Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020



Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 16, Number 08 (August 1991)

Managing Editor: Lindsay McClelland

Aira (Japan)

Explosions continue

Arenal (Costa Rica)

Explosions and seismicity decline; lava flows

Arjuno-Welirang (Indonesia)

White plume from Welirang summit

Barren Island (India)

Basaltic andesite lava from flank vent reaches sea

Colima (Mexico)

Fumarole temperatures increase

Dukono (Indonesia)

Explosions and glow; ashfall to coast; small lahars

Galeras (Colombia)

Explosions eject incandescent tephra; increased seismicity and deformation

Gamalama (Indonesia)

Explosions eject white clouds

Hudson, Cerro (Chile)

Basaltic fissure eruption preceded andesitic paroxysmal phase; strong winds rework major ash deposits

Irazu (Costa Rica)

New fumaroles but seismicity declines

Karangetang (Indonesia)

Explosive activity and glow

Karthala (Comoros)

Details of seismicity and deformation associated with the 11 July eruption

Kilauea (United States)

Continued lava flow into sea; lava pond overflows; magma intrusion

Langila (Papua New Guinea)

Ash clouds; incandescent tephra; lava flows in crater

Lengai, Ol Doinyo (Tanzania)

Carbonatite lava production continues on crater floor

Lokon-Empung (Indonesia)

Incandescent tephra cause fires that burn plantations

Malindang (Philippines)

False report of eruption

Manam (Papua New Guinea)

Occasional ash emission; lava dome

Marchena (Ecuador)

First historical eruption

Pinatubo (Philippines)

Secondary pyroclastic flows feed large ash columns; frequent mudflows; fewer explosions

Poas (Costa Rica)

Crater lake rises, covering fumaroles; low-frequency seismicity

Raung (Indonesia)

Dense plumes

Rincon de la Vieja (Costa Rica)

Explosions eject ash and blocks

Ruapehu (New Zealand)

Lake temperature rises; possible minor eruptions

Ruiz, Nevado del (Colombia)

Seismicity, deformation, and gas emission remain unchanged

Santa Maria (Guatemala)

Continued explosions and block lava production

Stromboli (Italy)

Continued moderate explosive activity; gas data

Unzendake (Japan)

Continued lava dome extrusion and pyroclastic flows

Villarrica (Chile)

Weak explosions

Whakaari/White Island (New Zealand)

Tephra emission; shock waves in crater



Aira (Japan) — August 1991 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions continue

Nineteen explosions occurred . . . in August . . . . Ejecta from an explosion on 5 August at 1057 cracked the windshield of an airliner in flight. A car windshield was cracked by tephra from an explosion at 1249 the same day and another was broken on 20 August at 0851, both on Sakura-jima Island, 3 km from the crater. The month's highest ash cloud rose 4,000 m. A total of 583 g/m2 of ash was deposited [at KLMO]; a change in the usual wind direction had carried ash away from this site in July. Typical volcanic earthquake swarms were recorded on 3, 15, 16, and 29 August.

Similar activity continued through mid-September, adding 15 explosions as of the 14th . . . . The highest September ash cloud reached 1,800 m height.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — August 1991 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Explosions and seismicity decline; lava flows

An average of 3 explosions/day was recorded in August . . . . Seismicity also decreased, to a daily average of 20 earthquakes (figure 40). Fumarolic activity continued from the active crater, and lava flows continued to travel down the W and SW flanks of the volcano.

Figure (see Caption) Figure 40. Daily number of earthquakes at Arenal, August 1991. Courtesy of the Instituto Costarricense de Electricidad.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: R. Barquero and G. Soto, ICE; Mario Fernández, Hector Flores, and Sergio Paniagua, Sección de Sismología y Vulcanología, Escuela de Geología, Univ de Costa Rica, San José, Costa Rica.


Arjuno-Welirang (Indonesia) — August 1991 Citation iconCite this Report

Arjuno-Welirang

Indonesia

7.733°S, 112.575°E; summit elev. 3339 m

All times are local (unless otherwise noted)


White plume from Welirang summit

A plume from the summit area of Welirang . . . was photographed by Space Shuttle astronauts on 13 September at [1535] (photo no. S48-151-064) (figure 1). The dense portion of the apparently ash-poor plume extended roughly 50 km N and more diffuse material continued for another 65 km. The summit area was white and apparently de-vegetated. A plume was observed again on direct video downlink from the spacecraft on [17] September at [1306]. No ground reports were available at press time.

Figure (see Caption) Figure 1. Space Shuttle photograph showing a steam plume from Welirang (just east of the central cloud mass). Also, the lack of vegetation at the peak indicates volcanic activity. Volcanoes on Java form an E-W line of peaks the length of the island; five are in this image. NASA Photo ID: STS048-151-064, 13 September 1991.

Geologic Background. The Arjuno and Welirang volcanoes anchor the SE and NW ends, respectively, of a 6-km-long line of volcanic cones and craters. The Arjuno-Welirang complex overlies two older volcanoes, Gunung Ringgit to the east and Gunung Linting to the south. The summit areas of both volcanoes are unvegetated. Additional pyroclastic cones are located on the north flank of Gunung Welirang and along an E-W line cutting across the southern side of Gunung Arjuno that extends to the lower SE flank. Fumarolic areas with sulfur deposition occur at several locations on Welirang.

Information Contacts: C. Evans and D. Helms, NASA-SSEOP.


Barren Island (India) — August 1991 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Basaltic andesite lava from flank vent reaches sea

Lava production continued from the subsidiary vent on the NE face of the volcanic cone, 80 m below the main crater, during a visit on 26 June. Incandescent material was ejected in a pulsating fountain, to [80] m height, more intensely than during the previous visit on 16 May. Satellite monitoring had indicated a temperature of 1,100°C around the vent on 6 May. A dark plume rose 300-400 m from the crater of a large spatter cone that had formed at the eruptive vent. The main crater remained quiet. The lava flow observed in May had bifurcated, with one branch extending along the NW and W valleys, and a new branch extending S. By 26 June, lava had reached the sea at the boat landing near the NW corner of the island (~1.2 km from the vent); during the 16 May fieldwork, the lava front was still 200 m from shore. Vigorous boiling and thick jets of steam were observed for 100 m along the shore. Studies of water near the shore indicated a considerable decrease in pH, and visibility dropped to <10 cm (Srinivas, 1991). Nearby coral was destroyed.

The following is from a GSI report on lava chemistry and petrography. "Thirteen chemical analyses on samples of recent lava collected on 16 May indentify the rocks as basaltic andesites (table 1). They are porphyritic with phenocrysts of plagioclase (dominant; some grains show labradorite composition), with minor clinopyroxene (augite) and forsteritic olivine, set in a fluidal [intersertal] groundmass of brown glass, plagioclase microlites, and Fe-Ti oxides. The amount of mafic phenocrysts is relatively low. The average ratio between phenocryst and groundmass components is around 0.44. The volumetric composition of the phenocrysts indicates: 72% plagioclase, 17% clinopyroxene, and 11% olivine; while the groundmass consists of 43% plagioclase microlites, 37% glass, and 20% Fe-Ti oxides. The amount of glass in the groundmass is highly variable, exceeding 70% in some sections. There is a complete lack of amphibole grains, in both the phenocrysts and [in] the groundmass."

Table 1. Range and average compositions from 13 chemical analyses of recent lava erupted from Barren Island, collected 16 May 1991. Courtesy of the GSI.

Element Range (%) Average (%)
SiO2 54.96-56.33 55.64
TiO2 1.13-1.18 1.15
Al2O3 17.66-18.62 18.20
Fe2O3 5.39-9.44 6.32
FeO 0.36-4.23 2.36
MnO 0.18-0.19 0.185
MgO 3.29-3.59 3.39
CaO 7.52-7.93 7.79
Na2O 1.75-2.19 2.01
K2O 0.58-0.79 0.69
P2O5 0.14-0.18 0.16
L.O.I. 0.16-0.48 0.31

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Director General, GSI; S. Acharya, SANE.


Colima (Mexico) — August 1991 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Fumarole temperatures increase

"Five high-temperature fumaroles on the SW rim of the summit lava dome have been monitored continuously since May. These fumaroles are ~75 m W of the site of the March-May lava extrusion and occur along fractures radial to the dome. Temperatures were measured at 20-minute intervals and radio-telemetered to the Science Center in the city of Colima. Temperatures at two of the fumaroles have increased at a steady rate between May and August (figure 16). Mean late-August temperatures were 506 and 386°C, increases of 66 and 43°C, respectively, since May. Mean temperatures in three other fumaroles have changed <10°C during the same period. Throughout the sampling period, all fumaroles exhibited marked diurnal temperature variation, on the order of 30-80°C/day. The rainy season, which began in mid-June and has continued through August, has had little effect on fumarole temperatures other than occasional low readings during rainstorms."

Figure (see Caption) Figure 16. May-August 1991 temperatures at two fumaroles on the SW rim of Colima's summit lava dome, about 75 m W of the site of March-May lava extrusion. Measurements, at 20-minute intervals, were radio-telemetered to the Science Center, city of Colima. Courtesy of C. Connor.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: C. Connor, FIU, Miami.


Dukono (Indonesia) — August 1991 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Explosions and glow; ashfall to coast; small lahars

People living near the volcano reported that a new eruption began during the night of 8-9 June, after nine years of relative quiet. At the onset of the eruption, residents were awakened by rumblings and a red glow from the volcano, which has since remained active. Ashfalls have occurred regularly in coastal towns 15 km NNW to 15 km ENE of the summit (Galela, Mamoya, and Tobelo). When visited by a geologist on 23-28 June, small to moderate explosions occurred every 4-5 minutes, sometimes accompanied by noise and night glow. Small lahars occurred in rivers draining the volcano.

Space Shuttle astronauts photographed an apparently ash-rich plume extending ~30 km from the summit to slightly beyond the coast on 15 September at 2156 (photos STS048-110-34 & 35). The entire summit area appeared ash-covered.

Figure (see Caption) Figure 1. Photograph of Dukono taken from the Space Shuttle, 2156 on 15 September 1991. The summit area appears to be covered with ash, and the plume extends ~30 km W from the summit. Courtesy of NASA-SSEOP; photo STS048-110-35.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: V. Clavel and P. Vetsch, SVG, Switzerland; C. Evans, NASA-SSEOP.


Galeras (Colombia) — August 1991 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Explosions eject incandescent tephra; increased seismicity and deformation

Seismic activity increased significantly in August, reaching the highest number of events (>150/day), the greatest reduced displacement (>800 cm2), and the highest released energy (~5.0 x 108 ergs; see figure 52) by long-period events since monitoring began in February 1989. Explosions and continuous ash emission from the crater were accompanied by periodic ejections of incandescent blocks up to tens of centimeters in diameter. Incandescence was visible within the crater at dispersed sites. Although weather conditions impeded direct observations, it was possible to confirm that many of the long-period earthquakes and tremor episodes had associated surface activity. SO2 flux was low, ranging from 7 to ~370 t/d.

Substantial deformation changes were measured by the electronic tiltmeter [at Crater Station], with a resultant vector of 231 µrad of inflation (118° azimuth) in the 2 weeks ending 14 August. Lower levels of deformation, 3.7 µrad at 183° azimuth, were measured [at Peladitos Station].

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP.


Gamalama (Indonesia) — August 1991 Citation iconCite this Report

Gamalama

Indonesia

0.8°N, 127.33°E; summit elev. 1715 m

All times are local (unless otherwise noted)


Explosions eject white clouds

Two strong explosions were seen from Ternate, 6 km ESE of the summit, on 15 June, ejecting mainly white clouds. A 20 June climb revealed only white vapor filling the summit crater.

Geologic Background. Gamalama is a near-conical stratovolcano that comprises the entire island of Ternate off the western coast of Halmahera, and is one of Indonesia's most active volcanoes. The island was a major regional center in the Portuguese and Dutch spice trade for several centuries, which contributed to the thorough documentation of Gamalama's historical activity. Three cones, progressively younger to the north, form the summit. Several maars and vents define a rift zone, parallel to the Halmahera island arc, that cuts the volcano. Eruptions, recorded frequently since the 16th century, typically originated from the summit craters, although flank eruptions have occurred in 1763, 1770, 1775, and 1962-63.

Information Contacts: V. Clavel and P. Vetsch, SVG, Switzerland.


Cerro Hudson (Chile) — August 1991 Citation iconCite this Report

Cerro Hudson

Chile

45.9°S, 72.97°W; summit elev. 1905 m

All times are local (unless otherwise noted)


Basaltic fissure eruption preceded andesitic paroxysmal phase; strong winds rework major ash deposits

In one of the largest eruptions of the century, Hudson's mid-August paroxysm produced an eruption cloud 18 km high and deposited ash up to 1,000 km SE. Estimates of tephra volume range between 2 and 6 km3; >1 km3 was deposited in Chile, around 2 km3 in Argentina, and 2 km3 may have fallen in the Atlantic Ocean or been lost to the atmosphere. Satellite data showed that the eruption produced a large SO2-rich cloud, estimated to contain 1.5 megatons of SO2 on 16 August, that was transported twice around the globe in 2 weeks.

The following is from a report by Norman Banks. "The eruption produced 1 to 2+ km3 (dense rock equivalent) of magma. The initial 8-9 August eruption (beginning about 1820 on 8 August) was from a basaltic (50% SiO2) dike through a fissure 4 km long, trending through the NW rim of the 10 x 7 km, ice-filled caldera. The basalt erupted both as a lava fountain and phreatomagmatically, producing a tephra column 12 km high, scoria flows that covered 10 km2 of the western caldera floor and an unknown area outside of the caldera, a 4-km-long lava flow over the WNW flank's Huemules glacier, long-lived (12 hours) floods down the Río Sorpresa (WSW flank) and Río Huemules valleys, and a rather low-volume tephra-fall deposit N of the volcano. This ash had a moderate level (100-300 ppm dry weight) of soluble fluorine that was quickly reduced to 2-10 ppm by heavy rains during the next 2 weeks. Grass growing through this deposit has a fluorine content of about 30 ppm.

"The andesitic eruption of 12-15 August may have been due to secondary boiling triggered by intrusion of the 8 August basalt, or other basaltic dikes into the andesitic magma body under the caldera; bombs and lapilli of pumiceous andesite (60% SiO2) mixed with chilled basalt are common in the tephra-fall deposits. The 3-day andesitic eruption produced a strong Plinian column that ejected pyroclastic material into a very strong SE-directed stratospheric wind (185 km/hr) that kept the plume narrow even 700 km from the volcano. Pumiceous ballistic bombs 1 m in diameter were found 10 km from the vent, where tephra-fall deposits were >2.5 m thick. The 10-cm isopach reached just SE of Chile Chico (120 km SE of the vent) and 1-2 cm of ash was deposited at Argentina's coast (figure 5). [As many as 13 distinct layers of ash were deposited in some locations.] Fortunately, pyroclastic flows did not spill onto the outer snow-covered flanks during this episode, and no additional mudflows were reported. Shortly after the 12-15 August eruption, however, secondary water-and-pumice flows formed on the volcano's flanks during daily melting of the snow. Because most of the thick deposits on the steep mountainous terrain SE of the volcano are on and interleaved with snow, downslope movement and associated hydrological problems for the downstream valleys are certain to accelerate as the summer melting and rains begin. The andesitic ash in Chile had low amounts of soluble fluorine (<20 ppm), and grass covered by or growing through the ash deposits has a relatively low fluorine content. Analysis of fine fractions of the Chilean deposits suggest that downwind (Argentinean) fluorine values will not be significantly higher."

Figure (see Caption) Figure 5. Preliminary isopach map of the 12-15 August 1991 tephra-fall deposits from Hudson. Prepared by N. Banks, H. Moreno, H. Corbella, M. Haller, and H. Ostera.

Steam emission, occasionally containing minor quantities of ash, declined rapidly following the eruption's end on 15 August.

Major reworking of ash deposits in Argentina by strong winds led to several false reports of renewed activity at Hudson. Ash was redistributed N to Comodoro Rivadavia (2 mm at 400 km E of Hudson) and was reported S to Río Gallegos (700 km SSE). In early September, GOES satellite images detected ash clouds, probably below 3 km, carried by ground-level winds at 55-65 km/hr; these clouds extended from near the volcano to over the Atlantic ocean. The densest part of the clouds appeared to be ~250 km SE of the volcano, about halfway to the Argentine coast. Poor visibility, down to a few hundred meters, was reported at Puerto Deseado and Puerto San Julián. Argentine officials have expressed concern over the >2 million sheep and 3,000 cattle in the affected region.

Geologic Background. The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. It is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive volcano covers an area of 300 km2. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur N of the volcano and others occupy the SW and SE flanks. This volcano has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 km3 of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW portion of the caldera.

Information Contacts: N. Banks, USGS; H. Moreno, Univ de Chile; J. Naranjo, SERNAGEOMIN; P. Bitschene, Patagonia Volcanism Program, Argentina; P. Maxwell, US Embassy, Buenos Aires; D. Helms, Lockheed, Houston; S. Doiron and G. Bluth, GSFC.


Irazu (Costa Rica) — August 1991 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


New fumaroles but seismicity declines

Fumarolic activity continued in August, mainly in a large zone of sulfur and chloride deposition in the N section of the crater, while a new zone of fumarolic activity appeared in the SSE part. The crater lake grew to cover almost the entire floor, >150 m in diameter. Seismicity, abnormally high since late May, continued to decrease in August (figure 4). During the second week in June, a new group of fumaroles appeared in the crater.

Figure (see Caption) Figure 4. Monthly number of earthquakes at Irazú, January-August 1991. Courtesy of the Instituto Costarricense de Electricidad.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: R. Barquero and G. Soto, ICE; Mario Fernández, Hector Flores, and Sergio Paniagua, Sección de Sismología y Vulcanología, Univ de Costa Rica.


Karangetang (Indonesia) — August 1991 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Explosive activity and glow

Explosions were clearly visible from the coast (at Ulu Siau) during a visit 2-4 July. A diffuse, red, summit-area glow was continuously observed. Some small earthquakes were felt.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: V. Clavel and P. Vetsch, SVG, Switzerland.


Karthala (Comoros) — August 1991 Citation iconCite this Report

Karthala

Comoros

11.75°S, 43.38°E; summit elev. 2361 m

All times are local (unless otherwise noted)


Details of seismicity and deformation associated with the 11 July eruption

The bottom of the summit's Choungou-Chahalé crater, obscured by a cloud of white gas and vapor following the 11 July phreatic eruption, became visible in early August. A new explosion crater (~250 m in diameter) was observed in its SE section. Vigorous degassing occurred through the crater lake and from the wall of the new crater. The following, from Patrick Bachélery, supplements the report in 16:6.

Karthala's 11 July explosion followed an increase in seismicity from 3-5 events/month (June 1988 start of monitoring through early April 1991) to 3-10 events/day in May (figure 2). Earthquakes were centered beneath the crater, mostly at 0-2 km below sea level, with a few 10-20 km below sea level. On 4 May, a swarm of 161 earthquakes (M 0.5-2) was recorded during a 1-hour period beginning at 1609. The number of earthquakes increased to 30-50/day by the end of June, and all were at shallow depths. Deformation measurements showed summit inflation of ~20 µrad during this time; only weak changes in deformation had been measured between the network's installation (May 1987) and June 1989.

Figure (see Caption) Figure 2. Daily number of earthquakes at Karthala, March-June (inset) and May-July 1991. Courtesy of P. Bachélery.

A notable change in seismicity occurred on 30 June at 1645. More than 500 earthquakes (long- and short-period) were recorded that day, as many on the next, and >1,500 daily 2-4 July (figure 2). The short-period events (M 0.5-3.1) were centered in a roughly N-S line below the S part of the summit caldera and the S flank of the volcano (figure 3). Felt shocks caused ~1,000 people to leave the lower part of the S flank.

Figure (see Caption) Figure 3. Epicenter map of short-period earthquakes at Karthala during 30 June-4 July (open squares) and 5-10 July 1991 (filled squares). Courtesy of P. Bachélery.

Seismicity continued to increase from 4 July, with 4,000 earthquakes recorded daily by 10 July. A swarm of nearly continuous seismic events was recorded between 0040 and 0110 the next day. The 4-10 July seismicity was characterized by low-magnitude (mostly M <1, sometimes to M 3.4) short-period events located under the summit at 1-4 km depths, and less numerous deeper earthquakes at 4-8 km depth. Some long-period events with cigar-shaped waveform envelopes were also recorded. The center of seismicity shifted N, resulting in fewer felt shocks in the S part of the island, while several M 3 earthquakes were felt in Moroni (13 km NW of the crater).

Deformation measurements (dry-tilt) the morning of 10 July showed >120 µrad of inflation centered on Choungou-Chahalé and Choungou-Chagnoumeni (figure 4) craters since 28 June. That night, the eruption took place, but no eyewitness accounts are available. Seismicity reached its highest intensity during an 11-hour period that night [but see 16:6], dropping abruptly at 0335 on 11 July to ~100 recorded events/hour. About 1.5 hours later, a strong sulfur odor was detected in Moroni for ~2 hours.

Figure (see Caption) Figure 4. Map showing Karthala's summit region and deposits from the 11 July 1991 explosion. Courtesy of P. Bachélery.

Later visits to the summit revealed that a sizeable phreatic explosion had occurred in Choungou-Chahalé crater. The southern 2/3 of the summit caldera were covered by blocks (up to 10 m3) and ash (figure 4), and the summit vegetation was completely removed from within the limits of the caldera. The crater bottom was hidden by gas and vapor clouds, obscuring the source of a "fountaining" sound heard two weeks after the 11 July explosion. Geologists later believed the sound to have been caused by the forceful arrival of water into the new crater, forming the crater lake.

Seismicity rapidly decreased after the explosion, although several earthquakes of M 3.0-3.5 were recorded through the end of July. In August, 20-40 events/day were recorded, the same level as in June.

Geologic Background. The southernmost and largest of the two shield volcanoes forming Grand Comore Island (also known as Ngazidja Island), Karthala contains a 3 x 4 km summit caldera generated by repeated collapse. Elongated rift zones extend to the NNW and SE from the summit of the Hawaiian-style basaltic shield, which has an asymmetrical profile that is steeper to the S. The lower SE rift zone forms the Massif du Badjini, a peninsula at the SE tip of the island. Historical eruptions have modified the morphology of the compound, irregular summit caldera. More than twenty eruptions have been recorded since the 19th century from the summit caldera and vents on the N and S flanks. Many lava flows have reached the sea on both sides of the island. An 1860 lava flow from the summit caldera traveled ~13 km to the NW, reaching the W coast to the N of the capital city of Moroni.

Information Contacts: P. Bachélery, Univ de la Réunion; D. Ben Ali and J-L. Klein, CNDRS, RFI des Comores; F. Desgrolard, Centre de Recherche Volcanologique, Clermont-Ferrand, France; J-L. Cheminée, J-P. Toutain, and J-C. Delmond, IPGP.


Kilauea (United States) — August 1991 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Continued lava flow into sea; lava pond overflows; magma intrusion

Lava . . . continued to enter the ocean at two main sites through August (figure 79). By the end of the month, numerous breakouts from the tube system had reduced the volume of lava reaching the sea. Flows produced by major breakouts at ~180 and 340 m (600 and 1,100 ft) elevation spread over the W third of the lava field. Most remained on older lava, but a few lobes reached the field's W edge and ignited small brush fires in the remnants of the Royal Gardens subdivision. One flow from the breakout at 180 m reached 20 m elevation in early August.

Since at least January, a small lava pond has been continuously active in the bottom of Pu`u `O`o crater, covering ~20% of the crater floor on its E side. By April, the pond was circular and surrounded by levees. During the evening of 27 August, bright glow was visible over Pu`u `O`o, and a nearby seismometer recorded frequent bursts of higher amplitude tremor lasting 1-3 minutes. Overflights the next morning revealed that the pond had overflowed its levees, covering the entire crater floor with several meters of active lava that had a thin, frequently overturning, crust. Lava periodically drained back to its former level, remaining confined within the original pond until the next overflow. Similar activity continued through the end of the month. Crater depth remained roughly 80 m.

Seismicity in August included the upper East rift zone's third intrusive swarm since December 1990. More than 200 shallow summit microearthquakes were registered between 1100 and 1200 on 21 August. Earthquake counts quickly declined during the next hour, but elevationated levels of seismicity . . . continued through the next day. The largest concentration of events appeared to be centered just SE of the caldera, and very few occurred beyond Hiiaka crater, 4.5 km from the caldera rim. Most of the month's seismicity in the summit/upper east rift area occurred during the swarm.

Earthquake epicenters since December 1990 (figure 80) have been concentrated in several clusters, the largest of which were associated with the period's three intrusive episodes. The three swarms occurred in different portions of what geophysicists infer to be the same shallow (<5 km deep) structure between the summit and the East rift zone, suggesting a significant role for the summit in the current East rift eruption. During the early December swarm earthquakes were located from the summit roughly 6 km downrift (to Pauahi crater). The largest concentration of events was in the SE part of the caldera, perhaps extending a short distance into the rift zone (toward the Chain of Craters). The March activity occurred away from the summit, with the majority of located events between Pauahi and Mauna Ulu, roughly 3 km farther downrift. Following the early December seismicity and a long-period summit swarm late in the month, seismicity increased between the summit and Hiiaka crater. The same segment of the uppermost East rift zone has consistently shown low levels of shallow seismicity throughout Kupaianaha vent's post-1986 eruptive activity. After the March swarm, seismic activity along this rift segment appears to have increased further, and the August swarm was largely confined to this area.

Figure (see Caption) Figure 80. Plot of earthquake epicenters in Kilauea's summit, upper to middle East rift zone, and south flank areas, December 1990-11 September 1991. Some of the larger craters are labeled. The eruption's two currently active vents, Pu`u `O`o and Kupaianaha, are off the map ~3 and 6 km ENE of Napau Crater. Courtesy of HVO.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Mattox and P. Okubo, HVO.


Langila (Papua New Guinea) — August 1991 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash clouds; incandescent tephra; lava flows in crater

"In August, Crater 3 frequently erupted moderate to strong, pale grey-brown ash and vapour clouds accompanied by weak to loud detonations, roaring or rumbling. The eruptions occurred at intervals of several minutes to a few hours. The emission clouds rose as much as 500 m above the crater. Dull to bright red crater glow was observed on the nights of 7-9, 12, and 13 August.

"During an aerial inspection on the 14th, two active vents were observed in a mound of lava filling Crater 3. The vents were ~5-10 m in diameter, 40 m apart and aligned approximately N-S. The N vent was more active and was filled with incandescent lava. The S vent was clogged with dark lava. Both vents released blue vapour. Lava had flowed eastward to form a short (70 m) lobe in the E part of the crater. A longer (~150 m) lobe of lava was present on the NE flank of Cone 3. This lobe was fresh, having a dark surface, and its source appeared to be a tube within the E lobe. The NE-flank flow was first observed on 13 August, and appeared to be inactive then. However, some activity of this flow had been evident the previous night when prolonged incandescence in this area and some movement of incandescent material were observed. Two other very small lava lobes (both inactive) were observed on the NW flank of Cone 3.

"Throughout the month, Crater 2 (roughly 200 m E of Crater 3) almost continuously emitted moderate amounts of pale grey-brown ash and vapour. This activity was accompanied by nearly continuous low roaring sounds. Occasional stronger explosions took place. Dull glow over the crater was observed on the nights of 7-9, 13, 22, 24, and 27 August. A 30-minute period of strong explosive activity on the night of 13 August resulted in a large volume of incandescent lava fragments being ejected onto the NE flank of Cone 2. Incandescent lava-fragment ejections from Crater 2 were also seen on the night of 20 August. A brief aerial view of the interior of Crater 2 on 14 August indicated that it remains funnel-shaped, with several benches. Detailed observation was prevented, however, by emissions of ash and vapour.

"The ash plume from the combined emissions of the craters was usually directed in a sector between NNE and NW. Fine ashfalls were recorded in coastal areas (9 km distant) on 1, 2, 6, and 12 August.

"Seismicity remained at a moderate to high level throughout the month. It appeared that most of the stronger seismicity was associated with events at Crater 3. The daily number of explosion earthquakes recorded by the summit station fluctuated between 20 and 70, with the largest totals of 40-70 events on 16, 25, and 30-31 August. Meanwhile, the remote station (9 km distant) recorded 0-29 events/day. Numerous low-amplitude, short-duration, tremor-like signals were produced by weaker explosions. Several periods of harmonic tremor were recorded but the source was not determined."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: B. Talai, C. McKee, and P. de Saint-Ours, RVO.


Ol Doinyo Lengai (Tanzania) — August 1991 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Carbonatite lava production continues on crater floor

Photographs taken . . . by D., M., and T. Peterson on 25 January showed few changes since late 1990. Lava flows of varying ages were evident on the crater floor, with the youngest (F25) extending N toward the crater wall from a hornito on the N flank of . . . T5/T9 (figure 22). Its dark brown color and clearly defined margins indicated that it may have been active during the Petersons' visit. Light gray-brown lava had spread from a source near vent T11, across the former saddle (M1M2) to the S wall of the crater, covering more than half of the floor of the former southern depression. Lava of similar age also covered much of the N part of the main crater.

M. Peterson returned . . . 29-30 March, and reported 10-15 minutes of lava production during the evening of the 30th from 2 or 3 vents on the N side of T5/T9, very close to the source of the freshest flow photographed on 25 January. A number of flows moved away from the vents, the longest advancing ~50 m. Flow widths averaged 1-2 m and thicknesses varied from 10 to 20 cm. Steam and sulfur fumes were issuing from several sources on the crater rim, walls, and floor. Older flows in the N part of the crater were dominantly pahoehoe but some aa lava was also observed. Flows entering the S depression were blocky and ~2/3 m thick.

Figure (see Caption) Figure 22. View SE across the crater floor of Ol Doinyo Lengai, 25 January 1991. A recent flow from vent T5/T9 is shown in black. Prepared by C. Nyamweru from a photo taken by the Peterson group.

Little fresh lava was evident on the dominantly pale gray to white crater floor during a visit by Benoit Wangermez on 6 May. A slightly darker flow covered most of the southern depression, showing that lava had advanced S since January from a source slightly NW of T11. Small flows around the base of T5/T9 (active in late March) did not look very young. One new light-colored zone (at M2) appeared to be a vent, currently inactive, that had formed since March.

When T. Peterson arrived at the crater rim on 28 June at about 1000, lava was flowing W from a new vent (T18) W of T5/T9. Activity had subsided 30 minutes later, and the level of lava in the vent had fallen 5 m. Heat was rising from older vents (T5/T9 and T14), while T11 had partially collapsed and looked like a "sulfur cave." Lava flows on the crater floor ranged from dark (fresh) to almost white.

A group led by Luigi Cantamessa climbed to the summit on 12 July. No effusive activity was evident, but black to grayish flows [were] perhaps 1-2 days old . . . . Fumarolic activity occurred from some small hornitos. Many fissures were seen; one extended E-W, parallel to the former saddle dividing the main and southern craters, and cut across the W rim, but was not visible on the volcano's outer flank.

Eruptive activity was very minor . . . on 9 August between 1000 and 1400. Hot, fresh, dark gray natrocarbonatite lava was found near the H6 vent complex (figure 23). Water poured on the lava boiled violently. The extent of other fresh lava flows was similar to that observed 4 days later (see below). A small hornito on the S side of H6 ejected 2-3-mm droplets of spatter. A frozen, but still fresh lava pool ~4 m in diameter was found ~2 m below the average elevation of M1's crater floor (a group of tourists and a local guide reported that vents H6 and M1 had been active 2 days earlier). Vent T5/T9 emitted hot colorless gas, while T11 exhaled SO2. Radial fissures on the W flank of the crater produced almost pure (>95%) CO2, with some SO2. Holes ~0.5-1 m across on the crater's W rim released hot, humid air with no detectable SO2 or CO2. These holes contained a variety of water-loving plants such as moss and algae. Gas compositions were measured with Dräger tubes.

Figure (see Caption) Figure 23. Sketch map of the crater floor of Ol Doinyo Lengai, 13 August 1991. Fresh lava is shown in black. Courtesy of Alain Catté.

Lava production from one vent complex was continuing during a summit climb by Alain Catté and others on 13 August. Irregular, weak, but clearly audible explosions occurred from the 4-5-m-high hornito complex H6, ejecting lava fragments horizontally to 10-15 m from two vents (E1 and E2). Weak effusive activity occurred from a site ([E4]) 5 m below the hornito complex. Young, chocolate-brown flows extended from its base in three directions atop older (>48 hours) whitish flows: ~10 m E; ~40 m NE; and > 100 m N, flowing around other small cones. Production of small flows accompanied vent E1's explosions from the initial observations at 0845 until its activity stopped at about 1000.

When clouds cleared at 1030, a very fluid lava flow 40-50 cm wide was emerging from neighboring vent E2. The flow quickly subdivided into many black lobes ~10 cm wide, with a consistency like lubricating oil. Within a few seconds, these formed channeled pahoehoe flows that turned to aa at their distal ends. Lava also formed tubes that carried it >100 m from the source. No lava temperatures were taken, but it was possible to place one's hand a few centimeters from an active flow, and to touch it after ~2 minutes of cooling. A cascade of lava ~10 cm wide began from a third vent (E3) on the hornito complex at about 1145. Vents E2 and E3 erupted simultaneously and showed parallel fluctuations in activity. Later . . . lava outflow from E2 occurred in a jet 2 m long.

At about noon, lava production resumed from the base of the hornito complex (at [E4]) bubbling out in a manner reminiscent of mud pots. It overflowed after ~45 minutes, gradually building a hornito that grew to 1 m height before activity ceased at about 1330. Above [E4], lava effusion from vent E3 stopped at 1230, emerging from a channel 2 m below in a violent, 3-m jet that reached the base of [E4], beginning to fill the area with lava. The outflow rate increased progressively, and lava had advanced 60 m W by the end of observations at about 1400. Lava production from the H6 complex had roughly quadrupled its size since . . . March.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, St. Lawrence Univ; D. Peterson, M. Peterson, and T. Peterson, Arusha, Tanzania; B. Wangermez, Nairobi, Kenya; L. Cantamessa, Geo-decouverte, Switzerland; P. Vetsch, SVG, Switzerland; T. Dunai, R. Ragettli, K. Schenk-Wenger, and U. Ziegler, ETH Zürich, Switzerland; A. Catté, B. DeMarne, and P. Barois, LAVE.


Lokon-Empung (Indonesia) — August 1991 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Incandescent tephra cause fires that burn plantations

The press reported that renewed activity on 19 September ejected a plume to ~700 m. Incandescent tephra fell 500 m from the crater, starting fires that burned plantations in seven villages. No casualties were reported. As of the next morning, the eruption was continuing and VSI observers were recording accompanying earthquakes. VSI advised local authorities that residents of nearby villages should remain on alert, but an evacuation was not ordered.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: VSI; UPI.


Malindang (Philippines) — August 1991 Citation iconCite this Report

Malindang

Philippines

8.22°N, 123.63°E; summit elev. 2404 m

All times are local (unless otherwise noted)


False report of eruption

Widely distributed reports of increased activity and up to 20,000 evacuees in mid-September proved false. Heavy cloud cover over the volcano and coincidental tectonic earthquakes prompted claims of an imminent eruption. PHIVOLCS scientists found no signs of activity, although they did locate a previously unknown geothermal area on a remote section of the volcano.

Geologic Background. The Pleistocene-to-Holocene Malindang stratovolcano, located on the western margin of Iligan Bay in north-central Mindanao, contains a small summit caldera. Legends record a large eruption from the 2404-m-high, dominantly basaltic-to-andesitic volcano in the past, although no historical eruptions are known (Salise et al., 1991). Reports of increased activity in 1991 at the time of tectonic earthquakes prompted widespread evacuations, but an eruption did not occur, although a previously unknown geothermal area was discovered.

Information Contacts: D. Sussman, Philippine Geothermal, Inc., Manila; Philippine Daily Inquirer and Manila Times, Manila; Reuters.


Manam (Papua New Guinea) — August 1991 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Occasional ash emission; lava dome

"Main Crater produced weak emissions of white vapour with low ash content on 1, 2, and 3 August. Blue vapour was visible on 8, 11, and 12 August and only white vapour during the last week of the month. There were no audible noises and no night glow was seen.

"The emissions from Southern Crater consisted of tenuous white vapour with occasional grey-brown ash clouds resulting in fine ashfalls on parts of the island. Occasional weak deep roaring and rumbling noises were heard 2-14 August and a weak red glow was observed around the crater mouth on the night of 7 August. An aerial inspection was carried out on 13 August. Southern Crater was partly filled with vapour but Main Crater was clear. The floor of Main Crater was occupied by a solid plug or mound of lava, at a level ~20 m below the lower (NE) part of the crater rim. White mofettes were released by numerous fumaroles around the base and lower walls of the crater. The crater floor was mostly covered by debris from the crater walls, but in the central area, the lava plug was visible over an area ~5 m in diameter, and consisted of steaming lava surrounded by small blocks and scoriae ejected during a stronger degassing phase. During the aerial inspection, emissions from Southern Crater were low-energy, thermally buoyant clouds, released fairly regularly at ~15-minute intervals.

"Seismicity was at a moderate level and tilt measurements showed a deflation of ~1.5 µrad since mid-August."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: B. Talai, C. McKee, and P. de Saint-Ours, RVO.


Marchena (Ecuador) — August 1991 Citation iconCite this Report

Marchena

Ecuador

0.33°N, 90.47°W; summit elev. 343 m

All times are local (unless otherwise noted)


First historical eruption

Marchena . . . started erupting on 25 September. The TOMS instrument aboard the Nimbus-7 satellite passed at about 1100 and sensed no SO2, but the next pass, at the same time on 26 September, mapped a 300-km plume to the SW with an SO2 content estimated to be close to 100 kt. High SO2 values immediately over the volcano indicated that the eruption was still vigorous at that time. On the following day the plume was nearly twice as long, but had almost vanished by the same time on 28 September. Weather satellite images during this period showed low cloud cover, but no conclusive indication of the volcanic plume. . . .

Geologic Background. The low shield volcano forming Marchena Island contains one of the largest calderas of the Galápagos Islands. The 6 x 7 km caldera and its outer flanks have been largely buried by a cluster of pyroclastic cones and associated lava flows. Its first historical eruption occurred in 1991. Other young lava flows, some of which may be only a few thousand, or even a few hundred years old, filled the caldera and flowed down its outer forested flanks, in some cases to the sea.

Information Contacts: A. Carrasco, Charles Darwin Research Station; S. Doiron, GSFC; SAB.


Pinatubo (Philippines) — August 1991 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Secondary pyroclastic flows feed large ash columns; frequent mudflows; fewer explosions

Activity continued to decline through 15 September, with only three ash/steam emissions since about 25 August. Heavy monsoon rains triggered numerous mudflows and secondary explosions from the 15-16 June pyroclastic-flow deposits. Two large secondary pyroclastic flows occurred, producing associated ash clouds to 15 km height. The press reported continued fatalities from debris/mudflows and disease in evacuation camps, bringing the number of casualties attributed to the eruption to at least 740 by 20 September. Study of the June deposits has resulted in preliminary estimates of 7-11 km3 of material erupted.

5-11 August. Radar at Clark Air Base detected 13 ash/steam emissions rising to 4.5-13.5 km height; plumes were carried NE by the wind. Most RSAM peaks coincided with these emissions. The majority of seismicity was shallow (<=1 km depth), with magnitudes <1. Seven high-frequency earthquakes were felt at Clark Air Base.

12-18 August. Thirteen ash/steam emissions were detected, three with columns >15 km high (maximum 17.5 km). Wind carried the plumes ENE and NE, and ashfall was reported at Clark Air Base on 13 and 16 August. Ejection velocities ranged from about 300-900 m/min, similar to the ejection velocity on 25 June (estimated at about 450 m/min). A large secondary pyroclastic flow occurred sometime on 12-13 August, in the Marunot drainage on the NW flank. The flow was not observed, but satellite imagery was used to identify the deposits and estimate a deposit volume of 31 x 106 m3 (1.25 km2 areal coverage). The flow, ~10 km long, created a headwall scarp about 20 m high along a 240° arc in the primary pyroclastic-flow deposit source region. During aerial observations, the still-steaming secondary deposits could be differentiated from those of earlier pyroclastic flows by the absence of rills and dissected morphology.

Seismic energy release decreased notably from the previous week (figure 19), although the number of earthquakes remained about the same (102 recorded events/day compared to 95/day the week before). Several shocks were felt at Clark Air Base. RSAM peaks reflected high-frequency earthquakes generated by mudflows, and occasional long-period signals associated with ash/steam emissions from the caldera. Geologists suggested that small long-period events may also be related to secondary explosions from pyroclastic-flow deposits.

Figure (see Caption) Figure 19. Accumulated RSAM energy at Pinatubo, 28 July-18 August 1991. Courtesy of PHIVOLCS.

19-25 August. Ash/steam emissions averaging ~9.8 km high (maximum 15 km) were detected eight times during the week. Ash was carried E. Some may have originated from secondary explosions at the E flank (Sacobia valley) pyroclastic-flow deposits. Seismicity consisted mostly of high-frequency earthquakes (M < 1.0) centered below the caldera or ~3 km NW, at 0-18 km depths (figure 20). Four events (M 2-4) were felt at Clark Air Base, with intensities to IV (adapted Rossi-Forel scale). RSAM peaks coincided with the larger high-frequency earthquakes, and long-period events were associated with ash/steam emissions.

Figure (see Caption) Figure 20. Epicenters of 648 earthquakes recorded near Pinatubo, 19-25 August 1991. Courtesy of PHIVOLCS.

26 August-1 September. Only two ash/steam emissions were detected; plume heights ranged from about 10 to 16 km. Light ashfall occurred to 40 km SE (San Fernando) during secondary explosions that produced columns to 16 km. Ash related to these events caused poor visibility (300 m) on the highway between San Fernando and Angeles (25 km E of the volcano). The number of felt shocks (M < 4.2) increased to 17, with intensities to V (adapted Rossi-Forel scale). Multiple peaks in RSAM plots were due to mudflows, while single peaks were caused by long-period events associated with the two ash/steam emissions.

2-8 September. One ash/steam emission was detected (2 September), producing a 9-km plume that was carried W (highest portion) and NE (lower portion). Secondary explosions, three of which were recorded as low-amplitude, low-frequency earthquakes, generated ash clouds 2-4.5 km high. Geologists proposed that the heavy ashfall and 15-km-high ash column observed at 1400 on 4 September (figure 21) were from a secondary pyroclastic flow, whose fresh deposits were discovered two days later. The absence of a long-period earthquake coincident with the ash cloud suggested that it had not been generated by caldera explosions. The secondary pyroclastic-flow deposits about 3 km SSW of the caldera (in the upper Marella drainage) were estimated to be 1-2 km wide, and 4-6 km long, with a headwall scarp 15-25 m high. The deposit appeared very recent and seemed water-saturated. It was not known whether the ash cloud was generated purely by convection, or by phreatic explosions resulting from an encounter with water on the river bed. A helicopter overflight of the caldera on 6 September revealed no evidence of activity during the prior several days. Steaming was observed along the margins of the caldera and a bluish lake was present. No evidence of a lava dome was found.

Figure (see Caption) Figure 21. Visible and infrared image from the NOAA 11 polar-orbiting weather satellite on 4 September at about 1445, showing a large, 15-km-high ash cloud above Pinatubo believed to have been generated by a secondary pyroclastic flow. Courtesy of G. Stephens.

Recorded earthquakes averaged 88/day, similar to 89/day the previous week. The majority were of high-frequency, and geologists believed that they were caused by tectonic readjustments. Most of the few low-frequency signals coincided with observed secondary explosions. Seismicity remained shallow (about 38% at less than 2 km depth), centered beneath or NW of the caldera. Long-duration, high-frequency earthquakes corresponding to mudflows created peaks in RSAM plots. A magnitude 5.1 earthquake at 0627 on 5 September, centered ~17 km NNW (15.53°N, 120.31°E) at 10 km depth, was felt at Clark Air Base (intensity RF V).

On 4 September, due to the continued decrease in caldera activity, the volcanic alert was reduced from Level 5 (eruption in progress) to Level 3 (numerous magma-related earthquakes, fumaroles, and gas emission), and the danger zone radius was reduced from 20 to 10 km. The principal remaining hazards and their probable durations were identified (table 4).

Table 4. Principal hazards associated with Pinatubo following the 15-16 June 1991 eruption (as of 4 September 1991). Courtesy of PHIVOLCS.

Number Hazard Description Duration
1 Heavy rains may remobilize large volumes of loose pyroclastic materials on the upper slopes of Pinatubo, generating mudflows that will affect communities near drainage channels and in low-lying downstream areas. 2-5 years...for as long as large volumes of loose sediments on slopes are subjected to heavy rain.
2 Moderate to heavy rainstorms that do not generate mudflows will still transport extraordinarily large volumes of sediments to lowland areas. This sediment will fill up river-channel storage capacity, resulting in more frequent and severe floods in lowland areas. Years to decades.
3 Occasional phreatic explosions at the summit caldera can cause light to moderately heavy ashfall in downwind areas with possible damage to aircraft. Possible plume heights may vary from 5-20 km altitude. Months and possibly years, but probably lessening in intensity, heights attained, and recurrence with time.
4 Groundwater that percolates into the hot interiors of pyroclastic-flow deposits can cause steam explosions. Ejected ash and ballistic fragments can be hazardous to distances of hundreds of meters. Months to a year or more...until the interiors of pyroclastic flow deposits have sufficiently cooled.
5 As overall volcano-related seismicity decreases, earthquakes can still generate ground motions sufficiently strong to damage or destroy weak and/or unstable objects and structures. The distribution of these earthquakes probably will be broad and could cover the entire volcano and peripheral areas. Several months to a year.
6 Thick pyroclastic deposits may locally remobilize as secondary pyroclastic flows and threaten areas as much as 10km downslope. Earthquakes, heavy rainfall, and secondary explosions may serve as triggering factors. Weeks to months, dependng on the presence of metastable materials and the occurrence of triggering factors.

9-15 September. Although no ash/steam emissions were detected, ash clouds 2-10 km high were produced by secondary explosions. Vigorous steam emission was noted from the S side of the caldera, and the blue crater lake was still present during observations on 10 September. The average number of earthquakes decreased to 54 recorded daily, most centered ~2 km NW or 2 km S of the caldera, at <2 km and 5-10 km depths. The majority of events were M <2. RSAM and accumulated energy both showed decreases corresponding to the drop in seismicity. Multiple RSAM peaks coincided with mudflows, while single peaks were caused by moderate-sized earthquakes.

Debris flows. All of Pinatubo's major drainage systems experienced debris flows, ranging from mudflows to hyperconcentrated flows and floods. Numerous flows also occurred in more distant drainages in which significant quantities of tephra were deposited. To help alleviate hazards and to aid in studying debris-flow processes, rain gauges were installed, observation posts were set up at strategic locations along rivers, and cross sections were monitored at bridges. Timely warnings and evacuations considerably reduced the number of injuries and casualties. High rainfall (to > 30 cm/day) and still-hot pyroclastic-flow deposits generated numerous hot mudflows that deposited as much as several meters of material.

On the SE flank's Pasig-Potrero River, pyroclastic-flow deposits had formed a dam behind which a 1,000 x 600 m lake had formed. The lake drained on 7 September, causing muddy flash floods that reached 1.2 m high in about 5-10 minutes at Bacolar (35 km SE of the volcano). Press reports indicated that 800 homes were destroyed and seven people were confirmed dead. By 15 September, continued flooding and mudflows resulted in the deaths of 12 more people at Bacolar, where 45,000 of the 68,000 residents had fled.

News reports placed the death toll from the eruption, mud flows, and disease at more than 740 by 20 September [see also 16:9]. Of the fatalities in evacuation camps, an estimated 95% were Aeta tribesmen and 75% were children. The Aeta reportedly refused most medical assistance such as vaccinations.

Fieldwork on June eruptive products. Preliminary estimates have been calculated for pyroclastic-flow deposits and airfall tephra from the paroxysmal June eruptive activity. The bulk of the material erupted was found in pyroclastic flow deposits (5-7 km3); several drainage systems included more than 1 km3. An estimated 0.48 km3 of airfall tephra was deposited within the 15-cm isopach (table 5); the total volume of tephra-fall material erupted, including that deposited in the South China Sea or lost to the atmosphere, was believed to be between 2 and 4 km3. The total volume, therefore, is estimated as 7-11 km3 (roughly 3-5 km3 dense rock equivalent).

Table 5. Preliminary volume calculations (±10% error) of June 1991 eruptive products from Pinatubo. Total tephra deposit volume: 0.48 km3. Total pyroclastic-flow volume: 7.0 km3. Courtesy of PHIVOLCS.

Deposit Type Location Volume (km3)
Tephra 50 cm isopach 0.07
Tephra 40 cm isopach 0.03
Tephra 30 cm isopach 0.10
Tephra 25 cm isopach 0.01
Tephra 20 cm isopach 0.11
Tephra 15 cm isopach 0.16
 
Pyroclastic-flow O'Donnell drainage 1.0
Pyroclastic-flow Sacobia-Pasig-Abacan drainage 1.6
Pyroclastic-flow Marella drainage 1.3
Pyroclastic-flow Balin-Barquero-Maraunot-Bucao drainage 3.1

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: R. Punongbayan, PHIVOLCS; K. Rodolfo, Pinatubo Lahar Hazards Taskforce, Univ of Illinois; W. Scott, USGS CVO; G. Stephens, NOAA/NESDIS; NEIC; AP; Reuters; UPI.


Poas (Costa Rica) — August 1991 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Crater lake rises, covering fumaroles; low-frequency seismicity

In August, the crater lake grew to cover all crater fumaroles, while fumarolic activity continued at levels considered "normal" for the volcano. The yearly total of recorded microearthquakes (almost all of low frequency) exceeded 32,500 by the end of the month (figure 40), a decrease from 1990.

Figure (see Caption) Figure 40. Monthly number of earthquakes at Poás, January-August 1991. Courtesy of ICE.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: R. Barquero and G. Soto, ICE; M. Fernández, H. Flores, and S. Paniagua, UCR.


Raung (Indonesia) — August 1991 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Dense plumes

The crew of Qantas flight 41 (Sydney-Jakarta) observed a very dense black plume emerging intermittently from a flank vent on 10 September at 1508. The plume was drifting N at ~6 km altitude, well below the aircraft's altitude of nearly 12 km. A voluminous, dense, mostly white plume with small pulses of ash in its center was observed from a commercial flight two days later.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: ICAO; J. Post, SI.


Rincon de la Vieja (Costa Rica) — August 1991 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Explosions eject ash and blocks

After reports of strong sulfur odors, geologists visited the summit area on 28-30 August. A sulfurous odor was noted at Copelares on the S flank (1,400 m elevation), during the evening of 28 August. An explosion was heard at 0151 the next morning, followed several seconds later by the sound of falling material. Examination of 29 August records from a seismic station 6 km SW of the crater (RIN3) showed that a small earthquake occurred at 0148:47, then a larger earthquake sequence lasting 7.5 minutes began at 0151:40, coinciding with the first audible explosion. As the ascent continued later that morning, traces of fresh ash were observed beginning at about 1,500 m elevation. Large quantities of ash and blocks, ranging from 15 to 75 cm in diameter, were found deposited in the summit area. Impact craters reached 120 cm in diameter and 35 cm deep.

Bad weather obscured the view of the crater floor, but several explosions were heard, and the largest, at 0930, rained very wet ash on the scientists. Near the crater, the smell of sulfur was very strong, making breathing difficult and stinging the eyes. Nearby vegetation was partially or completely dead. Rain collected at Copelares had a pH of 4.1.

On 30 August, scientists visited Ríos Azul and Pénjamo, which flow down the N flank from the crater area. Both rivers were gray-white with suspended sediment, which was also visible, but in lower concentrations, in the Ríos Colorado and Blanco on the S and SE flanks.

[On 6 September, strong fumarolic activity (jet engine noise) was seen in the active crater. During explosive events of May-August 1991 the ejecta was mainly composed of gray mud (sulfide-rich), lithics, and bread-crust bombs (~10% by volume).]

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: J. Barquero and E. Fernández, OVSICORI; R. Barquero and G. Soto, ICE; Mario Fernández, Héctor Flores, and Sergio Paniagua, Univ. de Costa Rica.


Ruapehu (New Zealand) — August 1991 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Lake temperature rises; possible minor eruptions

A brief period of strong heating in Crater Lake was accompanied by small volcanic earthquakes and possibly by minor eruptions. Continuously recorded lake temperature data showed a gradual decline to 16°C by mid-June, then little change until a sharp increase began about 1 July. Temperatures reached 24.4°C on the 18th before declining again to 13° by late August. A series of small volcanic earthquakes occurred 5-14 July, none exceeding M 1.8.

Severe winter weather limited observations near the time of the increased activity, although the lake appeared normal on 11 July. When briefly observed on 12 August, evidence of 1-2 m of surging was visible under fresh (about 10 August) snow around the lake margin. More detailed observations during fieldwork 27 and 29 August revealed dirty, ash-covered ice under fresh snow 1-2 m above lake level, and widening of the lake's outlet channel by previous strong outflow or surging. No clear patterns were evident in summit-area deformation data.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake (Te Wai a-moe), is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3,000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: P. Otway, DSIR Wairakei.


Nevado del Ruiz (Colombia) — August 1991 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Seismicity, deformation, and gas emission remain unchanged

Seismicity remained at low levels in August, with earthquakes mainly W and N of the crater at 0-5 km depths. Tremor episodes were brief and of low energy. Deformation showed no significant changes. The monthly average SO2 flux was 1,135 t/d, similar to July.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Santa Maria (Guatemala) — August 1991 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Continued explosions and block lava production

During a brief visit on 11 September, vertical explosions occurred hourly, producing plumes to about 1200 m height. The block lava flow erupting from the E summit of Caliente continued to flow down to the Río Nima II.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: W.I. Rose, Michigan Technological Univ.


Stromboli (Italy) — August 1991 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continued moderate explosive activity; gas data

Explosive activity was restricted to crater C1 (NE part of the summit area; figure 17) during 9 August fieldwork (by F. Iacop, Institute of Earth Sciences, Univ of Udine). C1's central cone ejected hot tephra at ~20-minute intervals, and as a result, it had grown more rapidly than the crater's other two active cones. Glow from two small radial fissures in crater C2 was clearly visible at night. Sustained noisy gas emissions occurred about once an hour. Volcano guides had reported that activity was concentrated in crater C3 (SW part of the summit area), but at its cone 1 only hot vapor emission was occurring, from two vents, on 9 August. Rare explosions, mostly ejecting tephra, took place at bocca 4. The average number of recorded earthquakes remained near the normal value of 6/hour in July, declining below that level in the month's last week (figure 18). Average tremor amplitude also remained relatively constant through the end of July, while large shocks nearly disappeared after a peak on 29 June (figure 19). [see 16:09 for 28-29 August observations].

Figure (see Caption) Figure 17. Active craters at Stromboli as seen from the somma, 6 September 1991. Crosses mark small vents active during the 6 September fieldwork. Courtesy of the Société Volcanologique Européenne.
Figure (see Caption) Figure 18. Average number of explosion events/hour at Stromboli, 22 June-31 July 1991. The mean value for the period is shown. Courtesy of M. Riuscetti.
Figure (see Caption) Figure 19. Number of seismometer-saturating events/day (lower curve) and average daily tremor amplitude (upper curve) at Stromboli, 22 June-31 July 1991. Courtesy of M. Riuscetti.

Moderate activity was observed in early September, with explosive episodes about every 15 minutes at crater C3 and roughly hourly at C1. Activity increased in the 3 hours of observations after 2300 on 6 September, with many moderate to strong explosions from the SW part of C3. Ejections of incandescent bombs and scoria sometimes lasted several minutes. Thick white vapor plumes rose from C2 and a small cone in its center, while blue SO2-rich plumes emerged from several other vents. Explosions from C1 were vigorous, ejecting glowing fragments and dark brown columns that rose 200 m above the crater. C3's smaller explosive bursts, consisting of tephra-poor incandescent gas jets, were usually preceded by comparatively brief periods of increasing, noisy gas puffs; larger explosions that ejected a higher proportion of tephra followed longer intervals, with fewer or no precursory gas puffs. Geologists attributed this pattern to intermittent closure (by cooling) of the lava-filled conduits to gas-bubble rise from the underlying magma body, allowing higher pressure to build at depth.

Airborne COSPEC measurements by an Italian-French cooperative program in May-July indicated a total SO2 flux somewhat lower than that measured by the same means in 1980 and 1984 (1,000 ± 200 t/d average; Allard and others, in press), consistent with the current moderate activity. Geologists concluded that combined with microprobe determination of the initial and residual sulfur content of Stromboli's lava, the SO2 flux data require the degassing of 0.1 km3/year (average) of magma, three orders of magnitude more than the co-erupted volume. Thus, gas output is essentially derived from magma stored within the volcano. To assess the amount of diffuse magmatic degassing through the volcanic pile, other than from the craters, infrared mass spectrometric profiling of CO2 concentrations in the ground began on 11 September. High CO2 levels (80-90%), associated with subsurface thermal anomalies, were found to characterize the Pizzo sopra La Fossa crater terrace (at the summit rim, SE of the active craters). Concentrations gradually decreased toward the rim of this former crater, and no CO2 anomaly was detected in outer areas to the S (down to the Vancori rampart).

Reference. Allard, P., Carbonelle, J., Le Bronec, J., Metrich, N., and Zetwoog, P., Volatile flux and magma degassing budget at Stromboli volcano: Geophysical Research Letters, in review.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: M. Riuscetti, Univ di Udine; Patrick Allard, CNRS-CEA, France; J.C. Baubron, BRGM, France; H. Gaudru and Rolf Haubrichs, SVE, Switzerland; Yvonne Miller, Univ de Genève, Switzerland.


Unzendake (Japan) — August 1991 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Continued lava dome extrusion and pyroclastic flows

Lava extrusion continued at Jigoku-ato crater through mid-September, generating destructive pyroclastic flows that advanced down two valleys. More than 12,000 people remained evacuated and no new casualties were reported.

A summit seismic swarm that began 11 August peaked 12-13 August (figure 29), then gradually declined through the 19th. Incandescent block ejection was seen between 0000 and 0200 on 12 August, followed by continuous ash emission through the day. The number of seismically detected pyroclastic flows from the lava dome decreased suddenly to a few events daily on 12 August. A new lava dome, first recognized from the air on 13 August, emerged W of the former dome, and began to produce pyroclastic flows on 25 August. Pyroclastic flows had previously traveled down the Mizunashi River valley but those from the new dome (C dome; see below) moved ENE down the Oshigatani Valley, which extends N of and parallel to the Mizunashi, then joins it several kilometers downstream. Some of the larger pyroclastic flows from the new dome advanced 3 km down the Oshigatani valley from late August through mid-September, and pyroclastic surges burned vegetation. The mayor of Shimabara city ordered the evacuation of about 500 people from an area (Senbongi) 3.5 km NE of the dome on 31 August. Frequent pyroclastic flows during the afternoon of 3 September included one of about 1 x 105 m3 volume that advanced down the Oshigatani Valley at 1611. The accompanying cloud rose about 1,500 m and ash fell to the N part of Shimabara city. Ashfalls from pyroclastic flow elutriation clouds disrupted traffic around Shimabara city throughout the following day; the cloud from a flow at 1311 was 2,500 m high.

Figure (see Caption) Figure 29. Daily numbers of earthquakes (top), tremor episodes (middle), and pyroclastic-flow events (bottom) recorded at Unzen, 1 May-20 September 1991. Courtesy of JMA.

Another seismic swarm began beneath the crater on 6 September, and a pyroclastic flow that evening at 2121 advanced about 3.5 km down the Oshigatani Valley. Hypocenters and seismic wave characteristics were similar to those of mid-August, although the September swarm was more vigorous.

By 12 September, the lava dome had broken into numerous small blocks. Seismic activity declined through 14 September but increased again on the 15th. Seismometers near the summit began to record larger pyroclastic flows, with longer durations than any since 8 June, on 15 September at 1644 (150 seconds) followed by others at 1759 (120 seconds), 1842 (360 seconds), and the largest at 1854 (670 seconds). The latter moved down the Oshigatani valley, entered the Mizunashi valley, and continued to within 500 m of highway 57, a total of 5.5 km. The main body of the pyroclastic flow turned east into the Mizunashi valley, where it damaged 50 houses in Shimabara city, but the pyroclastic surge continued about 800 m southward, destroying 26 houses and 74 other buildings including those of a primary school (in Onokoba district, Fukae town). All of the affected area had previously been evacuated, so there were no casualties. The largest pyroclastic flow was associated with the collapse of a section of the new lava dome about 250 m wide, 300 m long, and 50 m thick, a volume exceeding 3 x 106 m3. This is about 20% of the total volume of lava domes erupted to date, and 3 times the volume of material removed by the 8 June pyroclastic flow. Two days later, a new lobe had grown to 100 x 200 m and 30 m high (0.3 x 106 m3/day), about twice the June-August extrusion rate (see below).

A total of 292 pyroclastic-flow events was recorded in August, down from 326 in July, but the more frequent episodes toward mid-September raised that month's total to 310 as of the 17th. September earthquake counts had reached 2075 through the 17th, up from 559 in August and 133 in July.

The following, from Setsuya Nakada, describes eruption products through early September.

The size and frequency of pyroclastic flows had decreased until July, and travel distances were almost always <2 km. However, collapse episodes from the E lava dome remained frequent and lava blocks had filled the narrow headwaters of the Mizunashi River, along which the 3 and 8 June pyroclastic flows had descended. As a result, cliffs along the valley disappeared, and valley-fill deposits (talus) became thick enough to act as a cushion to soften the shock of falling blocks. The E dome flowed southeastward on the valley-fill deposits. After the end of June, the horseshoe-shaped depression had filled with dome materials, and lava blocks began to fall northeastward onto the floor of Myoken caldera (figure 30). They filled the E end of the floor with talus, which overflowed the caldera rim at the end of July. Lava blocks then fell down the E and NE flanks as pyroclastic flows and their paths widened northeastward. Some reached the N bank of the Mizunashi River. The E margin of the E dome widened; because the NE slope under the dome was steeper than the SE slope, the northern half of the E dome migrated northeastward, while the southern half did not move and solidified. By the middle of August, the caldera rim NE of the dome had been eroded away by the falling lava blocks.

Figure (see Caption) Figure 30. Sketch map of Unzen's lava dome, 8 September 1991. Courtesy of Setsuya Nakada.

At the beginning of August, the ash-laden plume from the small vent at the northern base of the remnant W dome became stronger, and new lava was extruded on the western part of the E dome. On 5 August, many bubbles were observed coming from an old water-filled crater near the W dome. The small explosions that took place from the W dome on 12 August (see above) enlarged the vent to 20 m across and built a tuff cone around it. The E dome temporarily thickened for a few days prior to the new lava extrusion; the western part of the E dome, just above the former Jigoku-ato Crater, had swelled vertically. By the time new lava appeared 13 August, magma supply into the E dome had stopped, since the E dome did not lengthen and the surface of the dome did not move eastward (figure 31). It was difficult to accurately estimate the change in magma supply rate; talus and pyroclastic flows were deposited over an extensive area with irregular topography, which causes difficulties in calculating volumes of talus plus pyroclastic deposits.

Figure (see Caption) Figure 31. Tracings of photographs from a fixed point about 4.4 km from Unzen's E lava dome, illustrating its growth 10 July-20 August 1991. Courtesy of Setsuya Nakada.

At the end of August, the new dome (central, or C dome) was 375 m long, 275 m wide, and 60-80 m high. The C dome grew eastward and northeastward, keeping a constant thickness. It covered the E dome and talus, plus a part of the old volcanic edifice, which was bulldozed by the growing dome from the former crater wall to the caldera rim. Talus also formed on the E dome. At the end of August, the volume of C dome was about 4 x 106 m3 and the total volume of the domes was about 12 x 106 m3. The resulting dome growth rate is about 0.15 x 106 m3/day for 8 June-28 August.

Lava blocks fell down the E and NE margins of C dome into the Oshigatani Valley, forming pyroclastic flows beginning 25 August. The upstream area of the valley was the source area for lahars on 30 June. The pyroclastic flows traveled a maximum distance of 3 km from the dome, and had associated ash-cloud surge and seared zones like those of 3 and 8 June (figure 32). Flows moving down the Oshigatani Valley changed course southeastward when they encountered a high point dividing the valley and a residential area. Ash-cloud surges climbed the barrier, burning or searing trees, but block-and-ash flows did not. The devastated area was widest for pyroclastic flows that took place within the first week. By mid-September, Oshigatani Valley had been almost filled by pyroclastic-flow deposits.

Figure (see Caption) Figure 32. Map showing the distribution of pyroclastic flows from Unzen as of 9 September 1991. Deposits from lahars, which occurred mainly on 30 June, are omitted. Courtesy of Setsuya Nakada.

Average speeds of pyroclastic flows were estimated using travel distances observed by Ground Self-Defense Force radar and durations of tremor signals. The higher the average speed of a pyroclastic flow, the longer its travel distance: about 100 km/hour for flows reaching 3 km distance and 50 km/hour for flows 1 km long. The average speed of a pyroclastic flow at the end of August was estimated at 93 km/hour using the time lag between the start of the tremor signal and the time when the seismometer was broken by the flow.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA; S. Nakada, Kyushu Univ; M. Takahashi, SI; Yomiuri Shinbun, Tokyo.


Villarrica (Chile) — August 1991 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Weak explosions

An increase in fumarolic activity and weak explosions were observed in the crater during August-September. On 26 August, water in a nearby river (Río Carmelito) was cloudy and the river level abnormally high. Four days later, on 30 August, small ash emissions and continuous explosions were observed from 1430 to 1500, followed by a strong explosion at 1506. A weak emission of gray ash and a white gas plume 1 km high were observed on 17 September. Seismicity was at normal levels for the volcano.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: G. Fuentealba and P. Riffo, Univ de la Frontera.


Whakaari/White Island (New Zealand) — August 1991 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Tephra emission; shock waves in crater

Emission of gas/tephra columns from May 91 vent continued through August. During early-August helicopter overflights, R. Fleming noted flashes and strong low-frequency detonations as a hot, dilute eruption column rose from the vent. Crumbly white lithic blocks and lapilli with rare juvenile scoriae had been deposited nearby. Larger-than-normal plumes were often visible from the North Island coast, roughly 50 km away.

During fieldwork 28-29 August, a convoluting pink-brown column was emitted from May 91 vent. It contained very little ash and no evident incandescent material. Visible shock waves emerged from the vent every few seconds as "flashing arcs," lighting clouds above with a flickering glow like that from a poorly-functioning fluorescent tube. The strongest shock waves were manifested as an instantaneous displacement of the plume at the vent, and could be felt 150 m away. Some could be seen to bounce off the crater walls and travel back through the clouds. The shock waves did not seem to affect the rate of plume emission. The activity was accompanied by dull booming and sloshing noises, and occasional sharp detonations. The sloshing sounds were much like those heard in 1988 at Yasur (Vanuatu), where large gas bubbles were bursting through the surface of an active lava lake. Geologists noted that the activity at May 91 vent was consistent with similar gas-bubble discharge through a liquid magma column.

About 200 mm of coarse and fine ash had been deposited just N of May 91 vent since the previous fieldwork on 27 May. Little new ash was evident elsewhere on the main crater floor, but small (< 0.3 m) lithic blocks and their impact craters were found >200 m SE of the vent and to its W. Scarce, widely scattered scoria bombs, most 0.1-0.2 m across but some reaching 0.3 m, were found on top of the May ash, with only a light ash coating. The bombs seemed most abundant a few hundred meters SE-NE of the vent. They had highly vesiculated interiors of black glass with large pyroxene and plagioclase phenocrysts. Internal vesicles were up to 30 mm across, but decreased rapidly to sub-millimeter size toward the surface.

The pattern of deformation between late May and late August was similar to that of the previous 3 months. Strong subsidence at roughly double the previous rate continued to be centered SE of May 91 vent, while relative inflation persisted ~200 m farther SE. A new zone of inflation was measured E of Noisy Nellie fumarole (NE of May 91 vent). Minor deformation associated with activity at May 91 vent is unlikely to be detected, as the nearest part of the levelling network is 100 m away. Most fumarole temperatures had changed little since May, although values at Noisy Nellie had increased from 240 to 411°C.

The volcano had remained seismically quiet until mid-June, when B-type events became more common, continuing at rates of 2-7/day through the end of the month. Very weak volcanic tremor was sometimes visible on seismic records. A sequence of >45 tectonic earthquakes (to ML 3.7) occurred near White Island 1-2 July. A- and B-type events increased markedly on 7 July, accompanied by a small increase in background volcanic tremor amplitude. E-type eruption earthquakes were recorded on 1, 7, and 11 July. Seismicity had declined by 15 July, but a 3-day swarm of >200 A-type events began on 20 July. Significant volcanic tremor also resumed and continued through mid-August, increasing again 21-28 August. Tremor varied from a nearly pure 1.8 Hz signal to a complex pattern with spectral peaks to 8 Hz. A-type events did not occur daily in August, but often numbered 8-10/day. B-type events were very rare after 24 July. E-type eruption shocks were recorded on 14, 15, 19, 20, 23, 27, 29, and 30 August.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B. Houghton, I. Nairn, and B. Scott, DSIR Geology & Geophysics, Rotorua.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports