Recently Published Bulletin Reports
Erebus (Antarctica) Lava lake remains active; most thermal alerts recorded since 2019
Rincon de la Vieja (Costa Rica) Frequent phreatic explosions during July-December 2023
Bezymianny (Russia) Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Kilauea (United States) Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Nyamulagira (DR Congo) Lava flows and thermal activity during May-October 2023
Bagana (Papua New Guinea) Explosions, ash plumes, ashfall, and lava flows during April-September 2023
Mayon (Philippines) Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Nishinoshima (Japan) Eruption plumes and gas-and-steam plumes during May-August 2023
Krakatau (Indonesia) White gas-and-steam plumes and occasional ash plumes during May-August 2023
Villarrica (Chile) Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Merapi (Indonesia) Frequent incandescent avalanches during April-September 2023
Ebeko (Russia) Moderate explosive activity with ash plumes continued during June-November 2023
Erebus (Antarctica) — January 2024
Cite this Report
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Lava lake remains active; most thermal alerts recorded since 2019
The lava lake in the summit crater of Erebus has been active since at least 1972. Located in Antarctica overlooking the McMurdo Station on Ross Island, it is the southernmost active volcano on the planet. Because of the remote location, activity is primarily monitored by satellites. This report covers activity during 2023.
The number of thermal alerts recorded by the Hawai'i Institute of Geophysics and Planetology’s MODVOLC Thermal Alerts System increased considerably in 2023 compared to the years 2020-2022 (table 9). In contrast to previous years, the MODIS instruments aboard the Aqua and Terra satellites captured data from Erebus every month during 2023. Consistent with previous years, the lowest number of anomalous pixels were recorded in January, November, and December.
Table 9. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2023. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the HIGP – MODVOLC Thermal Alerts System.
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
SUM |
2017 |
0 |
21 |
9 |
0 |
0 |
1 |
11 |
61 |
76 |
52 |
0 |
3 |
234 |
2018 |
0 |
21 |
58 |
182 |
55 |
17 |
137 |
172 |
103 |
29 |
0 |
0 |
774 |
2019 |
2 |
21 |
162 |
151 |
55 |
56 |
75 |
53 |
29 |
19 |
1 |
0 |
624 |
2020 |
0 |
2 |
16 |
18 |
4 |
4 |
1 |
3 |
18 |
3 |
1 |
6 |
76 |
2021 |
0 |
9 |
1 |
0 |
2 |
56 |
46 |
47 |
35 |
52 |
5 |
3 |
256 |
2022 |
1 |
13 |
55 |
22 |
15 |
32 |
39 |
19 |
31 |
11 |
0 |
0 |
238 |
2023 |
2 |
33 |
49 |
82 |
41 |
32 |
70 |
64 |
42 |
17 |
5 |
11 |
448 |
Sentinel-2 infrared images showed one or two prominent heat sources within the summit crater, accompanied by adjacent smaller sources, similar to recent years (see BGVN 46:01, 47:02, and 48:01). A unique image was obtained on 25 November 2023 by the OLI-2 (Operational Land Imager-2) on Landsat 9, showing the upper part of the volcano surrounded by clouds (figure 32).
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: https://earthobservatory.nasa.gov/images/152134/erebus-breaks-through).
Rincon de la Vieja (Costa Rica) — January 2024
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent phreatic explosions during July-December 2023
Rincón de la Vieja is a volcanic complex in Costa Rica with a hot convecting acid lake that exhibits frequent weak phreatic explosions, gas-and-steam emissions, and occasional elevated sulfur dioxide levels (BGVN 45:10, 46:03, 46:11). The current eruption period began June 2021. This report covers activity during July-December 2023 and is based on weekly bulletins and occasional daily reports from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).
Numerous weak phreatic explosions continued during July-December 2023, along with gas-and-steam emissions and plumes that rose as high as 3 km above the crater rim. Many weekly OVSICORI-UNA bulletins included the previous week's number of explosions and emissions (table 9). For many explosions, the time of explosion was given (table 10). Frequent seismic activity (long-period earthquakes, volcano-tectonic earthquakes, and tremor) accompanied the phreatic activity.
Table 9. Number of reported weekly phreatic explosions and gas-and-steam emissions at Rincón de la Vieja, July-December 2023. Counts are reported for the week before the Weekly Bulletin date; not all reports included these data. Courtesy of OVSICORI-UNA.
OVSICORI Weekly Bulletin |
Number of explosions |
Number of emissions |
28 Jul 2023 |
6 |
14 |
4 Aug 2023 |
10 |
12 |
1 Sep 2023 |
13 |
11 |
22 Sep 2023 |
12 |
13 |
29 Sep 2023 |
6 |
11 |
6 Oct 2023 |
12 |
5 |
13 Oct 2023 |
7 |
9 |
20 Oct 2023 |
1 |
15 |
27 Oct 2023 |
3 |
23 |
3 Nov 2023 |
3 |
10 |
17 Nov 2023 |
0 |
Some |
24 Nov 2023 |
0 |
14 |
8 Dec 2023 |
4 |
16 |
22 Dec 2023 |
8 |
18 |
Table 10. Summary of activity at Rincón de la Vieja during July-December 2023. Weak phreatic explosions and gas emissions are noted where the time of explosion was indicated in the weekly or daily bulletins. Height of plumes or emissions are distance above the crater rim. Courtesy of OVSICORI-UNA.
Date |
Time |
Description of Activity |
1 Jul 2023 |
0156 |
Explosion. |
2 Jul 2023 |
0305 |
Explosion. |
4 Jul 2023 |
0229, 0635 |
Event at 0635 produced a gas-and-steam plume that rose 700 m and drifted W; seen by residents in Liberia (21 km SW). |
9 Jul 2023 |
1843 |
Explosion. |
21 Jul 2023 |
0705 |
Explosion. |
26 Jul 2023 |
1807 |
Explosion. |
28 Jul 2023 |
0802 |
Explosion generated a gas-and-steam plume that rose 500 m. |
30 Jul 2023 |
1250 |
Explosion. |
31 Jul 2023 |
2136 |
Explosion. |
11 Aug 2023 |
0828 |
Explosion. |
18 Aug 2023 |
1304 |
Explosion. |
21 Aug 2023 |
1224 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
22 Aug 2023 |
0749 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
24 Aug 2023 |
1900 |
Explosion. |
25 Aug 2023 |
0828 |
Event produced a steam-and-gas plume that rose 3 km and drifted NW. |
27-28 Aug 2023 |
0813 |
Four small events; the event at 0813 on 28 August lasted two minutes and generated a steam-and-gas plume that rose 2.5 km. |
1 Sep 2023 |
1526 |
Explosion generated plume that rose 2 km and ejected material onto the flanks. |
2-3 Sep 2023 |
- |
Small explosions detected in infrasound data. |
4 Sep 2023 |
1251 |
Gas-and-steam plume rose 1 km and drifted W. |
7 Nov 2023 |
1113 |
Explosion. |
8 Nov 2023 |
0722 |
Explosion. |
12 Nov 2023 |
0136 |
Small gas emissions. |
14 Nov 2023 |
0415 |
Small gas emissions. |
According to OVSICORI-UNA, during July-October the average weekly sulfur dioxide (SO2) flux ranged from 68 to 240 tonnes/day. However, in mid-November the flux increased to as high as 334 tonnes/day, the highest value measured in recent years. The high SO2 flux in mid-November was also detected by the TROPOMI instrument on the Sentinel-5P satellite (figure 43).
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).
Bezymianny (Russia) — November 2023
Cite this Report
Bezymianny
Russia
55.972°N, 160.595°E; summit elev. 2882 m
All times are local (unless otherwise noted)
Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Bezymianny, located on Russia’s Kamchatka Peninsula, has had eruptions since 1955 characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. Activity during November 2022-April 2023 included gas-and-steam emissions, lava dome collapses generating avalanches, and persistent thermal activity. Similar eruptive activity continued from May through October 2023, described here based on information from weekly and daily reports of the Kamchatka Volcano Eruptions Response Team (KVERT), notices from Tokyo VAAC (Volcanic Ash Advisory Center), and from satellite data.
Overall activity decreased after the strong period of activity in late March through April 2023, which included ash explosions during 29 March and 7-8 April 2023 that sent plumes as high as 10-12 km altitude, along with dome growth and lava flows (BGVN 48:05). This reduced activity can be seen in the MIROVA thermal detection system graph (figure 56), which was consistent with data from the MODVOLC thermal detection system and with Sentinel-2 satellite images that showed persistent hotspots in the summit crater when conditions allowed observations. A renewed period of strong activity began in mid-October 2023.
Activity increased significantly on 17 October 2023 when large collapses began during 0700-0830 on the E flanks of the lava dome and continued to after 0930 the next day (figure 57). Ash plumes rose to an altitude of 4.5-5 km, extending 220 km NNE by 18 October. A large explosion at 1630 on 18 October produced an ash plume that rose to an altitude of 11 km (8 km above the summit) and drifted NNE and then NW, extending 900 km NW within two days at an altitude of 8 km. Minor ashfall was noted in Kozyrevsk (45 km WNW). At 0820 on 20 October an ash plume was identified in satellite images drifting 100 km ENE at altitudes of 4-4.5 km.
Lava flows and hot avalanches from the dome down the SE flank continued over the next few days, including 23 October when clear conditions allowed good observations (figures 58 and 59). A large thermal anomaly was observed over the volcano through 24 October, and in the summit crater on 30 October (figure 60). Strong fumarolic activity continued, with numerous avalanches and occasional incandescence. By the last week of October, volcanic activity had decreased to a level consistent with that earlier in the reporting period.
Aviation warnings were frequently updated during 17-20 October. KVERT issued a Volcano Observatory Notice for Aviation (VONA) on 17 October at 1419 and 1727 (0219 and 0527 UTC) raising the Aviation Color Code (ACC) from Yellow to Orange (second highest level). The next day, KVERT issued a VONA at 1705 (0505 UTC) raising the ACC to Red (highest level) but lowered it back to Orange at 2117 (0917 UTC). After another decrease to Yellow and back to Orange, the ACC was reduced to Yellow on 20 October at 1204 (0004 UTC). In addition, the Tokyo VAAC issued a series of Volcanic Ash Advisories beginning on 16 October and continuing through 30 October.
Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).chr
Kilauea (United States) — January 2023
Cite this Report
Kilauea
United States
19.421°N, 155.287°W; summit elev. 1222 m
All times are local (unless otherwise noted)
Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Kīlauea is the southeastern-most volcano in Hawaii and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).
The current eruption period started during September 2021 and has recently been characterized by lava effusions, spatter, and sulfur dioxide emissions in the active Halema’uma’u lava lake (BGVN 47:08). Lava effusions, some spatter, and sulfur dioxide emissions have continued during this reporting period of July through December 2022 using daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).
Summary of activity during July-December 2022. Low-level effusions have continued at the western vent of the Halema’uma’u crater during July through early December 2022. Occasional weak ooze-outs (also called lava break outs) would occur along the margins of the crater floor. The overall level of the active lava lake throughout the reporting period gradually increased due to infilling, however it stagnated in mid-September (table 13). During September through November, activity began to decline, though lava effusions persisted at the western vent. By 9 December, the active part of the lava lake had completely crusted over, and incandescence was no longer visible.
Table 13. Summary of measurements taken during overflights at Kīlauea that show a gradual increase in the active lava lake level and the volume of lava effused since 29 September 2021. Lower activity was reported during September-October. Data collected during July-December 2022. Courtesy of HVO.
Date: |
Level of the active lava lake (m): |
Cumulative volume of lava effused (million cubic meters): |
7 Jul 2022 |
130 |
95 |
19 Jul 2022 |
133 |
98 |
4 Aug 2022 |
136 |
102 |
16 Aug 2022 |
137 |
104 |
12 Sep 2022 |
143 |
111 |
5 Oct 2022 |
143 |
111 |
28 Oct 2022 |
143 |
111 |
Activity during July 2022. Lava effusions were reported from the western vent in the Halema’uma’u crater, along with occasional weak ooze-outs along the margins of the crater floor. The height of the lava lake was variable due to deflation-inflation tilt events; for example, the lake level dropped approximately 3-4 m during a summit deflation-inflation event reported on 1 July. Webcam images taken during the night of 6-12 July showed intermittent low-level spattering at the western vent that rose less than 10 m above the vent (figure 519). Measurements made during an overflight on 7 July indicated that the crater floor was infilled about 130 m and that 95 million cubic meters of lava had been effused since 29 September 2021. A single, relatively small lava ooze-out was active to the S of the lava lake. Around midnight on 8 July there were two brief periods of lava overflow onto the lake margins. On 9 July lava ooze-outs were reported near the SE and NE edges of the crater floor and during 10-11 July they occurred near the E, NE, and NW edges. On 16 July crater incandescence was reported, though the ooze-outs and spattering were not visible. On 18 July overnight webcam images showed incandescence in the western vent complex and two ooze-outs were reported around 0000 and 0200 on 19 July. By 0900 there were active ooze-outs along the SW edge of the crater floor. Measurements made from an overflight on 19 July indicated that the crater floor was infilled about 133 m and 98 million cubic meters of lava had erupted since 29 September 2021 (figure 520). On 20 July around 1600 active ooze-outs were visible along the N edge of the crater, which continued through the next day. Extensive ooze-outs occurred along the W margin during 24 July until 1900; on 26 July minor ooze-outs were noted along the N margin. Minor spattering was visible on 29 July along the E margin of the lake. The sulfur dioxide emission rates ranged 650-2,800 tons per day (t/d), the higher of which was measured on 8 July (figure 519).
Activity during August 2022. The eruption continued in the Halema’uma’u crater at the western vent. According to HVO the lava in the active lake remained at the level of the bounding levees. Occasional minor ooze-outs were observed along the margins of the crater floor. Strong nighttime crater incandescence was visible after midnight on 6 August over the western vent cone. During 6-7 August scattered small lava lobes were active along the crater floor and incandescence persisted above the western vent through 9 August. During 7-9 August HVO reported a single lava effusion source was active along the NW margin of the crater floor. Measurements from an overflight on 4 August indicated that the crater floor was infilled about 136 m total and that 102 million cubic meters of lava had been erupted since the start of the eruption. Lava breakouts were reported along the N, NE, E, S, and W margins of the crater during 10-16 August. Another overflight survey conducted on 16 August indicated that the crater floor infilled about 137 m and 104 million cubic meters of lava had been erupted since September 2021. Measured sulfur dioxide emissions rates ranged 1,150-2,450 t/d, the higher of which occurred on 8 August.
Activity during September 2022. During September, lava effusion continued from the western vent into the active lava lake and onto the crater floor. Intermittent minor ooze-outs were reported through the month. A small ooze-out was visible on the W crater floor margin at 0220 on 2 September, which showed decreasing surface activity throughout the day, but remained active through 3 September. On 3 September around 1900 a lava outbreak occurred along the NW margin of the crater floor but had stopped by the evening of 4 September. Field crews monitoring the summit lava lake on 9 September observed spattering on the NE margin of the lake that rose no higher than 10 m, before falling back onto the lava lake crust (figure 521). Overflight measurements on 12 September indicated that the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had been erupted since September 2021. Extensive breakouts in the W and N part of the crater floor were reported at 1600 on 20 September and continued into 26 September. The active part of the lava lake dropped by 10 m while other parts of the crater floor dropped by several meters. Summit tiltmeters recorded a summit seismic swarm of more than 80 earthquakes during 1500-1800 on 21 September, which occurred about 1.5 km below Halema’uma’u; a majority of these were less than Mw 2. By 22 September the active part of the lava lake was infilled about 2 m. On 23 September the western vent areas exhibited several small spatter cones with incandescent openings, along with weak, sporadic spattering (figure 522). The sulfur dioxide emission rate ranged from 930 t/d to 2,000 t/d, the higher of which was measured on 6 September.
Activity during October 2022. Activity during October declined slightly compared to previous months, though lava effusions persisted from the western vent into the active lava lake and onto the crater floor during October (figure 523). Slight variations in the lava lake were noted throughout the month. HVO reported that around 0600 on 3 October the level of the lava lake has lowered slightly. Overflight measurements taken on 5 October indicated that the crater floor was infilled a total of about 143 m and that 111 million cubic meters of lava had been effused since September 2021. During 6-7 October the lake gradually rose 0.5 m. Sulfur dioxide measurements made on 22 October had an emission rate of 700 t/d. Another overflight taken on 28 October showed that there was little to no change in the elevation of the crater floor: the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had erupted since the start of the eruption.
Activity during November 2022. Activity remained low during November, though HVO reported that lava from the western vent continued to effuse into the active lava lake and onto the crater floor throughout the month. The rate of sulfur dioxide emissions during November ranged from 300-600 t/d, the higher amount of which occurred on 9 November.
Activity during December 2022. Similar low activity was reported during December, with lava effusing from the western vent into the active lava lake and onto the crater floor. During 4-5 December the active part of the lava lake was slightly variable in elevation and fluctuated within 1 m. On 9 December HVO reported that lava was no longer erupting from the western vent in the Halema’uma’u crater and that sulfur dioxide emissions had returned to near pre-eruption background levels; during 10-11 December, the lava lake had completely crusted over, and no incandescence was visible (figure 524). Time lapse camera images covering the 4-10 December showed that the crater floor showed weak deflation and no inflation. Some passive events of crustal overturning were reported during 14-15 December, which brought fresh incandescent lava to the lake surface. The sulfur dioxide emission rate was approximately 200 t/d on 14 December. A smaller overturn event on 17 December and another that occurred around 0000 and into the morning of 20 December were also detected. A small seismic swarm was later detected on 30 December.
Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.
Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).
Nyamulagira (DR Congo) — November 2023
Cite this Report
Nyamulagira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Lava flows and thermal activity during May-October 2023
Nyamulagira (also known as Nyamuragira) is a shield volcano in the Democratic Republic of Congo with the summit truncated by a small 2 x 2.3 km caldera with walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from numerous flank fissures and cinder cones. The current eruption period began in April 2018 and has more recently been characterized by summit crater lava flows and thermal activity (BGVN 48:05). This report describes lava flows and variable thermal activity during May through October 2023, based on information from the Observatoire Volcanologique de Goma (OVG) and various satellite data.
Lava lake activity continued during May. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded moderate-to-strong thermal activity throughout the reporting period; activity was more intense during May and October and relatively weaker from June through September (figure 95). The MODVOLC thermal algorithm, detected a total of 209 thermal alerts. There were 143 hotspots detected during May, eight during June, nine during September, and 49 during October. This activity was also reflected in infrared satellite images, where a lava flow was visible in the NW part of the crater on 7 May and strong activity was seen in the center of the crater on 4 October (figure 96). Another infrared satellite image taken on 12 May showed still active lava flows along the NW margin of the crater. According to OVG lava effusions were active during 7-29 May and moved to the N and NW parts of the crater beginning on 9 May. Strong summit crater incandescence was visible from Goma (27 km S) during the nights of 17, 19, and 20 May (figure 97). On 17 May there was an increase in eruptive activity, which peaked at 0100 on 20 May. Notable sulfur dioxide plumes drifted NW and W during 19-20 May (figure 98). Drone footage acquired in partnership with the USGS (United States Geological Survey) on 20 May captured images of narrow lava flows that traveled about 100 m down the W flank (figure 99). Data from the Rumangabo seismic station indicated a decreasing trend in activity during 17-21 May. Although weather clouds prevented clear views of the summit, a strong thermal signature on the NW flank was visible in an infrared satellite image on 22 May, based on an infrared satellite image. On 28 May the lava flows on the upper W flank began to cool and solidify. By 29 May seismicity returned to levels similar to those recorded before the 17 May increase. Lava effusion continued but was confined to the summit crater; periodic crater incandescence was observed.
Low-level activity was noted during June through October. On 1 June OVG reported that seismicity remained at lower levels and that crater incandescence had been absent for three days, though infrared satellite imagery showed continued lava effusion in the summit crater. The lava flows on the flanks covered an estimated 0.6 km2. Satellite imagery continued to show thermal activity confined to the lava lake through October (figure 96), although no lava flows or significant sulfur dioxide emissions were reported.
Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.
Bagana (Papua New Guinea) — October 2023
Cite this Report
Bagana
Papua New Guinea
6.137°S, 155.196°E; summit elev. 1855 m
All times are local (unless otherwise noted)
Explosions, ash plumes, ashfall, and lava flows during April-September 2023
The remote volcano of Bagana is located in central Bougainville Island, Papua New Guinea. Recorded eruptions date back to 1842 and activity has consisted of effusive activity that has built a small lava dome in the summit crater and occasional explosions that produced pyroclastic flows. The most recent eruption has been ongoing since February 2000 and has produced occasional explosions, ash plumes, and lava flows. More recently, activity has been characterized by ongoing effusive activity and ash emissions (BGVN 48:04). This report updates activity from April through September 2023 that has consisted of explosions, ash plumes, ashfall, and lava flows, using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.
An explosive eruption was reported on 7 July that generated a large gas-and-ash plume to high altitudes and caused significant ashfall in local communities; the eruption plume had reached upper tropospheric (16-18 km altitude) altitudes by 2200, according to satellite images. Sulfur dioxide plumes were detected in satellite images on 8 July and indicated that the plume was likely a mixture of gas, ice, and ash. A report issued by the Autonomous Bougainville Government (ABG) (Torokina District, Education Section) on 10 July noted that significant ash began falling during 2000-2100 on 7 July and covered most areas in the Vuakovi, Gotana (9 km SW), Koromaketo, Laruma (25 km W) and Atsilima (27 km NW) villages. Pyroclastic flows also occurred, according to ground-based reports; small deposits confined to one drainage were inspected by RVO during an overflight on 17 July and were confirmed to be from the 7 July event. Ashfall continued until 10 July and covered vegetation, which destroyed bushes and gardens and contaminated rivers and streams.
RVO reported another eruption on 14 July. The Darwin VAAC stated that an explosive event started around 0830 on 15 July and produced an ash plume that rose to 16.5 km altitude by 1000 and drifted N, according to satellite images. The plume continued to drift N and remained visible through 1900, and by 2150 it had dissipated.
Ashfall likely from both the 7 and 15 July events impacted about 8,111 people in Torokina (20 km SW), including Tsito/Vuakovi, Gotana, Koromaketo, Kenaia, Longkogari, Kenbaki, Piva (13 km SW), and Atsinima, and in the Tsitovi district, according to ABG. Significant ashfall was also reported in Ruruvu (22 km N) in the Wakunai District of Central Bougainville, though the thickness of these deposits could not be confirmed. An evacuation was called for the villages in Wakunai, where heavy ashfall had contaminated water sources; the communities of Ruruvu, Togarau, Kakarapaia, Karauturi, Atao, and Kuritaturi were asked to evacuate to a disaster center at the Wakunai District Station, and communities in Torokina were asked to evacuate to the Piva District station. According to a news article, more than 7,000 people needed temporary accommodations, with about 1,000 people in evacuation shelters. Ashfall had deposited over a broad area, contaminating water supplies, affecting crops, and collapsing some roofs and houses in rural areas. Schools were temporarily shut down. Intermittent ash emissions continued through the end of July and drifted NNW, NW, and SW. Fine ashfall was reported on the coast of Torokina, and ash plumes also drifted toward Laruma and Atsilima.
A small explosive eruption occurred at 2130 on 28 July that ejected material from the crater vents, according to reports from Torokina, in addition to a lava flow that contained two lobes. A second explosion was detected at 2157. Incandescence from the lava flow was visible from Piva as it descended the W flank around 2000 on 29 July (figure 47). The Darwin VAAC reported that a strong thermal anomaly was visible in satellite images during 30-31 July and that ash emissions rose to 2.4 km altitude and drifted WSW on 30 July. A ground report from RVO described localized emissions at 0900 on 31 July.
The Darwin VAAC reported that ash plumes were identified in satellite imagery at 0800 and 1220 on 12 August and rose to 2.1 km and 3 km altitude and drifted NW and W, respectively. A news report stated that aid was sent to more than 6,300 people that were adversely affected by the eruption. Photos taken during 17-19 August showed ash emissions rising no higher than 1 km above the summit and drifting SE. A small explosion generated an ash plume during the morning of 19 August. Deposits from small pyroclastic flows were also captured in the photos. Satellite images captured lava flows and pyroclastic flow deposits. Two temporary seismic stations were installed near Bagana on 17 August at distances of 7 km WSW (Vakovi station) and 11 km SW (Kepox station). The Kepox station immediately started to record continuous, low-frequency background seismicity.
Satellite data. Little to no thermal activity was detected during April through mid-July 2023; only one anomaly was recorded during early April and one during early June, according to MIROVA (Middle InfraRed Observation of Volcanic Activity) data (figure 48). Thermal activity increased in both power and frequency during mid-July through September, although there were still some short gaps in detected activity. MODVOLC also detected increased thermal activity during August; thermal hotspots were detected a total of five times on 19, 20, and 27 August. Weak thermal anomalies were also captured in infrared satellite images on clear weather days throughout the reporting period on 7, 12, and 17 April, 27 May, 1, 6, 16, and 31 July, and 19 September (figure 48); a strong thermal anomaly was visible on 31 July. Distinct sulfur dioxide plumes that drifted generally NW were intermittently captured by the TROPOMI instrument on the Sentinel-5P satellite and sometimes exceeded two Dobson Units (DUs) (figure 49).
Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Autonomous Bougainville Government, P.O Box 322, Buka, AROB, PNG (URL: https://abg.gov.pg/); Andrew Tupper (Twitter: @andrewcraigtupp); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Radio NZ (URL: https://www.rnz.co.nz/news/pacific/494464/more-than-7-000-people-in-bougainville-need-temporary-accommodation-after-eruption); USAID, 1300 Pennsylvania Ave, NW, Washington DC 20004, USA (URL: https://www.usaid.gov/pacific-islands/press-releases/aug-08-2023-united-states-provides-immediate-emergency-assistance-support-communities-affected-mount-bagana-volcanic-eruptions).
Mayon (Philippines) — October 2023
Cite this Report
Mayon
Philippines
13.257°N, 123.685°E; summit elev. 2462 m
All times are local (unless otherwise noted)
Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Mayon is located in the Philippines and has steep upper slopes capped by a small summit crater. Historical eruptions date back to 1616 CE that have been characterized by Strombolian eruptions, lava flows, pyroclastic flows, and mudflows. Eruptions mostly originated from a central conduit. Pyroclastic flows and mudflows have commonly descended many of the approximately 40 drainages that surround the volcano. The most recent eruption occurred during June through October 2022 and consisted of lava dome growth and gas-and-steam emissions (BGVN 47:12). A new eruption was reported during late April 2023 and has included lava flows, pyroclastic density currents, ash emissions, and seismicity. This report covers activity during April through September 2023 based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS).
During April through September 2023, PHIVOLCS reported near-daily rockfall events, frequent volcanic earthquakes, and sulfur dioxide measurements. Gas-and-steam emissions rose 100-900 m above the crater and drifted in different directions. Nighttime crater incandescence was often visible during clear weather and was accompanied by incandescent avalanches of material. Activity notably increased during June when lava flows were reported on the S, SE, and E flanks (figure 52). The MIROVA graph (Middle InfraRed Observation of Volcanic Activity) showed strong thermal activity coincident with these lava flows, which remained active through September (figure 53). According to the MODVOLC thermal algorithm, a total of 110 thermal alerts were detected during the reporting period: 17 during June, 40 during July, 27 during August, and 26 during September. During early June, pyroclastic density currents (PDCs) started to occur more frequently.
Low activity was reported during much of April and May; gas-and-steam emissions rose 100-900 m above the crater and generally drifted in different directions. A total of 52 rockfall events and 18 volcanic earthquakes were detected during April and 147 rockfall events and 13 volcanic events during May. Sulfur dioxide flux measurements ranged between 400-576 tons per day (t/d) during April, the latter of which was measured on 29 April and between 162-343 t/d during May, the latter of which was measured on 13 May.
Activity during June increased, characterized by lava flows, pyroclastic density currents (PDCs), crater incandescence and incandescent rockfall events, gas-and-steam emissions, and continued seismicity. Weather clouds often prevented clear views of the summit, but during clear days, moderate gas-and-steam emissions rose 100-2,500 m above the crater and drifted in multiple directions. A total of 6,237 rockfall events and 288 volcanic earthquakes were detected. The rockfall events often deposited material on the S and SE flanks within 700-1,500 m of the summit crater and ash from the events drifted SW, S, SE, NE, and E. Sulfur dioxide emissions ranged between 149-1,205 t/d, the latter of which was measured on 10 June. Short-term observations from EDM and electronic tiltmeter monitoring indicated that the upper slopes were inflating since February 2023. Longer-term ground deformation parameters based on EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano remained inflated, especially on the NW and SE flanks. At 1000 on 5 June the Volcano Alert Level (VAL) was raised to 2 (on a 0-5 scale). PHIVOLCS noted that although low-level volcanic earthquakes, ground deformation, and volcanic gas emissions indicated unrest, the steep increase in rockfall frequency may indicate increased dome activity.
A total of 151 dome-collapse PDCs occurred during 8-9 and 11-30 June, traveled 500-2,000 m, and deposited material on the S flank within 2 km of the summit crater. During 8-9 June the VAL was raised to 3. At approximately 1947 on 11 June lava flow activity was reported; two lobes traveled within 500 m from the crater and deposited material on the S (Mi-isi), SE (Bonga), and E (Basud) flanks. Weak seismicity accompanied the lava flow and slight inflation on the upper flanks. This lava flow remained active through 30 June, moving down the S and SE flank as far as 2.5 km and 1.8 km, respectively and depositing material up to 3.3 km from the crater. During 15-16 June traces of ashfall from the PDCs were reported in Sitio Buga, Nabonton, City of Ligao and Purok, and San Francisco, Municipality of Guinobatan. During 28-29 June there were two PDCs generated by the collapse of the lava flow front, which generated a light-brown ash plume 1 km high. Satellite monitors detected significant concentrations of sulfur dioxide beginning on 29 June. On 30 June PDCs primarily affected the Basud Gully on the E flank, the largest of which occurred at 1301 and lasted eight minutes, based on the seismic record. Four PDCs generated between 1800 and 2000 that lasted approximately four minutes each traveled 3-4 km on the E flank and generated an ash plume that rose 1 km above the crater and drifted N and NW. Ashfall was recorded in Tabaco City.
Similar strong activity continued during July; slow lava effusion remained active on the S and SE flanks and traveled as far as 2.8 km and 2.8 km, respectively and material was deposited as far as 4 km from the crater. There was a total of 6,983 rockfall events and 189 PDCs that affected the S, SE, and E flanks. The volcano network detected a total of 2,124 volcanic earthquakes. Continuous gas-and-steam emissions rose 200-2,000 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 792-4,113 t/d, the latter of which was measured on 28 July. During 2-4 July three PDCs were generated from the collapse of the lava flow and resulting light brown plumes rose 200-300 m above the crater. Continuous tremor pulses were reported beginning at 1547 on 3 July through 7 July at 1200, at 2300 on 8 July and going through 0300 on 10 July, and at 2300 on 16 July, as recorded by the seismic network. During 6-9 July there were 10 lava flow-collapse-related PDCs that generated light brown plumes 300-500 m above the crater. During 10-11 July light ashfall was reported in some areas of Mabinit, Legazpi City, Budiao and Salvacion, Daraga, and Camalig, Albay. By 18 July the lava flow advanced 600 m on the E flank as well.
During 1733 on 18 July and 0434 on 19 July PHIVOLCS reported 30 “ashing” events, which are degassing events accompanied by audible thunder-like sounds and entrained ash at the crater, which produced short, dark plumes that drifted SW. These events each lasted 20-40 seconds, and plume heights ranged from 150-300 m above the crater, as recorded by seismic, infrasound, visual, and thermal monitors. Three more ashing events occurred during 19-20 July. Short-term observations from electronic tilt and GPS monitoring indicate deflation on the E lower flanks in early July and inflation on the NW middle flanks during the third week of July. Longer-term ground deformation parameters from EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano was still generally inflated relative to baseline levels. A short-lived lava pulse lasted 28 seconds at 1956 on 21 July, which was accompanied by seismic and infrasound signals. By 22 July, the only lava flow that remained active was on the SE flank, and continued to extend 3.4 km, while those on the S and E flanks weakened markedly. One ashing event was detected during 30-31 July, whereas there were 57 detected during 31 July-1 August; according to PHIVOLCS beginning at approximately 1800 on 31 July eruptive activity was dominated by phases of intermittent ashing, as well as increased in the apparent rates of lava effusion from the summit crater. The ashing phases consisted of discrete events recorded as low-frequency volcanic earthquakes (LFVQ) typically 30 seconds in duration, based on seismic and infrasound signals. Gray ash plume rose 100 m above the crater and generally drifted NE. Shortly after these ashing events began, new lava began to effuse rapidly from the crater, feeding the established flowed on the SE, E, and E flanks and generating frequent rockfall events.
Intensified unrest persisted during August. There was a total of 4,141 rockfall events, 2,881 volcanic earthquakes, which included volcanic tremor events, 32 ashing events, and 101 PDCs detected throughout the month. On clear weather days, gas-and-steam emissions rose 300-1,500 m above the crater and drifted in different directions (figure 54). Sulfur dioxide emissions averaged 735-4,756 t/d, the higher value of which was measured on 16 August. During 1-2 August the rate of lava effusion decreased, but continued to feed the flows on the SE, S, and E flanks, maintaining their advances to 3.4 km, 2.8 km, and 1.1 km from the crater, respectively (figure 55). Rockfall and PDCs generated by collapses at the lava flow margins and from the summit dome deposited material within 4 km of the crater. During 3-4 August there were 10 tremor events detected that lasted 1-4 minutes. Short-lived lava pulse lasted 35 seconds and was accompanied by seismic and infrasound signals at 0442 on 6 August. Seven collapses were recorded at the front of the lava flow during 12-14 August.
During September, similar activity of slow lava effusion, PDCs, gas-and-steam emissions, and seismicity continued. There was a total of 4,452 rockfall events, 329 volcanic earthquakes, which included volcanic tremor events, two ashing events, and 85 PDCs recorded throughout the month. On clear weather days, gas-and-steam emissions rose 100-1,500 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 609-2,252 t/d, the higher average of which was measured on 6 September. Slow lava effusion continued advancing on the SE, S, and E flanks, maintaining lengths of 3.4 km, 2.8 km, and 1.1 km, respectively. Rockfall and PDC events generated by collapses along the lava flow margins and at the summit dome deposited material within 4 km of the crater.
Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.
Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); William Rogers, Legazpi City, Albay Province, Philippines.
Nishinoshima (Japan) — October 2023
Cite this Report
Nishinoshima
Japan
27.247°N, 140.874°E; summit elev. 100 m
All times are local (unless otherwise noted)
Eruption plumes and gas-and-steam plumes during May-August 2023
Nishinoshima, located about 1,000 km S of Tokyo, is a small island in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent submarine peaks to the S, W, and NE. Eruptions date back to 1973 and the current eruption period began in October 2022. Recent activity has consisted of small ash plumes and fumarolic activity (BGVN 48:07). This report covers activity during May through August 2023, using information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports and satellite data.
Activity during May through June was relatively low. The Japan Coast Guard (JCG) did overflights on 14 and 22 June and reported white gas-and-steam emissions rising 600 m and 1,200 m from the central crater of the pyroclastic cone, respectively (figure 125). In addition, multiple white gas-and-steam emissions rose from the inner rim of the W side of the crater and from the SE flank of the pyroclastic cone. Discolored brown-to-green water was observed around almost the entire perimeter of the island; on 22 June light green discolored water was observed off the S coast of the island.
Observations from the Himawari meteorological satellite confirmed an eruption on 9 and 10 July. An eruption plume rose 1.6 km above the crater and drifted N around 1300 on 9 July. Satellite images acquired at 1420 and 2020 on 9 July and at 0220 on 10 July showed continuing emissions that rose 1.3-1.6 km above the crater and drifted NE and N. The Tokyo VAAC reported that an ash plume seen by a pilot and identified in a satellite image at 0630 on 21 July rose to 3 km altitude and drifted S.
Aerial observations conducted by JCG on 8 August showed a white-and-gray plume rising from the central crater of the pyroclastic cone, and multiple white gas-and-steam emissions were rising from the inner edge of the western crater and along the NW-SE flanks of the island (figure 126). Brown-to-green discolored water was also noted around the perimeter of the island.
Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity), showing an increase in both frequency and power beginning in July (figure 127). This increase in activity coincides with eruptive activity on 9 and 10 July, characterized by eruption plumes. According to the MODVOLC thermal alert algorithm, one thermal hotspot was recorded on 20 July. Weak thermal anomalies were also detected in infrared satellite imagery, accompanied by strong gas-and-steam plumes (figure 128).
Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Krakatau (Indonesia) — October 2023
Cite this Report
Krakatau
Indonesia
6.1009°S, 105.4233°E; summit elev. 285 m
All times are local (unless otherwise noted)
White gas-and-steam plumes and occasional ash plumes during May-August 2023
Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of Strombolian eruptions and ash plumes (BGVN 48:07). This report describes lower levels of activity consisting of ash and white gas-and-steam plumes during May through August 2023, based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, and satellite data.
Activity was relatively low during May and June. Daily white gas-and-steam emissions rose 25-200 m above the crater and drifted in different directions. Five ash plumes were detected at 0519 on 10 May, 1241 on 11 May, 0920 on 12 May, 2320 on 12 May, and at 0710 on 13 May, and rose 1-2.5 km above the crater and drifted SW. A webcam image taken on 12 May showed ejection of incandescent material above the vent. A total of nine ash plumes were detected during 6-11 June: at 1434 and 00220 on 6 and 7 June the ash plumes rose 500 m above the crater and drifted NW, at 1537 on 8 June the ash plume rose 1 km above the crater and drifted SW, at 0746 and at 0846 on 9 June the ash plumes rose 800 m and 3 km above the crater and drifted SW, respectively, at 0423, 1431, and 1750 on 10 June the ash plumes rose 2 km, 1.5 km, and 3.5 km above the crater and drifted NW, respectively, and at 0030 on 11 June an ash plume rose 2 km above the crater and drifted NW. Webcam images taken on 10 and 11 June at 0455 and 0102, respectively, showed incandescent material ejected above the vent. On 19 June an ash plume at 0822 rose 1.5 km above the crater and drifted SE.
Similar low activity of white gas-and-steam emissions and few ash plumes were reported during July and August. Daily white gas-and-steam emissions rose 25-300 m above the crater and drifted in multiple directions. Three ash plumes were reported at 0843, 0851, and 0852 on 20 July that rose 500-2,000 m above the crater and drifted NW.
The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during May through August 2023 (figure 140). Although activity was often obscured by weather clouds, a thermal anomaly was visible in an infrared satellite image of the crater on 12 May, accompanied by an eruption plume that drifted SW (figure 141).
Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Villarrica (Chile) — October 2023
Cite this Report
Villarrica
Chile
39.42°S, 71.93°W; summit elev. 2847 m
All times are local (unless otherwise noted)
Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Villarrica, in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago and is located at the base of the presently active cone at the NW margin of a 6-km-wide caldera. Historical eruptions eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of nighttime crater incandescence, ash emissions, and seismicity (BGVN 48:04). This report covers activity during April through September 2023 and describes occasional Strombolian activity, gas-and-ash emissions, and nighttime crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.
Seismicity during April consisted of long period (LP) events and tremor (TRE); a total of 9,413 LP-type events and 759 TR-type events were detected throughout the month. Nighttime crater incandescence persisted and was visible in the degassing column. Sulfur dioxide data was obtained using Differential Absorption Optical Spectroscopy Equipment (DOAS) that showed an average value of 1,450 ± 198 tons per day (t/d) during 1-15 April and 1,129 ± 201 t/d during 16-30 April, with a maximum daily value of 2,784 t/d on 9 April. Gas-and-steam emissions of variable intensities rose above the active crater as high as 1.3 km above the crater on 13 April. Strombolian explosions were not observed and there was a slight decrease in the lava lake level.
There were 14,123 LP-type events and 727 TR-type events detected during May. According to sulfur dioxide measurements taken with DOAS equipment, the active crater emitted an average value of 1,826 ± 482 t/d during 1-15 May and 912 ± 41 t/d during 16-30 May, with a daily maximum value of 5,155 t/d on 13 May. Surveillance cameras showed continuous white gas-and-steam emissions that rose as high as 430 m above the crater on 27 May. Nighttime incandescence illuminated the gas column less than 300 m above the crater rim was and no pyroclastic emissions were reported. A landslide was identified on 13 May on the E flank of the volcano 50 m from the crater rim and extending 300 m away; SERNAGEOMIN noted that this event may have occurred on 12 May. During the morning of 27 and 28 May minor Strombolian explosions characterized by incandescent ejecta were recorded at the crater rim; the last reported Strombolian explosions had occurred at the end of March.
Seismic activity during June consisted of five volcano-tectonic (VT)-type events, 21,606 LP-type events, and 2,085 TR-type events. The average value of sulfur dioxide flux obtained by DOAS equipment was 1,420 ± 217 t/d during 1-15 June and 2,562 ± 804 t/d, with a maximum daily value of 4,810 t/d on 17 June. White gas-and-steam emissions rose less than 480 m above the crater; frequent nighttime crater incandescence was reflected in the degassing plume. On 12 June an emission rose 100 m above the crater and drifted NNW. On 15 June one or several emissions resulted in ashfall to the NE as far as 5.5 km from the crater, based on a Skysat satellite image. Several Strombolian explosions occurred within the crater; activity on 15 June was higher energy and ejected blocks 200-300 m on the NE slope. Surveillance cameras showed white gas-and-steam emissions rising 480 m above the crater on 16 June. On 19 and 24 June low-intensity Strombolian activity was observed, ejecting material as far as 200 m from the center of the crater to the E.
During July, seismicity included 29,319 LP-type events, 3,736 TR-type events, and two VT-type events. DOAS equipment recorded two days of sulfur dioxide emissions of 4,220 t/d and 1,009 t/d on 1 and 13 July, respectively. Constant nighttime incandescence was also recorded and was particularly noticeable when accompanied by eruptive columns on 12 and 16 July. Minor explosive events were detected in the crater. According to Skysat satellite images taken on 12, 13, and 16 July, ashfall deposits were identified 155 m S of the crater. According to POVI, incandescence was visible from two vents on the crater floor around 0336 on 12 July. Gas-and-ash emissions rose as high as 1.2 km above the crater on 13 July and drifted E and NW. A series of gas-and-steam pulses containing some ash deposited material on the upper E flank around 1551 on 13 July. During 16-31 July, average sulfur dioxide emissions of 1,679 ± 406 t/d were recorded, with a maximum daily value of 2,343 t/d on 28 July. Fine ash emissions were also reported on 16, 17, and 23 July.
Seismicity persisted during August, characterized by 27,011 LP-type events, 3,323 TR-type events, and three VT-type events. The average value of sulfur dioxide measurements taken during 1-15 August was 1,642 ± 270 t/d and 2,207 ± 4,549 t/d during 16-31 August, with a maximum daily value of 3,294 t/d on 27 August. Nighttime crater incandescence remained visible in degassing columns. White gas-and-steam emissions rose 480 m above the crater on 6 August. According to a Skysat satellite image from 6 August, ash accumulation was observed proximal to the crater and was mainly distributed toward the E slope. White gas-and-steam emissions rose 320 m above the crater on 26 August. Nighttime incandescence and Strombolian activity that generated ash emissions were reported on 27 August.
Seismicity during September was characterized by five VT-type events, 12,057 LP-type events, and 2,058 TR-type events. Nighttime incandescence persisted. On 2 September an ash emission rose 180 m above the crater and drifted SE at 1643 (figure 125) and a white gas-and-steam plume rose 320 m above the crater. According to the Buenos Aires VAAC, periods of continuous gas-and-ash emissions were visible in webcam images from 1830 on 2 September to 0110 on 3 September. Strombolian activity was observed on 2 September and during the early morning of 3 September, the latter event of which generated an ash emission that rose 60 m above the crater and drifted 100 m from the center of the crater to the NE and SW. Ashfall was reported to the SE and S as far as 750 m from the crater. The lava lake was active during 3-4 September and lava fountaining was visible for the first time since 26 March 2023, according to POVI. Fountains captured in webcam images at 2133 on 3 September and at 0054 on 4 September rose as high as 60 m above the crater rim and ejected material onto the upper W flank. Sulfur dioxide flux of 1,730 t/d and 1,281 t/d was measured on 3 and 4 September, respectively, according to data obtained by DOAS equipment.
Strong Strombolian activity and larger gas-and-ash plumes were reported during 18-20 September. On 18 September activity was also associated with energetic LP-type events and notable sulfur dioxide fluxes (as high as 4,277 t/d). On 19 September Strombolian activity and incandescence were observed. On 20 September at 0914 ash emissions rose 50 m above the crater and drifted SSE, accompanied by Strombolian activity that ejected material less than 100 m SSE, causing fall deposits on that respective flank. SERNAGEOMIN reported that a Planet Scope satellite image taken on 20 September showed the lava lake in the crater, measuring 32 m x 35 m and an area of 0.001 km2. Several ash emissions were recorded at 0841, 0910, 1251, 1306, 1312, 1315, and 1324 on 23 September and rose less than 150 m above the crater. The sulfur dioxide flux value was 698 t/d on 23 September and 1,097 t/d on 24 September. On 24 September the Volcanic Alert Level (VAL) was raised to Orange (the third level on a four-color scale). SENAPRED maintained the Alert Level at Yellow (the middle level on a three-color scale) for the communities of Villarrica, Pucón (16 km N), Curarrehue, and Panguipulli.
During 24-25 September there was an increase in seismic energy (observed at TR-events) and acoustic signals, characterized by 1 VT-type event, 213 LP-type events, and 124 TR-type events. Mainly white gas-and-steam emissions, in addition to occasional fine ash emissions were recorded. During the early morning of 25 September Strombolian explosions were reported and ejected material 250 m in all directions, though dominantly toward the NW. On 25 September the average value of sulfur dioxide flux was 760 t/d. Seismicity during 25-30 September consisted of five VT-type events, 1,937 LP-type events, and 456 TR-type events.
During 25-29 September moderate Strombolian activity was observed and ejected material as far as the crater rim. In addition, ash pulses lasting roughly 50 minutes were observed around 0700 and dispersed ENE. During 26-27 September a TR episode lasted 6.5 hours and was accompanied by discrete acoustic signals. Satellite images from 26 September showed a spatter cone on the crater floor with one vent that measured 10 x 14 m and a smaller vent about 35 m NE of the cone. SERNAGEOMIN reported an abundant number of bomb-sized blocks up to 150 m from the crater, as well as impact marks on the snow, which indicated explosive activity. A low-altitude ash emission was observed drifting NW around 1140 on 28 September, based on webcam images. Between 0620 and 0850 on 29 September an ash emission rose 60 m above the crater and drifted NW. During an overflight taken around 1000 on 29 September scientists observed molten material in the vent, a large accumulation of pyroclasts inside the crater, and energetic degassing, some of which contained a small amount of ash. Block-sized pyroclasts were deposited on the internal walls and near the crater, and a distal ash deposit was also visible. The average sulfur dioxide flux measured on 28 September was 344 t/d. Satellite images taken on 29 September ashfall was deposited roughly 3 km WNW from the crater and nighttime crater incandescence remained visible. The average sulfur dioxide flux value from 29 September was 199 t/d. On 30 September at 0740 a pulsating ash emission rose 1.1 km above the crater and drifted NNW (figure 126). Deposits on the S flank extended as far as 4.5 km from the crater rim, based on satellite images from 30 September.
Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed intermittent thermal activity during April through September, with slightly stronger activity detected during late September (figure 127). Small clusters of thermal activity were detected during mid-June, early July, early August, and late September. According to the MODVOLC thermal alert system, a total of four thermal hotspots were detected on 7 July and 3 and 23 September. This activity was also intermittently captured in infrared satellite imagery on clear weather days (figure 128).
Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.
Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Sistema y Servicio Nacional de Prevención y Repuesta Ante Desastres (SENAPRED), Av. Beauchef 1671, Santiago, Chile (URL: https://web.senapred.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Merapi (Indonesia) — October 2023
Cite this Report
Merapi
Indonesia
7.54°S, 110.446°E; summit elev. 2910 m
All times are local (unless otherwise noted)
Frequent incandescent avalanches during April-September 2023
Merapi, located just north of the major city of Yogyakarta in central Java, Indonesia, has had activity within the last 20 years characterized by pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome. The current eruption period began in late December 2020 and has more recently consisted of ash plumes, intermittent incandescent avalanches of material, and pyroclastic flows (BGVN 48:04). This report covers activity during April through September 2023, based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG which specifically monitors Merapi. Additional information comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data.
Activity during April through September 2023 primarily consisted of incandescent avalanches of material that mainly affected the SW and W flanks and traveled as far as 2.3 km from the summit (table 25) and white gas-and-steam emissions that rose 10-1,000 m above the crater.
Table 25. Monthly summary of avalanches and avalanche distances recorded at Merapi during April through September 2023. The number of reported avalanches does not include instances where possible avalanches were heard but could not be visually confirmed as a result of inclement weather. Data courtesy of BPPTKG (April-September 2023 daily reports).
Month |
Average number of avalanches per day |
Distance avalanches traveled (m) |
Apr 2023 |
19 |
1,200-2,000 |
May 2023 |
22 |
500-2,000 |
Jun 2023 |
18 |
1,200-2,000 |
Jul 2023 |
30 |
300-2,000 |
Aug 2023 |
25 |
400-2,300 |
Sep 2023 |
23 |
600-2,000 |
BPPTKG reported that during April and May white gas-and-steam emissions rose 10-750 m above the crater, incandescent avalanches descended 500-2,000 m on the SW and W flanks (figure 135). Cloudy weather often prevented clear views of the summit, and sometimes avalanches could not be confirmed. According to a webcam image, a pyroclastic flow was visible on 17 April at 0531. During the week of 28 April and 4 May a pyroclastic flow was reported on the SW flank, traveling up to 2.5 km. According to a drone overflight taken on 17 May the SW lava dome volume was an estimated 2,372,800 cubic meters and the dome in the main crater was an estimated 2,337,300 cubic meters.
During June and July similar activity persisted with white gas-and-steam emissions rising 10-350 m above the crater and frequent incandescent avalanches that traveled 300-2,000 m down the SW, W, and S flanks (figure 136). Based on an analysis of aerial photos taken on 24 June the volume of the SW lava dome was approximately 2.5 million cubic meters. A pyroclastic flow was observed on 5 July that traveled 2.7 km on the SW flank. According to the Darwin VAAC multiple minor ash plumes were identified in satellite images on 19 July that rose to 3.7 km altitude and drifted S and SW. During 22, 25, and 26 July a total of 17 avalanches descended as far as 1.8 km on the S flank.
Frequent white gas-and-steam emissions continued during August and September, rising 10-450 m above the crater. Incandescent avalanches mainly affected the SW and W flanks and traveled 400-2,300 m from the vent (figure 137). An aerial survey conducted on 10 August was analyzed and reported that estimates of the SW dome volume was 2,764,300 cubic meters and the dome in the main crater was 2,369,800 cubic meters.
Frequent and moderate-power thermal activity continued throughout the reporting period, according to a MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 138). There was an increase in the number of detected anomalies during mid-May. The MODVOLC thermal algorithm recorded a total of 47 thermal hotspots: six during April, nine during May, eight during June, 15 during July, four during August, and five during September. Some of this activity was captured in infrared satellite imagery on clear weather days, sometimes accompanied by incandescent material on the SW flank (figure 139).
Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.
Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Øystein Lund Andersen (URL: https://www.oysteinlundandersen.com/, https://twitter.com/oysteinvolcano).
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Moderate explosive activity with ash plumes continued during June-November 2023
Ebeko, located on the N end of Paramushir Island in Russia’s Kuril Islands just S of the Kamchatka Peninsula, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Observed eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruptive period began in June 2022, consisting of frequent explosions, ash plumes, and thermal activity (BGVN 47:10, 48:06). This report covers similar activity during June-November 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Moderate explosive activity continued during June-November 2023 (figures 50 and 51). According to visual data from Severo-Kurilsk, explosions sent ash 2-3.5 km above the summit (3-4.5 km altitude) during most days during June through mid-September. Activity after mid-September was slightly weaker, with ash usually reaching less than 2 km above the summit. According to KVERT the volcano in October and November was, with a few exceptions, either quiet or obscured by clouds that prevented satellite observations. KVERT issued Volcano Observatory Notices for Aviation (VONA) on 8 and 12 June, 13 and 22 July, 3 and 21 August, and 31 October warning of potential aviation hazards from ash plumes drifting 3-15 km from the volcano. Based on satellite data, KVERT reported a persistent thermal anomaly whenever weather clouds permitted viewing.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 21, Number 04 (April 1996)
Managing Editor: Richard Wunderman
Adatarayama (Japan)
Volcanic tremor detected on four days in April
Akutan (United States)
Seismicity decreases and remains low
Colima (Mexico)
Minor rockfalls; measurements of SO2 flux and fumarole temperatures
Deception Island (Antarctica)
Seismicity at a level similar to that recorded in the 1994-95 survey
Fukutoku-Oka-no-Ba (Japan)
Yellowish-brown discolored seawater seen again
Galeras (Colombia)
Small earthquake swarm and some tornillo events
Kuchinoerabujima (Japan)
Number of volcanic earthquakes continues to increase
Kujusan (Japan)
Seismicity and steam plume without ash
Langila (Papua New Guinea)
Occasional ash-and-vapor clouds and night glows
Lengai, Ol Doinyo (Tanzania)
Carbonititic lava flows from a hornito active since July 1995
Long Valley (United States)
Summary of 1995 activity; March-April 1996 earthquake swarm
Manam (Papua New Guinea)
Small ejection of incandescent particles; minor inflation
Masaya (Nicaragua)
Incandescent vent in Santiago crater emitting large amounts of gas
Momotombo (Nicaragua)
High seismicity and a black plume, but no crater changes
Negro, Cerro (Nicaragua)
Gentle degassing and lava-flow fumaroles; 1995 cone partially collapsed
Popocatepetl (Mexico)
Explosion on 30 April kills five climbers near the crater rim
Rabaul (Papua New Guinea)
Low-level eruptive activity from Tavurvur
Ruapehu (New Zealand)
Landslides and lahars in the aftermath of the 23 September eruption
Soputan (Indonesia)
Small eruption on 15 March seen on satellite imagery
Soufriere Hills (United Kingdom)
Significant explosions and pyroclastic flows; vigorous dome growth
Stromboli (Italy)
Increased seismicity and Crater 1 activity after mid-April
Telica (Nicaragua)
Low-level degassing and sulfur deposits observed in crater
Vulcano (Italy)
Decrease in fumarole temperatures
Whakaari/White Island (New Zealand)
Uplift of the main crater floor and changes in the hydrothermal system
Adatarayama (Japan) — April 1996
Cite this Report
Adatarayama
Japan
37.647°N, 140.281°E; summit elev. 1728 m
All times are local (unless otherwise noted)
Volcanic tremor detected on four days in April
On 12, 15, 25, and 26 April, small-amplitude volcanic tremors were detected. Volcanic tremor was previously recorded on 27 October 1995 (BGVN 20:10), the first such occurrence since observations began in 1965.
Geologic Background. The broad forested massif of Adatarayama volcano is located E of Bandai volcano, about 15 km SW of Fukushima city. It consists of a group of dominantly andesitic stratovolcanoes and lava domes that rise above Tertiary rocks on the south and abut Azumayama volcano on the north. Construction took place in three main stages that began about 550,000, 350,000, and 200,000 years ago. The high point of the complex is 1728-m-high Minowasan, a dome-shaped stratovolcano north of Tetsuzan, the currently active stratovolcano. Numanotaira, the active summit crater, is surrounded by hot springs and fumaroles and is breached by the Iogawa river ("Sulfur River") on the west. Seventy-two workers of a sulfur mine in the summit crater were killed during an eruption in 1900. Historical eruptions have been restricted to the 1.2-km-wide, 350-m-deep Numonotaira crater.
Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.
Akutan (United States) — April 1996
Cite this Report
Akutan
United States
54.134°N, 165.986°W; summit elev. 1303 m
All times are local (unless otherwise noted)
Seismicity decreases and remains low
The rate of seismicity after 19 April continued to be <5 recorded earthquakes per day, a significant decrease from the number of earthquakes recorded during the seismic crisis of mid-March (BGVN 21:02 and 21:03). Background seismicity had not yet stabilized, but the small number of daily earthquakes through 3 May allowed the level of concern to be downgraded to Green at that time. The daily number of recorded earthquakes continued to be low, with some fluctuations, through 17 May.
Geologic Background. Akutan contains a 2-km-wide caldera with a large cinder cone in the NE part of the caldera that has been the source of frequent explosive eruptions and occasional lava effusion that covers the caldera floor. An older, largely buried caldera was formed during the late Pleistocene or early Holocene. Two volcanic centers are located on the NW flank. Lava Peak is of Pleistocene age, and a cinder cone lower on the flank produced a lava flow in 1852 that extended the shoreline of the island and forms Lava Point. The 60-365 m deep younger caldera was formed during a major explosive eruption about 1,600 years ago and contains at least three lakes. A lava flow in 1978 traveled through a narrow breach in the north caldera rim almost to the coast. Fumaroles occur at the base of the caldera cinder cone, and hot springs are located NE of the caldera at the head of Hot Springs Bay valley and along the shores of Hot Springs Bay.
Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.
Colima
Mexico
19.514°N, 103.62°W; summit elev. 3850 m
All times are local (unless otherwise noted)
Minor rockfalls; measurements of SO2 flux and fumarole temperatures
The following report summarizes geochemical monitoring from mid-1995 through early 1996. All measurements were carried out by the Colima Volcano Observatory group and visiting colleagues. Measurements included SO2 fluxes, as well as fumarole temperatures, gas condensate chemistry, and S-flank hot spring temperature and pH readings.
COSPEC SO2 measurements. Five COSPEC surveys between 25 August 1995 and 3 January 1996 measured SO2 values of <200 metric tons/day (table 3). The aircraft used were provided by the Mexican Navy (on three surveys) and the Colima Civil Protection authorities (on two surveys).
Table 3. Summary of COSPEC SO2 measurements at Colima, 25 August 1995-1 January 1996. Courtesy of Colima Volcano Observatory.
Date |
SO2 avg. (tons/day) |
Wind speed (m/s) |
Altitude (m) |
Number of transects |
25 Aug 1995 |
197 ± 73 |
11.3 ± 1.6 |
3,048 |
5 |
10 Oct 1995 |
52 ± 19 |
3.1 ± 1.1 |
2,286 |
7 |
23 Nov 1995 |
166 ± 87 |
9.0 ± 2.5 |
-- |
7 |
29 Nov 1995 |
43 ± 16 |
18.3 ± 1.3 |
3,658 |
9 |
03 Jan 1996 |
50 ± 13 |
6.2 ± 2.5 |
3,190 |
7 |
Summit fumaroles. On 1, 8, 13, and 27 December 1995, and 4, 21, and 26 January 1996, observatory scientists measured summit fumarole temperatures (figure 24) for the same three areas measured in July 1995 (BGVN 20:06 and 20:07). The new temperatures had maximum values at least 50°C lower (Area I), 25°C lower (Area II), and 80°C higher (area III) than those obtained in July 1995. The temperatures at each fumarole showed variable oscillations over the two months of observation (table 4).
Table 4. Summary of fumarole temperatures (°C) at Colima, December 1995-January 1996. Courtesy of Colima Volcano Observatory.
Area |
Fumarole |
01 Dec 1995 |
08 Dec 1995 |
13 Dec 1995 |
17 Dec 1995 |
04 Jan 1996 |
21 Jan 1996 |
26 Jan 1996 |
I |
1 |
365 |
382 |
-- |
354 |
366 |
411 |
-- |
I |
2 |
422 |
427 |
-- |
405 |
409 |
409 |
-- |
I |
3 |
442 |
437 |
-- |
409 |
439 |
440 |
-- |
I |
4 |
430 |
428 |
-- |
417 |
412 |
408 |
-- |
I |
5 |
281 |
265 |
-- |
-- |
255 |
268 |
-- |
II |
6 |
388 |
434 |
387 |
-- |
428 |
386 |
-- |
II |
7 |
420 |
427 |
421 |
-- |
426 |
420 |
-- |
II |
8 |
385 |
397 |
330 |
-- |
-- |
-- |
-- |
II |
9 |
380 |
384 |
377 |
-- |
401 |
397 |
-- |
II-B |
9' |
-- |
628 |
610 |
-- |
623 |
592 |
-- |
III |
9'-2 |
-- |
856 |
825 |
-- |
855 |
846 |
844 |
III |
10 |
365 |
370 |
-- |
-- |
357 |
371 |
-- |
III |
11 |
370 |
386 |
-- |
-- |
413 |
402 |
-- |
III |
12 |
608 |
548 |
-- |
-- |
534 |
546 |
-- |
III |
13 |
700 |
670 |
-- |
-- |
684 |
636 |
-- |
III |
14 |
552 |
471 |
-- |
-- |
475 |
503 |
-- |
During ascents on 1 and 8 December, extremely good visibility facilitated access to the dome area. This led to the discovery of high-temperature fumaroles never before measured by the Colima group. Fumaroles 12 and 13 in Area III were discovered on 1 December. It was not possible to establish the age of these fumaroles. Their high temperatures strongly influenced the average and maximum values for their area. However, this is not a proof of an overall increase in the temperature of the system. Fumarole 9' was found on 8 December at a "new" near-summit area called II-B, located roughly midway between areas II and III. The same day, J.C. Gavilanes discovered an incandescent fumarole (9'-2) in Area III. A reddish incandescence was visible ~30 cm below the surface inside its degassing hole. During the 13 December ascent, E. Tello took three gas samples from fumarole 8 in Area II. By 21 January this fumarole had disappeared.
On 26 January, another ascent allowed Yuri Taran to collect gas condensates from fumaroles 9 and 9'-2, with the following results: a) fumarole 9; temperature, 382°C; Cl, 6,730 ppm; F, 760 ppm; SO4, 5,400 ppm; B, 46 ppm; b) fumarole 9'-2; temperature, 738°C; Cl, 8,540 ppm; F, 620 ppm; SO4, 2,300 ppm; B, 12 ppm. These high-temperature condensates may indicate a proximal magma body.
Other observations. A rockfall from the summit area was noted by biologist D. Wroe while conducting research on the ecology of cats on Colima. He reported that on the night of 26 December he was awakened by dogs barking and this was immediately followed by a major rock avalanche.
Mr. Gonzáles-Dueñas, owner of the restaurant El Jacal de San Antonio (~10 km S of the volcano) witnessed about 10 rockfalls from the summit toward the S and SW during the first days of January 1996. This was confirmed by abundant whitish-yellowish dust covering the paths taken by the rockfalls. On 10 February, Saucedo and Komorowski witnessed one rockfall accompanied by a dust cloud that moved S; they also noted a whitish-yellowish dust along the rockfall's path.
Seven springs within 10 km of the summit on the S and SW flank had pH values of 5.9-6.9 and temperatures of 11-32°C. The highest temperature (30-32°C) and a high pH (6.2-6.8) was found at the San Antonio spring (7 km SSW of the summit). Only the San Antonio spring had been measured previously.
Geologic Background. The Colima complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide scarp, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent recorded eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.
Information Contacts: Juan Carlos Gavilanes Ruiz, Carlos Navarro Ochoa, Abel Cortés Cortés, Ricardo Sauced Girón, Juan José Ramírez Ruiz, Eliseo Alatorre Chávez, and Vyacheslav Zobin, Colima Volcano Observatory, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Colima, México; Jean-Christophe Komorowski, Institut de Physique du Globe de Paris, Observatoires Volcanologiques, 4 Place Jussieu, Boite 89, 75252 Paris, Cedex 05, France; Enrique Tello, Gerencia de Geotermia de la Comisión Federal de Electricidad, Morelia, Michoacán, México; Yuri Taran, Instituto de Geofísica, UNAM, Ciudad Universitaria, 04510 México D.F., México; Andrew M. Burton and Duggins Wroe, OCEAN, 22 de Diciembre no.1, Col. M.A. Chamacho, Naucalpan 53910, México; Michael Sheridan, Geology Department, State University of New York, Buffalo, NY 14260, USA; Marina Belousova, Alexander Belousov, and Volodya Churikov, Institute of Volcanic Geology and Geochemistry, Piip 9, Petropavlovsk-Kamchatsky, 683006, Russia; Milton A. Garcés, Alaska Volcano Observatory, Geophysical Institute, University of Alaska, Fairbanks, AK 99775-7320, USA.
Deception Island (Antarctica) — April 1996
Cite this Report
Deception Island
Antarctica
62.9567°S, 60.6367°W; summit elev. 602 m
All times are local (unless otherwise noted)
Seismicity at a level similar to that recorded in the 1994-95 survey
This report describes the 1995-96 summer survey, which included geophysical, geochemical, geodetic, and volcanological work from 15 December 1995 to 27 February 1996.
Monitoring of seismicity was done with a digital seismic array composed of 30 Mark L4C-L25B geophones and a dynamic range of 16 bits. The system was deployed in the same location as the 1994-95 survey, near the Spanish station (BGVN20:04). This array was more dense than that used in the last survey in order to better cover events with frequencies greater than 10 Hz. More than 600 events were recorded, a level of seismicity similar to 1994-95. However, the average size of these events was smaller than for the previous survey. The events could be classified into several groups: regional seismicity, including intermediate-focus earthquakes; local seismicity, a few earthquakes with S-P time less than 5 seconds and M lesss than 2.5; volcanic tremors; long-period events; and hybrids, volcanic signals that contain long-period events and small earthquakes with S-P time less than 1 second. Two additional vertical component seismic stations were used, one analog on thermic drum and the other digital with a continuous register system and dynamic range of 24 bits. Regional seismicity was also monitored by another array deployed on Livingston Island, near the Spanish Antarctic "Juan Carlos I" Station, 35 km from Deception Island. Local activity at Deception Island was mainly grouped in several short (no longer than 12 hours) seismic swarms.
Continuous recording was made of magnetic field intensity using two Proton magnetometers at Deception Island and a third on Livingston Island used as a reference station. A variometric station was operated with one of the proton magnetometers. The gravimetric and GPS net was re-occupied and the network was enlarged with a new point close to the Spanish "Gabriel de Castilla" station. In order to do a paleomagnetic study some representative rock samples were collected. Systematic monitoring of fumarolic activity continued, and during this survey new areas were measured. Temperatures of fumaroles and hot soils remained stable with respect to those measured in the last survey. Anhydrous gas compositions were mainly CO2 (96-99%) and H2S (0.2-3.9%), with no SO2 detected.
Geologic Background. Ring-shaped Deception Island, at the SW end of the South Shetland Islands, NE of Graham Land Peninsula, was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides an entrance to a natural harbor within the 8.5 x 10 km caldera that was utilized as an Antarctic whaling station. Numerous vents along ring fractures circling the low 14-km-wide island have been reported active for more than 200 years. Maars line the shores of 190-m-deep Port Foster caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions during the past 8,700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.
Information Contacts: A. García and R. Abella, Departamento de Volcanología, Museo Nacional de Ciencias Naturales, C.S.I.C., José Gutiérrez Abascal No. 2, 28006 Madrid, Spain; J.M. Ibañez, F. Vidal, and J. Almendros, Instituto Andaluz de Geofísica, Apartado 2145, Univ. Granada, Granada, Spain; C. Risso, A. Caselli, and A. Baraldo, Instituto Antartico Argentino, Cerrito 1248, Buenos Aires, Argentina; M. Berrocoso, Real Instituto y Observatorio de la Armada, San Fernando, Cadiz, Spain.
Fukutoku-Oka-no-Ba (Japan) — April 1996
Cite this Report
Fukutoku-Oka-no-Ba
Japan
24.285°N, 141.481°E; summit elev. -29 m
All times are local (unless otherwise noted)
Yellowish-brown discolored seawater seen again
On 4 April, an aviator from the Japan Marine Safety Agency reported discoloration of seawater to yellowish brown at Fukutoku-Okanoba (BGVN 21:03). On 6 and 7 April, similar discoloration was observed by an aviator of the Maritime Defense Force. More discoloration was reported on 12 and 30 April. No floating pumice was observed. Discolored seawater has been seen on a smaller scale at this location, since 24 November 1995 (BGVN 20:11/12).
Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the island of Minami-Ioto. Water discoloration is frequently observed, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.
Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.
Galeras
Colombia
1.22°N, 77.37°W; summit elev. 4276 m
All times are local (unless otherwise noted)
Small earthquake swarm and some tornillo events
Seismicity during March and April remained low, similar to previous months, and was characterized by fracture events at the seismogenic source 2-8 km NE of the main crater, generally at 6-10 km depths. Long-period events and tremor associated with gas movement also remained at low levels during this interval. Surface activity continued to be concentrated in craters and fumaroles on the W sector of the active cone, mainly at Las Chavas and La Joya fumaroles (figure 80). The two electronic tiltmeters and the shortline leveling network did not show significant changes. Measurements of SO2 done with the COSPEC method registered emission rates <100 tons/day in March, and <130 tons/day in April. Radon concentrations measured in March decreased with respect to recent months.
There were 11 Tornillo events (see BGVN 18:04) detected during 3-16 April with durations of 20-70 seconds, and dominant frequencies of 3.0-3.2 Hz. These characteristics are similar to those recorded before the 1992-93 eruptions (BGVN 18:01, 18:03, and 18:06). On 22 April a swarm of 11 small (M <1) events, recorded in about 45 minutes, were centered ~2 km NNE of the active crater at depths of 4.5-6.5 km.
Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.
Information Contacts: Pablo Chamorro, INGEOMINAS Observatorio Vulcanologico y Sismologico de Pasto (OVP), A.A. 1795, San Juan de Pasto, Nariño, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).
Kuchinoerabujima (Japan) — April 1996
Cite this Report
Kuchinoerabujima
Japan
30.443°N, 130.217°E; summit elev. 657 m
All times are local (unless otherwise noted)
Number of volcanic earthquakes continues to increase
According to reports from Sakura-jima Volcanological Observatory, Kyoto University, 91 earthquakes occurred around Shin-dake in April. Earthquakes have progressively increased here since January 1996. Specifically, there were 32 earthquakes in January, 40 in February, and 77 in March.
Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.
Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.
Kujusan
Japan
33.086°N, 131.249°E; summit elev. 1791 m
All times are local (unless otherwise noted)
Seismicity and steam plume without ash
High seismicity around Kuju was recorded between 1 and 3 April. The monthly total number of earthquakes was 196. No volcanic tremors were observed. The height of the white ash-free plume remained at 100-300 m throughout the month, but it was ~ 500 m high on 21, 25, and 26 April.
Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.
Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.
Langila (Papua New Guinea) — April 1996
Cite this Report
Langila
Papua New Guinea
5.525°S, 148.42°E; summit elev. 1330 m
All times are local (unless otherwise noted)
Occasional ash-and-vapor clouds and night glows
Moderate eruptive activity continued at Crater 2 during April. As in recent months, the activity consisted of intermittent moderate Vulcanian explosions that produced variable density, white-to-gray ash-and-vapor clouds rising several hundred meters above the rim. The clouds were blown to the N, NW, and SE of the volcano, resulting in fine ashfalls. Occasional eruption sounds consisted of explosion noises and rumblings throughout the month. Crater-glow of variable intensity was seen on most nights during the month. The seismic station 4 km from the volcano registered a daily range of 10-40 explosion earthquakes. Crater 3 was quiet during the month.
Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.
Information Contacts: H. Patia, RVO.
Ol Doinyo Lengai (Tanzania) — April 1996
Cite this Report
Ol Doinyo Lengai
Tanzania
2.764°S, 35.914°E; summit elev. 2962 m
All times are local (unless otherwise noted)
Carbonititic lava flows from a hornito active since July 1995
A French team spent three days at the summit during 4-6 April 1996. Abundant gas was emitted from three radial fractures oriented E-W and less gas came from three other fractures oriented NE-SW. Numerous fumaroles were present on the N crater rim. Hornito T34 (as numbered in BGVN 20:11/12) released large amounts of gas. Significant changes in the crater morphology were noted since the December 1995 description. Three hornitos in the N part of the crater (T8, T14, T15) had disappeared under lava flows from T37. Only the top 50 cm of T8 was exposed, but a chimney 30 m deep was observed below. In the S part of the crater, hornitos T27 and T30 were notably modified.
Magmatic activity was observed from three hornitos. The spatter cone T37 was hooded but open to the WSW. Inside, a 10-m-diameter lava pond exploded every 2 seconds, throwing lava 2-5 m high. As the group arrived at 1200 on 4 April the T37 lava pond overflowed, producing a lava flow that had a pahoehoe surface near the pond, and changed to an aa texture at a distance. Numerous such lava flows occurred until 0730 on 5 April; they traveled ~150 m SSW towards T23 and T30. The lava pond level then dropped, leaving solid lava "stalactites" on the walls. Explosions continued, but no further lava emission was observed through 1300 on 6 April. Because of sloshing lava sounds, another lava pond was thought to exist inside another hornito (between T5/T9 and T37), but it remained invisible. Hornito T36D became active early on 6 April, ejecting small lava fountains to an average height of 2 m. During one 2-minute episode there were 20-30 ejections. Episodes (up to 5 minutes long) were separated by repose periods of 15-20 minutes. Noisy gas emissions followed each episode. Activity increased near 1300 with continuous lava emission during each episode.
This symmetrical stratovolcano in the African Rift Valley rises abruptly above the plain S of Lake Natron. It is the only volcano known to have erupted carbonatite tephra and lavas in historical time. The cone-building stage of Ol Doinyo Lengai ended about 15,000 years ago and was followed by periodic Holocene ejections. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatite lava flows on the floor of the summit crater.
Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.
Information Contacts: Jacques-Marie Bardintzeff, Lab. Petrographie-Volcanologie, bat 504, Universite Paris-Sud, 91405 Orsay, France.
Long Valley (United States) — April 1996
Cite this Report
Long Valley
United States
37.7°N, 118.87°W; summit elev. 3390 m
All times are local (unless otherwise noted)
Summary of 1995 activity; March-April 1996 earthquake swarm
The 17 x 32 km Long Valley caldera (figure 18) lies E of the central Sierra Nevada, ~320 km E of San Francisco. The caldera formed about 730,000 years ago as a result of the Bishop Tuff eruption. Resurgent doming was followed by eruptions of rhyolite from the caldera moat and rhyodacite from the outer ring-fracture vents until ~50,000 years ago. Since then the caldera has remained thermally active, and in recent years has undergone significant deformation. Although distinct from Long Valley Caldera, both Inyo Craters and Mammoth Mountain sit adjacent to it. The following report summarizes a more detailed report on caldera seismicity, deformation, and CO2 discharge at Mammoth Mountain during 1995 (Hill, 1996).
Two earthquakes on 2 and 4 January 1995 (M 3.2 and 2.5, respectively), occurred in the area just W of the Highway 203-395 junction. After these events, the epicentral area, a locality with frequent earthquake swarms, turned relatively quiet for the remainder of 1995. Then, after a M 3.3 earthquake on 14 January centered in the S moat, the activity in the caldera shifted to the E. Seismicity through the rest of 1995 in the caldera and adjacent areas was largely confined to a N-S corridor extending from the SE margin of the resurgent dome to the wall of the caldera and beyond into the Sierra Nevada block (figure 18).
On 4 March, M 4.4 and 4.3 earthquakes occurred near the southern caldera boundary: these were the largest events to occur in the region during 1995. A swarm on 19-20 March in the S moat included more than 150 M > 1 earthquakes and three M > 3 events. Activity slowed down through mid-June both within the caldera and in the Sierra Nevada block. Activity within the caldera picked up briefly on 23 and 27 June, with swarms at the S margin of the resurgent dome. Each included a M > 3 earthquake accompanied by more than 20 smaller events.
Beginning with the last two days of June, activity shifted S to the Sierra Nevada block. A brief pause near the end of July was followed by a stronger surge in the number of earthquakes through August and September. This swarm-like surge included more than 20 M > 3 earthquakes with individual clusters, commonly producing 20-30 events. The largest cluster occurred on 17 September and included a M 3.7 earthquake and over 50 smaller events. Seismic activity also increased along the SW stretch of the caldera and at the S outlet of Crowley lake, where earthquakes clustered at a depth of 10 km. Both areas previously had low seismicity. After September seismicity gradually slowed through the end of the year.
Mammoth Mountain continued to produce small (M <2) earthquakes in the upper 10 km of the crust whereas long-period events took place at depths of 10-30 km beneath the SW flank. These long-period earthquakes continued at the steady rate of 20-25 events/year; their epicenters were distributed along a belt extending S of Mammoth Mountain well into the Sierra Nevada block.
The resurgent dome continued to inflate at a strain rate of 2-3 ppm/year, a value that corresponds to an uplift rate of 2-3 cm/year based on past comparisons with results from leveling data. This rate may be gradually slowing with time, as suggested by a number of geodimeter baselines. In mid-1995, most baselines showed a brief pause in extension followed by a period of increased extension rate. The timing of this pause with respect to the onset of the seismicity surge in the Sierra Nevada to the S is intriguing. Similar, but less pronounced variations in extension rate occurred at fairly regular intervals since 1991 (BGVN 19:04 and 20:03). No systematic relation to seismicity variations either within the caldera or the Sierra Nevada block were ever recorded.
The areas of dead pine trees on the flanks of Mammoth Mountain expanded during 1995 and new areas formed in the vicinity of Reds Creek on the W flank and on the N flank above the main ski lodge. In all of these areas, high concentrations of CO2 and small amounts of helium were measured. In general the soil-gas He/CO2 ratio was similar to that in the fumarole just S of the Chair 3 lift on the E flank.
Earthquake swarm, March-April 1996. A M 3.9 earthquake on 29 March 1996 triggered an earthquake swarm in the S moat of Long Valley crater. By 2 April more than 1,000 aftershocks (M > 0.5) were detected and located; 18 of these events had M > 3, and the two largest events reached M 4. The highest rate, up to 40 events/hour, was recorded during the night of 30-31 March. The decline in activity was accompanied by four M > 3.3 earthquakes during the rest of 31 March. Epicenters were clustered 10-11 km ESE of Mammoth Lakes at depths of 7-11 km. No ground deformation was associated with this swarm.
References. Hill, David P., 1996, Long Valley Caldera Monitoring Report (October-December 1995): U.S. Geological Survey, Office of Earthquakes, Volcanoes, and Engineering, 31 p.
Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.
Information Contacts: David Hill, U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, CA 94025 (URL: https://volcanoes.usgs.gov/observatories/calvo/).
Manam (Papua New Guinea) — April 1996
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Small ejection of incandescent particles; minor inflation
Activity remained low in April, with low to moderate rates of white vapor emissions from the summit craters. On the night of 12 April, however, an ejection of incandescent lava fragments from the South Crater was accompanied by a loud roaring noise. During the rest of the month no glows were visible. Seismic monitoring was again operative in April. During the first two weeks, totals of 100-500 low-frequency earthquakes occurred daily. There was a slight increase in seismicity during the third week of the month, up to 900 events/day, which was followed by a decrease to 600 events/day by the end of April. There were no changes in earthquake amplitudes. Tilt data from the water tube tiltmeters at Tabele observatory (4 km SW of the summit) showed an inflation of ~3 µrad during the month.
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: H. Patia, RVO.
Masaya
Nicaragua
11.9844°N, 86.1688°W; summit elev. 594 m
All times are local (unless otherwise noted)
Incandescent vent in Santiago crater emitting large amounts of gas
Masaya was visited on 15-16 March by a joint team from the Open University, the Universite de Montreal, Reading University, and INETER. Large amounts of gas exiting a 5-m-wide vent at the bottom of Santiago crater formed a distinct plume clearly visible from the Managua airport. The vent was intensely incandescent, even during mid-day. Eight correlation spectrometer (COSPEC) traverses beneath the gas column on 16 March measured an SO2 flux of 600 ± 290 metric tons/day (t/d). These fluxes are similar to those measured during the degassing crisis of the early to mid-1980's (Stoiber and others, 1986). Microgravity measurements revealed a continued decline of the gravity field in the summit region since re-activation of the volcano in 1993 (BGVN 18:06). Systematic decreases of up to 160 microgals have been recorded during this time near the active crater.
Reference. Stoiber, R.E., Williams, S.N., and Huebert, B.J., 1986, Sulfur and halogen gases at Masaya caldera complex, Nicaragua: Total flux and variations with time: Journal of Geophysical Research, v. 91, p. 12,215-12,231.
Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.
Information Contacts: Hazel Rymer and Mark Davies, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; John Stix, Dora Knez, Glyn Williams-Jones, and Alexandre Beaulieu, Departement de Geologie, Universite de Montreal, Montreal, Quebec H3C 3J7, Canada; Nicki Stevens, Department of Geography, University of Reading, Reading RG2 2AB, United Kingdom; Martha Navarro and Pedro Perez, INETER, Apartado Postal 2110, Managua, Nicaragua.
Momotombo (Nicaragua) — April 1996
Cite this Report
Momotombo
Nicaragua
12.423°N, 86.539°W; summit elev. 1270 m
All times are local (unless otherwise noted)
High seismicity and a black plume, but no crater changes
In the first days of April, strong seismic activity began beneath Momotombo. The seismic observations were made by the station located ~3 km from the crater and other stations of the national seismic network. A slight increase in activity had been observed during March. On 4 April the number of daily events reached ~100; seismicity remained high until 9 April with maximum magnitudes of about 3. On 9 and 10 April volcanic seismicity declined, but at 1510 on 10 on April a M 3.5 event occurred. Residents of La Paz Centro, ~15 km SW, saw a black cloud above the crater after the earthquake. The normal plume has a white color.
The 10 April earthquake was strongly felt at the geothermal power plant (30 MW), 5 km SW of the crater and <4 km from the epicenter. All but 12 people were evacuated from the power plant, which produces a considerable percentage of Nicaraguan electricity. Afterwards, until 0900 on 11 April, there were ~500 small events registered. On 11 April at 1600, some stronger events with magnitudes of about 3 were again recorded. All seismic events were impulsive, with frequencies of ~10 Hz, and very shallow. Small-amplitude tremor events lasted between some minutes and several hours. An overflight on 11 April to take photos and a video revealed no significant changes in the crater.
Crater fumarole temperatures reported by Alain Creusot have remained unchanged for the past year. During the last three inspections (25 February, 11 April, and 16 April) the maximum temperature was ~770°C. The six areas of fumarolic activity measured in April had temperatures ranging from 375 to 768°C (figure 4).
Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.
Information Contacts: Wilfried Strauch and Martha Navarro, INETER, Apartado Postal 2110, Managua, Nicaragua; Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.
Cerro Negro (Nicaragua) — April 1996
Cite this Report
Cerro Negro
Nicaragua
12.506°N, 86.702°W; summit elev. 728 m
All times are local (unless otherwise noted)
Gentle degassing and lava-flow fumaroles; 1995 cone partially collapsed
Cerro Negro was visited 11-13 March by a joint team from the Open University, the Universite de Montreal, Reading University, and INETER. The main vent was degassing gently, the plume was barely visible, and no ash was observed within the column. The 1995 cinder cone (BGVN 20:11/12) had radial fissures on the W crater rim that were surrounded by fresh sulfur deposits. The E side of the 1995 cinder cone was unstable and had partly collapsed. A topographic survey of the new cinder cone showed that the summit elevation is 708 m above sea level. Volcanic bombs from the 1995 eruption were observed at the base of the main cone, varying in composition from basaltic scoria to pure sulfur. Fumaroles at the proximal end of the 1995 lava flow were clearly marked by surrounding sublimation halos. A topographic survey of the 1995 flow field will be used to calculate its volume and morphology.
Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.
Information Contacts: Hazel Rymer and Mark Davies, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; John Stix, Dora Knez, Glyn Williams-Jones, and Alexandre Beaulieu, Departement de Geologie, Universite de Montreal, Montreal, Quebec H3C 3J7, Canada; Nicki Stevens, Department of Geography, University of Reading, Reading RG2 2AB, United Kingdom; Martha Navarro and Pedro Perez, INETER, Apartado Postal 2110, Managua, Nicaragua.
Popocatepetl (Mexico) — April 1996
Cite this Report
Popocatepetl
Mexico
19.023°N, 98.622°W; summit elev. 5393 m
All times are local (unless otherwise noted)
Explosion on 30 April kills five climbers near the crater rim
On 29 March the growth of a viscous lava dome was observed during a COSPEC flight (BGVN 21:03). The dome grew rapidly afterwards, and ash emissions from a NE-SW fracture along the SE inner wall of the main crater continued intermittently. Apparently, the emission center of the new dome is located between this fracture and the center of the small inner crater formed during eruptions in the 1920's.
During helicopter overflights on 10, 12, 24, and 29 April, gas emissions did not allow a clear view. The height of the dome was difficult to estimate, but was at least 50 m. The dome was also growing horizontally towards the NW with a steep terminal flow front. On the SE it was leaning in part directly against the inner wall of the main crater. The small old inner crater had been totally covered by the new dome. By comparing pictures of the dome formed in the 1920's with the present dome it is clear that the present dome is already much larger.
On 30 April at 1319 a major explosion from the dome dispersed ejecta to the NE. Maximum clast diameter was 0.5 cm in the village of Xalitzintla, ~12 km NE, and sand-sized ash fell in Tlaxcala, 60 km away. Because of bad weather conditions the explosion and accompanying phenomena were not recorded by the surveillance camera. Apparently, the ejecta were warm when falling in Xalitzintla. The shower on Xalitzintla lasted for ~2 minutes. Preliminary inspection of the material indicates that it was mostly light gray juvenile dacite, very glassy with incipient vesiculation.
Five climbers who ascended the volcano in the early morning hours of 30 April were killed by the explosion later that day. On 2 May the climbers were found a few hundred meters below the NE crater rim. Their corpses, recovered by Civil Protection authorities, exhibited 3rd-degree burns and severe injuries caused by contusions. Climbing the volcano has been officially prohibited since the current eruption began, and signs were posted at Paso de Cortes.
During a helicopter flight on 3 May a depression was observed on the surface of the new dome near the SE inner wall of the main crater. Streaks of gravel and boulders running down the NE outer slopes of the volcano were 10-20-m wide and a few hundred meters long, and very close to the route of ascent taken by most climbers.
Satellite observations. Thin steam/ash plumes were observed on visible satellite imagery and by surface observers at the Puebla airport during the first half of April. Plume heights were estimated to be from just above the summit (~5.5 km elevation) up to 7.5 km altitude. Prevailing winds generally blew the plume NE or E; it often remained visible on imagery for 25-50 km before dispersing. A larger plume on 11 April extended ~80 km E at 7.6 km altitude. A thin ash plume on 13 April was visible 130 km ENE. Except for one ground report late on 18 April, there were no satellite or ground observations of ash plumes during 16-26 April. However, aviation notices of the volcanic hazard remained in effect. Volcanic ash moving E and SE at summit level was again seen from the airport beginning on 27 April; cloud cover prevented satellite observations. The plume from the 30 April explosion remained visible, although it was thinning, into that evening as it drifted over the Gulf of Mexico. Aviation notices from Mexico City and Miami, Florida, warned of possible ash up to 12 km altitude. Ground and satellite observations of ash plumes continued into May.
Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.
Information Contacts: Claus Siebe, Instituto de Geofisica, UNAM, Circuito Cientifico C.U., 04510 Mexico D.F., México; NOAA/NESDIS Synoptic Analysis Branch, USA.
Rabaul (Papua New Guinea) — April 1996
Cite this Report
Rabaul
Papua New Guinea
4.2459°S, 152.1937°E; summit elev. 688 m
All times are local (unless otherwise noted)
Low-level eruptive activity from Tavurvur
During April, low-level eruptive activity continued from Tavurvur as in the past several months (BGVN 21:02 and 21:03). Weak to moderate explosions produced pale- to dark-gray ash-and-vapor clouds every few minutes. These clouds rose ~400-1,000 m before drifting 15-20 km to the S and SW and producing fine ashfalls in villages downwind. Roaring noises were heard, at times from as far as 15 km away. Observers occasionally noticed sprays of incandescent lava fragments at night. Vulcan only produced weak fumarole emissions.
Seismicity remained at approximately the same level as in February (BGVN 21:02). A total of 5,210 low-frequency (explosion) earthquakes occurred during April. Seismicity peaked during the second and third weeks of the month. Eighteen high-frequency earthquakes were recorded, and nearly 50% of them occurred on 3 April. Most of these events originated immediately NE of the caldera, but three earthquakes occurred N, W, and S of the caldera, respectively. Ground-deformation measurements showed no significant changes.
Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.
Information Contacts: H. Patia, Rabaul Volcanological Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.
Ruapehu (New Zealand) — April 1996
Cite this Report
Ruapehu
New Zealand
39.28°S, 175.57°E; summit elev. 2797 m
All times are local (unless otherwise noted)
Landslides and lahars in the aftermath of the 23 September eruption
After a vent-clearing blast on 29 June 1995, Ruapehu began a series of larger eruptions on 23 September 1995 (BGVN 20:09 and 20:10; Ruapehu Surveillance Group, 1996). Since then considerable effort has gone into the repair of survey stations and monitoring equipment. During the interval 26 February-23 April 1996 volcanic activity generally remained low; however, observers noted mass wasting both in and outside the crater, and within the rising crater lake at the summit they saw new fumaroles and the emergence and later submergence of small islets.
Since last reported in early February, both shallow, high-frequency earthquakes (around 20-60/day increasing after about 25 February) and 7-Hz tremor continued at the Dome station (N of the crater, figure 21). Tremor amplitude averaged around 2 µm/sec. Earthquakes during late February were generally very small, high-frequency ones close to Crater Lake. These events were accompanied by strong surface waves suggesting sources in the upper few hundred meters and their nature requires an origin that involved rock shearing. Their increase in late February was consistent with suspected extrusion of lava in late March.
The suspected extrusion was first noted as a 6 x 4 m islet within Crater Lake on 21 March photos. Clear weather and a lack of steam on 10 April allowed better photographs. These pictures revealed two new, even smaller islets nearby and another larger one, interpreted as landslide debris, on the opposite side of the lake (profile A-A', figure 22). As of early May, the make-up of these islets remained ambiguous.
The 10 April photo opportunity enabled workers to plot three profiles across the crater (figures 21 and 22). The profiles show the surface of Crater Lake as well as the surrounding crater walls. These profiles were used to make preliminary estimates of the refilling rate for Crater Lake. By assuming similar factors to the 1945-50 interval the lake may completely refill in about 4 years. Post-eruption morphological changes included those on the crater floor and a roughly 24-m drop at the SE crater rim (profile B-B').
After heavy rains and landslides a large secondary lahar was triggered on the NE flank, down the Wahangaehu Glacier and River, about mid-day on 21 April (figure 21). Within the crater, mass wasting raised the lake by ~5 m, covering the islets. About 10 minutes before the lahar was seen at Tukino a M 2.0 seismic signal came from the summit that was unlike any in the past several years. It lasted for ~4 minutes and consisted of two main phases followed by a long coda. This signal was termed a landslide earthquake after researchers concluded that it came from the landslide that generated the lahar.
Figure 21 shows the scarps and landslide paths in the immediate vicinity of the crater, the largest on the NE crater wall was ~40-50 m wide. On the NE, directly outside the crater and immediately E of where station J had been, one failure was ~30-m wide. The material involved in the latter failure consisted mainly of 1995 ejecta. It went well beyond the area shown on figure 21, traveling down the Whangaehu Glacier along a well-developed lahar-cut channel. It then flowed down over the glacier surface, by-passing a sub-glacial tunnel carved by earlier lahars. The lahar entered the Whangaehu River at the glacier's toe. Another landslide on the SE sector (figure 21) apparently began prior to the 1995 eruption but became active again in late February 1995.
Reference. Ruapehu Surveillance Group, 1996, Volcanic eruption at a New Zealand ski resort prompts reevaluation of hazards: Eos, Transactions, American Geophysical Union, v. 77, no. 20, 14 May 1996, p. 189-191.
Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.
Information Contacts: P.M. Otway, S. Sherburn, and I.A. Nairn Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand
Soputan (Indonesia) — April 1996
Cite this Report
Soputan
Indonesia
1.112°N, 124.737°E; summit elev. 1785 m
All times are local (unless otherwise noted)
Small eruption on 15 March seen on satellite imagery
An ash cloud to 4.5 km altitude was reported in an aviation notice on 15 March. Imagery from the GMS-5 satellite confirmed the presence of an eruption plume during 0425-0632 GMT. A small plume can be seen on the 0425 image, but there was a definite plume with arms extending W and SW by 0532. The plume was still connected to the volcano at 0632, although it was starting to dissipate. On the 0732 image the plume was still visible, but appeared to have been disconnected from the volcano for some time.
Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is the only active cone in the Sempu-Soputan volcanic complex, which includes the Soputan caldera, Rindengan, and Manimporok (3.5 km ESE). Kawah Masem maar was formed in the W part of the caldera and contains a crater lake; sulfur has been extracted from fumarolic areas in the maar since 1938. Recent eruptions have originated at both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.
Information Contacts: Bureau of Meteorology, P.O. Box 735, Darwin NT 0801, Australia; Ian Sprod, Code 921, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA.
Soufriere Hills (United Kingdom) — April 1996
Cite this Report
Soufriere Hills
United Kingdom
16.72°N, 62.18°W; summit elev. 915 m
All times are local (unless otherwise noted)
Significant explosions and pyroclastic flows; vigorous dome growth
Volcanic activity in the summit crater was very high during early April, but explosions decreased in the second half of the month. Dome growth, most conspicuously in the form of spines, remained vigorous. Activity late in the month was dominated by small to moderate-sized rockfalls with associated ash clouds. Steam production was almost continuous, along with SO2 emission, throughout the month. Episodes of low-amplitude broadband tremor, usually <1 hour duration, were also recorded, but there were few long-period or shallow volcano-tectonic earthquakes. No major deformation events were detected.
Eruptive activity on 3 April began at 0652 with a small explosion (BGVN 21:03). Near-continuous seismic activity afterwards was a result of more small explosions and ash emission from the dome. After a reassessment of the situation by the Montserrat Volcano Observatory at 1300, the civil authorities began an evacuation of the S part of the island. At 1518, an eruption generated a significant pyroclastic flow in the Tar River valley area and an ash plume that rose to ~6 km altitude. Further pyroclastic flows in the same area were generated at 1808 and 1818. These pyroclastic flows slightly overtopped the N embankment of the Tar River valley but caused no destruction to property in Long Ground, ~2 km NE of the dome. Fires started by the pyroclastic flows continued for several days in the Tar River area.
Several smaller explosions and rockfalls during 4-5 April generated clouds that deposited ash in Plymouth and environs. The most significant of these was a moderately strong explosive eruption at about 1253 on 5 April that produced a column to ~1,500 m altitude and a small pyroclastic flow into the Tar River valley. A series of eruptions starting at 0839 on 6 April generated ash plumes up to ~3 km high and sent at least six small pyroclastic flows into the Tar River area. After 1337 the activity level increased again, with continuous ash emission and several ash plumes. At 1445, a significant explosive eruption began and continued for about an hour. It consisted of two main pulses that sent ash to ~9 km altitude and generated a relatively large pyroclastic flow. Several small-to-moderate eruptions produced ash columns and possibly small pyroclastic flows in the Tar River valley again that afternoon.
A new spine observed close to the center of the dome on the morning of 4 April was ~828 m above sea level at mid-morning the next day. By 6 April it had grown to ~906 m elevation and was visible from many points around the island; by 7 April the spine was taller than Chance's Peak (the highest topographic feature on Montserrat at 915 m). A moderate explosion at 0659 on 7 April was heard at the Bramble Airport ~6 km NE of English's Crater and fed an eruptive column that deposited ash to the NW. During the night of 7 April the top half of the spine broke off but the remnant continued to grow from the base throughout 8 April so that once again it became higher than Chance's Peak; this spine was the largest seen so far. On 8 April there was another series of eruptions, including two large explosions at 1354 and 1357. During this period, near-continuous pyroclastic flows moved into the Tar River valley, and several large ash clouds drifted out to sea. The pyroclastic flows did not reach as far as those on 3 April, but some trees in the Tar River valley were set on fire.
Activity in the crater area during 11-17 April was dominated by rockfalls and explosions creating small ash clouds. The spine that began rising on 5 April collapsed on 12 April towards the SW. A pyroclastic flow from this event was observed at 1559 on 12 April, but remained confined to the upper part of the Tar River valley away from inhabited areas. A twenty-five minute period of explosions and rockfalls began at 2037 on 13 April. On 15 April a new spine was growing to the E of the remnant of the last spine. Break-up of this feature and further break-up of the remnant spine occurred on 17 April.
Seismicity in early April was dominated by rockfalls, but beginning on 7 April hybrid earthquakes centered beneath English's Crater at shallow depths (<2 km) increased in frequency. These events occurred at rates varying from a minimum of 1-2 every 5 minutes (12-24/hour) to a maximum of ~5/minute (300/hour). This intense hybrid type of seismicity, thought to result from dome growth, continued through 17 April. RSAM data showed a steady increase in energy release up to the evening of 15 April when it dropped to low levels. By 17 April the hybrid events were occurring every 2 minutes (30/hour).
A new spine, which had grown over a period of no more than 36 hours, was seen on 18 April. The top of the spine was measured at ~911 m elevation, 30 m above the top of the dome. A smaller spine was observed on the morning of 19 April, with a height of ~20 m. The large spine appeared to fracture on 20 April and the debris fell to the base of the NE part of the old dome. Another small spine was seen in the same location on 24 April. Rockfalls were observed throughout the week, with the largest ones producing significant ash clouds at 1237 on 18 April, 1511 on 21 April, and 0635 on 22 April. The 21 April event generated an ash cloud to 1,700-2,000 m above sea level and sent a small pyroclastic flow ~300 m down the Tar River valley, producing an ash cloud to ~1,300 m altitude.
The number of hybrid earthquakes quadrupled on 18 April, to ~2 events/minute (120/hour). Seismicity then declined gradually back to ~30/hour by 24 April. The longest period of broadband tremor was 8 hours, between 1700 on 23 April and 0100 on 24 April. Volcano-tectonic earthquakes were recorded on 20, 22, and 23 April. The first two were located N of the crater, beneath Farrells Mountain at 0.25 and 4 km depth. During the last week of April, the small repetitive hybrid earthquakes occurred every 2-3 minutes (20-30/hour) but with reduced amplitude. A few volcano-tectonic earthquakes were located, one at a depth of 2 km SE of the South Soufriere Hills. Several very small earthquakes were recorded by the Gages seismic station during this period. Similar swarms have been identified in records from that station, especially during July and August 1995.
Throughout April, measurements to the EDM reflector on the upper flank of Castle Peak dome from both Long Ground and White's Yard continued to show the slow shortening trend of ~1 mm/day observed since late November 1995. The reflector on Gage's Wall was obscured by ash. Occupation of the Dagenham-Amersham-Upper Amersham-Chance's Steps EDM network showed that the very small changes (on the order of 0.3 mm/day) are continuing from December 1995. Two GPS base networks were established in late April. The first is a relatively large-scale network with line lengths of ~7 km. The second is a denser network of 18 stations on the flanks, with an average inter-station spacing of 2 km. This covers most of the volcano, except for the SE sector. No changes have yet been detected above the 1-cm precision of the technique.
Accurate angular measurements of features on the dome have been combined with measurements made from photographs to build a topographic model. This has been compared with a digital terrain model of the old English's Crater and gives a dome volume on 18 April of 9.5 ± 0.5 x 106 m3. This volume gives a mean extrusion rate of ~70,000 m3/day since 30 November 1995.
There has been uncertainty as to whether or not some of the larger ash columns were generated by explosions. The recent ash deposits are uniformly fine-grained, with no clasts above ash-size getting outside the crater. This is inconsistent with an explosive model, where larger ballistic clasts and deposition of lapilli might be expected. A video of one of the smaller pyroclastic flows showed a sizeable thermally convective column being generated when the flow hit the crater wall. Thus the evidence so far indicates that the ash columns are generated from the pyroclastic flows and rockfalls and not from explosions.
Soufriere Hills volcano sits on the N flank of the older South Soufriere Hills volcano, located at the S end of Montserrat Island (13 x 8 km). The summit area consists primarily of a series of ESE-trending lava domes. Block-and-ash flow and surge units associated with dome growth predominate in flank deposits. Pyroclastic-flow deposits associated with the formation of English's Crater have been dated at around 19,000 years BP (before present). A series of eruptions dated at 16,000-24,000 years BP pre-dates the Castle Peak dome in the crater by an unknown period of time. English's Crater is breached to the E. Periods of increased seismicity below Soufriere Hills were reported in 1897-98, 1933-37, and again in 1966-67. There were no reported historical eruptions, but some deposits and features have a young appearance. A radiocarbon date of ~320 ± 54 years BP from a NE-flank pyroclastic-flow deposit is significantly younger than other radiocarbon dates from the volcano, and could have resulted from the latest activity of Castle Peak.
Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.
Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).
Stromboli
Italy
38.789°N, 15.213°E; summit elev. 924 m
All times are local (unless otherwise noted)
Increased seismicity and Crater 1 activity after mid-April
Following the strong crater explosion on 16 February (BGVN 21:02), the summit seismic station of the University of Udine showed a general drop in seismic activity, as seen previously after paroxysmal phases at Stromboli (BGVN 18:01, 18:04, and 18:09). A new increase in seismic activity continued through early March with elevated average tremor intensity, while the numbers of recorded events and saturating events decreased (figure 48). After a fall in the tremor intensity on 9 and 10 March, all parameters started showing a general increasing trend that continued through the first week of April.
After a brief drop in the tremor intensity (6-8 April) and in the number of events (10-11 April), a new period of increasing seismicity began. The number of recorded events suddenly increased between 15 April (286 events) and 16 April (540 events); in the following days numbers become even greater, as the seismic station was triggered almost every minute. Stromboli volcano guide N. Zerilli confirmed that on those days Crater 1 (figure 49) erupted almost continuously, with fountaining to 40-50 m above the crater. This was the source of a rapid succession of moderate explosion-quakes that caused the high number of events recorded by the station. The number of more energetic events was also high. Strong explosive activity was continuing as of 15 May.
Field observations were made by J. and P. Alean, R. Carniel and F. Iacop during 21-28 April, although poor weather allowed only three summit visits. The most striking activity during the period was almost continuous spattering at vent 1/2 (figure 49b). Ejecta up to (and occasionally in excess of) 2 m in diameter were thrown at least 50 m high about every 30 minutes. For very short time periods (a few minutes) spattering activity at vent 1/2 would almost disappear, then increase and sometimes reach an intensity similar to the more normal, larger Strombolian eruptions. The latter occurred in Crater 1 from three distinct vents. On 21 April there were 20 eruptions at Crater 1 in 3.5 hours, some of them reaching heights of ~200 m. Cone 1/4 produced smoke rings on 22 April. On 28 April, Crater 1 produced 45 "normal" Strombolian explosions between 1300 and 1900 GMT, apart from the continuous spattering described above. Intense red glow from Crater 1 illuminated steam and clouds above it. This glow was one of the most intense ever seen by these scientists during their visits to the volcano; it could often be seen even from S. Vincenzo village.
Apart from fumarolic emissions, Crater 2 remained inactive. Crater 3 eruptions on 21 April were relatively small, albeit very noisy. Scoria did not reach heights of more than 100 m. It appeared as if the material was ejected from several individual vents or a fissure within the crater. A lot of ash was ejected, occasionally producing black mushroom-shaped clouds. Vent 3/1 had grown to an impressive size since 1994. They saw only one eruption from it, on 21 April at 1815 GMT; all the others were generated at vents 3/2 or 3/3. On 28 April activity at Crater 3 increased (55 eruptions between 1300 and 1900 GMT). By about 2100 GMT eruptions were occurring at intervals of 1-5 minutes, most of them exceeding 200 m in altitude. The ash content was clearly less than on 21 April, and brown ash clouds had become rare.
Figure 49 illustrates the change in crater morphology between October 1993 (figure 49a) and April 1996 (figure 49b). These sketches were drawn based on stereo photographs taken from the ground with a 35 mm single-lens reflex camera. The most striking morphological changes are probably in Crater 1, which saw the construction of a series of cones and their subsequent destruction, which led to the present configuration near vents 1/3 and 1/4. The zone around vent 1/2 in the foreground now appeared more open towards the Sciara del Fuoco, thus allowing better visibility of the crater from Punta Labronzo. Changes were also observed at vent 3/1, now better separated from Crater 2 on the rear and more connected to the rest of Crater 3 due to slumping of blocks between vents 3/1 and 3/3.
Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.
Information Contacts: Jürg Alean, Kantonsschule Zürcher Unterland, CH-8180 Bülach, Switzerland; Roberto Carniel, Dipartimento di Georisorse e Territorio, via Cotonificio 114, I-33100 Udine.
Telica
Nicaragua
12.606°N, 86.84°W; summit elev. 1036 m
All times are local (unless otherwise noted)
Low-level degassing and sulfur deposits observed in crater
Telica was visited on 17 March by a joint team from the Open University, the Universite de Montreal, Reading University, and the Instituto Nicaraguense de Estudios Territoriales (INETER). Low-temperature sulfur deposits were noted in many places within the crater. Low-level degassing was observed, particularly on the W side of the crater. Sulfur-rich gases appeared to be concentrated at the bottom, while more H2O-rich gases were being emitted at higher levels in the crater. Gas pressures were generally low, but there was a distinct gas column. SO2 flux measured by COSPEC on 17 March averaged 41 ± 20 t/d, based on nine measurements. Microgravity measurements showed no appreciable changes since the last survey in 1994.
An eruption on 31 July 1994 produced a gas-and-ash column to ~800 m above the summit; detectable ash fell as far as 17 km from the summit (BGVN 19:07). Phreatic explosions continued until 12 August 1994 when seismicity began decreasing (BGVN 19:09).
Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.
Information Contacts: Hazel Rymer and Mark Davies, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; John Stix, Dora Knez, Glyn Williams-Jones, and Alexandre Beaulieu, Departement de Geologie, Universite de Montreal, Montreal, Quebec H3C 3J7, Canada; Nicki Stevens, Department of Geography, University of Reading, Reading RG2 2AB, United Kingdom; Martha Navarro and Pedro Perez, INETER, Apartado Postal 2110, Managua, Nicaragua.
Vulcano
Italy
38.404°N, 14.962°E; summit elev. 500 m
All times are local (unless otherwise noted)
Decrease in fumarole temperatures
The "La Fossa" crater was visited during 9-11 May by a group from the Federal Institute of Technology in Zurich. Fumarolic emissions were observed on the SW inner crater wall, on the outer N slope ~100 m below the crater rim, and on the NE outside flank about half way down from the rim towards the sea. During the night of 9-10 May, several new fissures, 2-3 m long and 2-5 cm wide, opened on the inner crater slopes. They formed as an extension of a major fissure reaching W from fumarole FF, concentric to the crater rim. Temperatures of gases emitted from these fissures ranged from 160 to 220°C. During the same night, pre-existing fissures widened by a few centimeters (
Fumarole temperatures were measured on the NE crater rim and on the inner crater flanks, but those from radial fractures in the inner crater were not measured. Maximum temperature observed was 507°C on an extension fissure of fumarole FF on the inner crater slopes (table 4). This compares to the maximum temperature of 552°C in the same period last year at the same location. Temperatures on the crater rim peaked at 326°C at fumarole F5 compared to 512°C last year. Temperatures of outlets situated at the edge of the slope from the inner crater to its floor reach a maximum of 435°C. Fumarole temperatures therefore showed decreasing trends, but maximum temperatures remained high. The decrease was strongest at the rim fumaroles.
Table 4. Measured temperatures at La Fossa Crater, Vulcano, in May 1995 and 1996. Fumaroles F0/F1 and F5 are located at the crater rim; FF, FA and the extension fissure occur in the inner crater. Courtesy of C. Wahrenberger.
Fumarole |
Max Temp 1-5 May 1995 |
Max Temp 9-11 May 1996 |
F0 |
369°C |
320°C |
F1 |
302°C |
320°C |
F5 |
512°C |
326°C |
FF |
484°C |
435°C |
FA |
474°C |
445°C |
Extension fissure FF |
552°C |
507°C |
Temperature measurements were done using a Cr-Al Type K thermocouple at ~5 cm below the surface. All 1996 measurements were taken at the same locations as those made in 1995. Temperatures at each point were also taken on three successive days; deviations in 1996 were
Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages over the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated north over time. La Fossa cone, active throughout the Holocene and the location of most historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform is a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning more than 2,000 years ago and was connected to the main island in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. Explosive activity took place at the Fossa cone from 1898 to 1900.
Information Contacts: Christoph Wahrenberger, Terry M. Seward, and Volker Dietrich, Institute for Mineralogy and Petrography, Federal Institute of Technology, Sonneggstrasse 5, 8092 Zurich, Switzerland.
Whakaari/White Island (New Zealand) — April 1996
Cite this Report
Whakaari/White Island
New Zealand
37.52°S, 177.18°E; summit elev. 294 m
All times are local (unless otherwise noted)
Uplift of the main crater floor and changes in the hydrothermal system
There has been no eruptive activity at White Island since the minor ash emission of 28-29 June 1995 ([corrected from] BGVN 20:07). A vent formed in August but no tephra was erupted (BGVN 20:11/12). Ground-deformation surveys continued to record uplift of the main crater floor. Magnetics showed a persistent decrease N of Donald Mound and an increase S of it. Changes were noticed in the hydrothermal system, but no significant variations were observed in seismicity. This report briefly summarizes several visits to the island from 27 December 1995 through 17 March 1996.
On 27 December, a slow but continuous rise in the water level of the combined crater lake was observed. Strong and audible fumarole activity was concentrated in the May 91 embayment area, on the N side of 1978/90 Crater Complex. During 22-24 January, scientists noted enhanced steam emissions, which may have been due to falling atmospheric pressure before a storm. The Dragon's Foot spring below fumarole 1 (SE of Donald Mound) reverted to being a fumarole after being a hot pool during most of 1995. Comparison of photographs suggested that the lake level had risen by 1-2 m since 12 December 1995.
During 9-12 February, fumarole temperatures in the May 91 area were 143°C, the lake level had risen, and the water temperature was 53°C. More intense fume emissions were observed from Donald Mound. In March, a new fumarole with a temperature of 100°C was found on Donald Mound and Noisy Nellie's temperature rose from 89°C on 7 March to 124°C on 17 March. Although there was no major increase in fumarole temperatures, heat flow had increased, as evident from expanded areas of sublimation, steaming ground, and mud pots. Gas discharge was very strong in the fumaroles along the S crater wall. Partially completed analysis from fumarole 13 showed increased HCl discharge.
Water analyses from the crater lake carried out between November 1995 and February 1996 showed decreasing pH values (from 0.58 to 0.23), increasing Cl concentrations (63,600 to 68,100 ppm), and decreasing Mg concentrations (6,060 to 5,600 ppm).
Observed ground deformation on 29 February suggested continuing strong inflation centered on Donald Mound, where the uplift rate since December had almost doubled compared to the previous five-month period (from 92 to 171 mm/year at peg F). Moreover, the uplift rate across the entire crater floor was twice that observed over the past two years (55 mm/year at peg C since December 1995, 28 mm/year at peg C from December 1993 to December 1995). This significant increase in the rate of inflation under both Donald Mound and the crater floor was interpreted as an indication that shallow (~100 m deep) heating is increasing under Donald Mound, and intrusion and/or heating is occurring in the whole area at a deeper level (~500 m). These observations suggested that water table changes were not the cause of the surface deformation (BGVN 20:11/12).
The magnetic survey on 23 January focused near Donald Mound where most of the recent changes took place. The dominant trends, decrease on the N side of Donald Mound and increase to the S, indicated shallow (50-100 m deep) demagnetization in this area.
No significant seismicity has occurred since September 1995. However, since 15 January 1996, high-frequency microearthquakes have appeared on the records in low numbers (50-300/ day). The occurrence of two E-type events did not produce any surface manifestation.
Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.
Information Contacts: B.J. Scott, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand.