Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Pacaya (Guatemala) Lava flows and Strombolian explosions continued during February-July 2019

Colima (Mexico) Renewed volcanism after two years of quiet; explosion on 11 May 2019

Masaya (Nicaragua) Lava lake activity declined during March-July 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions during March-July 2019

Aira (Japan) Explosions with ejecta and ash plumes continue weekly during January-June 2019

Agung (Indonesia) Continued explosions with ash plumes and incandescent ejecta, February-May 2019

Kerinci (Indonesia) Intermittent explosions with ash plumes, February-May 2019

Suwanosejima (Japan) Small ash plumes continued during January through June 2019

Great Sitkin (United States) Small steam explosions in early June 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019



Pacaya (Guatemala) — August 2019 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Lava flows and Strombolian explosions continued during February-July 2019

Pacaya is one of the most active volcanoes in Guatemala, with activity largely consisting of frequent lava flows and Strombolian activity at the Mackenney crater. This report summarizes continued activity during February through July 2019 based on reports by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) and Sistema de la Coordinadora Nacional para la Reducción de Desastres (CONRED), visiting scientists, and satellite data.

At the beginning of February activity included Strombolian explosions ejecting material up to 5 to 30 m above the Mackenney crater and a degassing plume up to 300 m. Multiple lava flows were observed throughout the month on the N, NW, and W flanks, reaching 350 m from the crater and resulting in avalanches from the flow fronts. Strombolian activity continued with sporadic to continuous explosions ejecting material 5-75 m above the Mackenney crater. Degassing produced plumes up to 300 m above the crater, and incandescence from the crater and lava flows were seen at night. Daniel Sturgess of Bristol University observed activity on the 24th, noting a 70-m-long lava flow with individual blocks from the front of the flow rolling down the flanks (figure 108). He reported that mild Strombolian explosions occurred every 10-20 minutes and ejected blocks, up to approximately 4 m in diameter, as high as 5-30 m above the crater and towards the northern flank.

Figure (see Caption) Figure 108. An active lava flow on the NW flank of Pacaya on 24 February 2019 with incandescence visible in lower light conditions. Courtesy of Daniel Sturgess, University of Bristol.

Similar activity continued through March with multiple lava flows reaching a maximum of 200 m N and NW, and avalanches descending from the flow fronts. Ongoing Strombolian explosions expelled material up to 75 m above the Mackenney crater. Degassing produced a white-blue plume to a maximum of 900 m above the crater (figure 109) and incandescence was noted some nights.

Figure (see Caption) Figure 109. A degassing plume at Pacaya reaching 350 m above the crater and dispersing to the S on 19 March 2019. Courtesy of CONRED.

During April lava flows continued on the N and NW flanks, reaching a maximum length of 300 m, with avalanches forming from the flow fronts. Degassing formed plumes up to 600 m above the crater that dispersed with various wind directions. Strombolian activity continued with explosions ejecting material up to 40 m above the crater. On the 2nd and 3rd weak rumbles were heard at distances of 4-5 km. Similar activity continued through May with lava flows reaching 300 m to the N, degassing producing plumes up to 600 m above the crater, and Strombolian explosions ejecting material up to 15 m above the crater.

Lava flows continued out to 300 m in length to the N and NW during June (figures 110 and 111). Strombolian activity ejected material up to 30 m above the crater and degassing resulted in plumes that reached 300 m. During July there were multiple active lava flows that reached a maximum of 300 m in length on the N and NW flanks (figure 112). Avalanches generated by the collapse of material at the front of the lava flows were accompanied by explosions ejecting material up to 30 m above the crater.

Figure (see Caption) Figure 110. An active lava flow on Pacaya on 9 June 2019 with incandescent blocks rolling down the flank from the flow front. Courtesy of Paul Wallace, University of Liverpool.
Figure (see Caption) Figure 111. Activity at Pacaya on 22 June 2019 with a degassing plume dispersed to the W and a 300-m-long lava flow. Photos by Miguel Morales, courtesy of CONRED.
Figure (see Caption) Figure 112. Two lava flows were active to the N and NW at Pacaya on 20 July 2019. Photos courtesy of CONRED.

During February through July multiple lava flows and crater activity were detected in Sentinel-2 satellite thermal images (figures 113 and 114) and relatively constant thermal energy was detected by the MIROVA system with a slight decrease in the energy and frequency of anomalies during June (figure 115). The thermal anomalies detected by the MODVOLC system for each month from February through July spanned 6-30, with six during June and 30 during April.

Figure (see Caption) Figure 113. Sentinel-2 thermal satellite images of Pacaya show lava flows to the N and NW during February through April 2019. There was a reduction in visible activity in early March. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images of Pacaya showing lava flow and hot avalanche activity during June and July 2019. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 115. MIROVA log radiative power plot of MODIS thermal infrared at Pacaya during October 2018 through July 2019. Detected thermal energy is relatively stable with a decrease through June and subsequent increase during July. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Daniel Sturgess, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom (URL: http://www.bristol.ac.uk/earthsciences/); Paul Wallace, Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom (URL: https://www.liverpool.ac.uk/environmental-sciences/staff/paul-wallace/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Colima (Mexico) — August 2019 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Renewed volcanism after two years of quiet; explosion on 11 May 2019

Frequent historical eruptions at Volcán de Colima date back to the 16th century and include explosive activity, lava flows, and large debris avalanches. The most recent eruptive episode began in January 2013 and continued through March 2017. Previous reports have covered activity involving ash plumes with extensive ashfall, lava flows, lahars, and pyroclastic flows (BGVN 41:01 and 42:08). In late April 2019, increased seismicity related to volcanic activity began again. This report covers activity through July 2019. The primary source of information was the Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC).

On 11 May 2019, CUEIV-UdC reported an explosion that was recorded by several monitoring stations. A thermal camera located south of Colima captured thermal anomalies associated with the explosion as well as intermittent degassing, which mainly consisted of water vapor (figure 131). A report from the Unidad Estatal de Protección Civil de Colima (UEPCC), and seismic and infrasound network data from CUEIV-UdC, recorded about 60 high-frequency events, 16 landslides, and 14 low-magnitude explosions occurring on the NE side of the crater during 11-24 May. Drone imagery showed fumarolic activity occurring on the inner wall of this crater on 22 May (figure 132).

Figure (see Caption) Figure 131. Gas emissions from Colima during the 11 May 2019 eruption as seen from the Naranjal station. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 17 mayo 2019 no 121).
Figure (see Caption) Figure 132. A drone photo showing fumarolic activity occurring within the NE wall of the crater at Colima on 22 May 2019. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 24 mayo 2019 no 122).

Small explosions and gas-and-steam emissions continued intermittently through mid-July 2019 concentrated on the NE side of the crater. An overflight on 9 July 2019 revealed that subsidence from the consistent activity slightly increased the diameter of the vent; other areas within the crater also showed evidence of subsidence and some collapsed material on the outer W wall (figure 133). During the weeks of 19 and 26 July 2019, monitoring cameras and seismic data recorded eight lahars.

Figure (see Caption) Figure 133. A drone photo of the crater at Colima on 8 July 2019 shows continuing fumarolic activity and evidence of a collapsed wall on the W exterior side. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 12 julio 2019 no 129).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC), Colima, Col. 28045, Mexico; Centro Universitario de Estudios Vulcanologicos y Facultad de Ciencias de la Universidad de Colima, Avenida Universidad 333, Colima, Col. 28045, Mexico (URL: http://portal.ucol.mx/cueiv/); Unidad Estatal de Protección Civil, Colima, Roberto Esperón No. 1170 Col. de los Trabajadores, C.P. 28020, Mexico (URL: http://www.proteccioncivil.col.gob.mx/).


Masaya (Nicaragua) — August 2019 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake activity declined during March-July 2019

Masaya, in Nicaragua, contains a lava lake found in the Santiago Crater which has remained active since its return in December 2015 (BGVN 41:08). In addition to this lava lake, previous volcanism included explosive eruptions, lava flows, and gas emissions. Activity generally decreased during March-July 2019, including the number and frequency of thermal anomalies, lava lake levels, and gas emissions. The primary source of information for this report comes from the Instituto Nicareguense de Estudios Territoriales (INETER).

On 21 July 2019 a small explosion in the Santiago Crater resulted in some gas emissions and an ash cloud drifting WNW. In addition to the active lava lake (figure 77), monthly reports from INETER noted that thermal activity and gas emissions (figure 78) were decreasing.

Figure (see Caption) Figure 77. Active lava lake visible in the Santiago Crater at Masaya on 27 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).
Figure (see Caption) Figure 78. Gas emissions coming from the Santiago Crater at Masaya on 29 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).

On 15 May and 22 July 2019, INETER scientists used a FLIR SC620 thermal infrared camera to measure temperatures of fumaroles on the Santiago Crater. In May 2019 the temperature of fumaroles had decreased by 48°C since the previous month. Between May and July 2019 fumarole temperatures continued to decline; temperatures ranged from 90° to 136°C (figure 79). Compared to May 2019 these temperatures are 3°C lower. INETER reports that the level of the lava lake has been slowly dropping during this reporting period.

Figure (see Caption) Figure 79. FLIR (forward-looking infrared) and visible images of the Santiago Crater at Masaya showing fumarole temperatures ranging from 90° to 136°C. The scale in the center shows the range of temperatures in the FLIR image. Courtesy of INETER (March 2019 report).

According to MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS satellite instruments, frequent thermal anomalies were recorded from mid-March through early May 2019, with little to no activity from mid-May to July 2019 (figure 80). Sentinel-2 thermal images show high temperatures in the active lava lake on 10 March 2019 (figure 81). Thermal energy detected by the MODVOLC algorithm showed 14 hotspot pixels with the most number of hotspots (7) occurring in March 2019.

Figure (see Caption) Figure 80. Thermal anomalies were relatively constant at Masaya from early September 2018 through early May 2019 and then abruptly decreased until mid-June 2019 as recorded by MIROVA. Courtesy of MIROVA.
Figure (see Caption) Figure 81. Sentinel-2 thermal satellite image showing a detected heat signature from the active lava lake at Masaya on 10 March 2019. The lava lake is visible (bright yellow-orange). Approximate diameter of the crater containing the lava lake is 500 m. Thermal (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Sheila DeForest (URL: https://www.facebook.com/sheila.deforest).


Rincon de la Vieja (Costa Rica) — August 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions during March-July 2019

The acid lake of Rincón de la Vieja's active crater has generated intermittent weak phreatic explosions regularly since 2011, continuing during the past year through at least August 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 4 March and 2 September 2019. Clouds often prevented webcam and satellite views. The current report describes activity from March through July 2019.

OVSICORI-UNA reported that weak events occurred on 19 March at 1851 and on 29 March 2019 at 2043. A two-minute-long phreatic explosion on 1 April at 0802 produced a plume that rose 600 m above the crater rim. Continuous emissions were visible during 3-4 April, rising 200 m above the crater rim. On 3 April, at 1437, a small explosion was detected. An explosion on 10 April at 0617 produced a gas-and-steam plume that rose 1 km above the crater rim and drifted SE. On 12 April at 0643, a plume rose 500 m. Another event took place at 0700 on 13 April, although poor weather conditions prevented visual observations. On 14 April, OVSICORI-UNA noted that aerial photographs showed a milky-gray acid lake at a relatively low water level with convection cells of several tens meters of diameter in the center and eastern parts of the lake.

According to an OVSICORI-UNA bulletin, a small phreatic explosion occurred on 1 May. Another explosion on 11 May at 0720 produced a white gas-and-steam plume that rose 600 m above the crater rim. Phreatic explosions were recorded on 14 May at 1703 and on 17 May at 0357, though dense fog prevented visual confirmation of both events with webcams. On 15 May a local observer noted a diffuse plume of steam and gas, material rising from the crater, and photographed milky-gray deposits on the N part of the crater rim ejected from the event the day before. A major explosion occurred on 24 May.

OVSICORI-UNA recorded a significant phreatic 10-minute-long explosion that began on 11 June at 0343, but plumes were not visible due to weather conditions. No further phreatic events were reported in July.

Seismic activity was very low during the reporting period, and there was no significant deformation. Short tremors were frequent toward the end of April, but were only periodic in May and June; tremor almost disappeared in July. A few long-period earthquakes were recorded, and volcano-tectonic earthquakes were even less frequent.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/).


Aira (Japan) — July 2019 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions with ejecta and ash plumes continue weekly during January-June 2019

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity from January through June 2019; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

From January to June 2019, ash plumes and explosions were usually reported multiple times each week. The quietest month was June with only five eruptive events; the most active was March with 29 (table 21). Ash plumes rose from a few hundred meters to 3,500 m above the summit during the period. Large blocks of incandescent ejecta traveled as far as 1,700 m from the Minamidake crater during explosions in February and April. All the activity originated in the Minamidake crater; the adjacent Showa crater only had a mild thermal anomaly and fumarole throughout the period. Satellite imagery identified thermal anomalies inside the Minamidake crater several times each month.

Table 21. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in Aira caldera, January-June 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Data courtesy of JMA (January to June 2019 monthly reports).

Month Ash emissions (explosive) Max. plume height above crater Max. ejecta distance from crater
Jan 2019 8 (6) 2.1 km 1.1 km
Feb 2019 15 (11) 2.3 km 1.7 km
Mar 2019 29 (12) 3.5 km 1.3 km
Apr 2019 10 (5) 2.2 km 1.7 km
May 2019 15 (9) 2.9 km 1.3 km
Jun 2019 5 (2) 2.2 km 1.3 km

There were eight eruptive events reported by JMA during January 2019 at the Minamidake summit crater of Sakurajima. They occurred on 3, 6, 7, 9, 17, and 19 January (figure 76). Ash plume heights ranged from 600 to 2,100 m above the summit. The largest explosion, on 9 January, generated an ash plume that rose 2,100 m above the summit crater and drifted E. In addition, incandescent ejecta was sent 800-1,100 m from the summit. Incandescence was visible at the summit on most clear nights. During an overflight on 18 January no significant changes were noted at the crater (figure 77). Infrared thermal imaging done on 29 January indicated a weak thermal anomaly in the vicinity of the Showa crater on the SE side of Minamidake crater. The Kagoshima Regional Meteorological Observatory (KRMO) (11 km WSW) recorded ashfall there during four days of the month. Satellite imagery indicated thermal anomalies inside Minamidake on 7 and 27 January (figure 77).

Figure (see Caption) Figure 76. Incandescent ejecta and ash emissions characterized activity from Sakurajima volcano at Aira during January 2019. Left: A webcam image showed incandescent ejecta on the flanks on 9 January 2019, courtesy of JMA (Explanation of volcanic activity in Sakurajima, January 2019). Right: An ash plume rose hundreds of meters above the summit, likely also on 9 January, posted on 10 January 2019, courtesy of Mike Day.
Figure (see Caption) Figure 77. The summit of Sakurajima consists of the larger Minamidake crater and the smaller Showa crater on the E flank. Left: The Minamidake crater at the summit of Sakurajima volcano at Aira on 18 January 2019 seen in an overflight courtesy of JMA (Explanation of volcanic activity in Sakurajima, March 2019). Right: Two areas of thermal anomaly were visible in Sentinel-2 satellite imagery on 27 January 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

Activity increased during February 2019, with 15 eruptive events reported on days 1, 3, 7, 8, 10, 13, 14, 17, 22, 24, and 27. Ash plume heights ranged from 600-2,300 m above the summit, and ejecta was reported 300 to 1,700 m from the crater in various events (figure 78). KRMO reported two days of ashfall during February. Satellite imagery identified thermal anomalies at the crater on 6 and 26 February, and ash plumes on 21 and 26 February (figure 79).

Figure (see Caption) Figure 78. An explosion from Sakurajima at Aira on 7 February 2019 sent ejecta up to 1,700 m from the Minamidake summit crater. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, February 2019).
Figure (see Caption) Figure 79. Thermal anomalies and ash emissions were captured in Sentinel-2 satellite imagery on 6, 21, and 26 February 2019 originating from Sakurajima volcano at Aira. Top: Thermal anomalies within the summit crater were visible underneath steam and ash plumes on 6 and 26 February (closeup of bottom right photo). Bottom: Ash emissions on 21 and 26 February drifted SE from the volcano. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

The number of eruptive events continued to increase during March 2019; there were 29 events reported on numerous days (figures 80 and 81). An explosion on 14 March produced an ash plume that rose 3,500 m above the summit and drifted E. It also produced ejecta that landed 800-1,100 m from the crater. During an overflight on 26 March a fumarole was the only activity in Showa crater. KRMO reported 14 days of ashfall during the month. Satellite imagery identified an ash plume on 13 March and a thermal anomaly on 18 March (figure 82).

Figure (see Caption) Figure 80. A large ash emission from Sakurajima volcano at Aira was photographed by a tourist on the W flank and posted on 1 March 2019. Courtesy of Kratü.
Figure (see Caption) Figure 81. An ash plume from Sakurajima volcano at Aira on 18 March 2019 produced enough ashfall to disrupt the trains in the nearby city of Kagoshima according to the photographer. Image taken from about 20 km away. Courtesy of Tim Board.
Figure (see Caption) Figure 82. An ash plume drifted SE from the summit of Sakurajima volcano at Aira on 13 March (left) and a thermal anomaly was visible inside the Minamidake crater on 18 March 2019 (right). "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

A decline in activity to only ten eruptive events on days 7, 13, 17, 22, and 25 was reported by JMA for April 2019. An explosion on 7 April sent ejecta up to 1,700 m from the crater. Another explosion on 13 April produced an ash plume that rose 2,200 m above the summit. Most of the eruptive events at Sakurajima last for less than 30 minutes; on 22 April two events lasted for almost an hour each producing ash plumes that rose 1,400 m above the summit. Ashfall at KRMO was reported during seven days in April. Two distinct thermal anomalies were visible inside the Minamidake crater on both 12 and 27 April (figure 83).

Figure (see Caption) Figure 83. Two thermal anomalies were present inside Minamidake crater at the summit of Sakurajima volcano at Aira on 12 (left) and 27 (right) April 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

There were 15 eruptive events during May 2019. An event that lasted for two hours on 12 May produced an ash plume that rose 2,900 m from the summit and drifted NE (figure 84). The Meteorological Observatory reported 14 days with ashfall during the month. Two thermal anomalies were present in satellite imagery in the Minamidake crater on both 17 and 22 May.

Figure (see Caption) Figure 84. An ash plume rose 2,900 m above the summit of Sakurajima at Aira on 12 May 2019 (left); incandescent ejecta went 1,300 m from the summit crater on 13 May. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, May 2019).

During June 2019 five eruptive events were reported, on 11, 13, and 24 June; the event on 11 June lasted for almost two hours, sent ash 2,200 m above the summit, and produced ejecta that landed up to 1,100 m from the crater (figure 85). Five days of ashfall were reported by KRMO.

Figure (see Caption) Figure 85. A large ash plume on 11 June 2019 rose 2,200 m above the summit of Sakurajima volcano at Aira. Courtesy of Aone Wakatsuki.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Mike Day, Minnesota, Twitter (URL: https://twitter.com/MikeDaySMM, photo at https://twitter.com/MikeDaySMM/status/1083489400451989505/photo/1); Kratü, Twitter (URL: https://twitter.com/TalesOfKratue, photo at https://twitter.com/TalesOfKratue/status/1101469595414589441/photo/1); Tim Board, Japan, Twitter (URL: https://twitter.com/Hawkworld_, photo at https://twitter.com/Hawkworld_/status/1107789108754038789); Aone Wakatsuke, Twitter (URL: https://twitter.com/AoneWakatsuki, photo at https://twitter.com/AoneWakatsuki/status/1138420031258210305/photo/3).


Agung (Indonesia) — June 2019 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Continued explosions with ash plumes and incandescent ejecta, February-May 2019

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung on Bali remained quiet until a new eruption began in November 2017 (BGVN 43:01). Lava emerged into the summit crater at the end of November and intermittent ash plumes rose as high as 3 km above the summit through the end of the year. Activity continued throughout 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the slow effusion of the lava within the summit crater (BGVN 43:08, 44:02). Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from February through May 2019.

Intermittent but increasingly frequent and intense explosions with ash emissions and incandescent ejecta characterized activity at Agung during February through May 2019. During February, explosions were reported three times; events on seven days in March were documented with ash plumes and ashfall in surrounding villages. Five significant events occurred during April; two involved incandescent ejecta that traveled several kilometers from the summit, and ashfall tens of kilometers from the volcano. Most of the five significant events reported in May involved incandescent ejecta and ashfall in adjacent villages; air traffic was disrupted during the 24 May event. Ash plumes in May reached altitudes over 7 km multiple times. Thermal activity increased steadily during the period, according to both the MIROVA project (figure 44) and MODVOLC thermal alert data. MAGMA Indonesia reported at the end of May 2019 that the volume of lava within the summit crater remained at about 25 million m3; satellite information indicated continued thermal activity within the crater. Alert Level III (of four levels) remained in effect throughout the period with a 4 km exclusion radius around the volcano.

Figure (see Caption) Figure 44. Thermal activity at Agung from 4 September 2018 through May 2019 was variable. The increasing frequency and intensity of thermal events was apparent from February-May. Courtesy of MIROVA.

Steam plumes rose 30-300 m high daily during February 2019. The Agung Volcano Observatory (AVO) and PVMBG issued a VONA on 7 February (UTC) reporting an ash plume, although it was not visible due to meteoric cloud cover. Incandescence, however, was observed at the summit from webcams in both Rendang and Karangasem City (16 km SE). The seismic event associated with the explosion lasted for 97 seconds. A similar event on 13 February was also obscured by clouds but produced a seismic event that lasted for 3 minutes and 40 seconds, and ashfall was reported in the village of Bugbug, about 20 km SE. On 22 February a gray ash plume rose 700 m from the summit during a seismic event that lasted for 6 minutes and 20 seconds (figure 45). The Darwin VAAC reported the plume visible in satellite imagery moving W at 4.3 km altitude. It dissipated after a few hours, but a hotspot remained visible about 10 hours later.

Figure (see Caption) Figure 45. An ash plume rose from the summit of Agung on 22 February 2019, viewed from the Besakih temple, 7 km SW of the summit. Courtesy of PunapiBali.

Persistent steam plumes rose 50-500 m from the summit during March 2019. An explosion on 4 March was recorded for just under three minutes and produced ashfall in Besakih (7 km SW); no ash plume was observed due to fog. A short-lived ash plume rose to 3.7 km altitude and drifted SE on 8 March (UTC) 2019. The seismic event lasted for just under 4 minutes. Ash emissions were reported on 15 and 17 March to 4.3 and 3.7 km altitude, respectively, drifting W (figure 46). Ashfall from the 15 March event spread NNW and was reported in the villages of Kubu (6 km N), Tianyar (14 km NNW), Ban, Kadundung, and Sukadana. MAGMA Indonesia noted that two explosions on the morning of 17 March (local time) produced gray plumes; the first sent a plume to 500 m above the summit drifting E and lasted for about 40 seconds, while the second plume a few hours later rose 600 m above the crater and lasted for 1 minute and 16 seconds. On 18 March an ash plume rose 1 km and drifted W and NW. An event on 20 March was measured only seismically by PVMBG because fog prevented observations. An eruption on 28 March produced an ash plume 2 km high that drifted W and NW. The seismic signal for this event lasted for about two and a half minutes. The Darwin VAAC reported the ash plume at 5.5 km altitude, dissipating quickly to the NW. No ash was visible four hours later, but a thermal anomaly remained at the summit (figure 47). Ashfall was reported in nearby villages.

Figure (see Caption) Figure 46. Ash plumes from Agung on 15 (left) and 17 (right) March 2019 resulted in ashfall in communities 10-20 km from the volcano. Courtesy of PVMBG and MAGMA Indonesia (Information on G. Agung Eruption, 15 March 2019 and Gunung Agung Eruption Press Release March 17, 2019).
Figure (see Caption) Figure 47. A thermal anomaly was visible through thick cloud cover at the summit of Agung on 29 March 2019 less than 24 hours after a gray ash plume was reported 2,000 m above the summit. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

The first explosion of April 2019 occurred on the 3rd (UTC); PVMBG reported the dense gray ash plume 2 km above the summit drifting W. A few hours later the Darwin VAAC raised the altitude to 6.1 km based on infrared temperatures in satellite imagery. The seismic signal lasted for three and a half minutes and the explosion was heard at the PGA Post in Rendang (12 km SW). Incandescent material fell within a radius of 2-3 km, mainly on the S flank (figure 48). Ashfall was reported in the villages of Telungbuana, Badeg, Besakih, Pempatan, Teges, and Puregai on the W and S flanks (figure 49). An explosion on 11 April also produced a dense gray ash plume that rose 2 km above the summit and drifted W. A hotspot remained about six hours later after the ash dissipated.

Figure (see Caption) Figure 48. Incandescent ejecta appeared on the flanks of Agung after an eruption on 4 April 2019 (local time) as viewed from the observation post in Rendang (8 km SW). Courtesy of Jamie Sincioco.
Figure (see Caption) Figure 49. Ashfall in a nearby town dusted mustard plants on 4 April 2019 from an explosion at Agung the previous day. Courtesy of Pantau.com (Photo: Antara / Nyoman Hendra).

PVMBG reported an eruption visible in the webcam early on 21 April (local time) that rose to 5.5 km altitude and drifted SW. The ash spread W and S and ash fell around Besakih (7 km SW), Rendang (8 km SW), Klungkung (25 km S), Gianyar (20 km WSW), Bangli (17 km WNW), Tabanan (50 km WSW), and at the Ngurah Rai-Denpasar Airport (60 km SW). About 15 hours later a new explosion produced a dense gray ash plume that rose to 3 km above the summit and produced incandescent ejecta in all directions as far as 3 km away (figure 50). The ash spread to the S and ashfall was reported in Besakih, Rendang, Sebudi (6 km SW), and Selat (12 km SSW). Both of the explosions were heard in Rendang and Batulompeh. The incandescent ejecta from the explosions remained within the 4-km exclusion zone. A satellite image on 23 April showed multiple thermal anomalies within the summit crater (figure 51). A dense gray plume drifted E from Agung on 29 April (30 April local time) at 4.6 km altitude. It was initially reported by ground observers, but was also visible in multispectral satellite imagery for about six hours before dissipating.

Figure (see Caption) Figure 50. An explosion at Agung on 21 April 2019 sent incandescent eject 3,000 m from the summit. Courtesy of MAGMA Indonesia (Gunung Agung Eruption Press Release April 21, 2019).
Figure (see Caption) Figure 51. Multiple thermal anomalies were still present within the summit crater of Agung on 23 April 2019 after two substantial explosions produced ash and incandescent ejecta around the summit two days earlier. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG reported an eruption on 3 May 2019 that was recorded on a seismogram with a signal that lasted for about a minute. Satellite imagery reported by the Darwin VAAC showed a growing hotspot and possible ash near the summit at 4.3 km altitude moving NE. A few days later, on 6 May, a gray ash plume rose to 5.2 km altitude and drifted slowly W before dissipating; it was accompanied by a seismic signal that lasted for about two minutes. Explosions on 12 and 18 May produced significant amounts of incandescent ejecta (figure 52). The seismic signal for the 12 May event lasted for about two minutes; no plume was observed due to fog, but incandescent ejecta was visible on the flanks and the explosion was heard at Rendang. The Darwin VAAC reported an ash plume from the explosion on 17 May (18 May local time) at 6.1 km altitude in satellite imagery moving E. They revised the altitude a short while later to 7.6 km based on IR temperature and movement; the plume drifted N, NE, and E in light and variable winds. A few hours after that it was moving NE at 7.6 km altitude and SE at 5.5 km altitude; this lasted for about 12 hours until it dissipated. Ashfall was reported in villages downwind including Cutcut, Tongtongan, Bonyoh (20 km WNW), and Temakung.

Figure (see Caption) Figure 52. Explosions on 12 (left) and 18 (right) May (local time) 2019 produced substantial ejecta on the flanks of Agung visible from a distance of 10 km or more in PVMBG webcams. The ash plume from the 18 May event resulted in ashfall in numerous communities downwind. Courtesy of PVMBG (Information Eruption G. Agung, May 13, 2019, Information Eruption G. Agung, May 18, 2019).

The initial explosion on 18 May was captured by a webcam at a nearby resort and sent incandescent ejecta hundreds of meters down the NE flank within 20 seconds (figure 53). Satellite imagery on 3, 8, 13, and 18 May indicated multiple thermal anomalies growing stronger at the summit. All of the images were captured within 24 hours of an explosive event reported by PVMBG (figure 54).

Figure (see Caption) Figure 53. The 18 May 2019 explosion at Agung produced an ash plume that rose to over 7 km altitude and large bombs of incandescent material that traveled hundreds of meters down the NE flank within the first 20 seconds of the explosion. Images taken from a private webcam located 12 km NE. Courtesy of Volcanoverse, used with permission.
Figure (see Caption) Figure 54. Satellite images from 3, 8, 13, and 18 May 2019 at Agung showed persistent and increasing thermal anomalies within the summit crater. All images were captured within 24 hours of explosions reported by PVMBG. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG issued a VONA on 24 May 2019 reporting a new ash emission. They indicated that incandescent fragments were ejected 2.5-3 km in all directions from the summit, and the seismic signal lasted for four and a half minutes (figure 55). A dense gray ash plume was observed from Tulamben on the NE flank rising 2 km above the summit. Satellite imagery indicated that the plume drifted SW and ashfall was reported in the villages of Besakih, Pempatan, Menanga, Sebudi, Muncan, Amerta Bhuana, Nongan, Rendang, and at the Ngurah Rai Airport in Denpassar. Additionally, ashfall was reported in the districts of Tembuku, Bangli, and Susut (20 km SW). The Darwin VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude along with a thermal anomaly and incandescent lava visible in webcam imagery. The remains of the ash plume were about 170 km S of the airport in Denpasar (60 km SW) and had nearly dissipated 18 hours after the event. According to a news article several flights to and from Australia were cancelled or diverted, though the International Gusti Ngurah Rai (IGNR) airport was not closed. On 31 May another large explosion produced the largest ash plume of the report period, rising more than 2 km above the summit (figure 56). The Darwin VAAC reported its altitude as 8.2 km drifting ESE visible in satellite data. It split into two plumes, one drifted E at 8.2 km and the other ESE at 6.1 km altitude, dissipating after about 20 hours.

Figure (see Caption) Figure 55. A large explosion at Agung on 24 May 2019 produced incandescent ejecta that covered all the flanks and dispersed ash to many communities to the SW. Courtesy of PVMBG (Gunung Agung Eruption Press Release 24 May 2019 20:38 WIB, Kasbani, Ir., M.Sc.).
Figure (see Caption) Figure 56. An explosion at Agung on 31 May 2019 sent an ash plume to 8.2 km altitude, the highest for the report period. Courtesy of Sutopo Purwo Nugroho, BNPB.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); The Jakarta Post, Mount Agung eruption disrupts Australian flights, (URL: https://www.thejakartapost.com/news/2019/05/25/mount-agung-eruption-disrupts-australian-flights.html); PunapiBali (URL: http://punapibali.com/, Twitter: https://twitter.com/punapibali, image at https://twitter.com/punapibali/status/1098869352588288000/photo/1); Jamie S. Sincioco, Phillipines (URL: Twitter: https://twitter.com/jaimessincioco. Image at https://twitter.com/jaimessincioco/status/1113765842557104130/photo/1); Pantau.com (URL: https://www.pantau.com/berita/erupsi-gunung-agung-sebagian-wilayah-bali-terpapar-hujan-abu?utm_source=dlvr.it&utm_medium=twitter); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ).


Kerinci (Indonesia) — June 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent explosions with ash plumes, February-May 2019

Frequently active, Indonesia's Mount Kerinci on Sumatra has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Intermittent explosions with ash plumes, usually multiple times per month, have characterized activity since April 2018. Similar activity continued during February-May 2019, the period covered in this report with information provided primarily by the Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, notices from the Darwin Volcano Ash Advisory Center (Darwin VAAC), and satellite data. PVMBG has maintained an Alert Level II (of 4) at Kerinci for several years.

On 13 February 2019 the Kerinci Volcano Observatory (KVO), part of PVMBG, noted a brownish-white ash emission that was drifting NE about 400 m above the summit. The seismicity during the event was dominated by continuous volcanic tremor. A brown ash emission was reported on 7 March 2019 that rose to 3.9 km altitude and drifted NE. Ash also drifted 1,300 m down the SE flank. Another ash plume the next morning drifted W at 4.5 km altitude, according to KVO. On 10, 11, and 13 March KVO reported brown ash plumes drifting NE from the summit at about 4.0-4.3 km altitude. The Darwin VAAC observed continuous ash emissions in satellite imagery on 15 March drifting W at 4.3 m altitude that dissipated after about 3 hours (figure 10). A gray ash emission was reported on 19 March about 600 m above the summit drifting NE; local news media noted that residents of Kayo Aro reported emissions on both 18 and 19 March (figure 11). An ash emission appeared in satellite imagery on 25 March (figure 10). On 30 March the observatory reported two ash plumes; a brown emission at 0351 UTC and a gray emission at 0746 UTC that both drifted NE at about 4.4 km altitude and dissipated within a few hours. PVMBG reported another gray ash plume the following day at a similar altitude.

Figure (see Caption) Figure 10. Sentinel-2 satellite imagery of Kerinci from 15 (left) and 25 (right) March 2019 showed evidence of ash plumes rising from the summit. Kerinci's summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Dense ash plumes from Kerinci were reported by local news media on 18 and 19 March 2019. Courtesy of Nusana Jambi.

Activity continued during April with a brown ash emission reported on 3 April by several different agencies; the Darwin VAAC and PVMBG daily reports noted that the plume was about 500 m above the summit (4.3 km altitude) drifting NE. KVO observed two brown ash emissions on 13 April (UTC) that rose to 4.2 km altitude and drifted NE. Satellite imagery showed minor ash emissions from the summit on 14 April; steam plumes 100-500 m above the summit characterized activity for the remainder of April (figure 12).

Figure (see Caption) Figure 12. A dilute ash emission rose from the summit of Kerinci on 14 April 2019 (left); only steam emissions were present on a clear 29 April in Sentinel-2 imagery (right). "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.

Ashfall on the NE and S flanks within 7 km of the volcano was reported on 2 May 2019. According to a news article, at least five villages were affected late on 2 May, including Tanjung Bungo, Sangir, Sangir Tengah, Sungai Rumpun, and Bendung Air (figures 13 and 14). The smell of sulfur was apparent in the villages. Brown ash emissions were observed on 3 and 4 May that rose to 4.6 and 4.1 km altitude and drifted SE. The Darwin VAAC reported an emission on 5 May, based on a pilot report, that rose to 6.7 km altitude and drifted NE for about an hour before dissipating. A brown ash emission on 10 May rose 700 m above the summit and drifted SE. Satellite imagery captured ash emissions from the summit on 14 and 24 May (figure 15). For the remainder of the month, 300-700-m-high dense steam plumes were noted daily until PVMBG reported white and brown plumes on 26 and 27 May rising 500-1,000 m above the summit. Although thermal anomalies were not reported during the period, persistent weak SO2 emissions were identified in TROPOMI instrument satellite data multiple times per month (figure 16).

Figure (see Caption) Figure 13. Ashfall was reported from five villages on the flanks of Kerinci on 2 May 2019. Courtesy of Uzone.
Figure (see Caption) Figure 14. An ash plume at Kerinci rose hundreds of meters on 2 May 2019; ashfall was reported in several nearby villages. Courtesy of Kerinci Time.
Figure (see Caption) Figure 15. Ash emissions from Kerinci were captured in Sentinel-2 satellite imagery on 14 (left) and 24 (right) May 2019. The summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. Weak SO2 anomalies from Kerinci emissions were captured by the TROPOMI instrument on the Sentinel-5P satellite multiple times each month from February to May 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nuansa Jambi, Informasi Utama Jambi: (URL: https://nuansajambi.com/2019/03/20/gunung-kerinci-semburkan-asap-tebal/); Kerinci Time (URL: https://kerincitime.co.id/gunung-kerinci-semburkan-abu-vulkanik.html); Uzone.id (URL: https://news.uzone.id/gunung-kerinci-erupsi-5-desa-tertutup-abu-tebal).


Suwanosejima (Japan) — July 2019 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Small ash plumes continued during January through June 2019

Suwanosejima is an active volcanic island south of Japan in the Ryuku islands with recent activity centered at Otake crater. The current eruption began in October 2004 and activity has mostly consisted of small ash plumes, ballistic ejecta, and visible incandescence at night. This report summarizes activity during January through June 2019 and is based on reports by the Japan Meteorological Agency (JMA), and various satellite data.

Thermal activity recorded by the MIROVA system was low through January and February after a decline in November (figure 36), shown in Sentined-2 thermal infrared imagery as originating at a vent in the Otake crater (figure 37). During January an explosive event was observed at 1727 on the 3rd, producing a gray plume that rose 600 m above the crater. A white gas-and-steam plume rose to 1.5 km above the crater and nighttime incandescence was observed throughout the month. Reduced activity continued through February with no reported explosive eruptions and light gray plumes up to 900 m above the crater. Incandescence continued to be recorded at night using a sensitive surveillance camera.

Figure (see Caption) Figure 36. MIROVA log radiative power plot of MODIS thermal infrared data at Suwanosejima during September 2018 through June 2019. There was reduced activity in 2019 with periods of more frequent anomalies during March and June. Courtesy of MIROVA.
Figure (see Caption) Figure 37. A Sentinel-2 thermal satellite image shows Suwanosejima with the active Otake crater in the center with elevated temperatures shown as bright orange/yellow. There is a light area next to the vent that may be a gas plume. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

There was an increase in thermal energy detected by the MIROVA system in mid-March and there was a MODVOLC thermal alert on the 15th. Occasional small explosions occurred but no larger explosive events were recorded. A white plume was noted on the 27th rising to 900 m above the crater and an event at 1048 on the 30th produced a light-gray plume that rose to 800 m. Incandescence was only observed using a sensitive camera at night (figure 38).

Figure (see Caption) Figure 38. Incandescence from the Suwanosejima Otake crater reflecting in clouds above the volcano. Courtesy of JMA (Volcanic activity of Suwanosejima March 2019).

No explosive events were observed through April. A white gas-and-steam plume rose to 1,200 m above the crater on the 19th and incandescence continued intermittently. Minor explosions were recorded on 5, 30, and 31 May, but no larger explosive events were observed during the month. The event on the 30th produced ash plume that reached 1.1 km above the crater. Similar activity continued through June with one explosive event occurring on the 2nd. Overall, there was a reduction in the number of ash plumes erupted during this period compared to previous months (figure 39).

Figure (see Caption) Figure 39. Observed activity at Suwanosejima for the year ending in July 2019. The black vertical bars represent steam, gas, or ash plume heights (scale in meters on the left axis), yellow diamonds represent incandescence observed in webcams, gray volcano symbols along the top are explosions accompanied by ash plumes, red volcano symbols represent large explosions with ash plumes. Courtesy of JMA (Volcanic activity of Suwanosejima June 2019).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Great Sitkin (United States) — July 2019 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small steam explosions in early June 2019

The Great Sitkin volcano is located about 40 km NE of Adak Island in the Aleutian Islands and has had a few short-lived eruptions over the past 100 years. Prior to the latest activity in early June 2019 described below, small phreatic explosions occurred in June and August 2018 (BGVN 43:09). An eruption in 1974 produced a lava dome in the center of the crater. The Alaska Volcano Observatory (AVO) is the primary source of information for this September 2018-June 2019 reporting period.

Low-level unrest occurred from September 2018 through February 2019 with slightly elevated seismic activity (figure 6). Small explosions were seismically detected by AVO on 30 October, 5 and 16 November, and 11 December 2018, but they were not seen in regional infrasound data and satellite data did not show an ash cloud.

On 1, 7, and 9 June 2019, AVO reported small steam explosions as well as slightly elevated seismic activity. Steam plumes and surficial evidence of an explosion were not observed during these events. On 18 June 2019 weakly elevated surface temperatures were recorded, field crews working on Adak observed some steam emissions, and a gas flight was conducted. Elevated concentrations of carbon dioxide detected above the lava dome were likely associated with the steam explosions earlier in the month (figures 7 and 8). From 23 June through the end of the month seismicity began to decline back to background levels.

Figure (see Caption) Figure 6. A steam plume was seen at the summit of Great Sitkin on 7 December 2018. Photo by Andy Lewis and Bob Boyd; courtesy of AVO/USGS.
Figure (see Caption) Figure 7. Some degassing was observed on the southern flank of the Great Sitkin during an overflight on 18 June 2019. Photo by Laura Clor; image courtesy of AVO/USGS.
Figure (see Caption) Figure 8. View of Great Sitkin with white plumes rising from the summit on 20 June 2019. Photo by Laura Clor, courtesy of AVO/USGS.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 16, Number 10 (October 1991)

Managing Editor: Lindsay McClelland

Aira (Japan)

Fewer explosions

Arenal (Costa Rica)

Block lava continues to advance; Strombolian explosions

Barren Island (India)

Eruption likely started by early April; activity apparently declines after cone collapse

Colima (Mexico)

Landslides and thermal activity

Etna (Italy)

Minor Strombolian activity from several summit-area vents; little deformation

Fukutoku-Oka-no-Ba (Japan)

Discolored water

Galeras (Colombia)

New lava dome in summit crater; strong SO2 emission

Hudson, Cerro (Chile)

Eruption impact on livestock described

Irazu (Costa Rica)

Fumarole temperatures and seismicity decline

Kikai (Japan)

Continued thermal activity; plume from new crater

Kilauea (United States)

New east rift fissure vents

Kozushima (Japan)

Earthquake swarm N of island

Langila (Papua New Guinea)

Explosive activity from two craters; small pyroclastic flows

Lascar (Chile)

Renewed explosive activity

Lokon-Empung (Indonesia)

Vigorous explosions; 10,000 evacuated

Marchena (Ecuador)

Flow front advances into sea with no explosive venting

Nyamuragira (DR Congo)

Earthquake swarm, then fissure eruption feeds lava flows

Pinatubo (Philippines)

Continued secondary explosions and mudflows; seismicity declines; fieldwork in new caldera

Poas (Costa Rica)

Continued fumarolic activity; lake level drops

Raung (Indonesia)

Continued ash emission

Ruiz, Nevado del (Colombia)

Continued weak seismicity and SO2 emission

Stromboli (Italy)

More frequent explosions; new zone of fumaroles

Suwanosejima (Japan)

Ash ejection

Ulawun (Papua New Guinea)

Seismicity declines without eruption

Unzendake (Japan)

Continued lava dome growth and pyroclastic flows

White Island (New Zealand)

Tephra from new vent



Aira (Japan) — October 1991 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Fewer explosions

The 32 recorded explosions . . . in October . . . caused no damage. The month's highest ash cloud rose 4 km above the crater. Ash deposition [at KLMO] was 93 g/m2 . . . . Swarms of volcanic earthquakes were recorded on 2, 4, 10, and 18 October. Explosions became less frequent in November, with only three as of the 17th . . . .

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — October 1991 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Block lava continues to advance; Strombolian explosions

Lava effusion continued through October. Two blocky flows were observed descending the WNW and SSW flanks in September, and continued to spall blocks from the advancing fronts in October. September fieldwork revealed that only blocks from the SSW-flank flow that was active in May and June reached the forest edge, and that the flow itself did not enter the forest. This flow was still hot in September and emitted vapor from its surface. Rapid erosion continued in flank ravines, carrying sediment downstream, where 14 cm of material has been deposited in Laguna Cedeño (2.5 km N) during the last 9 months.

Strombolian and fumarolic activity continued in Crater C, although explosions weakened at the end of September. During observations on 23-25 October, explosions were separated by 25-100 minutes. The daily number of earthquakes recorded by the ICE network was relatively low in September, averaging 10 (maximum 18), increasing to an average of 20 (maximum 55) in October. Significant tremor episodes occurred on 18-20 September, and 6, 12, and 26-29 October.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: R. Barquero and G. Soto, ICE.


Barren Island (India) — October 1991 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Eruption likely started by early April; activity apparently declines after cone collapse

SANE provided additional information . . . from passing ships and aircraft, and occasional visits. The eruption's start date remained uncertain, but the first reported activity consisted of gusts of hot air from the N end of the crater on 28 March, and "smoke" observed from a Coast Guard aircraft on 6 April. By 1 May, intensified activity and bigger plumes were seen from ships, and pilots observed numerous dead fish near the island on 9 May. When a GSI team reached Barren Island on 16 May, lava had covered an 800 x 200 m area, and by their next visit on 26 June (16:5 & 8) lava had reached the sea. Continued lava production was reported through July, and accompanying pulsating columns of incandescent tephra were ejected to roughly 60 m height twice in five minutes during observations from Navy aircraft on 30 July. Little information was available on August and September activity.

The eruption was continuing on 24 October, but the 1991 cone collapsed shortly thereafter and only small amounts of "smoke" were intermittently observed during the first week in November.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: S. Acharya, SANE; D. Shackelford, Fullerton, CA.


Colima (Mexico) — October 1991 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Landslides and thermal activity

The rainy season limited summit observations in August and September, often cloaking the volcano in clouds, and severely damaging the unpaved access road. By October, however, aerial reconnaissance and distant ground observations indicated changes to summit morphology. Some landslides had apparently occurred along the 1975 flow levees on the main cone's SE flank, and weak steam clouds rose from points along the 1975 lava. The SSW flank was occupied by the March-April 1991 lava flow, which stopped after descending to 2,600 m altitude. The flow is about 100-125 m wide and reaches a maximum thickness of 25 m, with a central depression about 10 m deep. [Deposits produced after the partial collapse of the summit lava dome on 16 April were eroded during the rainy season, leaving new ravines 5-15 m deep. See follow-up report in BGVN 17:06.]

Fumarolic activity has been irregular, appearing strong on some days, weaker on others. Fumaroles were concentrated in the area of the 1991 lava flow outlet and on the NE part of the summit dome. Weak fumaroles were also visible on zones of expansion on the main dome.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: J. Flores, J. Hernández, R. Saucedo, A. Cortés, C. Valencia, and R. García, CICT, Universidad de Colima; Z. Jiménez, Instituto de Geofísica, UNAM.


Etna (Italy) — October 1991 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Minor Strombolian activity from several summit-area vents; little deformation

An 8-19 October resurvey of a 46-line EDM network on the upper S flank showed little movement since July, with maximum line-length changes of ~0.0015%. Activity at the summit craters was more energetic than in July but had the same general characteristics. Continued Strombolian activity in the NE sector of Southeast Crater periodically increased in strength, with large incandescent blebs of lava rising tens of meters above the crater rim. The open vent in Northeast Crater was degassing strongly and incandescent at night, while the two vents on the floor of Bocca Nuova had mild to strong Strombolian activity. E of Bocca Nuova, a single vent on the floor of La Voragine displayed weak Strombolian activity and daylight incandescence.

Further Reference. McGuire, W., Murray, J., Pullen, A., and Saunders, S., 1991, Ground deformation monitoring at Mt. Etna: evidence for dyke emplacement and slope instability: Journal of the Geological Society, London, v. 148, p. 577-583.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: S. Saunders, West London Institute; W. McGuire, Cheltenham and Gloucester College of Higher Education.


Fukutoku-Oka-no-Ba (Japan) — October 1991 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Discolored water

An 18 October overflight by the JMSA revealed discolored green water over the submarine volcano.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: JMA.


Galeras (Colombia) — October 1991 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


New lava dome in summit crater; strong SO2 emission

The summit crater lava dome continued to grow through the second week of November, and was ~50 m thick by 23 October (figure 46). The surface of the dome was covered by angular blocks, some >4 m in diameter, most notable on the dome's E and SE edges. The central portion of the dome was covered by smaller fragments. The dome was first observed during an overflight on 9 October, but the start of dome growth may have been 3-4 October when high levels of sustained tremor (episodes of ~2 Hz lasting to 30 minutes) were recorded.

Figure (see Caption) Figure 46. Sketch of the crater area of Galeras, showing dome and fumarole locations on 23 October 1991. Courtesy of INGEOMINAS.

Gas and ash emissions occurred from different points on the dome surface, occasionally ejecting blocks to short distances. Surface activity closely corresponded with tremor and long-period seismic events that were recorded about 10-15 times/hour. Seismic energy release and the number of earthquakes continued to increase in October (see figure 52), again establishing new monthly highs at Galeras.

Electronic tiltmeters showed continued deformation during October, with 234 µrad of accumulated inflation at 190° azimuth measured [at Crater Station]; (figure 47), and 41 µrad at 292° azimuth measured [at Peladitos Station]. Slight inflation was also measured 2.3 km E of the crater (at "Piedras"). A decrease in the rate of inflation at Crater Station occurred on 9 October.

Figure (see Caption) Figure 47. Tangential (top curve) and radial (bottom curve) deformation measured 0.9 km E of the crater (by the "Crater" electronic tiltmeter) at Galeras, October 1991. Courtesy of INGEOMINAS.

The daily average SO2 flux varied widely from ~100 t/d (23 October) to ~1,700 t/d (28 October; figure 48), reaching higher values than in August or September (maxima of 370 and 1,045 t/d respectively). Airborne COSPEC measurements on 12 November indicated SO2 fluxes of up to 2,500 t/d.

Figure (see Caption) Figure 48. Daily average SO2 flux at Galeras, October 1991. No measurements were made on days without data. Courtesy of INGEOMINAS.

Reference. Calvache, M.L., 1990, Geology and volcanology of the recent evolution of Galeras volcano, Colombia: M.S. Thesis, Louisiana State University, Baton Rouge, LA, 172 p.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP; S. Williams and M. Calvache, Arizona State Univ.


Cerro Hudson (Chile) — October 1991 Citation iconCite this Report

Cerro Hudson

Chile

45.9°S, 72.97°W; summit elev. 1905 m

All times are local (unless otherwise noted)


Eruption impact on livestock described

The following report about the effects of ash from Hudson's 12-15 August eruption on livestock is from the U.S. Centers for Disease Control.

"Large numbers of livestock deaths were reported in Santa Cruz province, Argentina, in the weeks immediately following the initial eruptions of Hudson. In response to reports that large numbers of sheep deaths were due to high fluoride levels from ash, an investigation was conducted by U.S. Centers for Disease Control personnel in cooperation with the Office of Foreign Disaster Assistance.

"Analysis of sheep urine and ash samples collected between 17 and 22 September revealed low levels of fluoride. Mean fluoride urine levels of 5.7 mg/L fall within the normal range for ruminants. Preliminary fluoride analyses on ash samples collected at different distances from Hudson were performed both before and after rainfall. Ion chromatography using acetic acid extraction revealed fluoride levels ranging from nondetectable to 14 ppm in the samples collected 17-20 September. Although this ash analysis is preliminary, the results indicate that fluoride levels in these samples are well below toxic concentrations. The maximally tolerable range for fluoride concentrations in ruminant feed is between 40 and 50 ppm.

"These results, in combination with clinical impressions, lead to the conclusion that a great many of the sheep deaths are possibly due to a complex set of environmental, topographical, and husbandry conditions that were exacerbated by the presence of large amounts of volcanic ash. The sheep in Santa Cruz had just survived a particularly harsh winter and were going into the spring lambing season feeding on overgrazed land that had undergone a period of prolonged drought. Pregnant ewes are typically very susceptible to toxemia late in gestation and the unavailability of food and water due to ashcover for even a short period of time is sufficient to trigger this often fatal condition. Clinical observations of sheep deaths in the area of volcano ashfall are consistent with death due to complications of pregnancy, greatly exacerbated by the physical presence of ash. Pregnancy toxemia is a condition with a very poor prognosis and no easy and certain treatment."

Geologic Background. The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. It is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive volcano covers an area of 300 km2. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur N of the volcano and others occupy the SW and SE flanks. This volcano has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 km3 of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW portion of the caldera.

Information Contacts: C. Rubin and E. Noji, Centers for Disease Control, Atlanta.


Irazu (Costa Rica) — October 1991 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Fumarole temperatures and seismicity decline

Fumarolic activity continued within the crater through October, with no significant changes, although there was an apparent slight temperature decrease from 90.0-91.6°C in September, to 83.8-90.4°C in October. The hottest and most vigorous fumarole was located in an alluvial fan on the crater's N side. Crater lake level increased in September, and stabilized through October at a maximum depth of 14 m. Small fluctuations were noted, corresponding with rainfall. Seismicity continued to decline in September, reaching very low levels in October.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: R. Barquero and G. Soto, ICE.


Kikai (Japan) — October 1991 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Continued thermal activity; plume from new crater

"Geologists visited Satsuma-Iwo-jima 7-10 November. Several large fumarole fields exist within and around the 300-m-diameter crater. Accessible fumaroles had temperatures ranging from 100 to > 800°C. Several types of sampling were conducted to geochemically characterize the emissions. GSJ geologists had used a COSPEC to measure a maximum SO2 flux of 500 t/d in May 1990, similar to . . . 15 years previously. In addition to geochemical samples, a portable spectrometer was used to collect spectra of various features to provide ground truth for satellite images of the region. The major summit geomorphological change since last year's visit by GSJ geologists was the formation of a 15 x 30 m pit crater in the SE corner of the main summit crater. Local silica-mine workers first noticed the new pit crater in June or July 1991. A large plume was continuously emitted from the pit crater."

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. Kikai was the source of one of the world's largest Holocene eruptions about 6300 years ago. Rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred in the 20th century at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km east of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: R. Andres, Michigan Technological Univ; H. Shinohara, R. Symonds, and B. Ritchie, GSJ.


Kilauea (United States) — October 1991 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


New east rift fissure vents

New fissure vents opened on 8 November between the East rift zone's two active vents (Kupaianaha and Pu`u `O`o), feeding aa flows that advanced into the remnants of Royal Gardens subdivision (figure 81). Lava from Kupaianaha vent continued to emerge from tubes on the W side of the flow field, but the lava pond in Pu`u `O`o drained rapidly and was no longer visible by 11 November.

Figure (see Caption) Figure 81. Lava produced by Kilauea's East Rift eruption, 1983-91 (stippled). The area of October surface lava flow activity from Kupaianaha vent is indicated by a diagonal pattern. Arrows indicate flow in tubes. Crosses mark the discontinuous fissure vents that opened between Pu`u `O`o and Kupaianaha on 8 November. Lava extruded by the new fissures as of mid-November is black. Courtesy of HVO.

October activity. Lava from Kupaianaha vent moved downslope through tubes and emerged onto the W side of the flow field through October, feeding surface flows between ~400 m (1,300 ft) altitude and the coastal plain (figure 81). Lava that broke out of the main (Wahaula) tube at ~270 m (900 ft) destroyed one of the remaining houses in Royal Gardens subdivision on 27 October. Breakouts behind the flow front destroyed a nearby house 4 days later. The two destroyed houses, and two others that remained intact nearby, had been isolated by 1990 flows. Three houses in Royal Gardens remained inhabited at the end of October, one within 1 km of recent flows. In the past few months, flows in this area have extended the margin of the lava field ~700 m to the W, but have been blocked from reaching the ocean by 1989 lava.

Kupaianaha vent's lava pond remained frozen during October. During an 11 October overflight, two small skylights were seen next to the former pond: one in large cracks on the faulted, uprift side of the pond, and the other (emitting heavy fume) in the crater wall on the pond's SE side. The lava pond in Pu`u `O`o crater fluctuated between 1 and 10 m below the crater floor, 36 m below the 1986 spillway. The vigorous degassing episodes noted in previous months were not as common in October. Fieldwork on 25 October revealed a large pile of spatter in the former spillway, and tephra that included Pele's tears and reticulite were found along the downrift side of the crater rim (figure 82).

Figure (see Caption) Figure 82. Pu`u `O`o's crater floor, 25 October 1991. Tephra deposits in and around the 1986 spillway are shown. Periodic overflows of the active pond have coated much of the crater floor. Sketch by Mauro Coltelli; courtesy of HVO.

Fissure eruption beginning 8 November. Seismic activity preceding the fissure eruption began with a short burst of shallow summit tremor on 8 November at about 0200, followed by small earthquakes that became frequent beneath the summit and upper East rift zone. The summit began to deflate at about 0430 as magma moved into the upper east rift. The fissures opened from W to E starting before 0445, with the easternmost fissures opening about 0500. Glow was reported just downrift from Pu`u `O`o at 0450. A plume of dust rose roughly 400 m above Pu`u `O`o at about 0715, as the crater floor collapsed. Helicopter pilots reported that at 0745 the pond at Pu`u `O`o had drained and a fissure eruption was underway, initially from a discontinuous series of fissures ~1.5 km long. Volcanic tremor intensified beneath the summit and in the vent area that night. The next day, lava fountains were <5 m high, and by the morning of 10 November the eastern fissures were feeding lava directly into a pond nearly 15 m deep. Late that day, the pond was stagnant NE of the fissures, but to the SE, two wide channelized aa flows were moving slowly toward the coast. The pond had drained into a rapidly advancing aa flow by the morning of 11 November, and fountains had again emerged above the subsided pond.

By 1600 on 11 November, the flows had advanced 3 km to ~400 m (1,300 ft) altitude, at the top of Royal Gardens subdivision, and trees were burning along the subdivision's E side. Two days later, the flows had advanced another 200 m into Royal Gardens. As of 14 November, the flow front was stagnant, but new aa flows were advancing atop earlier lava, and were particularly active ~125 m above the multilobate terminus. Lava was issuing quietly into a channel ~30 m wide that fed the flows downslope, but fountaining had stopped. The deflation rate at the summit had slowed during 8-10 November, accelerated on 11 November, but was slowing again as of the 14th. Volcanic tremor, indicating magma migration, continued at moderate levels beneath the summit and upper East rift zone, but amplitudes decreased on 13 November.

The level of lava in the tube extending from Kupaianaha to the flat area near the coast has dropped somewhat since the onset of fissure activity. Pahoehoe flows originating at Kupaianaha remained active on the E side of Royal Gardens subdivision on 14 November, but other Kupaianaha flows had stagnated along the coastal plain. [see also 16:11]

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Mattox and P. Okubo, HVO.


Kozushima (Japan) — October 1991 Citation iconCite this Report

Kozushima

Japan

34.219°N, 139.153°E; summit elev. 572 m

All times are local (unless otherwise noted)


Earthquake swarm N of island

An earthquake swarm occurred 24-25 October in the sea 7 km N of Kozu-shima (figure 1). The largest shocks (M 4.9) were recorded at 1746 and 1754 on the 24th. Changes in surface activity were not observed on the island or in the epicentral area. The seismicity was the first for the area since 23 April . . . .

Geologic Background. A cluster of rhyolitic lava domes and associated pyroclastic deposits form the small 4 x 6 km island of Kozushima in the northern Izu Islands. Kozushima lies along the Zenisu Ridge, one of several en-echelon ridges oriented NE-SW, transverse to the trend of the northern Izu arc. The youngest and largest of the 18 lava domes, 574-m-high Tenjoyama, occupies the central portion of the island. Most of the older domes, some of which are Holocene in age, flank Tenjoyama to the north, although late-Pleistocene domes are also found at the southern end of the island. Only two possible historical eruptions, from the 9th century, are known. A lava flow may have reached the sea during an eruption in 832 CE. Tenjosan lava dome was formed during a major eruption in 838 CE that also produced pyroclastic flows and surges. Earthquake swarms took place during the 20th century.

Information Contacts: JMA.


Langila (Papua New Guinea) — October 1991 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Explosive activity from two craters; small pyroclastic flows

"Moderate to strong activity persisted throughout October. Crater 2 activity consisted of continuous release of white vapour, producing a small emission column that frequently (5-15 times/hour) turned into a forceful jet of ash-laden vapour, generating a whooshing sound. Occasionally, a discontinuous tremor-like signal was recorded by the 1-km-distant LAN seismometer. Light ashfalls were experienced in coastal areas 10 km downwind. On most nights this Vulcanian activity was accompanied by dull glow above the crater, becoming brighter at times when incandescent lava fragments were ejected onto the flanks of the cone.

"Activity at Crater 3 was intermittent, with periods of 5-15 minutes devoid of any emission separated by sudden forceful explosive emissions of thick, mushrooming, dark grey ash clouds that rose 400-650 m above the crater rim. The crater was more strongly active 4-10 October, when small pyroclastic flows were generated at the base of the strongest explosions, but these did not advance beyond the cone's upper flanks. Intermittent glow from the crater was accompanied by incandescent projections to ~100 m above the crater rim. Crater 3 explosions were recorded as distinct impulsive signals (5-50/day) by the LAN seismic station, with the strongest ones (1-12/day) recorded 9 km away (CGA station).

"Seismic activity dropped significantly in October. The intermittent tremor recorded since June disappeared in September but reappeared sporadically in October. Most of the seismicity consisted of discrete earthquakes. The daily totals of these events ranged from 15 to 60.

"Aerial and ground inspections were carried out 10-11 October. The main change noted since the last inspection, in mid-August, concerned Crater 3. Of the 2 active vents previously observed in the mound of lava filling the original crater, the N one (which seemed the most active in August) was inactive, while a 50-m explosion crater had formed around the S vent, which was the source of the reported Vulcanian activity. This new crater was bowl-shaped, ~6 m deep, and filled with loose debris-blocks and ash. Similar debris also extended in short tongues to <100 m outside the crater rim and probably was deposited by small pyroclastic flows such as those reported earlier in October. Within the crater were irregular arcuate ridges of loose debris that may have been deposited by pyroclastic flows. The active vent area was only ~5 m across. Although it remained glowing for a short time after each explosion, the maximum temperature measured with an infrared thermometer from 30 m distance was only 500°C when erupting, and 270°C when quiet. The temperature of the crater floor was 140-170°C.

"The short lava flow observed 12 August on the cone's N flank had cooled, but a few rootless fumaroles remained on its surface, which was partly buried under airfall blocks and ash. The flow had the rugged surface features of aa lava and was ~300 m long, extending from the crater rim (~1,100 m elev) to 950 m elev. Its thickness decreased from 2.5 m (where it spilled over the crater rim) to <1 m at its front. The volume of the flow is estimated to be <=15,000 m3.

"Crater 2 was estimated to be 130 m wide and 30 m deep. Its floor is now at the level of the upper bench described in the last ground inspection, in June 1989 (SEAN 14:06). Several small vents (<=1 m in diameter), although closely grouped at the base of the crater, were activated independently. At the times of the strongest emissions however, up to four vents erupted concurrently with a deafening jet engine noise, generating air and ground vibrations recorded by the summit seismic station as emergent periods of tremor-like signals. The westernmost vent was directing its jet of ash-laden vapour at an angle of 15° toward the SE, resulting in the backfall of blocks and spatter-like scoriae on the SE crater rim and beyond. The maximum measured temperature at the base of the jet (although glowing at times) was only 240°C, and 70°C higher up in the plume."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. de Saint-Ours and C. McKee, RVO.


Lascar (Chile) — October 1991 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Renewed explosive activity

At 1620-1625 on 21 October, an explosion and a roughly 2,000-m-high dark gray column were observed by Santos Soza, a Minsal Ltda. employee based 35 km NW of the volcano (in Toconao). Wind carried the plume NE, and completely dispersed it within 20 minutes. The explosion was not audible, but it was accompanied by a small shock, with a duration of a few seconds, felt at Toconao. A second, smaller eruption column was observed the following day at about 1400 without accompanying felt seismicity or an audible explosion.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; V. Letelier, Minsal Ltda., Toconao.


Lokon-Empung (Indonesia) — October 1991 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Vigorous explosions; 10,000 evacuated

Vigorous explosions on 24 October ejected ash to ~2 km height, and may have generated a pyroclastic flow on 25 October, before a decline in activity noted at 2000. As much as 1 m of tephra was reportedly deposited near the summit, but only 2.5 cm of ash fell 4 km E (at Kinilaw). The airport at Manado (15 km NE; figure 1) was closed until 29 October, because of poor visibility and minor ashfall. By 29 October, more than 1900 buildings and roughly 3 km2 of clove trees and coconut palms had been damaged; ~10,000 people were evacuated. Ash and incandescent material ejected on 6 November reached 300 m height. Large explosions on 17 and 20 November produced ash columns 1,000 and 2,500 m high, respectively, panicking residents of nearby villages, who had recently returned to their homes. Ash emissions continued the next day, but were less frequent and less intense. Vivianne Clavel, a Swiss volcanologist studying the eruption, was reported missing on 24 October, and had not been located by searchparties at press time.

Figure (see Caption) Figure 1. Map of Lokon-Empung, based on a portion of the Manado, Indonesia 1:250,000 sheet (Joint Operations Graphic-Ground, series 1501, sheet NA 51-12, Army Map Service, Washington). Contour interval, 200 m.

[Despite rescue efforts, no signs of V. Clavel were found. According to a witness, she was killed by falling blocks and buried by ash.]

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: N. MacLeod, Ridgefield WA, USA; T. Casadevall, USGS; U.S. Embassy, Jakarta; UPI; Reuters; AP.


Marchena (Ecuador) — October 1991 Citation iconCite this Report

Marchena

Ecuador

0.33°N, 90.47°W; summit elev. 343 m

All times are local (unless otherwise noted)


Flow front advances into sea with no explosive venting

[The eruption] has continued without explosive venting visible from a distance. Observers on a boat that passed Marchena on 7 or 8 November reported vigorous steaming at the W coast. Water near the flow front was too hot to touch and numerous fumaroles were evident inland. Since David Day's 28-30 September visit, lava had formed a single broad front at the coast, closing the small bay where Day had landed.

Reports collected by Day provided additional information about the timing and characteristics of the early phases of the eruption. The first reported activity was a "suspicious" large cloud seen over Marchena on 25 September at 1840 from ~65 km S (at Bartolomé). An explosion was observed at 1905 from ~90 km SSE (Turtle Cove, Santa Cruz Island). A low white cloud near the coast was seen with infrared binoculars at about 2100. Witnesses at three sites ~65 km S reported 7-8 evenly spaced vents that remained active throughout the night. Incandescent ejecta appeared to rise roughly the equivalent of the island's elevation (~350 m), with height increases of ~25% during the strongest activity. A more vigorous vent, lying W of the others, was first seen at about 0300 on 26 September. Ejecta heights from the W vent appeared to exceed those from the other vents by ~50%.

Geologic Background. The low shield volcano forming Marchena Island contains one of the largest calderas of the Galápagos Islands. The 6 x 7 km caldera and its outer flanks have been largely buried by a cluster of pyroclastic cones and associated lava flows. Its first historical eruption occurred in 1991. Other young lava flows, some of which may be only a few thousand, or even a few hundred years old, filled the caldera and flowed down its outer forested flanks, in some cases to the sea.

Information Contacts: D. Day, Isla Santa Cruz.


Nyamuragira (DR Congo) — October 1991 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Earthquake swarm, then fissure eruption feeds lava flows

The following paragraph, from M. Kasahara, K. Tanaka, and N. Zana supplements last month's report.

After 25 months of quiet, an eruption began at 0130 on 20 September, from a N30°E fissure [see slightly revised trend in 17:1] ~15 km NE of the summit caldera and 5 km NE of the 1958 (Kitsimbanyi) eruption site (figure 8). An earthquake swarm began about a week before the eruption (figure 9), but gradually declined between 16 September and eruption's onset, with changing seismic waveforms reflecting a shift to lower frequencies. The start of the eruption was witnessed from ~10 km SE (at Rumangabo) and clearly recognized by the appearance of continuous tremor on a seismograph (BLG) operated by the CRSN 40 km SSW of the eruption site. Tremor amplitude was half its initial value a day after the eruption began, but tremor was continuing in late September (figure 10). Lava fountain activity continued at the N end of the fissure [but see 17:1], producing a new cone and two lava flows. During the first week of the eruption, the new cone (named Mikombe; "many bats") grew to 60-70 m height with basal dimensions of 400 x 300 m (figure 11). Lava extended 6-7 km NE, along and over the 1958, 1967, and 1980 flows. The eruption remained vigorous on 30 September when initial field studies ended.

Figure (see Caption) Figure 9. Daily number of earthquakes recorded at a seismic station (BLG), ~40 km SW of Nyamuragira's 1991 eruption site, 9-27 September 1991. Courtesy of M. Kasahara.
Figure (see Caption) Figure 10. Hourly variation in tremor amplitude recorded (at station KTL) roughly 15 km ESE of Nyamuragira's 1991 eruption site, from 12 hours after the onset of the eruption through early 28 September. Courtesy of M. Kasahara.
Figure (see Caption) Figure 11. Topographic sketch map of the Mikombe cone 15 km NE of Nyamuragira's summit, 27 September 1991. Contour interval is 10 m, with 0 representing the pre-eruption base level. Data points are elevations, in meters above base level. Courtesy of M. Kasahara.

Airline flight crews reported plumes to 7.5 km altitude on 15 and 20 October. On 21 October, CRSN geologists reported that activity was increasing, and lava had cut the road to Tongo. A new vent, SW of Mikombe, opened on 23 October [see also 17:1] and, as of 31 October, activity continued to increase at both vents. Pilot reports suggested that the ash cloud was only 200 m high by 2 November.

Given the first week's lava output, geologists expected the total volume to be of the same order as previous eruptions. The current eruption was believed to be a continuation of the highly active period that began with the 1976 eruption. Since then, seven flank eruptions have occurred in 15 years, 2-3 times the 1900-76 rate (Krafft, 1990).

Reference. Krafft, M., 1990, Führer zu den Virunga-Vulkanen: Ferdinand Enke Verlag, Stuttgart, 192 p.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: M. Kasahara and K. Tanaka, Hokkaido Univ; ICAO; H-L. Hody, GEOVAR, Kigali, Rwanda.


Pinatubo (Philippines) — October 1991 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Continued secondary explosions and mudflows; seismicity declines; fieldwork in new caldera

Although no explosions occurred within the caldera formed by the mid-June paroxysmal eruption, secondary explosions continued at pyroclastic-flow deposits through early November, causing ashfall, sulfur odors, and poor visibility. Seismicity and caldera steam emission continued to decline. Debris flows traveled down all major drainages during October, but observations suggested that the majority of the flows were more water-rich than in previous months.

7-13 October. Geologists entered the caldera for the first time on 8 October. The caldera rim elevation ranges from 1,100 m to about 1,000 m, with the lowest point on the NW side, and the caldera lake at roughly 800 m elevation. Strong steaming was observed on the S wall and along the lake shore, with numerous bubbles rising elsewhere in the lake. No ambient sulfur odor was detected when standing upwind of the fumaroles. Analyses of the caldera lake water revealed a temperature of 40°C and a pH of 6 (table 6), suggesting a primarily meteoric origin, although the plume's SO2 flux dropped from roughly 100 t/d to 10 t/d when the lake formed. Most of the 1991 deposits within the caldera are composed of old dome rock, with almost no pumice present. No distinct ring faults are apparent.

Table 6. Chemistry of Pinatubo caldera lake water, 8 October 1991. Analyses by M. Campita, L. Ringer, and L. Tansinsin, PHIVOLCS.

Data Element Value
Temperature 40°C
pH 6.01
Na 211 ppm
Ca 481 ppm
K 63.7 ppm
Cl 1049.2 ppm
F < 0.1 ppm
B 39.6 ppm
H2S 251.6 ppm
SO2 294.4 ppm
SO4 1431.13 ppm
Mg 382.81 ppm
SiO2 54 ppm
Total acidity 80 ppm
Mineral acid 0 acidity
Total Dissolved Solids 5133

Several small secondary explosions from the Sacobia valley pyroclastic-flow deposits (NE flank) were observed on 13 October; the largest, at 1247, produced a plume 2,000 m high. By about 1400, a sulfurous odor was detected, and moderate ashfall occurred at Clark Air Base. Secondary explosion signals were recorded seismically on 7 and 8 October but were not visually confirmed, while at other times during the week, small explosions were observed but not seismically recorded.

Seismicity continued to decline, with an average of 55 earthquakes recorded daily, compared to 63/day the previous week (figure 24). The earthquakes occurred at 2-10 km depth and most had magnitudes < 2. Two shocks of intensity I (modified Rossi-Forel scale) were felt at Clark Air Base.

Figure (see Caption) Figure 24. Number of earthquakes (top) and Real-time Seismic Amplitude Measurement (bottom) at Pinatubo, 16 June-3 November 1991. Courtesy of PHIVOLCS.

Relatively small debris flows occurred in the NE, SE, and SW quadrants following heavy rainfall. Residents of Tarlac (45 km NE) noted that no large lahars had passed in the previous several weeks to months. Floods were reported along the E flank's Pasig-Potrero River (2/3 m deep) on 7 October, and the NE flank's Bamban River (waist-chest deep). Small flows occurred on the Pasig-Potrero River on 12 October, and the Sacobia, Abacan (both NE flank), and Pasig-Potrero Rivers on 13 October. The debris dam on the SE flank's Mapanuepe River began breaching again on 12 October.

14-20 October. Secondary explosions occurred in the upper Marella pyroclastic-flow deposits (SW flank) around midmorning on 14 October. One hour later, ashfall, accompanied by a sulfur odor and reduced visibility (500 m), were reported at Sitio Danalaon (18 km SW of the summit). By 1600, ash fell in Castillejos and San Marcelino (both ~30 km SW of the summit), and by 1800, ash fell in Subic (~35 km SSW). Additional explosions occurred in the upper Marella deposits on 16 and 18 October when a 500-m grayish ash cloud was produced. Ashfall from other secondary explosions was also reported in Angeles (25 km E) on 15 October.

Seismicity during the week declined to a daily average of 44 earthquakes, with most events at 5-10 km depths and M < 2. Earthquakes continued to occur in clusters. One large shock (M 3.4) on 15 October, centered about 4 km NE of the summit, was felt (intensity IV) at Clark Air Base. Other earthquakes were felt (intensities I-II) on 15, 16, 18, and 20 October.

Heavy rains on 16 October triggered small lahars on the NE, SW, and SE flanks. One large lahar, about 3 m high, traveled down the upper Pasig-Potrero River, transporting boulders up to 1 m in diameter. Small floods of muddy water were observed on the Marella River on the 14th.

21 October-3 November. An aerial survey of the caldera on 23 October showed that the lake level had risen, covering some large rocks that had been visible in August and September. Steam emissions on the S wall had decreased, and some had stopped. Some fresh talus extended into the lake. Observers 20 km SW (at Sitio Danalaon) reported pulsating weak to moderate steam emission from the caldera on 2 November.

Moderate-sized secondary explosions occurred in the Sacobia and Marella valley pyroclastic-flow deposits on 28 October, coincident with heavy rainfall. Near the Sacobia valley, sand-sized ashfall from secondary explosions was quite heavy during the early evening, and poor visibility caused drivers to stop their vehicles. Smaller explosions were observed in the Sacobia valley on 22 and 31 October, and in the Marella valley on 2 November when a dirty cloud 200 m high was produced.

The number of earthquakes averaged 37/day, at 5-10 km depths and mostly M < 2. The earthquakes occurred in clusters E, SSE, SW, N, and NW of the caldera (figure 25). Four shocks were felt at Clark Air Base, the largest (M 3.4) with intensity IV on 1 November, the other three (M 2.9-3.0, intensity I) on 25 and 31 October and 3 November.

Figure (see Caption) Figure 25. Epicenters of 515 earthquakes at Pinatubo, 21 October-3 November 1991. Courtesy of PHIVOLCS.

Heavy rain from typhoon Ruth triggered lahars down most drainages on 28 October. On the SW flank, following 8 cm of rain in a 24-hour period, a hot lahar was observed travelling down the Marella River, a lahar up to 1 m high was observed on the Sto. Tomas River, and the debris dam on the Mapanuepe River was completely swept away. Lahars on the Pasig-Potrero River grew from ~0.5 m high at 1400, to a peak of 3 m high at 1654, and carried .5m-diameter pumice clasts and logs 3 m long and 30 cm in diameter. A lahar >1 m high was reported on the Porac River and a 65 cm hyperconcentrated flow was reported on the Gumain River (both SE flank). On the NE flank, lahars were reported on the Abacan and O'Donnell Rivers, and reached 3 m high on the Sacobia River. Flows were reported NW of the volcano, but they were more water-rich than previously, and there was no significant deposition. Small lahars occurred for several days following the 28th.

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: R. Punongbayan, PHIVOLCS.


Poas (Costa Rica) — October 1991 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Continued fumarolic activity; lake level drops

Fumarolic activity in the yellowish-green crater lake continued through October, and mats of sulfur were observed floating on the water's surface. In September, strong bubbling was observed in the N- and NW-central parts of the lake, which was at 76.3°C with a pH <0.5. Lake measurements on 16 October indicated that the lake level had fallen 15 cm since 18 September, despite continued rains; water temperature was 74.4°C. Fumaroles on the 1953-55 dome ranged to 90.6°C in September and 88.4°C in October.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: R. Barquero and G. Soto, ICE.


Raung (Indonesia) — October 1991 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Continued ash emission

Vigorous ash emissions, rising to 300-600 m, were observed from an aircraft on 3 October.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: N. MacLeod, Ridgefield WA, USA.


Nevado del Ruiz (Colombia) — October 1991 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Continued weak seismicity and SO2 emission

Although seismicity remained at very low levels in October (figure 46), there was a slight relative increase in long-period activity. High-frequency earthquakes were centered NE and SW of the summit. The SO2 flux varied between moderate and low values, and deformation measurements showed no significant changes.

Figure (see Caption) Figure 46. Daily seismic energy release (top) and number of earthquakes (bottom) recorded at Ruiz, January-October 1991. Horizontal lines indicate classification thresholds (used in previous Bulletins) for different levels of activity. Courtesy of INGEOMINAS.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Stromboli (Italy) — October 1991 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


More frequent explosions; new zone of fumaroles

The number of recorded explosion shocks increased irregularly through October (figure 23), a continuation of the generally increasing trend that followed the low activity of mid-July to mid-August. Tremor amplitude also increased (figure 24). The number of seismometer-saturating events was quite low and concentrated during the last week of October, when tremor was stronger and explosions were more frequent.

Figure (see Caption) Figure 23. Average number of explosion shocks/hour at Stromboli, 25 September-31 October, 1991. The mean value for the period is shown by the dotted line. Courtesy of M. Riuscetti.
Figure (see Caption) Figure 24. Number of seismometer-saturating events/day (lower curve) and average daily tremor amplitude in volts (upper curve) at Stromboli, 25 September-31 October, 1991. Courtesy of M. Riuscetti.

A team from the Univ di Udine climbed the volcano during the first week in October. Two vents were active in Crater 1, the first near the E rim, the second a 30-m-high cone on its NW flank (facing the Sciara del Fuoco). Explosions produced plumes 100-150 m high, and ejected lapilli and sand-sized tephra. Crater 2 was still marked by two radial fissures with clearly visible night glow, but its rim was no longer well-defined. Cone 1 in Crater 3 continued to produce white vapor from two vents. The westernmost vent of Crater 3 appeared to be the most active, and was at the center of a rapidly enlarging chasm. It ejected clouds of black, sand-sized tephra to a maximum height of 300 m.

Along the ridge extending E from Pizzo sopra la Fossa (the observation point SE of the active craters), a zone that once consisted of a few isolated hot spots had evolved to a thermal anomaly in September (16:08) and a continuous line of fumaroles in October.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: M. Riuscetti, Univ di Udine.


Suwanosejima (Japan) — October 1991 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Ash ejection

Late-October explosions from the summit cone of On-take produced ash clouds a few hundred meters high and caused slight ashfalls on the island. The explosions were the most vigorous since similar events in January.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: JMA.


Ulawun (Papua New Guinea) — October 1991 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Seismicity declines without eruption

"A buildup of seismicity observed toward the end of September continued through the first week of October, but the volcano remained in a non-erupting state, releasing vapour in small to moderate volumes. The increased seismicity consisted of periods of frequent discrete, low-frequency earthquakes. The maximum daily number of recorded events was ~350. Despite their increase in number, there was no marked increase in amplitude. This activity waned after a week and by the end of the month was at a low level, with earthquake counts of <30/day. High-frequency volcanic earthquakes were recorded occasionally throughout October."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: P. de Saint-Ours and C. McKee, RVO.


Unzendake (Japan) — October 1991 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Continued lava dome growth and pyroclastic flows

Growth of the lava dome . . . continued through mid-November and partial dome collapses frequently generated pyroclastic flows. Seismicity had declined to relatively low levels since extrusion of dome 4 started in mid-September. A seismic swarm began beneath the dome on 24 October, gradually increasing through mid-November. The seismicity buildup was similar to those of August and September, which culminated in the appearance of domes 3 and 4, respectively, although the rate of increase was slower for the current swarm. Uplift at the boundary between domes 3 and 4, first noted from the air on 25 October, was continuing in mid-November, suggesting magma intrusion under or into dome 4. As of 14 November, dome 4 was 500 m long, 400 m wide, and 250 m high. Dome and pyroclastic flow volumes were used to estimate a total of about 4 x 107 m3 of magma erupted between May and the end of October.

Pyroclastic flows, mainly from dome 4, moved down the Oshiga and Mizunashi valleys, as in September. Most have been relatively small since the eruption's largest pyroclastic flow on 15 September. Ash clouds generated by the larger flows reached about 2 km height. The number of pyroclastic flows, counted seismically, declined gradually through October (to 439, from 521 in September) and markedly since 11 November.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA.


White Island (New Zealand) — October 1991 Citation iconCite this Report

White Island

New Zealand

37.52°S, 177.18°E; summit elev. 321 m

All times are local (unless otherwise noted)


Tephra from new vent

A new active crater formed in the S part of the 1978/91 Crater complex between visits by geologists on 9 and 23 October. The crater (named Wade; figure 14) had developed at the site of the former R.F. Crater, active January 1989-mid 1990. The onset of activity at the new crater was not documented, but may have been marked by E-type seismic events recorded on 18 October. The captain of the Island Princess reported that red ash had been falling for at least four days before 23 October.

Figure (see Caption) Figure 14. Map of White Island's Main Crater, showing the new (Wade) crater. The position of the 1978/91 Crater rim is as of 28 November 1990. Dots labeled with Roman numerals are levelling sites; only some are shown. Courtesy of B. Scott.

As geologists approached the island on 23 October, activity was initially limited to moderate steam emission. At about 1120, an eruptive episode sent a red-brown steam/ash column to ~1 km above sea level. Long trains of low- to medium-frequency, low-amplitude earthquakes were recorded between 1115 and 1127, with a burst of stronger, higher frequency tremor at about 1118. During field studies between about 1230 and 1500, quiet emission of reddish ash-rich gas continued from the new circular crater, roughly 30-50 m in diameter and at least 30 m deep. Recently fallen red-brown ash was visible on all of the outer slopes of White Island. About 4 cm of ash had fallen at a site roughly 200 m SE of the new crater, thickening to 14 cm on the S rim of 1978/91 Crater. No significant juvenile component was evident in the ash.

A small amount of recently fallen ballistic tephra, including andesitic scoriae that are probably juvenile and accessory blocks, was found within 20 m of the SE rim of 1978/91 Crater. The orientation of ash thrown from the impact craters suggested an origin for the ballistic clasts in the direction of TV1 crater (roughly 100 m NE of the new crater), perhaps during the late-morning eruptive episode. TV1 may also have been the source of a layer of lithic gravel within a gray ash matrix, deposited to its E between layers of reddish ash. TV1 emitted only white steam until about 1315, when it began to erupt voluminous clouds of gray-brown ash. Ash emission was continuous for at least the next 30 minutes, and the color of the ash was noticeably different from that emerging from the simultaneously erupting new crater. TV1 had formed on 2 October 1990 and erupted again in February 1991, but had been relatively quiet since then. Little gas emerged from May 91 crater during the 23 October fieldwork, although it was the site of vigorous gas emission during the previous visit on 9 October.

Geologic Background. Uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes; the summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, four sea stacks that are remnants of a lava dome, lie 5 km NNE. Intermittent moderate phreatomagmatic and strombolian eruptions have occurred throughout the short historical period beginning in 1826, but its activity also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project.

Information Contacts: C. Wood, DSIR Geology & Geophysics, Rotorua.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).