on the N flank. Details of the fissures are discussed later in the report. Video of the flow was captured by Nature Galápagos. Photo courtesy of AFP and BBC News, annotated and reprinted by IG (Informe Especial N° 16 – 2018, Volcán Sierra Negra, Islas Galápagos, Actualización de la Actividad Eruptiva, Quito, 23 de Julio del 2018).

The Washington VAAC reported an ash plume visible in satellite imagery late on 26 June at 10.6 km altitude drifting SW. By the following morning, a plume of ash mixed with SO2 was drifting W at 8.2 km altitude. IG reported a new ash emission late on 27 June drifting NW at 6.1 km altitude. A substantial SO2 plume emerged on 27 June and was recorded by the OMI and OMPS satellite-based instruments drifting SW that day and the next (figure 20). The MODVOLC thermal alert system confirmed the beginning of the eruption with over 100 alert pixels recorded on 27 June and over 50 the following day. The MIROVA system recorded an abrupt, very high thermal signal beginning on 26 June (figure 21). Seismic and acoustic data indicated a gradual decrease of activity after the initial outburst, but effusive lava flows continued on 27 June.

Figure (see Caption) Figure 20. A large plume of SO2 was emitted from Sierra Negra on 27 June 2018 at the beginning of the latest eruptive episode. It drifted SW the following day, as seen in these images captured by the OMPS instrument on the Suomi NPP satellite. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 21. The MIROVA project graph of thermal energy at Sierra Negra from 31 January 2018 through September 2108 shows the start of the lava flows on 27 June 2018 (UTC). Pulses of high thermal energy continued through late August when flow activity ceased; cooling of the flows continued into September 2018. Courtesy of MIROVA.

During 27 and 28 June, IG scientists were able to make a site visit to capture thermal, photographic, and physical evidence of the new lava flows (figure 22). A composite thermal image showed the extent of flows that traveled down the N flank as well as into the caldera (figure 23). A temperature of 580°C was measured near the eruptive fissure, and the surface temperatures averaged about 60°C, although some flows were measured as high as 200°C. The temperature inside a fracture on a lava flow was measured at 975°C (figure 24). Pelée hair and "spatter" bombs were visible around the eruptive fissures.

Figure (see Caption) Figure 22. The lava flows of 26 June 2018 at Sierra Negra emerged from a fissure on the N flank of the caldera rim and other fissures on the N flank and flowed N. N is to the right. Photo by Benjamin Bernard, courtesy of IG (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 23. Composite thermal images of the new lava flows at Sierra Negra taken on 27 June 2018 reveal the flows that emerged from the Volcán Chico fissure zone; most flows traveled N down the flank, a few (on the left) traveled down into the caldera. Images by Silvia Vallejo, courtesy of IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 24. The temperature of incandescent lava within a fresh flow at Sierra Negra was measured at 975°C on 27 June 2018. Left image by Francisco Vásconez; thermal image by Silvia Vallejo, courtesy of IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).

Pahoehoe and aa flows along with lava tunnels were visible in drone images. The visible fissures were slightly arcuate and aligned in a general ENE direction, similar to the fissures of 1979 and 2005 in the vicinity of Volcán Chico. The largest flow was more than 150 m long; they reached up to 130 m wide in the flat areas, but only between 25 and 35 m wide where they were channeled on the steeper slope. In the flatter areas they had characteristics of pahoehoe with a smooth surface, a sometimes rounded texture and lava tunnels (figure 25), while in the channelized areas with a steeper slope they had a rougher surface and were characterized as aa (figure 26). The flows averaged 0.5-1 m thick and in several places the lava filled fissures or previous depressions. The samples of pahoehoe that were collected were all aphanitic with no crystals, strongly iridescent, and vesiculated with fluid textures that indicated a high gas content and low viscosity.

Figure (see Caption) Figure 25. Pahoehoe flows, spatter, and a collapsing lava tunnel were visible near fissure 1 (above 'Spatter') at Sierra Negra when imaged by a drone during a field visit on 27-28 June 2018 shortly after the new eruptive episode began. This image covers the area near the top center of the image in figure 22 close to the fissure. Photos were taken by a drone flying 60 m above the flows by Benjamin Bernard, courtesy IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).
Figure (see Caption) Figure 26. Aa flows formed as lava traveled down the steeper parts of the N flank of Sierra Negra on 26 June 2018, seen in this drone image taken during a field visit on 27-28 June. This image general location can be seen in the bottom right area in figure 22. Photos were taken by a drone flying 60 m above the flows by Benjamin Bernard, courtesy IGEPN (Volcán Sierra Negra, Informe de campo 27-28 junio2018, Termografía, Cartografía, y muestreo de los nuevos flujos de lava, sector de Volcán Chico).

A small seismic event followed by several hours of tremor was recorded at 1552 on 1 July; a short while later National Park staff observed active lava flows on the NW flank. On 4 July, IG reported a M 5.2 earthquake that was 5 km deep; it was followed by 68 smaller seismic events. On 7 July seismic tremor activity indicating another pulse of magmatic activity was recorded by a station on the NE edge of the caldera at 1700. At the same time, satellite data showed an increase in the intensity of the thermal anomaly on the NW flank; Parque Nacional Galápagos staff confirmed strong visible incandescence in an area near the beach. Tremor activity continued on 8 July, although the amplitude gradually decreased.

The Washington VAAC reported an ash plume visible in satellite imagery on 2 July at 6.1 km altitude drifting SW. Later in the day a concentrated plume interpreted to be primarily steam and gas extended about 260 km SW. On 8 July ash could be seen moving both W and SW in satellite imagery at 2.7-3.0 km altitude. Later that day ash was visible extending about 115 km SW from the summit and other gases extended 370 km W. That evening the ash plume extended about 190 km SW at 3.7 km altitude. Gas-and-ash plumes were observed continuously drifting SW for the next three days (9-11 July) at 3.7 km altitude to a distance of about 80 km. On 13 July, two areas of ash and gas were seen in satellite imagery moving 25 km NW from the summit and up to 45 km SW at altitudes of 3.9 and 2.4 km respectively. A low-level ash plume on 16 July extended 30 km SW from the summit at 2.4 km altitude; incandescence was also visible in the webcam. The next day ash and gas emissions extended about 120 km SW at a similar altitude. Ongoing steam, gas, and ash emissions were seen in satellite imagery and in the webcam extending 110 km NW from the summit on 19 July at 3.4 km altitude. The Washington VAAC reported an ash plume on 30 July that rose to 3.4 km altitude and drifted SW. Strong SO2 emissions were recorded by both the OMPS and OMI satellite instruments throughout July 2018 (figure 27).

Figure (see Caption) Figure 27. SO2 plumes from Sierra Negra exceeded 2 Dobson Units (DU) nearly every day during July 2018. Data gathered by the OMPS satellite instrument showed a large plume drifting SW on 2 July (top left), and a more narrow stream of SO2 drifting SW on 3 July (top right). The OMI satellite instrument captured large W-drifting plumes on 12 (bottom left) and 14 (bottom right) July. Courtesy of NASA Goddard Space Flight Center.

In a report issued by IGEPN covering activity through 23 July 2018, they noted that at least four fissures had initially opened on 26 June at the start of the eruption (see numbers in figure 19 at the beginning of this report, and figure 31 at the end). Fissure 1, the longest at 4 km, was located at the edge of the caldera in the area of Volcán Chico; lava flows from this fissure traveled 7 km down the flanks, and over 1 km within the interior of the caldera. NW-flank fissures 2, 3, and 4 were much smaller (about 250 m long). Fissures 1-3 were active only until 27 June; fissure 4 continued to be active throughout July. Lava from this fissure reached the ocean on 6 July.

Gas and possible volcanic ash extended 35 km SW of the summit on 4 August at 1.5 km altitude; this was the last report of an ash plume by the Washington VAAC for the eruption. Daily reports from IGEPN indicated that nightly incandescence from advancing flows continued into August. Occasional low-level steam and gas plumes were also visible. Pulses of lava effusion on 4 and 9 August were accompanied by major episodes of seismic tremor activity and substantial SO2 plumes (figure 28). On 15 August satellite images showed lava from fissure 4 continuing to enter the ocean. The area where the lavas entered the sea were far from any human population or agricultural activities and only accessible by boats.

Figure (see Caption) Figure 28. At Sierra Negra, large SO2 plumes were recorded by the OMPS instrument on the Suomi NPP satellite at the same time that an increase in seismic activity and effusion were noted on both 4 (left) and 9 (right) August 2018. Courtesy of NASA Goddard Space Flight Center.

Throughout the ongoing eruption, pulses of thermal activity detected by MODIS infrared satellite sensors correlated with increases in seismic activity and observed flow activity. The MIROVA plot showed a high level of heat flow from the onset of the eruption on 26 June gradually decreasing in intensity through mid-August (figure 21). This was followed by a significant drop in heat flow and gradual cooling thereafter. After the initial fissure activity near the crater rim on 26-27 June, all subsequent activity was concentrated farther down the N flank at fissure 4 and is reflected in the number of pixels concentrated in that area of the MODVOLC plot of thermal alerts from June-September 2018 (figure 29).

Figure (see Caption) Figure 29. MODVOLC thermal alert locations corresponded to the locations of the observed flow activity at Sierra Negra, showing the sustained thermal activity from the mid-flank fissure 4 that lasted from late June through mid-September 2018. Courtesy of HIGP - MODVOLC Thermal Alerts System .

The number of seismic events recorded during the eruptive episode had increased between 26 June and 30 July 2018 to an average of 265 per day. The peak was recorded on 29 June with 940 earthquakes. Between 31 July and 23 August, the average number was 121 per day, still higher than the level of 38 per day prior to the beginning of the eruption on 26 June. IG reported a continuous decline in activity during the last two weeks of August 2018. After the initial burst of effusive activity during 26-27 June, five additional pulses of increased thermal, seismic, and gas-emission activity were observed in multiple sources of data on 1-2, 7-8, and 31 July, and 4 and 9 August (figure 30).

Figure (see Caption) Figure 30. Multiple parameters of data from the eruption of Sierra Negra from 21 June to 30 August 2018. The dashed green line marks the start of the eruption, while the pale green vertical bars indicate the different eruptive pulses recorded throughout the eruption. a) Seismic energy data (RSAM) recorded by station VCH1, in a window between 1-8 Hz (location shown in figure 31); b) Time series of degassing of SO2 recorded by the OMI and OMPS satellites instruments; c) thermal anomalies recorded by MODVOLC. Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018), also published in Vasconez et al (2018).

In a summary report on 31 August 2018, IG reported that the eruption was divided into two main phases. The first and most energetic phase lasted one day (26 June) and was characterized by the opening of five fissures (table 2) located on the rim and N and NW flanks, and creation of lava flows that traveled as far as 7 km from the vents (figure 31). Lava was only active from all five fissures during the first day of the eruption, covering an area greater than 17 km2. During the rest of the eruption from 27 June-23 August, about 13 km2 of lava was produced from fissure 4, with lava reaching the sea on 6 July and expanding the coastline by 1.5 km2. Detailed descriptions of the fissures provided by IGEPN are given in the following section. By 25 August the lava flows covered an area of 30.6 square kilometers. Activity continued to decline the last week of August with decreased seismicity, gas emission, and no surficial activity visible.

Figure (see Caption) Figure 31. Map of the 26 June-August 2018 eruption of Sierra Negra volcano. The eruptive fissures are numbers and shown in yellow and described in detail in the next section. The coastline with Elizabeth Bay is shown in blue, and the lava flows appear in red. The green points include GPS and seismic stations, the epicenter of the earthquake of 5.3 MLV on 26 June, El Cura (control station of the Galápagos National Park) and the panoramic vista visited by tourists. Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018), also published in Vasconez et al (2018).

Table 2. Descriptions of the five fissures active during the June-August 2018 eruption of Sierra Negra (see figure 31 for locations). Courtesy of IGEPN (Informe Especial N°18 – 2018, Volcán Sierra Negra, Islas Galápagos, "Terminación de episodio ruptive actual", Quito, 31 de Agosto del 2018)

Feature Location Description
Fissure 1 Edge of the caldera in the Volcán Chico area, trending WNW, tangential to the edge of the caldera. Four kilometers in length with lava flows that moved toward both the interior of the caldera and down the flank from the beginning of the eruption until 27 June, covering an area of 14.6 km2. The flows deposited outside the crater traveled 7 km downhill, without reaching the sea, while those inside it reached a maximum distance of 1.1 km.
Fissure 2 NW of the caldera about 3 km below its edge of the caldera at an elevation of 700 m. Approximately 250 m long and produced 4-km-long lava flows from the beginning of the eruption until 27 June, covering an area of 2.2 km2; its lava did not reach the sea.
Fissure 3 WNW of the caldera about 4 km below its edge at an elevation of 550 m. Approximately 250 m long and active from the beginning of the eruption until 27 June, emitting lava flows that covered an area of about 0.4 km2. The lava flows had a length of about 2 km and did not reach the sea.
Fissure 4 NW flank at an elevation of 100 m between 7 and 8 km below the rim of the caldera. Continuously emitting lava flows throughout the eruption. It was located on the On 6 July the lava flows from this fissure reached the ocean and modified the coastline of Isla Isabela by 1.5 km2. By 25 August when active flow ceased, its lavas had covered an area of approximately 13.3 km2.
Fissure 5 Western flank at an elevation of 840 m, 1.5 km downhill from the inner edge of the caldera. Length of 170 m and covered 0.026 km2.

References: Davidge L, Ebinger C, Ruiz M, Tepp G, Amelung F, Geist D, Cote D, Anzieta J, 2017, Seismicity patterns during a period of inflation at Sierra Negra volcano, Galápagos Ocean Island Chain. Earth and Planetary Science Letters. 462. DOI: 10.1016/j.epsl.2016.12.021.

Geist D, Naumann T R, Standish J J, Kurz M D, Harpp K S, White W M , Fornari D, 2005, Wolf Volcano, Galapagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. Journal of Petrology 46:2197-2224.

Vasconez F, Ramón P, Hernandez S, Hidalgo S, Bernard B, Ruiz M, Alvarado A., La Femina P, Ruiz G, 2018, The different characteristics of the recent eruptions of Fernandina and Sierra Negra volcanoes (Galápagos, Ecuador), Volcanica 1(2): 127-133. DOI: 10.30909/vol.01.02.127133.

Geologic Background. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nature Galápagos (Twitter: @natureGalápagos, https://twitter.com/natureGalápagos).


Nishinoshima (Japan) — September 2018 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Quiescence interrupted by brief lava flow emission and small explosions in July 2018

Nishinoshima is an active volcano in the Ogasawara Arc, about 1,000 km S of Tokyo, Japan. After 40 years of dormancy, activity increased in November 2013 and has since formed an island. The eruption has continued with subaerial activity that largely consists of lava flows and small gas-and-ash plumes. This report covers November 2017 through July 2018, and summarizes activity noted in reports issued by the Japan Meteorological Agency, and images and footage taken by the Japan Coast Guard (JCG).

No eruptive activity at Nishinoshima had been noted since mid-August 2017, when lava was last entering the ocean. Activity recommenced on 12 July and a 200-m-long lava flow was confirmed on 13 July. The lava flow was accompanied by explosive activity that ejected blocks and bombs out to 500 m from the vent, plumes and water discoloration (figures 60, 61, and 62). An aerial survey by the JCG on 30 July showed that activity had ceased and the lava flow had reached 700 m in length, terminating 100 m from the ocean.

Figure (see Caption) Figure 60. Aerial photo of Nishinoshima taken on 18 July 2018. The photo shows the active lava flow emanating from the vent along with a gas plume, and water discoloration. A closer view of the lava flow is given in figure 61. The island is approximately 1.9 x 1.9 km in size. Courtesy of the Japan Coast Guard.
Figure (see Caption) Figure 61. A view of the active Nishinoshima vent and 200-m-long lava flow on 13 July 2018. The vent is also producing a dilute ash plume from the eastern side of the cone. Courtesy of the Japan Coast Guard.
Figure (see Caption) Figure 62. Screenshot from a thermal infrared video of the active Nishinoshima vent taken on 13 July 2018. The video shows explosions ejecting incandescent material onto the flanks of the cone and the active lava flow. Courtesy of the Japan Coast Guard.

After the July activity, Nishinoshima again entered a phase of quiescence with activity limited to fumaroles around the vent. Himawari-8 satellite observations noted no increased thermal output following the July 2018 eruption. Thermal anomalies detected by satellite-based MODIS instruments were identified by the MODVOLC system from during 12-21 July 2018.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html, http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm); Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Rincon de la Vieja (Costa Rica) — September 2018 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Intermittent weak phreatic explosions during January-March and July-August 2018

The Rincón de la Vieja volcano complex has generated intermittent phreatic explosions since 2011; during 2017, weak phreatic explosions occurred during May, June, July, September, and October (BGVN 42:08 and 43:03). This activity continued through August 2018. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

According to OVSICORI-UNA, at 1758 on 9 January 2018, an explosion produced a plume that rose 1 km above the crater rim. On 12 January, OVSICORI-UNA reported some small phreatic explosions. The webcam detected weak explosions again in mid-February. Another weak explosion on 22 February confirmed the presence of a crater lake.

During the first week of March OVSICORI-UNA reported weak phreatic explosions of low amplitude that were only be detected by the webcam (figure 28), and not by seismic instruments. During the week of 5-11 March there were 2-4 weak phreatic explosions occurred per day, along with strong tremor on the 10th. Small eruptions were seen on unspecified days the week of 12-18 March.

Figure (see Caption) Figure 28. Webcam image of a phreatic explosion at Rincon de la Vieja on 3 March 2018. Courtesy of OVSICORI-UNA.

No phreatic activity was reported during the second half of March through June, though on 20 May a seismic swarm of about 30 earthquakes was recorded. After a tremor on 3 July, a possible weak phreatic explosion occurred on 4 July at 0044, followed by a pulse of tremor. On 28 July, at 1828, a small explosion followed by tremor was recorded.

On 3 August OVSICORI-UNA reported that two weak explosions occurred at dawn. On 14 August, another weak explosion began at 1828 and lasted three minutes. Foggy conditions prevented webcam views and an estimate of a plume height. Other weak explosions were recorded on 17 August at 1407 and 2015.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Semeru (Indonesia) — September 2018 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Small ash plumes in February, April, July, and August 2018; persistent thermal hotspot in the crater

Semeru volcano is the tallest volcano in Java (figure 33) and one of the most active in Indonesia. The Mahameru summit area contains the active Jonggring-Seloko vent where activity consists of dome growth and regular ash plumes, along with pyroclastic flows, avalanches, and lava flows that travel down the SE-flank ravine. The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) Volcano Alert level for Semeru throughout the report period is II (on a scale of I-IV). The last Volcano Observatory Notice for Aviation (VONA) was issued on 9 January 2017, and the status has not changed during the reporting period. This report summarizes the activity from January to 24 August 2018 and is based on Volcano Ash Advisory Center (VAAC) ash advisories and satellite data.

Figure (see Caption) Figure 32. View looking NW at the quiet Mahameru summit area of Semeru on 24 August 2018 taken by a webcam courtesy of MAGMA Indonesia via Ø.L. Andersen's Twitter feed.

While there were no observatory activity reports issued, the Darwin VAAC issued reports for five events that produced ash plumes to altitudes ranging 3.4 to 4.9 km (table 22). MIROVA (Middle InfraRed Observation of Volcanic Activity) thermal data indicate near-consistent low-level thermal activity at Semeru after a period of no detected thermal anomalies in late January through early February. This supports the elevated thermal energy detected by Sentinel-2 satellite data at the Jonggring-Seloko vent and along the SE-flank ravine (figure 34). The MODVOLC algorithm detected 16 high-temperature hotspots through the reporting period, six in January, two in March, three in April, one in July, and two in August through to the 24th.

Table 22. Summary of ash plumes (altitude and drift direction) and pyroclastic flows at Semeru, January to 24 August 2018. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC report.

Date Altitude (km) Drift direction Other notes
24 Feb 2018 4.6 20 km ESE and WSW --
29 Apr 2018 3.4 NW Short-lived discrete eruption
20 Jul 2018 4.9 SW Minor discrete eruption
30-31 Jul 2018 4.3 W --
23-24 Aug 2018 4.3 W and SW --
Figure (see Caption) Figure 33. MIROVA plot of Log Radiative Power showing the relative thermal energy at Semeru ending September 2018. The detected thermal activity is more intense before mid-January 2018 when there was a gap in detected data before regular low-level activity resumed. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 false color thermal satellite images showing the persistent elevated thermal anomaly in the Jonggring-Seloko crater of Semeru from January through to 24 August 2018. Hot material can sometimes be identified in the SE-flank ravine. The larger central image is annotated with the major morphological features. False color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Sinabung (Indonesia) — September 2018 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


No significant ash plumes seen after 22 June 2018; minor ash in early July

Sinabung volcano is located in the Karo regency of North Sumatra, Indonesia. The current eruptive episode commenced in late 2013, after phreatic activity in 2010, producing ash plumes, lava domes and flows, and pyroclastic flows that caused evacuation and relocation of nearby communities. This report covers activity from April through early July, and is based on information provided by MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), the Center for Volcanology and Geological Hazard Mitigation (CVGHM, also known as PVMBG), satellite data, and field photographs. Sinabung has been on Alert Level IV, the highest hazard status, since 2 June 2015.

The eruption has built a pyroclastic flow and lava fan to the SE (figure 60). This activity continued into 2018, with the last significant ash plume reported on 22 June (table 8). However, minor ash emissions continued at least through 5 July 2018.

Figure (see Caption) Figure 60. Satellite images showing Sinabung before and after the eruption with the newly-developed fan of pyroclastic flow, volcanic ash, and lava flow deposits. Top: Landsat-8 true color satellite image (pan-sharpened) acquired on 7 June 2013 before the eruption began. Bottom: Sentinel-2 natural color satellite image acquired on 16 July 2018, after the eruption ended. Courtesy of Sentinel Hub Playground.

Table 8. Summary of ash plumes (altitude and drift direction) and pyroclastic flows at Sinabung, April-June 2018. The summit is at 2,460 m elevation. Data courtesy of Darwin VAAC reports, MAGMA Indonesia VAAC reports, and CVGHM volcanic activity reports.

Date Ash plume altitude (km) Ash plume drift direction Pyroclastic flows
06 Apr 2018 7.5 W, S 3.5 km
12 Apr 2018 2.7 WNW Yes
19 Apr 2018 5.5 ESE 1 km
19 May 2018 3.2 NW --
20 May 2018 5.0 WNW --
15 Jun 2018 3.0 ESE --
22 Jun 2018 3.5 SE --

An eruption on 6 April 2018 at 1607 local time produced an ash plume that reached about 7.5 km above the summit. The eruption also produced pyroclastic flows that traveled about 3.5 km from the summit down the SE slope (figure 61). The eruption resulted in the closure of a nearby airport and ashfall affected hundreds of hectares of agricultural land. Two more notable ash plumes were reported on 12 and 19 April, to altitudes of about 2.7 and 5.5 km, respectively. A pyroclastic flow was reported during the 12 April eruption. Smaller ash and gas emissions occurred through the month.

Figure (see Caption) Figure 61. Eruption of Sinabung on 6 April 2018 at 1600 local time that produced an ash plume that reached over 5 km above the summit, and pyroclastic flows that reached about 3.5 km down the SE flank. Courtesy of Agence France-Presse via Straits Times.

Two ash plumes were recorded on 19 and 20 May, rising to about 3.2 and 5 km altitude, respectively. Throughout June small diffuse gas-and-ash plumes continued (figures 62 and 63). The last activity reported by the agencies was on the 15 and 22 June, when ash plumes reached 3 and 3.5 km altitude (figure 64). Activity after 22 June was limited to seismicity and ash, gas, and steam plumes to several hundred meters above the summit (figure 65). Although an elevated thermal signature was detected in Sentinel-2 satellite data on 30 August 2018, there were no reports of renewed activity.

Figure (see Caption) Figure 62. View of the Sinabung summit vent area during ash venting on 20 June 2018. This view from the SW shows the perched remains of the lava dome and collapse scar. Photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.
Figure (see Caption) Figure 63. Relatively consistent ash venting at Sinabung on 20 June 2018. This view shows the pyroclastic flow fan and the 2014 lava flow in the lower center of the photo. Drone photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.
Figure (see Caption) Figure 64. Small ash plume rising from Sinabung at 2106 on 22 June 2018. The ash plume reached about 1 km above the crater. Courtesy of BNPB (color adjusted).
Figure (see Caption) Figure 65. Minor ash venting at Sinabung on 5 July 2018. Photo courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia ); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/, Twitter: https://twitter.com/id_magma); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY (URL: https://www.ldeo.columbia.edu/user/bcarr); Agence France-Presse (URL: http://www.afp.com/); Straits Times (URL: https://www.straitstimes.com).


Telica (Nicaragua) — September 2018 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Explosions on 21 June and 15 August 2018; local ashfall from June event

The Telica volcano complex, which consists of several cones and craters, has had intermittent eruptions since the Spanish conquest, with emissions of gas and ash. According to The Instituto Nicaragüense de Estudios Territoriales (INETER), the volcano is monitored in real time by a permanent seismic station near the crater. It is also visited several times per year for visual observations, to measure sulfur dioxide emissions, and measure temperatures in the crater and fumaroles near the seismic station. A gas-and-ash explosion occurred in early May 2016 (BGVN 42:01). This report covers activity from September 2016 through June 2018.

INETER reported that local residents heard a small gas explosion on 10 September 2017, and warned the public to stay at least 2 km away from the crater. No ash emissions were reported related to this event.

According to INETER and the Sistema Nacional para la Prevención, Mitigación y Atención de Desastres (SINAPRED), an eruption began at 0708 on 21 June 2018. Explosions produced an ash plume that rose 500 m above the crater and drifted E, S, and SW. Ejected tephra was deposited within a 1-km-radius of the volcano, and ashfall was reported in nearby areas, including La Joya, Las Marías (7 km NNW), Pozo Viejo (10 km NNW), Ojo de Agua, San Lucas (11 km NNW), Las Higueras, Las Grietas (12 km NNW), and Posoltega (16 km WSW).

Another explosion on 15 August 2018 was reported by SINAPRED that generated an ash plume to 200 m above the crater rim.

Seismicity. INETER monthly reports indicated that during September through December 2016, between 3,500 and 3,900 monthly seismic events took place, with the majority having hybrid signatures. During 2017, the monthly number of seismic events ranged from 40,584 (September) to 105,555 (November), of which 50-90% were hybrid events, 9-10% long-period events (but 23 percent in January), and 0-35% multiple events. A few scattered volcanic-tectonic events occurred, and tremor was usually low. Seismic data for January and March consisted of percentages of different earthquake types similar to those during 2017.

About 5% of the monthly seismic signals between April 2017 and January 2018 were doublets, or paired earthquakes with two predominant frequencies. INETER did not mention doublets in their March 2018 report, and did not include seismic data in their February or April 2018 reports.

Sulfur dioxide measurements. According to INETER, during fieldwork on 8 and 11 May 2017 the sulfur dioxide level was measured at 368 ± 194 metric tons/day. This value was lower than those in November 2015 with an average of 765 ± 94 tons/day. On 28 February and 1 March 2018, measurements using the Mobile-DOAS technique found levels greater than 426 tons/day and a minimum value of 152 tons/day, with an average of 260 tons/day, higher than the value measured in September 2017 with 183 tons/day. On 16 and 19 April 2018, the minimum and maximum values were 229 and 567 tons/day, with an average of 353 tons/day.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Sistema Nacional para la Prevencion, Mitigacion y Atencion de Desastres (SINAPRED), Edificio SINAPRED, Rotonda Comandante Hugo Chávez 50 metros al Norte, frente a la Avenida Bolívar, Managua, Nicaragua (URL: http://www.sinapred.gob.ni/).


Turrialba (Costa Rica) — September 2018 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Ongoing variable ash emissions and crater incandescence through August 2018

This report summarizes activity at Turrialba during January-August 2018. Activity became more constant after September 2014, with cycles of explosions with numerous, sometimes persistent, weak and passive ash plumes and emissions usually rising no more than 500 m above the active crater. This activity continued during this reporting period (table 7). Most of the data were provided by monthly bulletins of the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) and alerts from the Washington Volcanic Ash Advisory Center (VAAC).

Table 7. Ash emissions at Turrialba, January-August 2018. Information was provided by OVSICORI-UNA, Washington VAAC, and RSN: UCR-ICE.

Date Time Max. Plume height above crater rim Drift Remarks
08 Jan 2018 0600 400-500 m NW --
08 Jan 2018 1319 400-500 m NE --
08 Jan 2018 2005 800 m SW --
09 Jan 2018 0630 300 m SW --
09 Jan 2018 1412 -- -- --
15 Jan 2018 0400 -- -- Ashfall in areas N of Pacayas (Pinos, Buenos Aires, and Santa Rosa de Oreamuno); sulfur odor noted in Santa Rosa de Oreamuno.
22 Jan 2018 0000 500 m NW --
26 Jan 2018 1101 100-200 m SW --
26 Jan 2018 1427 100-200 m SW --
30 Jan 2018 0920 100-200 m SW --
05 Feb 2018 0830 200 m SW --
06 Feb 2018 0730 1 km SW According to The Costa Rica Star, the activity continued for almost one hour; smaller explosion at 0832. Ashfall in several W-flank communities in San Jose (Goicoechea, Curridabat, Coronado) and Heredia.
27 Feb 2018 0800 100 m SW --
06 Mar 2018 2240 500 m NW Activity intensified around midnight with dense ash emissions and ejection of incandescent blocks, and remained elevated almost until 0300 on 7 March. At 1740 activity again intensified; emissions with increased ash volume occurred 1801-1820 drifting W.
08 Mar 2018 1515 300 m SW --
13 Mar 2018 0920 300 m NW --
23 Mar 2018 0605 100 m SW --
31 Mar 2018 1802 400 m SW --
01 Apr 2018 0838 500 m NW --
03 Apr 2018 0700 500 m NW --
05 Apr 2018 1230 500 m S --
09 Apr 2018 0609 300 m W --
11 Apr 2018 -- -- -- --
26 Apr 2018 0700 300 m W --
10 May 2018 -- -- -- Ashfall in La Pastora de Santa Cruz de Turrialba and Pacayas. No specific date: strong emissions of SO2, accompanied by vigorous fumarolic activity and jetting noises.
13 May 2018 0920 300-500 m -- Weak steam and gas, apparently no ash. Seismicity low, with low-amplitude long-period earthquakes and tremor. Continuous low-amplitude tremor.
21 May 2018 0900 -- -- --
28 May 2018 0930 300 m SE --
23 Jul-04 Aug 2018 -- 300 m NW, W, SW Series of weak, sporadic, and almost daily gas-and-ash emissions. On 24 July, ashfall in Coronado, Tibás (35 km WSW), Goicoechea (28 km WSW), Moravia (31 km WSW), and other areas in the Valle Central. On 31 July, ashfall in Tres Ríos (27 km SW). Sulfur odor occasionally reported.
02 Aug 2018 0023 1 km W --
02 Aug 2018 0700 300 m W --
04 Aug 2018 1600 300 m -- --
10 Aug 2018 -- -- W Pulsating, passive ash emissions. Strong sulfur odor in parts of Heredia (38 km W) and San José (36 km WSW) on 11 Aug.
27-28 Aug 2018 -- 200 m SW Continuous emissions.
30 Aug 2018 1340 200 m SW --
31 Aug-01 Sep 2018 -- 200 m SW, W Continuous gas-and-ash emissions.

According to an online news report (Q Costa Rica), a group of volcanologists called Volcanes sin Fronteras (Volcanos Without Borders) flew a drone over the volcano several times in December 2017 and first the two weeks of January 2018. On their Facebook page, they indicated that activity was dominated by intense degassing from the active crater, with sporadic explosions every 30-60 minutes, releasing gas and ash that rose to more than 300 m above the crater. They also observed phreato-magmatic explosions.

OVSICORI reported that pulses of ash emissions were common in January (figure 49), and incandescence was occasionally observed at night. Activity decreased after the middle of February, but strong incandescence was observed during early March.

Figure (see Caption) Figure 49. Webcam photo of an ash emission at Turrialba on 22 January 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE); published by the Costa Rica Star.

Eruptive activity resumed during the middle of May, but faded toward the end of the month to weak passive emissions, and finally ended. The volcano continued with a stable permanent Strombolian activity at the bottom of the crater. During June, the volcano was stable, with strong incandescence at night reflecting the presence of minor Strombolian activity that continued through at least early July.

On 3 July a weak explosion occurred and a thin layer of ash fell on the park ranger house and the Pica seismic station (2.5 km NW). A jet-like sound was heard on 4 July from a lookout. On 16 July incandescence continued at a low level. OVSICORI reported frequent weak ash emissions from 18 July through 2 August; the ash had a very low proportion of juvenile material and a high proportion of altered material. According to a news account (The Costa Rica Star) citing the RSN, persistent tremor accompanied these emissions, and a lahar descended the Toro Amarillo River on the W flank. Weak short-lived ash emissions resumed during the last half of August, and weak to moderate incandescence could still be observed.

Seismicity and deformation. During the first week of January, weak long-period (LP) earthquakes were recorded, but no volcanic-tectonic (VT) earthquakes or tremor. In February-April, weak VT earthquakes, a few LP earthquakes, and harmonic tremor were recorded. By May, seismic activity was almost non-existent, with VT signals below the crater and sporadic tremor. The latter disappeared by the end of May.

On 16 July, seismicity increased, particularly low-frequency earthquakes, to reach about 200 events the next day, but then decreased to normal on 18 July, with sporadic short tremor. During the last week of July, seismicity again increased until an internal explosion on 27 July, after which seismicity decreased. Tremor activity increased on 4 August, and by the middle of August, about 50 LP earthquakes per day were recorded, along with spasmodic tremor of low amplitude. This heightened activity continued during the following week.

Since June 2017, the volcano tended toward deflation, but then in early 2018 became stable until the middle of February, when inflation was recorded. By June, deformation was longer measured. No significant deformation was found in July or August.

Thermal anomalies. MODIS satellite instruments processed using the MODVOLC algorithm only recorded thermal anomalies on 22 March, 2 April, and 27 April (2 pixels). The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded one hotspot during February, numerous hotspots between mid-March and mid-May, and only several hotspots after mid-May through the end of August. All recorded MIROVA anomalies were within 2.5 km of the volcano and of low radiative power.

Sulfur dioxide measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments between 30 March and 3 June, especially between 6-15 April.

According to OVSICORI, the CO2/SO2 ratio increased to a peak of 8 during the night of 21-22 January, then remained stable until the first week of February, when it decreased. By 20 February, the ratio was stable at about 4. The ratio was low during the middle of March, but rose on 29 March. On 10 April, the SO2 flow was normal (below 1000 t/d) and remained low until the middle of May, when CO2 levels increased. High CO2/SO2 levels were measured at the end of May, but decreased in early June. On 12 and 25 June, SO2 levels were about 400 and 500 tons/day, respectively. During early July, the ratio remained low at 4, with short periods of high measurements (about 10 on 5 July). The ratio remained stable throughout the rest of July. The ratio increased on 6 August during the last phase of eruptive activity, but then decreased to normal and stable levels for the rest of the month. Near the end of August, the two gas monitoring stations were vandalized.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica and Instituto Costarricense de Electricidad (URL: http://rsn.ucr.ac.cr/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (URL: https://sO2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); Q Costa Rica (URL: https://qcostarica.com).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports