Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Krakatau (Indonesia) Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Mayotte (France) Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Fernandina (Ecuador) Fissure eruption produced lava flows during 12-13 January 2020

Masaya (Nicaragua) Lava lake persists with lower temperatures during August 2019-January 2020

Reventador (Ecuador) Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Pacaya (Guatemala) Continuous explosions, small cone, and lava flows during August 2019-January 2020

Kikai (Japan) Single explosion with steam and minor ash, 2 November 2019

Nevado del Ruiz (Colombia) Intermittent ash, gas-and-steam, and SO2 plumes, and thermal anomalies during January 2018-December 2019

Erebus (Antarctica) Lava lakes persist through 2019

Sangay (Ecuador) Continuing ash emissions, lava flows, pyroclastic flows, and lahars through December 2019

Shishaldin (United States) Multiple lava flows, pyroclastic flows, lahars, and ashfall events during October 2019 through January 2020

Sangeang Api (Indonesia) Ash emissions and lava flow extrusion continue during May 2019 through January 2020



Krakatau (Indonesia) — February 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Krakatau volcano in the Sunda Strait between Indonesia’s Java and Sumatra Islands experienced a major caldera collapse around 535 CE; it formed a 7-km-wide caldera ringed by three islands. Remnants of this volcano joined to create the pre-1883 Krakatau Island which collapsed during the major 1883 eruption. Anak Krakatau (Child of Krakatau), constructed beginning in late 1927 within the 1883 caldera (BGVN 44:03, figure 56), was the site of over 40 eruptive episodes until 22 December 2018 when a large explosion and flank collapse destroyed most of the 338-m-high edifice and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions from February (BGVN 44:08) through November 2019. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake. Activity from August 2019 through January 2020 is covered in this report with information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG). Aviation reports are provided by the Darwin Volcanic Ash Advisory Center (VAAC), and photographs are from the PVMBG webcam and visitors to the island.

Explosions were reported on more than ten days each month from August to October 2019. They were recorded based on seismicity, but webcam images also showed black tephra and steam being ejected from the crater lake to heights up to 450 m. Activity decreased significantly after the middle of November, although smaller explosions were witnessed by visitors to the island. After a period of relative quiet, a larger series of explosions at the end of December produced ash plumes that rose up to 3 km above the crater; the crater lake was largely filled with tephra after these explosions. Thermal activity persisted throughout the period of August 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020 (figure 96).

Figure (see Caption) Figure 96. Thermal activity persisted at Anak Krakatau from 20 March 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020. Courtesy of MIROVA.

Activity during August-November 2019. The new profile of Anak Krakatau rose to about 155 m elevation as of August 2019, almost 100 m less than prior to the December 2018 explosions and flank collapse (figure 97). Smaller explosions continued during August 2019 and were reported by PVMBG in 12 different VONAs (Volcano Observatory Notice to Aviation) on days 1, 3, 6, 17, 19, 22, 23, 25, and 28. Most of the explosions lasted for less than two minutes, according to the seismic data. PVMBG reported steam plumes of 25-50 m height above the sea-level crater on 20 and 21 August. They reported a visible ash cloud on 22 August; it rose to an altitude of 457 m and drifted NNE according to the VONA. In their daily update, they noted that the eruption plume of 250-400 m on 22 August was white, gray, and black. The Darwin VAAC reported that the ash plume was discernable on HIMAWARI-8 satellite imagery for a short period of time. PVMBG noted ten eruptions on 24 August with white, gray, and black ejecta rising 100-300 m. A webcam installed at month’s end provided evidence of diffuse steam plumes rising 25-150 m above the crater during 28-31 August.

Figure (see Caption) Figure 97. Only one tree survived on the once tree-covered spit off the NE end of Sertung Island after the December 2018 tsunami from Anak Krakatau covered it with ash and debris. The elevation of Anak Krakatau (center) was about 155 m on 8 August 2019, almost 100 m less than before the explosions and flank collapse. Panjang Island is on the left, and 746-m-high Rakata, the remnant of the 1883 volcanic island, is behind Anak Krakatau on the right. Courtesy of Amber Madden-Nadeau.

VONAs were issued for explosions on 1-3, 11, 13, 17, 18, 21, 24-27 and 29 September 2019. The explosion on 2 September produced a steam plume that rose 350 m, and dense black ash and ejecta which rose 200 m from the crater and drifted N. Gray and white tephra and steam rose 450 m on 13 and 17 September; ejecta was black and gray and rose 200 m on 21 September (figure 98). During 24-27 and 29 September tephra rose at least 200 m each day; some days it was mostly white with gray, other days it was primarily gray and black. All of the ejecta plumes drifted N. On days without explosions, the webcam recorded steam plumes rising 50-150 m above the crater.

Figure (see Caption) Figure 98. Explosions of steam and dark ejecta were captured by the webcam on Anak Krakatau on 21 (left) and 26 (right) September 2019. Courtesy of MAGMA Indonesia and PVMBG.

Explosions were reported daily during 12-14, 16-20, 25-27, and 29 October (figure 99). PVMBG reported eight explosions on 19 October and seven explosions the next day. Most explosions produced gray and black tephra that rose 200 m from the crater and drifted N. On many of the days an ash plume also rose 350 m from the crater and drifted N. The seismic events that accompanied the explosions varied in duration from 45 to 1,232 seconds (about 20 minutes). The Darwin VAAC reported the 12 October eruption as visible briefly in satellite imagery before dissipating near the volcano. The first of four explosions on 26 October also appeared in visible satellite imagery moving NNW for a short time. The webcam recorded diffuse steam plumes rising 25-150 m above the crater on most days during the month.

Figure (see Caption) Figure 99. A number of explosions at Anak Krakatau were captured by the webcam and visitors near the island during October 2019, shown here on the 12th, 14th, 17th, and 29th. Black and gray ejecta and steam plumes jetted several hundred meters high from the crater lake during the explosions. Webcam images courtesy of PVMBG and MAGMA Indonesia, with 12 October 2019 (top left) via VolcanoYT. Bottom left photo on 17 October courtesy of Christoph Sator.

Five VONAs were issued for explosions during 5-7 November, and one on 13 November 2019. The three explosions on 5 November produced 200-m-high plumes of steam and gray and black ejecta and ash plumes that rose 200, 450, and 550 m respectively; they all drifted N (figure 100). The Darwin VAAC reported ash drifting N in visible imagery for a brief period also. A 350-m-high ash plume accompanied 200-m-high ejecta on 6 November. Tephra rose 150-300 m from the crater during a 43 second explosion on 7 November. The explosion reported by PVMBG on 13 November produced black tephra and white steam 200 m high that drifted N. For the remainder of the month, when not obscured by fog, steam plumes rose daily 25-150 m from the crater.

Figure (see Caption) Figure 100. PVMBG’s KAWAH webcam captured an explosion with steam and dark ejecta from the crater lake at Anak Krakatau on 5 November 2019. Courtesy of PVMBG and MAGMA Indonesia.

A joint expedition with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata during 12 and 13 November 2019 (figure 101). Visitors to the island during 19-23 and 22-24 November recorded the short-lived landscape and continuing small explosions of steam and black tephra from the crater lake (figures 102 and 103).

Figure (see Caption) Figure 101. A joint expedition to Anak Krakatau with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata (background, left) during 12 and 13 November 2019. Images of the crater lake from the same spot (left) in December and January show the changes at the island (figure 108). Monitoring equipment installed near the shore sits over the many layers of ash and tephra that make up the island (right). Courtesy of Anna Perttu.
Figure (see Caption) Figure 102.The crater lake at Anak Krakatau during a 19-23 November 2019 visit was the site of continued explosions with jets of steam and tephra that rose as high as 30 m. Courtesy of Andrey Nikiforov and Volcano Discovery, used with permission.
Figure (see Caption) Figure 103. The landscape of Anak Krakatau recorded the rapidly evolving sequence of volcanic events during November 2019. Fresh ash covered recent lava near the shoreline on 22 November 2019 (top left). Large blocks of gray tephra (composed of other tephra fragments) were surrounded by reddish brown smaller fragments in the area between the crater and the ocean on 23 November 2019 (top right). Explosions of steam and black tephra rose tens of meters from the crater lake on 23 November 2019 (bottom). Courtesy of and copyright by Pascal Blondé.

Activity during December 2019-January 2020. Very little activity was recorded for most of December 2019. The webcam captured daily images of diffuse steam plumes rising 25-50 m above the crater which occasionally rose to 150 m. A new explosion on 28 December produced black and gray ejecta 200 m high that drifted N; the explosion was similar to those reported during August-November. A new series of explosions from 30 December 2019 to 1 January 2020 produced ash plumes which rose significantly higher than the previous explosions, reaching 2.4-3.0 km altitude and drifting S, E, and SE according to PVMBG (figure 104). They were initially visible in satellite imagery and reported drifting SW by the Darwin VAAC. By 31 December meteorological clouds prevented observation of the ash plume but a hotspot remained visible for part of that day.

Figure (see Caption) Figure 104.The KAWAH webcam at Anak Krakatau captured this image of incandescent ejecta exploding from the crater lake on 30 December 2019 near the start of a new sequence of large explosions. Courtesy of PVMBG and Alex Bogár.

The explosions on 30 and 31 December 2019 were captured in satellite imagery (figure 105) and appeared to indicate that the crater lake was largely destroyed and filled with tephra from a new growing cone, according to Simon Carn. This was confirmed in both satellite imagery and ground-based photography in early January (figures 106 and 107).

Figure (see Caption) Figure 105. Satellite imagery of the explosions at Anak Krakatau on 30 and 31 December 2019 showed dense steam rising from the crater (left) and a thermal anomaly visible through moderate cloud cover (right). Left image courtesy of Simon Carn, and copyright by Planet Labs, Inc. Right image uses Atmospheric Penetration rendering (bands 12, 11, and 8a) to show the thermal anomaly at the base of the steam plume, courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 106. Sentinel-2 images of Anak Krakatau before (left, 21 December 2019) and after (right, 13 January 2020) explosions on 30 and 31 December 2019 show the filling in of the crater lake with new volcanic material. Natural color rendering based on bands 4,3, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 107. The crater lake at Anak Krakatau changed significantly between the first week of December 2019 (left) and 8 January 2020 (right) after explosions on 30 and 31 December 2019. Compare with figure 101, taken from the same location in mid-November 2019. Left image courtesy of Piotr Smieszek. Right image courtesy of Peter Rendezvous.

Steam plumes rose 50-200 m above the crater during the first week of January 2020. An explosion on 7 January produced dense gray ash that rose 200 m from the crater and drifted E. Steam plume heights varied during the second week, with some plumes reaching 300 m above the crater. Multiple explosions on 15 January produced dense, gray and black ejecta that rose 150 m. Fog obscured the crater for most of the second half of the month; for a brief period, diffuse steam plumes were observed 25-1,000 m above the crater.

General Reference: Perttu A, Caudron C, Assink J D, Metz D, Tailpied D, Perttu B, Hibert C, Nurfiani D, Pilger C, Muzli M, Fee D, Andersen O L, Taisne B, 2020, Reconstruction of the 2018 tsunamigenic flank collapse and eruptive activity at Anak Krakatau based on eyewitness reports, seismo-acoustic and satellite observations, Earth and Planetary Science Letters, 541:116268. https://doi.org/10.1016/j.epsl.2020.116268.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Amber Madden-Nadeau, Oxford University (URL: https://www.earth.ox.ac.uk/people/amber-madden-nadeau/, https://twitter.com/AMaddenNadeau/status/1159458288406151169); Anna Perttu, Earth Observatory of Singapore (URL: https://earthobservatory.sg/people/anna-perttu); Simon Carn, Michigan Tech University (URL: https://www.mtu.edu/geo/department/faculty/carn/; https://twitter.com/simoncarn/status/1211793124089044994); VolcanoYT, Indonesia (URL: https://volcanoyt.com/, https://twitter.com/VolcanoYTz/status/1182882409445904386/photo/1; Christoph Sator (URL: https://twitter.com/ChristophSator/status/1184713192670281728/photo/1); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Pascal Blondé, France (URL: https://pascal-blonde.info/portefolio-krakatau/, https://twitter.com/rajo_ameh/status/1199219837265960960); Alex Bogár, Budapest (URL: https://twitter.com/AlexEtna/status/1211396913699991557); Piotr (Piter) Smieszek, Yogyakarta, Java, Indonesia (URL: http://www.lombok.pl/, https://twitter.com/piotr_smieszek/status/1204545970962231296); Peter Rendezvous (URL: https://www.facebook.com/peter.rendezvous ); Wulkany swiata, Poland (URL: http://wulkanyswiata.blogspot.com/, https://twitter.com/Wulkany1/status/1214841708862693376).


Mayotte (France) — March 2020 Citation iconCite this Report

Mayotte

France

12.83°S, 45.17°E; summit elev. 660 m

All times are local (unless otherwise noted)


Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Mayotte is a volcanic island in the Comoros archipelago between the eastern coast of Africa and the northern tip of Madagascar. A chain of basaltic volcanism began 10-20 million years ago and migrating W, making up four principal volcanic islands, according to the Institut de Physique du Globe de Paris (IPGP) and Cesca et al. (2020). Before May 2010, only two seismic events had been felt by the nearby community within recent decades. New activity since May 2018 consists of dominantly seismic events and lava effusion. The primary source of information for this report through February 2020 comes from semi-monthly reports from the Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program between the Institut de Physique du Globe de Paris (IPGP), the Bureau de Recherches Géologiques et Minières (BRGM), and the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); Lemoine et al. (2019), the Centre National de la Recherche Scientifique (CNRS), and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER).

Seismicity was the dominant type of activity recorded in association with a new submarine eruption. On 10 May 2018, the first seismic event occurred at 0814, detected by the YTMZ accelerometer from the French RAP Network, according to BRGM and Lemoine et al. (2019). Seismicity continued to increase during 13-15 May 2018, with the strongest recorded event for the Comoros area occurring on 15 May at 1848 and two more events on 20-21 May (figure 1). At the time, no surface effusion were directly observed; however, Global Navigation Satellite System (GNSS) instruments were deployed to monitor any ground motion (Lemoine et al. 2019).

Figure (see Caption) Figure 1. A graph showing the number of daily seismic events greater than M 3.5 occurring offshore of Mayotte from 10 May 2018 through 15 February 2020. Seismicity significantly decreased in July 2018, but continued intermittently through February 2020, with relatively higher seismicity recorded in late August and mid-September 2018. Courtesy of IPGP and REVOSIMA.

Seismicity decreased dramatically after June 2018, with two spikes in August and September (see figure 1). Much of this seismicity occurred offshore 50 km E of Mayotte Island (figure 2). The École Normale Supérieure, the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP), and the REVOSIMA August 2019 bulletin reported that measurements from the GNSS stations and Teria GPS network data indicated eastward surface deformation and subsidence beginning in July 2018. Based on this ground deformation data Lemoine et al. (2019) determined that the eruptive phase began fifty days after the initial seismic events occurred, on 3 July 2018.

Figure (see Caption) Figure 2. Maps of seismic activity offshore near Mayotte during May 2019. Seismic swarms occurred E of Mayotte Island (top) and continued in multiple phases through October 2019. New lava effusions were observed 50 km E of Petite Terre (bottom). Bottom image has been modified with annotations; courtesy of IPGP, BRGM, IFREMER, CNRS, and University of Paris.

Between 2 and 18 May 2019, an oceanographic campaign (MAYOBS 1) discovered a new submarine eruption site 50 km E from the island of Mayotte (figure 2). The director of IPGP, Marc Chaussidon, stated in an interview with Science Magazine that multibeam sonar waves were used to determine the elevation (800 m) and diameter (5 km) of the new submarine cone (figure 3). In addition, this multibeam sonar image showed fluid plumes within the water column rising from the center and flanks of the structure. According to REVOSIMA, these plumes rose to 1 km above the summit of the cone but did not breach the ocean surface. The seafloor image (figure 3) also indicated that as much as 5 km3 of magma erupted onto the seafloor from this new edifice during May 2019, according to Science Magazine.

Figure (see Caption) Figure 3. Seafloor image of the submarine vent offshore of Mayotte created with multibeam sonar from 2 to 18 May 2019. The red line is the outline of the volcanic cone located at approximately 3.5 km depth. The blue-green color rising from the peak of the red outline represents fluid plumes within the water column. Courtesy of IPGP.

On 17 May 2019, a second oceanographic campaign (MAYOBS 2) discovered new lava flows located 5 km S of the new eruptive site. BRGM reported that in June a new lava flow had been identified on the W flank of the cone measuring 150 m thick with an estimated volume of 0.3 km3 (figure 4). According to REVOSIMA, the presence of multiple new lava flows would suggest multiple effusion points. Over a period of 11 months (July 2018-June 2019) the rate of lava effusion was at least 150-200 m3/s; between 18 May to 17 June 2019, 0.2 km3 of lava was produced, and from 17 June to 30 July 2019, 0.3 km3 of lava was produced. The MAYOBS 4 (19 July 2019-4 August 2019) and SHOM (20-21 August 2019) missions revealed a new lava flow formed between 31 July and 20 August to the NW of the eruptive site with a volume of 0.08 km3 and covering 3.25 km2.

Figure (see Caption) Figure 4. Bathymetric map showing the location of the new lava flow on the W flank of the submarine cone offshore to the E of Mayotte Island. The MAYOBS 2 campaign was launched in June 2019 (left) and MAYOBS 4 was launched in late July 2019 (right). Courtesy of BRGM.

During the MAYOBS 4 campaign in late July 2019, scientists dredged the NE flank of the cone for samples and took photographs of the newly erupted lava (figure 5). Two dives found the presence of pillow lavas. When samples were brought up to the surface, they exploded due to the large amount of gas and rapid decompression.

Figure (see Caption) Figure 5. Photographs taken using the submersible interactive camera system (SCAMPI) of newly formed pillow lavas (top) and a vesicular sample (bottom) dredged near the new submarine eruptive site at Mayotte in late July 2019. Courtesy of BRGM.

During April-May 2019 the rate of ground deformation slowed. Deflation was also observed up to 90 km E of Mayotte in late October 2019 and consistently between August 2019 and February 2020. Seismicity continued intermittently through February 2020 offshore E of Mayotte Island, though the number of detected events started to decrease in July 2018 (see figure 1). Though seismicity and deformation continued, the most recent observation of new lava flows occurred during the MAYOBS 4 and SHOM campaigns on 20 August 2019, as reported in REVOSIMA bulletins.

References: Cesca S, Heimann S, Letort J, Razafindrakoto H N T, Dahm T, Cotton F, 2020. Seismic catalogues of the 2018-2019 volcano-seismic crisis offshore Mayotte, Comoro Islands. Nat. Geosci. 13, 87-93. https://doi.org/10.1038/s41561-019-0505-5.

Lemoine A, Bertil D, Roulle A, Briole P, 2019. The volcano-tectonic crisis of 2018 east of Mayotte, Comoros islands. Preprint submitted to EarthArXiv, 28 February 2019. https://doi.org/10.31223/osf.io/d46xj.

Geologic Background. Mayotte, located in the Mozambique Channel between the northern tip of Madagascar and the eastern coast of Africa, consists two main volcanic islands, Grande Terre and Petite Terre, and roughly twenty islets within a barrier-reef lagoon complex (Zinke et al., 2005; Pelleter et al., 2014). Volcanism began roughly 15-10 million years ago (Pelleter et al., 2014; Nougier et al., 1986), and has included basaltic lava flows, nephelinite, tephrite, phonolitic domes, and pyroclastic deposits (Nehlig et al., 2013). Lavas on the NE were active from about 4.7 to 1.4 million years and on the south from about 7.7 to 2.7 million years. Mafic activity resumed on the north from about 2.9 to 1.2 million years and on the south from about 2 to 1.5 million years. Several pumice layers found in cores on the barrier reef-lagoon complex indicate that volcanism likely occurred less than 7,000 years ago (Zinke et al., 2003). More recent activity that began in May 2018 consisted of seismicity and ground deformation occurring offshore E of Mayotte Island (Lemoine et al., 2019). One year later, in May 2019, a new subaqueous edifice and associated lava flows were observed 50 km E of Petite Terre during an oceanographic campaign.

Information Contacts: Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program of a) Institut de Physique du Globe de Paris (IPGP), b) Bureau de Recherches Géologiques et Minières (BRGM), c) Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); (URL: http://www.ipgp.fr/fr/reseau-de-surveillance-volcanologique-sismologique-de-mayotte); Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); Bureau de Recherches Géologiques et Minières (BRGM), 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France (URL: https://www.brgm.fr/); Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), 1625 route de Sainte-Anne, CS 10070, 29280 Plouzané, France (URL: https://wwz.ifremer.fr/); Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France (URL: http://www.cnrs.fr/); École Normale Supérieure, 45 rue d'Ulm, F-75230 Paris Cedex 05, France (URL: https://www.ens.psl.eu/); Université de Paris, 85 boulevard Saint-Germain, 75006 Paris, France (URL: https://u-paris.fr/en/498-2/); Roland Pease, Science Magazine (URL: https://science.sciencemag.org/, article at https://www.sciencemag.org/news/2019/05/ship-spies-largest-underwater-eruption-ever) published 21 May 2019.


Fernandina (Ecuador) — March 2020 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Fissure eruption produced lava flows during 12-13 January 2020

Fernandina is a volcanic island in the Galapagos islands, around 1,000 km W from the coast of mainland Ecuador. It has produced nearly 30 recorded eruptions since 1800, with the most recent events having occurred along radial or circumferential fissures around the summit crater. The most recent previous eruption, starting on 16 June 2018, lasted two days and produced lava flows from a radial fissure on the northern flank. Monitoring and scientific reports come from the Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN).

A report from IG-EPN on 12 January 2020 stated that there had been an increase in seismicity and deformation occurring during the previous weeks. On the day of the report, 11 seismic events had occurred, with the largest magnitude of 4.7 at a depth of 5 km. Shortly before 1810 that day a circumferential fissure formed below the eastern rim of the La Cumbre crater, at about 1.3-1.4 km elevation, and produced lava flows down the flank (figure 39). A rapid-onset seismic swarm reached maximum intensity at 1650 on 12 January (figure 40); a second increase in seismicity indicating the start of the eruption began around 70 minutes later (1800). A hotspot was observed in NOAA / CIMSS data between 1800 and 1810, and a gas plume rising up to 2 km above the fissure dispersed W to NW. The eruption lasted 9 hours, until about 0300 on 13 January.

Figure (see Caption) Figure 39. Lava flows erupting from a circumferential fissure on the eastern flank of Fernandina on 12 January 2020. Photos courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 40. Graph showing the Root-Mean-Square (RMS) amplitude of the seismic signals from the FER-1 station at Fernandina on 12-13 January 2020. The graph shows the increase in seismicity leading to the eruption on the 12th (left star), a decrease in the seismicity, and then another increase during the event (right star). Courtesy of S. Hernandez, IG-EPN (Report on 13 January 2020).

A report issued at 1159 local time on 13 January 2020 described a rapid decrease in seismicity, gas emissions, and thermal anomalies, indicating a rapid decline in eruptive activity similar to previous events in 2017 and 2018. An overflight that day confirmed that the eruption had ended, after lava flows had extended around 500 m from the crater and covered an area of 3.8 km2 (figures 41 and 42). Seismicity continued on the 14th, with small volcano-tectonic (VT) earthquakes occurring less than 500 m below the surface. Periodic seismicity was recorded through 13-15 January, though there was an increase in seismicity during 17-22 January with deformation also detected (figure 43). No volcanic activity followed, and no additional gas or thermal anomalies were detected.

Figure (see Caption) Figure 41. The lava flow extents at Fernandina of the previous two eruptions (4-7 September 2017 and 16-21 June 2018) and the 12-13 January 2020 eruption as detected by FIRMS thermal anomalies. Thermal data courtesy of NASA; figure prepared by F. Vásconez, IG-EPN (Report on 13 January 2020).
Figure (see Caption) Figure 42. This fissure vent that formed on the E flank of Fernandina on 12 January 2020 produced several lava flows. A weak gas plume was still rising when this photo was taken the next day, but the eruption had ceased. Courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 43. Soil displacement map for Fernandina during 10 and 16 January 2020, with the deformation generated by the 12 January eruption shown. Courtesy of IG-EPN (Report on 23 January 2020).

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Dirección del Parque Nacional Galápagos (DPNG), Isla Santa Cruz, Galápagos, Ecuador (URL: http://www.galapagos.gob.ec/).


Masaya (Nicaragua) — February 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake persists with lower temperatures during August 2019-January 2020

Masaya is a basaltic caldera located in Nicaragua and contains the Nindirí, San Pedro, San Juan, and Santiago craters. The currently active Santiago crater hosts a lava lake, which has remained active since December 2015 (BGVN 41:08). The primary source of information for this August 2019-January 2020 report comes from the Instituto Nicareguense de Estudios Territoriales (INETER) and satellite -based imagery and thermal data.

On 16 August, 13 September, and 11 November 2019, INETER took SO2 measurements by making a transect using a mobile DOAS spectrometer that sampled for gases downwind of the volcano. Average values during these months were 2,095 tons/day, 1,416 tons/day, and 1,037 tons/day, respectively. August had the highest SO2 measurements while those during September and November were more typical values.

Satellite imagery showed a constant thermal anomaly in the Santiago crater at the lava lake during August 2019 through January 2020 (figure 82). According to a news report, ash was expelled from Masaya on 15 October 2019, resulting in minor ashfall in Colonia 4 de Mayo (6 km NW). On 21 November thermal measurements were taken at the fumaroles and near the lava lake using a FLIR SC620 thermal camera (figure 83). The temperature measured 287°C, which was 53° cooler than the last time thermal temperatures were taken in May 2019.

Figure (see Caption) Figure 82. Sentinel-2 thermal satellite imagery showed the consistent presence of an active lava lake within the Santiago crater at Masaya during August 2019 through January 2020. Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 83. Thermal measurements taken at Masaya on 21 November 2019 with a FLIR SC620 thermal camera that recorded a temperature of 287°C. Courtesy of INETER (Boletin Sismos y Volcanes de Nicaragua, Noviembre, 2019).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent low-power thermal anomalies compared to the higher-power ones before May 2019 (figure 84). The thermal anomalies were detected during August 2019 through January 2020 after a brief hiatus from early may to mid-June.

Figure (see Caption) Figure 84. Thermal anomalies occurred intermittently at Masaya during 21 February 2019 through January 2020. Courtesy of MIROVA.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); La Jornada (URL: https://www.lajornadanet.com/, article at https://www.lajornadanet.com/index.php/2019/10/16/volcan-masaya-expulsa-cenizas/#.Xl6f8ahKjct).


Reventador (Ecuador) — February 2020 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Reventador is an andesitic stratovolcano located in the Cordillera Real, Ecuador. Historical eruptions date back to the 16th century, consisting of lava flows and explosive events. The current eruptive activity has been ongoing since 2008 with previous activity including daily explosions with ash emissions, and incandescent block avalanches (BGVN 44:08). This report covers volcanism from August 2019 through January 2020 using information primarily from the Instituto Geofísico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and various infrared satellite data.

During August 2019 to January 2020, IG-EPN reported almost daily explosive eruptions and ash plumes. September had the highest average of explosive eruptions while January 2020 had the lowest (table 11). Ash plumes rose between a maximum of 1.2 to 2.5 km above the crater during this reporting period with the highest plume height recorded in December. The largest amount of SO2 gases produced was during the month of October with 502 tons/day. Frequently at night during this reporting period, crater incandescence was observed and was occasionally accompanied by incandescent block avalanches traveling as far as 900 m downslope from the summit of the volcano.

Table 11. Monthly summary of eruptive events recorded at Reventador from August 2019 through January 2020. Data courtesy of IG-EPN (August to January 2020 daily reports).

Month Average Number of Explosions Max plume height above the crater Max SO2
Aug 2019 26 1.6 km --
Sep 2019 32 1.7 km 428 tons/day
Oct 2019 29 1.3 km 502 tons/day
Nov 2019 25 1.2 km 432 tons/day
Dec 2019 25 2.5 km 331 tons/day
Jan 2020 12 1.7 km --

During the month of August 2019, between 11 and 45 explosions were recorded every day, frequently accompanied by gas-and-steam and ash emissions (figure 119); plumes rose more than 1 km above the crater on nine days. On 20 August the ash plume rose to a maximum 1.6 km above the crater. Summit incandescence was seen at night beginning on 10 August, continuing frequently throughout the rest of the reporting period. Incandescent block avalanches were reported intermittently beginning that same night through 26 January 2020, ejecting material between 300 to 900 m below the summit and moving on all sides of the volcano.

Figure (see Caption) Figure 119. An ash plume rising from the summit of Reventador on 1 August 2019. Courtesy of Radio La Voz del Santuario.

Throughout most of September 2019 gas-and-steam and ash emissions were observed almost daily, with plumes rising more than 1 km above the crater on 15 days, according to IG-EPN. On 30 September, the ash plume rose to a high of 1.7 km above the crater. Each day, between 18 and 72 explosions were reported, with the latter occurring on 19 September. At night, crater incandescence was commonly observed, sometimes accompanied by incandescent material rolling down every flank.

Elevated seismicity was reported during 8-15 October 2019 and almost daily gas-and-steam and ash emissions were present, ranging up to 1.3 km above the summit. Every day during this month, between 13 and 54 explosions were documented and crater incandescence was commonly observed at night. During November 2019, gas-and-steam and ash emissions rose greater than 1 km above the crater except for 10 days; no emissions were reported on 29 November. Daily explosions ranged up to 42, occasionally accompanied by crater incandescence and incandescent ejecta.

Washington VAAC notices were issued almost daily during December 2019, reporting ash plumes between 4.6 and 6 km altitude throughout the month and drifting in multiple directions. Each day produced 5-52 explosions, many of which were accompanied by incandescent blocks rolling down all sides of the volcano up to 900 m below the summit. IG-EPN reported on 11 December that a gas-and-steam and ash emission column rose to a maximum height of 2.5 km above the crater, drifting SW as was observed by satellite images and reported by the Washington VAAC.

Volcanism in January 2020 was relatively low compared to the other months of this reporting period. Explosions continued on a nearly daily basis early in the month, ranging from 20 to 51. During 5-7 January incandescent material ejected from the summit vent moved as block avalanches downslope and multiple gas-and-steam and ash plumes were produced (figures 120, 121, and 122). After 9 January the number of explosions decreased to 0-16 per day. Ash plumes rose between 4.6 and 5.8 km altitude, according to the Washington VAAC.

Figure (see Caption) Figure 120. Night footage of activity on 5 (top) and 6 (bottom) January 2020 at the summit of Reventador, producing a dense, dark gray ash plume and ejecting incandescent material down multiple sides of the volcano. This activity is not uncommon during this reporting period. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 121. An explosion at Reventador on 7 January 2020, which produced a dense gray ash plume. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 122. Night footage of the evolution of an eruption on 7 January 2020 at the summit of Reventador, which produced an ash plume and ejected incandescent material down multiple sides of the volcano. Courtesy of Martin Rietze, used with permission.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent and strong thermal anomalies within 5 km of the summit during 21 February 2019 through January 2020 (figure 123). In comparison, the MODVOLC algorithm reported 24 thermal alerts between August 2019 and January 2020 near the summit. Some thermal anomalies can be seen in Sentinel-2 thermal satellite imagery throughout this reporting period, even with the presence of meteorological clouds (figure 124). These thermal anomalies were accompanied by persistent gas-and-steam and ash plumes.

Figure (see Caption) Figure 123. Thermal anomalies at Reventador persisted during 21 February 2019 through January 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 124. Sentinel-2 thermal satellite images of Reventador from August 2019 to January 2020 showing a thermal hotspot in the central summit crater summit. In the image on 7 January 2020, the thermal anomaly is accompanied by an ash plume. Courtesy of Sentinel Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Radio La Voz del Santuario (URL: https://www.facebook.com/Radio-La-Voz-del-Santuario-126394484061111/, posted at: https://www.facebook.com/permalink.php?story_fbid=2630739100293291&id=126394484061111); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos).


Pacaya (Guatemala) — February 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Continuous explosions, small cone, and lava flows during August 2019-January 2020

Pacaya is a highly active basaltic volcano located in Guatemala with volcanism consisting of frequent lava flows and Strombolian explosions originating in the Mackenney crater. The previous report summarizes volcanism that included multiple lava flows, Strombolian activity, avalanches, and gas-and-steam emissions (BGVN 44:08), all of which continue through this reporting period of August 2019 to January 2020. The primary source of information comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions occurred consistently throughout this reporting period. During the month of August 2019, explosions ejected material up to 30 m above the Mackenney crater. These explosions deposited material that contributed to the formation of a small cone on the NW flank of the Mackenney crater. White and occasionally blue gas-and-steam plumes rose up to 600 m above the crater drifting S and W. Multiple incandescent lava flows were observed traveling down the N and NW flanks, measuring up to 400 m long. Small to moderate avalanches were generated at the front of the lava flows, including incandescent blocks that measured up to 1 m in diameter. Occasionally incandescence was observed at night from the Mackenney crater.

In September 2019 seismicity was elevated compared to the previous month, registering a maximum of 8,000 RSAM (Realtime Seismic Amplitude Measurement) units. White and occasionally blue gas-and-steam plumes that rose up to 1 km above the crater drifted generally S as far as 3 km from the crater. Strombolian explosions continued, ejecting material up to 100 m above the crater rim. At night and during the early morning, crater incandescence was observed. Incandescent lava flows traveled as much as 600 m down the N and NW flanks toward the Cerro Chino crater (figure 116). On 21 September two lava flows descended the SW flank. Constant avalanches with incandescent blocks measuring 1 m in diameter occurred from the front of many of these lava flows.

Figure (see Caption) Figure 116. Webcam image of Pacaya on 25 September 2019 showing thermal signatures and the point of emission on the NNW flank at night using Landsat 8 (Nocturnal) imagery (left) and a daytime image showing the location of these lava effusions (right) along with gas-and-steam emissions from the active crater. Courtesy of INSIVUMEH.

Weak explosions continued through October 2019, ejecting material up to 75 m above the crater and building a small cone within the crater. White and occasionally blue gas-and-steam plumes rose 400-800 m above the crater, drifting W and NW and extending up to 4 km from the crater during the week of 26 October-1 November. Lava flows measuring up to 250 m long, originating from the Mackenney crater were descending the N and NW flanks (figure 117). Avalanches carrying large blocks 1 m in diameter commonly occurred at the front of these lava flows.

Figure (see Caption) Figure 117. Photo of lava flows traveling down the flanks of Pacaya taken between 28 September 2019 and 4 October. Courtesy of INSIVUMEH (28 September 2019 to 4 October Weekly Report).

Continuing Strombolian explosions in November 2019 ejected material 15-75 m above the crater, which then contributed to the formation of the new cone. White and occasionally blue gas-and-steam plumes rose 100-600 m above the crater drifting in different directions and extending up to 2 km. Multiple lava flows from the Mackenney crater moving down all sides of the volcano continued, measuring 50-700 m long. Avalanches were generated at the front of the lava flows, often moving blocks as large as 1 m in diameter. The number of lava flows decreased during 2-8 November and the following week of 9-15 November no lava flows were observed, according to INSIVUMEH. During the week of 16-22 November, a small collapse occurred in the Mackenney crater and explosive activity increased during 16, 18, and 20 November, reaching RSAM units of 4,500. At night and early morning in late November crater incandescence was visible. On 24 November two lava flows descended the NW flank toward the Cerro Chino crater, measuring 100 m long.

During December 2019, much of the activity remained the same, with Strombolian explosions originating from two emission points in the Mackenney crater ejecting material 75-100 m above the crater; white and occasionally blue gas-and-steam plumes to 100-300 m above the crater drifted up to 1.5 km downwind to the S and SW. Lava flows descended the S and SW flanks reaching 250-600 m long (figure 118). On 29 December seismicity increased, reaching 5,000 RSAM units.

Figure (see Caption) Figure 118. Lava flows moving to the S and SW at Pacaya on 31 December 2019. Courtesy of INSIVUMEH (28 December 2019 to 3 January 2020 Weekly Report).

Consistent Strombolian activity continued into January 2020 ejecting material 25-100 m above the crater. These explosions deposited material inside the Mackenney crater, contributing to the formation of a small cone. White and occasionally blue fumaroles consisting of mostly water vapor were observed drifting in different directions. At night, summit incandescence and lava flows were visible descending the N, NW, and S flanks with the flow on the NW flank traveling toward the Cerro Chino crater.

During August 2019 through January 2020, multiple lava flows and bright thermal anomalies (yellow-orange) within the crater were seen in Sentinel-2 thermal satellite imagery (figures 119 and 120). In addition, constant strong thermal anomalies were detected by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 21 February 2019 through January 2020 within 5 km of the summit (figure 121). A slight decrease in energy was seen from May to June and August to September. Energy increased again between November and December. According to the MODVOLC algorithm, 37 thermal alerts were recorded during August 2019 through January 2020.

Figure (see Caption) Figure 119. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during August 2019 to November. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 120. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during December 2019 through January 2020. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 121. The MIROVA thermal activity graph (log radiative power) at Pacaya during 21 February 2019 to January 2020 shows strong, frequent thermal anomalies through January with a slight decrease in energy between May 2019 to June 2019 and August 2019 to September 2019. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — February 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Single explosion with steam and minor ash, 2 November 2019

The 19-km-wide submerged Kikai caldera at the N end of Japan’s Ryukyu Islands was the source of one of the world's largest Holocene eruptions about 6,300 years ago, producing large pyroclastic flows and abundant ashfall. During the last century, however, only intermittent minor ash emissions have characterized activity at Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera; several events have included limited ashfall in communities on nearby islands. The most recent event was a single day of explosions on 4 June 2013 that produced ash plumes and minor ashfall on the flank. A minor episode of increased seismicity and fumarolic activity was reported in late March 2018, but no ash emissions were reported. A new single-day event on 2 November 2019 is described here with information provided by the Japan Meteorological Agency (JMA).

JMA reduced the Alert Level to 1 on 27 April 2018 after a brief increase in seismicity during March 2018 (BGVN 45:05); no significant changes in volcanic activity were observed for the rest of the year. Steam plumes rose from the summit crater to heights around 1,000 m; the highest plume rose 1,800 m. Occasional nighttime incandescence was recorded by high-sensitivity surveillance cameras. SO2 measurements made during site visits in March, April, and May indicated amounts ranging from 300-1,500 tons per day, similar to values from 2017 (400-1,000 tons per day). Infrared imaging devices indicated thermal anomalies from fumarolic activity persisted on the N and W flanks during the three site visits. A field survey of the SW flank on 25 May 2018 confirmed that the crater edge had dropped several meters into the crater since a similar survey in April 2007. Scientists on a 19 December 2018 overflight had observed fumarolic activity.

There were no changes in activity through October 2019. Weak incandescence at night continued to be periodically recorded with the surveillance cameras (figure 9). A brief eruption on 2 November 2019 at 1735 local time produced a gray-white plume that rose slightly over 1,000 m above the Iodake crater rim (figure 10). As a result, JMA raised the Alert Level from 1 to 2. During an overflight the following day, a steam plume rose a few hundred meters above the summit, but no further activity was observed. No clear traces of volcanic ash or other ejecta were found around the summit (figure 11). Infrared imaging also showed no particular changes from previous measurements. Discolored seawater continued to be observed around the base of the island in several locations.

Figure (see Caption) Figure 9. Incandescence at night on 25 October 2019 was observed at Satsuma Iwo Jima (Kikai) with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 10. The Iwanogami webcam captured a brief gray-white ash and steam emission rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 2 November 2019 at 1738 local time. The plume rose slightly over 1,000 m before dissipating. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 11. During an overflight of Satsuma Iwo Jima (Kikai) on 3 November 2019 no traces of ash were seen from the previous day’s explosion; only steam plumes rose a few hundred meters above the summit, and discolored water was present in a few places around the shoreline. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).

For the remainder of November 2019, steam plumes rose up to 1,300 m above the summit, and nighttime incandescence was occasionally observed in the webcam. Seismic activity remained low and there were no additional changes noted through January 2020.

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html).


Nevado del Ruiz (Colombia) — January 2020 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Intermittent ash, gas-and-steam, and SO2 plumes, and thermal anomalies during January 2018-December 2019

Nevado del Ruiz is a glaciated stratovolcano located in Colombia. It is most known for the eruption on 13 November 1985 that produced an ash plume and pyroclastic flows onto the glacier, triggering a lahar and killing approximately 25,000 people in the towns of Armero (46 km W) and Chinchiná (34 km E). Since the September 1985-July 1991 eruption, volcanism has occurred dominantly at the Arenas crater, with eruptive periods during February 2012-July 2013 and November 2014-May 2017 (BGVN 42:06 and 44:12). The previous eruption included ash and gas-and-steam plumes, ashfall, and thermal anomalies through May 2017, after which no clear observations of ongoing activity were available until an ash plume was seen in satellite and webcam images on 18 December 2017. This report provides data and observations from January 2018 through December 2019 using information primarily from reports by the Servicio Geologico Colombiano and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various satellite data.

Summary of activity during December 2017-December 2019. Although data is incomplete, the current eruptive period is considered to have begun with the emission of an ash plume on 18 December 2017. The Washington VAAC issued an advisory that day for an ash plume to 6 km that was moving west and dispersing, further describing it as a "thin veil of volcanic ash and gasses" that was seen in visible satellite imagery, NOAA/CIMSS, and supported by webcam imagery.

Reports of significant ash plumes visible in satellite imagery were infrequent in 2018 and 2019, with a few notable pulses in July 2018, February-March 2019, and August-September 2019 (figure 95). Sentinel-2 thermal satellite data in comparison with Suomi NPP/VIIRS sensor data, and the MODVOLC algorithm for MODIS data registered infrared thermal hotspots intermittently throughout 2018 to 2019 with more frequent anomalies during January-March 2018, August 2018, October 2018-February 2019, and November-December 2019; observations during March-June of each year were low. Identification of SO2 emissions were frequent and consistent during all of 2018-2019 (figure 96).

Figure (see Caption) Figure 95. Timeline summary of observed activity at Nevado del Ruiz from January 2018 through December 2019. VAAC reports typically indicate a significant ash plume. Satellite-based SO2 data is variable with respect to volume of emitted gas, but reflects a point source at the volcano. For Sentinel-2, MODVOLC, and VIIRS data, the dates indicated represents detected thermal anomalies. White areas indicate no activity was observed, which may also be due to meteoric clouds. Data courtesy of Washington VAAC, NASA Goddard Space Flight Center, Sentinel Hub Playground, HIGP, and NASA Worldview using the "Fire and Thermal Anomalies" layer.
Figure (see Caption) Figure 96. Examples of SO2 plumes from Nevado del Ruiz detected by the Aura/OMI instrument during 12 May (top left), 7 October (top middle), and 29 November 2018 (top right) and 9 January (bottom left), 30 March (bottom middle), and 6 October 2019 (bottom right). Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows weak thermal anomalies within 5 km of the summit occurring dominantly between October 2018 through March 2019 (figure 97). Between April and October 2019, the number of thermal anomalies was low, registering eight during this time. The number of thermal signatures increased at the beginning of November 2019 and continued through the rest of 2019.

Figure (see Caption) Figure 97. Weak thermal anomalies at Nevado del Ruiz for 25 September 2018 through December 2019 as recorded by the MIROVA system (log radiative power) occurred mostly during December 2018 through March 2019. Activity was low during April to October 2019 with renewed signatures in November 2019. Courtesy of MIROVA.

Seismicity that occurred during 2018-2019 was located mainly in the Arenas crater and consisted of low-frequency (LF) and very low-frequency (VLF) earthquakes and volcanic tremors, many of which were associated with minor gas-and-steam and ash emissions confirmed through webcams. The number of earthquakes reported by SGC fluctuated each week, but the energy remained relatively consistent. The highest magnitude earthquake that occurred during 2018 was on 26 October reaching 3.1 ML (local magnitude) and during 2019 the largest was 2.8 ML on 21 April.

Activity during 2018. Throughout 2018, gas-and-steam plumes, mostly composed of water vapor and sulfur dioxide frequently occurred, rising to a maximum of 2.2 km above the Arenas crater on 24 March. Weak thermal anomalies were seen intermittently in thermal satellite imagery from Sentinel-2 and NASA Worldview during 4 January through March and September to December (figure 98). Activity during March to April 2018 was relatively low and consisted dominantly of gas-and-steam emissions, low-energy seismicity, and intermittent thermal anomalies. Between 9 May and 5 August, no thermal signatures were detected.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery detected thermal anomalies (bright yellow-orange) within the Arenas crater at Nevado del Ruiz that were mostly visible during the beginning and last months of 2018. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Ash plumes were seen in GOES-EAST satellite imagery, through webcams, and by SGC personnel. The first ash plume of 2018 occurred on 21 April at 0800, six days after NASA Worldview detected a thermal anomaly within the Arenas crater. The plume rose 6 km altitude and drifted NW as seen in GOES-EAST satellite imagery and reported by the Washington VAAC. Weak gas-and-steam and ash emissions were confirmed by webcams on 22 July, associated with a volcanic tremor. On 11 August 2018, another ash plume was reported in a VAAC notice rising 6.7 km altitude drifting W. During the week of 21 August, SGC reported that seismicity in the Arenas crater was associated with minor gas-and-steam and ash emissions, as confirmed by webcams.

The number of ash plumes increased during September (figure 99), one of which reached a maximum altitude of 7.3 km on 2 September. On 5 September, a continuous volcanic tremor occurred and was accompanied by an ash plume rising 7 km altitude drifting W, according to a Washington VAAC report. Ashfall was observed during the week of 11 September in Manizales (30 km NW) and Villamaría (27 km NW). A new volcanic tremor occurred on 15 September and was accompanied by various ash emissions reaching 1.4 km above the crater and drifting NW as confirmed by PNNN, inhabitants within the vicinity of the volcano, and the Washington VAAC. Seismicity continuing into the weeks of 25 September and 2 October was also accompanied by ash emissions, rising to an altitude of 1.4 km above the crater on 22 September. The number of reported gas-and-steam and ash emissions decreased after September; ash emissions were reported by SGC on 19, 22, 26, and 31 October, 6, 9, and 17 November, and 14 December.

Figure (see Caption) Figure 99. Webcam images of gas-and-steam and ash plumes rising from Nevado del Ruiz during 2018. Courtesy of Servicio Geologico Colombiano.

Activity during 2019. Gas-and-steam and ash emissions continued intermittently through 2019, with an increased number of ash emissions compared to the previous year. Infrared hotspots were detected in Sentinel-2 satellite imagery primarily during January-February 2019 and December 2019, often accompanied by gas-and-steam emissions (figure 100). An ash plume was seen in GOES-EAST satellite imagery on 2 January 2019, rising to an altitude of 5.8 km and drifting NW, according to a Washington VAAC report. On 7 January, ashfall in Manizales and Villamaría was observed. A thermal hotspot was detected in multispectral imagery, according to a Washington VAAC report on 29 January. Slight ground deformation was observed by GNSS and electronic inclinometers during the weeks of 29 January and 10 September. Volcanism was relatively low during February to March and consisted of mostly gas-and-steam emissions and rare ash plumes; these ash emissions were reported on 2 and 9 February and 16 March by the Washington VAAC rising between 5.8-6.7 km altitude. Gas-and-steam emission were detected on 6 and 17 February and 17 and 21 March.

Figure (see Caption) Figure 100. Sentinel-2 thermal satellite imagery detected thermal anomalies (bright yellow-orange) mostly visible within the Arenas crater at Nevado del Ruiz during the last three months of 2019 and were accompanied by gas-and-steam emissions. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

The number of ash emissions detected in satellite imagery increased after March, occurring on 4, 7, 16, 17-19, and 23-26 April and 2 and 4-5 May. Ash plumes were detected on 27 June, 4, 7, 8, and 29 July, 1 August, and on 19, 29, and 30 September. Los Nevados National Natural Park (PNNN) personnel reported that the ash plume on 8 July was accompanied by gas-and-steam emissions and a continuous tremor occurring at 0722 (figure 101). These emissions rose 450 m above the crater and drifted W. On 29 September, a tremor associated with an ash plume occurred at 2353. The ash plume rose to a maximum altitude of 8.5 km drifted NW, resulting in ashfall confirmed by PNNN, GOES-EAST satellite imagery, and SGC personnel in the field.

Seismicity increased during the week of 1 October compared to the previous week, which was accompanied by several gas-and-steam and ash emissions rising 1 km altitude drifting NW observed by webcams, PNNN personnel, and GOES-EAST satellite imagery. An ash plume rising 7 km altitude drifting NW on 4 October resulted in fine ashfall in Manizales. Ash plumes rose to an altitude of 7.3 km drifting N on 5, 9, and 16 October and was seen in the GOES-EAST satellite according to Washington VAAC notices. Ash emissions were observed frequently during November; 11 Washington VAAC notices, the most for any month during 2019, reported emissions ranging 5.8 to 7 km altitude drifting in different directions. Gas-and-steam plumes rose to a maximum of 2.4 km above the crater during 14 and 30 November. The number of reported emissions decreased during December with one ash emission observed on 4 December.

Figure (see Caption) Figure 101. Webcam images of gas-and-steam and ash plumes rising from Nevado del Ruiz during 2019. Courtesy of Servicio Geologico Colombiano.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Erebus (Antarctica) — January 2020 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Lava lakes persist through 2019

Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Antarctica's Ross Island, 35 km SSW. Because of the remoteness of the volcano, activity is primarily monitored using satellites (figure 27), including MODIS infrared detectors aboard the Aqua and Terra satellites and analyzed using the MODVOLC algorithm.

Figure (see Caption) Figure 27. Satellite image of Erebus (on left) acquired on 19 October 2019 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. The false-color combines visible and near-infrared wavelengths of light (ASTER bands 3, 2, 1). The area was just days away from constant 24-hour sunlight when this image was acquired, with the Sun angle low enough to cast a long shadow towards the west. The blue patches are areas clear of surface snow, exposing glacial ice. Nearby areas that appear smooth are the snow- and ice-topped waters of McMurdo Sound. Courtesy of NASA Earth Observatory: image by Joshua Stevens, using data from NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science Team; description by Kathryn Hansen.

Available since 2000, MODIS-MODVOLC data have shown a strong and nearly continuous thermal signal through 2019. A compilation of thermal alert pixels during 2017-2019 (table 5, continuing the table in BGVN 44:01) shows a wide range of detected activity in 2019, with a high of 162 in April. Infrared satellite imagery from Sentinel-2 identified one or two lava lakes during January-March and September-December 2019; a few of the images showed gas emissions, possibly from melted snow (figure 28).

Table 5. Number of monthly MODVOLC thermal alert pixels recorded at Erebus from 1 January 2017 to 31 December. Table compiled using data provided by the Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SUM
2017 0 21 9 0 0 1 11 61 76 52 0 3 234
2018 0 21 58 182 55 17 137 172 103 29 0 0 774
2019 2 21 162 151 55 56 75 53 29 19 1 0 624
Figure (see Caption) Figures 28. Sentinel-2 satellite image of Erebus in color infrared (bands 8, 4, 3) on 20 October 2019 showing two lava lakes in the summit crater. Courtesy of Sentinel Hub Playground.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/).


Sangay (Ecuador) — January 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Continuing ash emissions, lava flows, pyroclastic flows, and lahars through December 2019

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars since 1628. Its remoteness on the east side of the Andean crest has made ground observations difficult until recent times. The current eruption began in March 2019; this report covers ongoing activity from July through December 2019. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery.

The eruption that began in March 2019 continued during July-December 2019 with activity focused on two eruptive centers at the summit, the Cráter Central and the Ñuñurco (southeast) vent. The Cráter Central produced explosive activity which generated small ash emissions that rose up to 3.2 km above the crater and were frequently directed towards the W and SW. Associated with these emissions in early November, ashfall was reported in Chimborazo province and elsewhere, and ejecta from explosions was deposited on all the upper flanks. At the Ñuñurcu vent, effusive activity resulted in an almost continuous emission of material down the SE flank. Small rockfalls and pyroclastic flows along the fronts and sides of the flows reached the basin and upper channel of the Volcán river which flows into the Upano river. These deposits were remobilized by rainfall and formed mud and debris flows (lahars) in the Volcán river, which caused damming at the confluence with the Upano river downstream. Increased thermal activity was recorded by the MIROVA system from mid-May 2019 through the end of the year, corresponding to the ongoing lava flow and explosive activity (figure 36).

Figure (see Caption) Figure 36. Increased heat flow at Sangay was recorded beginning in mid-May 2019 and continued steadily through the end of the year as seen in this graph of Log Radiative Power produced by the MIROVA project. Courtesy of MIROVA.

Activity during July-September 2019. Several ash emissions were reported by the Washington VAAC during the first part of July 2019. On 1 July a plume rose to 6.7 km altitude and extended 45 km WSW from the summit. During 3-4 July a plume rose 6.4 km and drifted WNW; it included occasional discrete emissions that extended approximately 35 km from summit. The VAAC recorded a bright hotspot in SWIR imagery on 4 July. On 11 July a 7.3-km-altitude ash plume detached from the summit and extended from immediately W of the summit S past Segu. Webcam and satellite imagery on 11 July demonstrated the continuing thermal activity of the lava flow on the SE flank and ash emissions drifting W (figure 37). On 29 July a plume rose to 7.6 km altitude and drifted 65 km WSW. Later in the day continuous emissions were drifting SW from the summit at 5.8 km altitude before dissipating. The first satellite images of 30 July showed a plume extending 110 km WSW from the summit at 7 km altitude. Activity decreased later in the day and the plume extended W about 45 km from the summit at 6.4 km altitude. Composite satellite imagery on 31 July showed almost constant ash emissions extending over 150 km W of the summit (figure 38).

Figure (see Caption) Figure 37. The local webcam at Sangay (left) and Sentinel satellite imagery (right, bands 12, 11, and 8A) both confirmed the high heat output from the active lava flow on the SE flank on 11 July 2019. The flow is about 2 km long. A plume of steam and ash also drifted W from the summit (right). Courtesy of IG-EPN (left) and Sentinel Hub Playground (right).
Figure (see Caption) Figure 38. An ash emission from Sangay on 29 July 2019 drifted tens of km WSW as seen in the webcam (left). Two days later on 31 July a small dark ash plume was visible above the dense cloud cover in Sentinel satellite imagery; the VAAC reported ash drifting W throughout the day. Courtesy of IG-EPN (left) and Sentinel Hub Playground (right).

During an overflight on 6 August 2019 scientists from IG-EPN observed ash emissions from the Cráter Central, and the lava flow continuing from the Vento Ñuñurco in a similar location to where it was in May 2019 (figure 39). Light-colored sediments filled much of the upper basin of the Volcán river. Thermal images of the area also showed that some of the deposits were elevated in temperature, even in the riverbed (figure 40).

Figure (see Caption) Figure 39. The E and SE flanks of Sangay showed continuing activity during August 2019 (right) that was similar to activity going on during May (left). In May, steam issued from the Cráter Central and a lava flow descended the SE flank from Vento Ñuñurco (photo by M. Almeida, IG-EPN). In August, diffuse ash and steam issued from the Crater Central, and a new flow descended from the same area of the Vento Ñuñurco seen in May (photo by P. Ramón , IG-EPN). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 5, Quito, 13 de noviembre del 2019).
Figure (see Caption) Figure 40. The upper Volcán River basin was filled with deposits of pyroclastic material associated with the most recent activity at Sangay when observed during an overflight on 6 August 2019 (left). Thermal analysis of the drainage indicated that several of the deposits were still hot, as was the active flow (right). Left photo by P. Ramón, thermal image by Silvia Vallejo; courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 5, Quito, 13 de noviembre del 2019).

Frequent ash emissions continued during August 2019. Diffuse ash was seen moving W from the summit at 5.8 km altitude on 1 August. Another short-lived plume was observed extending 15 km WSW the next day at 5.8-6.1 km altitude. Continuous ash emissions were visible in satellite imagery extending 35 km SW from the summit at 6.1 km altitude on 5 August. During the next two days, the emissions extended 45 km WSW and a prominent hot spot was visible through the meteoric clouds. The ash plume altitude rose to 6.7 km on 8 August and a larger ash emission extended more than 100 km WSW. A new emission the next day drifted 25-35 km W at 6.1 km altitude. A well-defined hotspot seen in shortwave imagery on 10 August accompanied an ash emission that extended 35 km WSW from the summit at 6.7 km altitude. On 12 August a plume drifted 65 km due W at 6.4 km altitude; emissions continued the next day in the same direction at 6.1 km altitude. An ash plume extended 100 km WNW of the summit at 5.8 km altitude on 18 August. A very bright hotspot was observed in infrared imagery the next day. The ash emissions continued to be visible in satellite imagery through 20 August.

An ash plume extending 10 km N from the summit on 25 August coincided with the appearance of a vivid hot spot, according to the Washington VAAC. The plume was initially reported at 7.6 km altitude and later in the day was at 6.7 km altitude. The leading edge of an ash emission reported on 31 August was 350 km W of the summit late that day moving at 5.8 km altitude, and over 950 km WSW before it dissipated on 1 September. Fewer ash emissions were reported during September 2019. The leading edge of a plume extended about 160 km W from the summit on 2 September at 7.6 km altitude; a second emission that day moved NE at 6.4 km altitude. On 4 September a small emission rose to 6.4 km altitude and drifted SW; on 9 September a plume was observed moving W at 5.5 km. A new emission on 19 September was seen in satellite imagery moving in many different directions (N, NE, E, and SE) at 6.7 km altitude. The lava flow on the SE flank produced a strong thermal signature that appeared unchanged from late August through late September (figure 41).

Figure (see Caption) Figure 41. The thermal signature from the lava flow on the SE flank of Sangay appeared unchanged from late August (top left) to late September 2019 (bottom right) in Sentinel-2 imagery (bands 12, 11, and 8A); an ash emission drifted in multiple directions on 19 September 2019. Courtesy of Sentinel Hub Playground and IG-EPN.

Activity during October-December 2019. Pulses of ash were reported during 1, 9-11, 14, 26, and 31 October 2019 by the Washington VAAC. On 1 October the plume rose to 5.8 km altitude and drifted NE. A narrow plume on 9 October extending 55 km NW corresponded with a bright hotspot at its source. Concentrated emissions the next day rose to 7.3 km altitude and extended over 200 km WNW. Later in the day on 10 October emissions were reported at 5.8 km drifting W. A substantial thermal anomaly and a constant plume of diffuse ash appeared in satellite imagery on 14 October at 6.1 km altitude drifting 15 km W. Diffuse emissions on 26 October appeared 35 km NW of the summit at 5.8 km altitude. The intensity of the thermal anomaly from the lava flow on the SE flank remained strong during the month, and emissions of steam and ash were also visible in satellite images (figure 42). In a site visit on 19 October 2019, IG-EPN scientists measured a recent lahar deposited near the confluence of the Volcán and Upano rivers. It was full of sand-sized particles and approximately 30 cm thick at the river’s edge (figure 43).

Figure (see Caption) Figure 42. The thermal anomaly from the lava flow on the SE flank of Sangay remained strong during October 2019, and both ash and steam emissions were seen in Sentinel-2 satellite images (bands 12, 11, and 8A). The lava flow is about 2 km long. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 43. A lahar deposit at the confluence of Río Volcán and Río Upano at Sangay was about 30 cm thick on 19 October 2019. Photograph by Francisco Vasconez, courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 5, Quito, 13 de noviembre del 2019).

Ash emissions during 10-26 November 2019 were reported daily by the Washington VAAC, each lasting for less than 24 hours before dissipating. The first report of ash detected in satellite imagery on 10 November indicated that the plume extended 25 km WSW at 6.7 km altitude. On the subsequent days, the plumes drifted in many different directions at altitudes of 5.8-7.3 km, usually around 6.4 km. The plumes generally drifted 25-45 km from the summit, although some were still visible over 100 km away, depending on weather conditions. The highest plume reached 7.3 km altitude on 18 November and drifted W. The plume on 26 November rose to 6.4 km altitude and was last seen 140 km SW of the summit before it dissipated. Pyroclastic flows were witnessed on 20 November 2019 (figure 44). The last plume of the month, on 29 November, rose to 6.4 km altitude and drifted 65 km W, dissipating quickly, and was accompanied by a very bright thermal anomaly.

Figure (see Caption) Figure 44. Ash plumes from Sangay rose to 5.8 km altitude on 20 November 2019 and drifted 25 km NE before dissipating, according to the Washington VAAC. Pyroclastic flows appeared on the flank that day. Courtesy of Walter Calle C.

Ashfall was reported during November in the provinces of Chimborazo (Alao, 20 km NW, Cebadas, 35 km NW, and Guaguallá), Morona Santiago (Macas, 40 km SE), and Azuay (120 km SW). Samples of ash collected from two locations indicated that the amount of material was very small (less than10 g/m2) with a high content of extremely fine ash (between 40 and 60% ash less 63 μm in diameter). The larger fraction over 63 μm was mainly composed of juvenile magma (80%) and a small fraction of free crystals (10% plagioclase and pyroxenes), oxidized fragments (5%), and gray lithics (5%) (figure 45).

Figure (see Caption) Figure 45. Photos from a binocular microscope of the greater than 63 μm fraction of ash from Sangay collected in Macas and at the SAGA station during November 2019. See text for details. Courtesy if IG (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).

In a report issued in early December 2019 the IG-EPN noted that eruptive activity which increased in May 2019 was continuing (figure 46); a small amount of inflation was observed during November. Explosive activity continued at the Cráter Central with ash plumes reaching 2 km above the summit, and plumes drifting frequently towards the NE causing small amounts of ash to fall in the Chimborazo, Morona Santiago, and Azuay provinces. Effusive activity from the Ñuñurco vent produced almost continuous lava that flowed down the SE flank. Small pyroclastic flows around the margins of the lava flows reached the basin and the upper channel of the Volcán river, causing temporary dams that turned to mudflows during rain events.

Figure (see Caption) Figure 46. IG-EPN published this multi-parameter chart of activity of the Sangay volcano from May to 1 December 2019. a: seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN); b: SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (source: MOUNTS); c: height of ash clouds (m above crater level) detected by the GOES-16 satellite sensor (source: Washington VAAC); d: thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimated accumulated lava volume (million m3, dotted lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).

During an overflight on 3 December 2019 a strong smell of sulfur was noted 1 km above the summit. The Ñuñurco vent continued to emit lava with a maximum apparent temperature of 100 to 210°C (figure 47). IG-EPN scientists concluded that approximately 58 ± 29 million m3 of lava had been emitted through 3 December.

Figure (see Caption) Figure 47. Views of the SE flank of Sangay on 3 December 2019 with visible (left) and thermal (right) imagery. Photograph by C. Viracucha, thermal analysis by F. Naranjo; courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).

Recurring lahars in the Río Volcán during the period occasionally reached the Rio Upano (figure 48). By late November, they had partially dammed the Upano river (figure 49). On 26 November 2019 when IG-EPN and Sangay National Park officials inspected the area, they recorded deposits more than 2 m thick at the confluence of the two rivers (figure 50). During an overflight the next day, additional deposits were identified along 16 km upstream. The total volume of the lahar deposits was estimated at 5 million m3 to date.

Figure (see Caption) Figure 48. Inferred lahar deposits at Sangay along the Río Volcán from the foot of the volcano up to its confluence with Río Upano shown in red. Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).
Figure (see Caption) Figure 49. Lahar deposits at Sangay filled Río Volcán and dammed part of the confluence where it joins río Upano when photographed during an overflight on 26 November 2019. Photographs by Pedro Espín; courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).
Figure (see Caption) Figure 50. Lahar deposits from Sangay exceeded 2 m in thickness at the confluence of the Upano and Volcán rivers on 26 November 2019. Photography by Pedro Espín; courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2019 - No 6, 4 de diciembre del 2019).

Another extended period of ash emissions began on 4 December 2019 and continued daily through 19 December. The Washington VAAC reported that an ash plume was initially at 6.7 km altitude drifting S on 4 December. Continuous emissions were observed at 4.6 km altitude later in the day and were visible in satellite images located 25 km S at 5.8 km altitude that evening. The drift directions were initially mostly SW in early December, but migrated to mostly SE during 10-16 December, then back to SW. Plume altitudes ranged from 5.8 to 7.3 km and satellite images revealed ash as far as 160 km away; most plumes were visible to about 25 km before dissipating or disappearing into meteoric clouds. IG-EPN reported steam and gas emissions with small amounts of ash on 13 December that drifted SE (figure 51). Small block avalanches from the active flow were also observed on the SE flank. The next day, ash and gas emissions rose to 1,170 m above the summit and drifted NE while the lava flow appeared incandescent on the SE flank.

During the night of 14-15 December ashfall was reported in San Isidro in the Province of Morona Santiago (30 km SE). Ash plumes rose 870 m above the summit on 15 December and 1,470 m high the next day. Ashfall was reported in the Guasuntos (60 km SW) and Llagos (80 km SW) areas of the Chimborazo province on the morning of 16 December. The next day plumes drifted SE and SW, and minor ashfall was reported that night (16-17 December) in Macas (40 km SE), Morona Santiago province. Satellite images captured gas and ash emissions on 25 December, and ashfall was reported in Alausí (60 km SW) in the province of Chimborazo. An explosion on 29 December produced an ash plume that rose to 6.1 km and first drifted WNW then in an arc to the SW almost 185 km to the coast. Multiple plumes at 5.8-6.7 km drifted westerly for tens of kilometers that day and the next. Prominent thermal anomalies were noted in satellite imagery on 8, 15, 17, and 30 December.

Figure (see Caption) Figure 51. Numerous explosions produced ash emissions from Sangay during 4-30 December 2019, shown here on days 13, 14, 16, and 25. Courtesy of IG-EPN (Informe Diario del Estado del Volcán Sangay No. 2019-1, 13 Diciembre; No. 2019-2, 14 Diciembre; No. 2019-5, 17 Diciembre; No. 2019-13, 25 Diciembre 2019).

By late December 2019, the lahar deposits in Rio Volcán had backed up noticeably further into the Upano river from a month earlier (figure 52). Sulfur dioxide emissions were not recorded during July through August 2019, but small, pulsing plumes were captured in satellite images during September, October and November, gradually increasing in density. Several plumes were detected hundreds of kilometers from the volcano before dissipating; by December, larger, more frequent pulses of SO2 were measured during many days when ash emissions were reported (figure 53).

Figure (see Caption) Figure 52. Lahar deposits from Sangay in the Rio Volcán (right) continued to dam up the Rio Upano into late December 2019. Compare with figure 49 taken one month earlier. Photo by WJ Hernandes, courtesy of Edgar Chulde, posted online 21 December 2019.
Figure (see Caption) Figure 53. Sulfur dioxide emissions from Sangay were weak but persistent during September-November 2019 (top row), often drifting in narrow plumes with distinct pulses. During December, the density of the SO2 emissions increased noticeably (bottom row). Columbia’s Nevado del Ruiz was also producing plumes of SO2 at the same time. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Walter Calle C., Macas, Ecuador (Twitter: @walterc333; URL: https://twitter.com/walterc333/status/1197273200822046720); Edgar Chulde, Quito, Ecuador (Twitter: @EdgarChulde2; URL: https://twitter.com/EdgarChulde2/status/1208547471024173056).


Shishaldin (United States) — February 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Multiple lava flows, pyroclastic flows, lahars, and ashfall events during October 2019 through January 2020

Shishaldin is located near the center of Unimak Island in Alaska and has been frequently active in recent times. Activity includes steam plumes, ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. The current eruption phase began on 23 July 2019 and through September included lava fountaining, explosions, and a lava lake in the summit crater. Continuing activity during October 2019 through January 2020 is described in this report based largely on Alaska Volcano Observatory (AVO) reports, photographs, and satellite data.

Minor steam emissions were observed on 30 September 2019, but no activity was observed through the following week. Activity at that time was slightly above background levels with the Volcano Alert Level at Advisory and the Aviation Color Code at Yellow (figure 17). In the first few days of October weak tremor continued but no eruptive activity was observed. Weakly elevated temperatures were noted in clear satellite images during 4-9 October and weak tremor continued. Elevated temperatures were recorded again on the 14th with low-level tremor.

Figure (see Caption) Figure 17. Alaska Volcano Observatory hazard status definitions for Aviation Color Codes and Volcanic Activity Alert Levels used for Shishaldin and other volcanoes in Alaska. Courtesy of AVO.

New lava extrusion was observed on 13 October, prompting AVO to raise the Aviation Color Code to Orange and the Volcano Alert Level to Watch. Elevated surface temperatures were detected by satellite during the 13th and 17-20th, and a steam plume was observed on the 19th. A change from small explosions to continuous tremor that morning suggested a change in eruptive behavior. Low-level Strombolian activity was observed during 21-22 October, accompanied by a persistent steam plume. Lava had filled the crater by the 23rd and began to overflow at two places. One lava flow to the north reached a distance of 200 m on the 24th and melted snow to form a 2.9-km-long lahar down the N flank. The second smaller lava flow resulted in a 1-km-long lahar down the NE flank. Additional snowmelt was produced by spatter accumulating around the crater rim. By 25 October the northern flow reached 800 m, there was minor explosive activity with periodic lava fountaining, and lahar deposits reached 3 km to the NW with shorter lahars to the N and E (figure 18). Trace amounts of ashfall extended at least 8.5 km SE. There was a pause in activity on the 29th, but beginning at 1839 on the 31st seismic and infrasound monitoring detected multiple small explosions.

Figure (see Caption) Figure 18. PlanetScope satellite images of Shishaldin on 3 and 29 October 2019 show the summit crater and N flank before and after emplacement of lava flows, lahars, and ashfall. Copyright PlanetLabs 2019.

Elevated activity continued through November with multiple lava flows on the northern flanks (figure 19). By 1 November the two lava flows had stalled after extending 1.8 km down the NW flank. Lahars had reached at least 4 km NW and trace amounts of ash were deposited on the north flank. Elevated seismicity on 2 November indicated that lava was likely flowing beyond the summit crater, supported by a local pilot observation. The next day an active lava flow moved 400 m down the NW flank while a smaller flow was active SE of the summit. Minor explosive activity and/or lava fountaining at the summit was indicated by incandescence during the night. Small explosions were recorded in seismic and infrasound data. On 5 November the longer lava flow had developed two lobes, reaching 1 km in length. The lahars had also increased in length, reaching 2 km on the N and S flanks. Incandescence continued and hot spatter was accumulating around the summit vent. Activity continued, other than a 10-hour pause on 4-5 November, and another pause on the 7th. The lava flow length had reached 1.3 km on the 8th and lahar deposits reached 5 km.

Figure (see Caption) Figure 19. Sentinel-2 thermal satellite images show multiple lava flows (orange) on the upper northern flanks of Shishaldin between 1 November and 1 December 2019. Blue is snow and ice in these images, and partial cloud cover is visible in all of them. Sentinel-2 Urban rendering (bands 21, 11, 4) courtesy of Sentinel Hub Playground.

After variable levels of activity for a few days, there was a significant increase on 10-11 November with lava fountaining through the evening and night. This was accompanied by minor to moderate ash emissions up to around 3.7 km altitude and drifting northwards, and a significant increase in seismicity. Activity decreased again during the 11-12th while minor steam and ash emissions continued. On 14 November minor ash plumes were visible on the flanks, likely caused by the collapse of accumulated spatter. By 15 November a large network of debris flows consisting of snowmelt and fresh deposits extended 5.5 km NE and the collapse of spatter mounds continued. Ashfall from ash plumes reaching as high as 3.7 km altitude produced thin deposits to the NE, S, and SE. Activity paused during the 17-18th and resumed again on the 19th; intermittent clear views showed either a lava flow or lahar descending the SE flank. Activity sharply declined at 0340 on the 20th.

Seismicity began increasing again on 24 November and small explosions were detected on the 23rd. A small collapse of spatter that had accumulated at the summit occurred at 2330 on the 24th, producing a pyroclastic flow that reached 3 km in length down the NW flank. A new lava flow had also reached several hundred meters down the same flank. Variable but elevated activity continued over 27 November into early December, with a 1.5-km-long lava flow observed in satellite imagery acquired on the 1st. On 5 December minor steam or ash emissions were observed at the summit and on the north flank, and Strombolian explosions were detected. Activity from that day produced fresh ash deposits on the northern side of the volcano and a new lava flow extended 1.4 km down the NW flank. Three small explosions were detected on the 11th.

At 0710 on 12 December a 3-minute-long explosion produced an ash plume up to 6-7.6 km altitude that dispersed predominantly towards the W to NW and three lightning strokes were detected. Ash samples were collected on the SE flank by AVO field crews on 20 December and analysis showed variable crystal contents in a glassy matrix (figure 20). A new ash deposit was emplaced out to 10 km SE, and a 3.5-km-long pyroclastic flow had been emplaced to the north, containing blocks as large as 3 m in diameter. The pyroclastic flow was likely a result from collapse of the summit spatter cone and lava flows. A new narrow lava flow had reached 3 km to the NW and lahars continued out to the northern coast of Unimak island (figure 21). The incandescent lava flow was visible from Cold Bay on the evening of the 12th and a thick steam plume continued through the next day.

Figure (see Caption) Figure 20. An example of a volcanic ash grain that was erupted at Shishaldin on 12 December 2019 and collected on the SE flank by the Alaska Volcano Observatory staff. This Scanning Electron Microscope images shows the different crystals represented by different colors: dark gray crystals are plagioclase, the light gray crystals are olivine, and the white ones are Fe-Ti oxides. The groundmass in this grain is nearly completely crystallized. Courtesy of AVO.
Figure (see Caption) Figure 21. A WorldView-2 satellite image of Shishaldin with the summit vent and eruption deposits on 12 December 2019. The tephra deposit extends around 10 km SE, a new lava flow reaching 3 km NW with lahars continuing to the N coast of Unimak island. Pyroclastic flow deposits reach 3.5 km to the N and contain blocks as large as 3 m. Courtesy of Hannah Dietterich, AVO.

A new lava flow was reported by a pilot on the night of 16 December. Thermal satellite data showed that this flow reached 2 km to the NW. High-resolution radar satellite images over the 15-17th showed that the lava flow had advanced out to 2.5 km and had developed levees along the margins (figure 22). The lava channel was 5-15 m wide and was originating from a crater at the base of the summit scoria cone, which had been rebuilt since the collapse the previous week. Minor ash emissions drifted to the south on the 19tt and 20th (figure 23).

Figure (see Caption) Figure 22. TerraSAR-X radar satellite images of Shishaldin on 15 and 17 December 2019 show the new lava flow on the NW flank and growth of a scoria cone at the summit. The lava flow had reached around 2.5 km at this point and was 5-15 m wide with levees visible along the flow margins. Pyroclastic flow deposits from a scoria cone collapse event on 12 December are on the N flank. Figure courtesy of Simon Plank (German Aerospace Center, DLR) and Hannah Dietterich (AVO).
Figure (see Caption) Figure 23. Geologist Janet Schaefer (AVO/DGGS) collects ash samples within ice and snow on the southern flanks of Shishaldin on 20 December 2019. A weak ash plume is rising from the summit crater. Photo courtesy of Wyatt Mayo, AVO.

On 21 December a new lava flow commenced, traveling down the northern slope and accompanied by minor ash emissions. Continued lava extrusion was indicated by thermal data on the 25th and two lava flows reaching 1.5 km and 100 m were observed in satellite data on the 26th, as well as ash deposits on the upper flanks (figure 24). Weak explosions were detected by the regional infrasound network the following day. A satellite image acquired on the 30th showed a thick steam plume obscuring the summit and snow cover on the flanks indicating a pause in ash emissions.

Figure (see Caption) Figure 24. This 26 December 2019 WorldView-2 satellite image with a close-up of the Shishaldin summit area to the right shows a lava flow extending nearly 1.5 km down the NW flank and a smaller 100-m-long lava flow to the NE. Volcanic ash was deposited around the summit, coating snow and ice. Courtesy of Matt Loewen, AVO.

In early January satellite data indicated slow lava extrusion or cooling lava flows (or both) near the summit. On the morning of the 3rd an ash plume rose to 6-7 km altitude and drifted 120 km E to SE, producing minor amounts of volcanic lightning. Elevated surface temperatures the previous week indicated continued lava extrusion. A satellite image acquired on 3 January showed lava flows extending to 1.6 km NW, pyroclastic flows moving 2.6 km down the western and southern flanks, and ashfall on the flanks (figure 25).

Figure (see Caption) Figure 25. This WorldView-2 multispectral satellite image of Shishaldin, acquired on 3 January 2019, shows the lava flows reaching 1.6 km down the NW flank and an ash plume erupting from the summit dispersing to the SE. Ash deposits cover snow on the flanks. Courtesy of Hannah Dietterich, AVO.

On 7 January the most sustained explosive episode for this eruption period occurred. An ash plume rose to 7 km altitude at 0500 and drifted east to northeast then intensified reaching 7.6 km altitude with increased ash content, prompting an increase of the Aviation Color Code to Red and Volcano Alert Level to Warning. The plume traveled over 200 km to the E to NE (figure 26). Lava flows were produced on the northern flanks and trace amounts of ashfall was reported in communities to the NE, resulting in several flight cancellations. Thermal satellite images showed active lava flows extruding from the summit vent (figure 27). Seismicity significantly decreased around 1200 and the alert levels were lowered to Orange and Watch that evening. Through the following week no notable eruptive activity occurred. An intermittent steam plume was observed in webcam views.

Figure (see Caption) Figure 26. This Landsat 8 satellite image shows a detached ash plume drifts to the NE from an explosive eruption at Shishaldin on 7 January 2020. Courtesy of Chris Waythomas, AVO.
Figure (see Caption) Figure 27. This 7 January 2019 Sentinel-2 thermal satellite image shows several lava flows on the NE and NW flanks of Shishaldin, as well as a steam plume from the summit dispersing to the NE. Blue is snow and ice in this false color image (bands 12, 11, 4). Courtesy of Sentinel-Hub playground.

Eruptive activity resumed on 18 January with lava flows traveling 2 km down the NE flank accompanied by a weak plume with possible ash content dispersing to the SW (figure 28). A steam plume was produced at the front of the lava flow and lahar deposits continued to the north (figures 29 to 32). Activity intensified from 0030 on the 19th, generating a more ash-rich plume that extended over 150 km E and SE and reached up to 6 km altitude; activity increased again at around 1500 with ash emissions reaching 9 km altitude. AVO increased the alert levels to Red/Warning. Lava flows traveled down the NE and N flanks producing meltwater lahars, accompanied by elevated seismicity (figures 33). Activity continued through the day and trace amounts of ashfall were reported in False Pass (figure 34). Activity declined to small explosions over the next few days and the alert levels were lowered to Orange/watch shortly after midnight. The next morning weak steam emissions were observed at the summit and there was a thin ash deposit across the entire area. Satellite data acquired on 23 January showed pyroclastic flow deposits and cooling lava flows on the northern flank, and meltwater reaching the northern coast (figure 35).

Figure (see Caption) Figure 28. This Worldview-3 multispectral near-infrared satellite image acquired on 18 January 2020 shows a lava flow down the NE flank of Shishaldin. A steam plume rises from the end of the flow and lahar deposits from snowmelt travel further north. Courtesy of Matt Loewen, AVO.
Figure (see Caption) Figure 29. Steam plumes from the summit of Shishaldin and from the lava flow down the NE flank on 18 January 2020. Lahar deposits extend from the lava flow front and towards the north. Photo courtesy of Matt Brekke, via AVO.
Figure (see Caption) Figure 30. A lava flow traveling down the NE flank of Shishaldin on 18 January 2020, seen from Cold Bay. Photo courtesy of Aaron Merculief, via AVO.
Figure (see Caption) Figure 31. Two plumes rise from Shishaldin on 18 January 2020, one from the summit crater and the other from the lava flow descending the NE Flank. Photos courtesy of Woodsen Saunders, via AVO.
Figure (see Caption) Figure 32. A low-altitude plume from Shishaldin on the evening of 18 January 2020, seen from King Cove. Photo courtesy of Savannah Yatchmeneff, via AVO.
Figure (see Caption) Figure 33. This WorldView-2 near-infrared satellite image shows a lava flow reaching 1.8 km down the N flank and lahar deposits filling drainages out to the Bering Sea coast (not shown here) on 19 January 2020. Ash deposits coat snow to the NE and E. Courtesy of Matt Loewen, AVO.
Figure (see Caption) Figure 34. An ash plume (top) and gas-and-steam plumes (bottom) at Shishaldin on 19 January 2020. Courtesy of Matt Brekke, via AVO.
Figure (see Caption) Figure 35. A Landsat 8 thermal satellite image (band 11) acquired on 23 January 2019 showing hot lava flows and pyroclastic flow deposits on the flanks of Shishaldin and the meltwater flow path to the Bering Sea. Figure courtesy of Christ Waythomas, AVO.

Activity remained low in late January with some ash resuspension (due to winds) near the summit and continued elevated temperatures. Seismicity remained above background levels. Infrasound data indicated minor explosive activity during 22-23 January and small steam plumes were visible on 22, 23, and 26 January. MIROVA thermal data showed the rapid reduction in activity following activity in late-January (figure 36).

Figure (see Caption) Figure 36. MIROVA thermal data showing increased activity at Shishaldin during August-September, and an even higher thermal output during late-October 2019 to late January 2020. Courtesy of MIROVA.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Simon Plank, German Aerospace Center (DLR) German Remote Sensing Data Center, Geo-Risks and Civil Security, Oberpfaffenhofen, 82234 Weßling (URL: https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5242/8788_read-28554/sortby-lastname/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangeang Api (Indonesia) — February 2020 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Ash emissions and lava flow extrusion continue during May 2019 through January 2020

Sangeang Api is located in the eastern Sunda-Banda Arc in Indonesia, forming a small island in the Flores Strait, north of the eastern side of West Nusa Tenggara. It has been frequently active in recent times with documented eruptions spanning back to 1512. The edifice has two peaks – the active Doro Api cone and the inactive Doro Mantori within an older caldera (figure 37). The current activity is focused at the summit of the cone within a horseshoe-shaped crater at the summit of Doro Api. This bulletin summarizes activity during May 2019 through January 2020 and is based on Darwin Volcanic Ash Advisory Center (VAAC) reports, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, or CVGHM) MAGMA Indonesia Volcano Observatory Notice for Aviation (VONA) reports, and various satellite data.

Figure (see Caption) Figure 37. A PlanetScope satellite image of Sangeang Api with the active Doro Api and the inactive Doro Mantori cones indicated, and the channel SE of the active area that contains recent lava flows and other deposits. December 2019 monthly mosaic copyright of Planet Labs 2019.

Thermal anomalies were visible in Sentinel-2 satellite thermal images on 4 and 5 May with some ash and gas emission visible; bright pixels from the summit of the active cone extended to the SE towards the end of the month, indicating an active lava flow (figure 38). Multiple small emissions with increasing ash content reached 1.2-2.1 km altitude on 17 June. The emissions drifted W and WNW, and a thermal anomaly was also visible. On the 27th ash plumes rose to 2.1 km and drifted NW and the thermal anomaly persisted. One ash plume reached 2.4 km and drifted NW on the 29th, and steam emissions were ongoing. Satellite images showed two active lava flows in June, an upper and a lower flow, with several lobes descending the same channel and with lateral levees visible in satellite imagery (figure 39). The lava extrusion appeared to have ceased by late June with lower temperatures detected in Sentinel-2 thermal data.

Figure (see Caption) Figure 38. Sentinel-2 satellite thermal images of Sangeang Api on 20 May and 9 June 2019 show an active lava flow from the summit, traveling to the SE. False color (urban) image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 39. PlanetScope satellite images of Sangeang Api show new lava flows during June and July, with white arrows indicating the flow fronts. Copyright Planet Labs 2019.

During 4-5 July the Darwin VAAC reported ash plumes reaching 2.1-2.3 km altitude and drifting SW and W. Activity continued during 6-9 July with plumes up to 4.6 km drifting N, NW, and SW. Thermal anomalies were noted on the 4th and 8th. Plumes rose to 2.1-3 km during 10-16th, and to a maximum altitude of 4.6 km during 17-18 and 20-22. Similar activity was reported during 24-30 July with plumes reaching 2.4-3 km and dispersing NW, W, and SW. The upper lava flow had increased in length since 15 June (see figure 39).

During 31 July through 3 September ash plumes continued to reach 2.4-3 km altitude and disperse in multiple directions. Similar activity was reported throughout September. Thermal anomalies also persisted through July-September, with evidence of hot avalanches in Sentinel-2 thermal satellite imagery on 23 August, and 9, 12, 22, and 27 September. Thermal anomalies suggested hot avalanches or lava flows during October (figure 40). During 26-28 October short-lived ash plumes were reported to 2.1-2.7 km above sea level and dissipated to the NW, WNW, and W. Short-lived explosions produced ash plumes up to 2.7-3.5 km altitude were noted during 30-31 October and 3-4 November 2019.

Figure (see Caption) Figure 40. Sentinel-2 satellite thermal images of Sangeang Api on 7 and 22 October 2019 show an area of elevated temperatures trending from the summit of the active cone down the SE flank. False color (urban) image rendering (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Discrete explosions produced ash plumes up to 2.7-3.5 km altitude during 3-4 November, and during the 6-12th the Darwin VAAC reported short-lived ash emissions reaching 3 km altitude. Thermal anomalies were visible in satellite images during 6-8 November. A VONA was released on 14 November for an ash plume that reached about 2 km altitude and dispersed to the west. During 14-19 November the Darwin VAAC reported short-lived ash plumes reaching 2.4 km that drifted NW and W. Additional ash plumes were observed reaching a maximum altitude of 2.4 km during 20-26 November. Thermal anomalies were detected during the 18-19th, and on the 27th.

Ash plumes were recorded reaching 2.4 km during 4-5, 7-9, 11-13, and 17-19 December, and up to 3 km during 25-28 December. There were no reports of activity in early to mid-January 2020 until the Darwin VAAC reported ash reaching 3 km on 23 January. A webcam image on 15 January showed a gas plume originating from the summit. Several fires were visible on the flanks during May 2019 through January 2020, and this is seen in the MIROVA log thermal plot with the thermal anomalies greater than 5 km away from the crater (figure 41).

Figure (see Caption) Figure 41. MIROVA log plot of radiative power indicates the persistent activity at Sangeang Api during April 2019 through March 2020. There was a slight decline in September-October 2019 and again in February 2020. Courtesy of MIROVA.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 24, Number 05 (May 1999)

Managing Editor: Richard Wunderman

Aira (Japan)

1998-99 summary report; recent tephra deposits comprise about 3 x 105 tons/month

Deception Island (Antarctica)

Annual short-term monitoring finds enhanced 1999 seismicity

Etna (Italy)

Lava emission continues through May from Southeast Crater into the Valle del Bove

Galeras (Colombia)

Low seismicity and variable Radon-222 fluxes during March and April

Ibu (Indonesia)

March-May ash plumes are white and rise up to 700 m above crater rim

Iwatesan (Japan)

A M 3.6 tectonic earthquake in September preceded ongoing seismic swarms

Karangetang (Indonesia)

During March-May, weak ash emissions and rare incandescence

Kikai (Japan)

1997-99 summary; early 1999 eruption deposited 5 cm of ash at crater

Kilauea (United States)

Bench collapse on 13 April; a 33-hour eruptive pause on 5 May

Klyuchevskoy (Russia)

Series of ash explosions and shallow earthquakes during May

Krakatau (Indonesia)

Occasional explosions producing ash columns

Lewotobi (Indonesia)

March-May ash eruptions

Lokon-Empung (Indonesia)

March-May included variable seismicity and meager plumes

Marapi (Indonesia)

Declining activity and weak ash emissions

Merapi (Indonesia)

Frequent lahars, lava avalanches, and pyroclastic flows during March-May

Peuet Sague (Indonesia)

March-May activity initially increased and later slackened; minor ash emissions

Popocatepetl (Mexico)

Seismicity, rockfalls, and gas-and-ash ejections

Sangeang Api (Indonesia)

March to May plumes are thin and rise to 150 m above the summit

Semeru (Indonesia)

Mass wasting in March; ash eruptions continue; 9-km-high ash cloud in May

Slamet (Indonesia)

Tremor and ash emission mark greatest unrest since last eruption in 1989

Soufriere Hills (United Kingdom)

Sporadic explosive eruptions and pyroclastic flows during January-March



Aira (Japan) — May 1999 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


1998-99 summary report; recent tephra deposits comprise about 3 x 105 tons/month

The following summarizes activity at Sakura-jima during January-June 1998 and January-May 1999. Information concerning events in 1998 were provided through communications from Yosihiro Sawada forwarded by Dan Shackelford. More recent information is available at the Japanese Meteorological Agency website.

The amount of tephra deposited around the volcano peaked during 1991-92 (up to 5.8 x 106 tons/month) but has since decreased; present deposits are <3 x 105 tons/month.

Activity during January-June 1998. Ten explosions and eruptions were recorded in January 1998. One explosion, on 7 January, produced a plume that rose 1,200 m above the summit. An explosive outburst on 24 January produced a column of incandescent ejecta accompanied by volcanic lightning. The total ashfall measured at Kagoshima Local Meteorological Observatory (KLMO) during January amounted to 10 g/m2.

Silent ash emissions (eruptions without explosions) occurred on 8, 16, 25, and 27 February 1998. A plume on 16 February rose 1,400 m above the crater. In March 1998, 22 eruptions (without explosions) were recorded. Eruption plumes on 2 and 3 March rose 1,200 m. KLMO recorded 37 g/m2 of ash for March. In April 1998, there were 19 eruptions, including eight explosions. The highest plume during April was observed 1,500 m above the crater on 30 April. April ashfall totaled only 1 g/m2.

Forty-one eruptions were observed in May 1998, including 27 explosive eruptions. The highest plume observed rose 2,500 m above crater on 24 May. A volcanic earthquake swarm lasted seven hours on 19-20 May. The total May ashfall was 105 g/m2. All five eruptions recorded during June were explosive. On 6 June an eruption plume rose 1,100 m above the crater. The total June ashfall deposit was 5 g/m2 thick.

Activity during January-May 1999. January 1999 was characterized by a low level of volcanic earthquakes, although 13 eruptions occurred. During February-April 1999 observers recorded 44 eruptions, including 15 explosions. Eruptive activity was relatively high during 11-16 March when there were 10 eruptions, including eight explosions. An eruption column rose 1,800 m on 20 April.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Yosihiro Sawada, Volcanological Division, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Volcano Research Center, Earthquake Research Institute (ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Dan Shackelford, 3124 E. Yorba Linda Blvd., Apt. H-33, Fullerton, CA 92831-2324 USA.


Deception Island (Antarctica) — May 1999 Citation iconCite this Report

Deception Island

Antarctica

63.001°S, 60.652°W; summit elev. 602 m

All times are local (unless otherwise noted)


Annual short-term monitoring finds enhanced 1999 seismicity

Deception has been monitored for part of every austral summer since 1987; its flooded caldera forms a 5 x 9 km bay that is breached to the SW, giving Deception Island a ring shape. In December 1998, as part of the Spanish Antarctic Research Project, a new seismic network was deployed to monitor activity on the island. The instrumentation included two seismic antennas and two continuous-recording stations.

The latest seismic survey was conducted under the auspices of the Spanish Antarctic Project; it revealed a significant increase in the daily number of seismic events (i.e., volcano-tectonic (VT) earthquakes, volcanic tremor, and long-period (LP) events when compared with activity recorded during previous summer field surveys. The noteworthy increase started in early January 1999 (BGVN 24:01) and continued in February (figure 14).

Figure (see Caption) Figure 14. Change in the number of seismic events during 31 December 1998-19 February 1999 at Deception Island. Earthquakes shown encompass long period (LP) and volcano-tectonic (VT). Courtesy of the Spanish Antarctic Research Project.

The active area is in a region between Fumarolic Bay and Murature Point and the seismic activity appears to be located near the boundary of the geological structure activated by the 1970 eruption.

The focal depth of the seismic events was shallow (less than 1 km). The seismic energy release was higher than observed in the recent past, and a few shocks were felt. The maximum magnitude of the VT earthquakes is estimated to be ~3.5. Some episodes of volcanic tremor were felt by the scientific staff while working close to the site at Murature Point. An anomalous increase of dead krill was noticed in the bay a few days before the seismic crisis.

Members of the project interpreted these observations in the following manner: A fresh intrusion of magma occurred at a depth of ~500 m. The VT earthquakes are the brittle response of the shallow structure surrounding this injection, and the LP events and volcanic tremor result from the interaction of the shallow aquifer of the island with this injection of hot material. This implies a significant evolution of activity, marked by a change from stable stationary geothermal processes to a more dynamic intrusive process.

Geologic Background. Ring-shaped Deception Island, one of Antarctica's most well known volcanoes, contains a 7-km-wide caldera flooded by the sea. Deception Island is located at the SW end of the Shetland Islands, NE of Graham Land Peninsula, and was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides entrance to a natural harbor that was utilized as an Antarctic whaling station. Numerous vents located along ring fractures circling the low, 14-km-wide island have been active during historical time. Maars line the shores of 190-m-deep Port Foster, the caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions from Deception Island during the past 8700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.

Information Contacts: Jesus Ibañez, Gerardo Alguacil, José Morales, José Peña, Javier Almendros and Enrique Carmona, Instituto Andaluz de Geofísica, Univ. de Granada, Spain; Alicia Garcia and Ramón Ortiz, Dpto. de Volcanologia, MNCN-CSIC, José Gutierrez Abascal 2, 28006 Madrid, Spain; Edoardo del Pezzo and Marcello Martini, Osservatorio Vesuviano, Napoles, Italy; Bernard Chouet, USGS, Menlo Park, CA 94025 USA; Gilberto Saccorotti, Univ. Salerno, 84100 Baronissi (Salerno), Italy.


Etna (Italy) — May 1999 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Lava emission continues through May from Southeast Crater into the Valle del Bove

The following report summarizes activity observed at Etna from March through May 1999. The information for this report was compiled by Boris Behncke at the Dipartimento di Scienze Geologiche (formerly Istituto di Geologia e Geofisica), University of Catania (DSGUC), and posted on his internet web site. The compilation was based on personal visits to the summit, observations from Catania, and other sources cited in the text.

Almost all activity has been limited to the eruptive fissure that became active on 4 February at the southeastern base of Southeast Cone (SEC). During early March, lava continued to flow into the Valle del Bove, forming a lava field (figure 77) composed of numerous lobes. The activity was visible from Catania and other locations on 5 March, with the flow field incandescent over its length from the W rim of Valle del Bove down to ~2,000 m elevation.

Figure (see Caption) Figure 77. Sketch map of Etna showing the Valle del Bove and the area of lava flow-field that has developed since 4 February 1999, as of 4 June 1999. The lavas erupted during 1989-93 are shown in various shades of gray, previous flows (since 1971) are shown in lighter shades. 1995 to early 1999 lavas are not shown. Key: NE=Northeast Crater; V=Voragine; BN=Bocca Nuova; SE=Southeast Cone; TDF=Torre del Filosofo; MO=Montagnola; RS=Rifugio Sapienza; MC=Monti Centenari. Courtesy of Boris Behncke.

Observations on 3 March. On 3 March, the area of activity was visited by Giovanni Sturiale and Boris Behncke (DSGUC), and Christophe Baudin, a visitor from Belgium. The most recent lava to flow through the notch in the N rim of SEC, on 4 February, was covered with a thin layer of reddish ash and showed no heat emission. The inclined floor of the notch was ~3-5 m wide and covered with rubble; the width at its rim was 15-20 m. Only a few glimpses were caught of the interior of the crater, but at several tens of meters depth there was an inner terrace surrounding a narrow central pit. The width of the crater at its rim was at most 50 m. Gas and vapor escaped from several fumarolic areas on the SW and E crater rims. On the SE side of the crater there was a fuming pit ~15-20 m wide. Below this pit, on the outer flank of the cone, a vigorously steaming fissure segment extended ~100 m downslope; below this was the oval-shaped main vent of the 4 February episode.

Eruptive activity from the 4 February fissure consisted of very weak, and intermittent, ejections of pyroclastics, and quiet outflow of degassed lava. A cluster of about 10 hornitos at the upper end of the fissure were covered with sulfur. Relatively regular observations during 27 February-3 March (information from Giuseppe Scarpinati, Carmelo Monaco, and Christophe Baudin) indicated irregular activity at the hornitos. There was vigorous spattering at one of the main hornitos on 27 February, a new hornito began to grow on 28 February about 70-80 m downslope from the main group, and on 2 March a short-lived lava extrusion occurred from the base of one of the uppermost hornitos. On these occasions the hornitos were the site of high-pressure gas emissions that produced loud hissing.

During the 3 March visit, all hornitos were unusually quiet. High-pressure gas emission occurred from a few locations 50-80 m downslope. No flowing lava was visible, but a row of skylights lay 100-150 m downslope from the hornitos. About 100 m farther downslope the lava appeared at the surface in a well-defined flow channel. Several other lava flows were slowly moving across the lava field. At the rim of the Valle del Bove one main flow spilled into this vast depression, forming a pronounced ridge where it disappeared in another lava tube. Lava resurfaced a few hundred meters further downslope through numerous ephemeral vents, forming narrow flows that extended to the floor of the Valle. The farthest active lava was at ~2,000 m elevation, above the Monti Centenari, a cluster of 1852-53 cinder cones of which only the summits now protrude (figure 77).

The mean output was several cubic meters per second; the volume of lava produced in one month of activity was between 5 and 10 x 106 m3. Although this is a very rough estimate, with an error of ~50%, it indicates more production than other long-lived effusive eruptions in the summit area, which had effusion rates of < 1 m3/s.

Observations on 11 and 13 March. A group of DSGUC geologists (Behncke, Mariangela Porravecchio, Giuseppe Paradiso, and Antonella Lentini) visited the eruptive fissure at the base of the SEC on 11 March. Above the rim of Valle del Bove, all lava was flowing in tubes. There are apparently two main lava tubes ~30 m apart at the rim of Valle del Bove. The more southerly tube ended just above the crest of the Valle where the lava appeared at the surface, and two ephemeral vents emitted lava further downslope. The northerly lava tube extended much further into the Valle, and surface flows appeared halfway down its W slope, at ~2,500 m elevation. The active flow-fronts appeared to be somewhere above 2,000 m elevation. No activity had occurred at the hornitos in the uppermost part of the fissure, but degassing occurred from several incandescent fumaroles. Geologists from Palermo University measured temperatures of ~1,030°C in one of these fumaroles.

There appeared to be little activity elsewhere, although something that appeared to be a phreatic steam explosion came from Bocca Nuova's southeastern vent area. It formed a convoluted cloud but contained little or no ash, and it produced no sound.

On the late afternoon of 13 March the eruptive fissure was again visited by DSGUC geologists (Behncke, Monaco, Betty Giampiccolo, and Marcello Bianca). There were only minor changes compared to two days earlier. The southern lava flow sent numerous branches spilling over the rim of Valle del Bove. Little had changed at the northern lava flow. The output was still as high as 5 m3/s, and the effusive episode that began on 4 February was estimated to have produced >15 x 106 m3 of lava, an amount typical of a "slow" flank eruption (Etnean flank eruptions are generally classified into those with relatively low effusion rates, such as the 1983 and 1991-93 eruptions, and high-effusion rate eruptions like those of 1981 or 1989).

During late March lava continued to flow into Valle del Bove. While a major flow issued from an ephemeral vent about halfway down the W slope of Valle del Bove, several smaller lobes were visible on the crest of the Valle on the evening of 24 March.

Observations on 7 April. Effusive activity continued in early April, though at a slightly diminishing rate. Lava flows continued to spill into the Valle del Bove, but their fronts stopped before reaching the base of the steep slope. A visit was made on 7 April by Behncke and geologists of Catania and Switzerland together with Marco Fulle (Trieste Astronomical Observatory) and Roberto Carniel (Stromboli On-line). Numerous small surface flows were active in two areas above the rim of Valle del Bove, one about halfway between the rim and the hornitos at the upper end of the 4 February fissure, and the other just above the rim. In the lower area, three or four small flows slowly advanced a short distance from their vents, which lay around spectacular tumulus, or pressure ridges, formed as magma pushed from below, raising blocks and slabs of older lava up to 5 m. The constant effusion since 4 February had formed an impressive, delta-like ridge on the Valle del Bove rim.

The upper area of activity, at ~2,850 m elevation, had five or six vents around a smaller tumulus. Two vents produced voluminous flows that descended tens of meters and had spectacular cascades. A small vent produced a flow that moved in a 20-cm-wide, S-shaped channel; this vent froze over in less than two hours, and a new ephemeral vent became active 20 m downslope. Strong gas emission occurred from two places in the upper part of the 4 February fissure. The cluster of hornitos at the end of the fissure was quiet while profuse steaming occurred from the upper part of the fracture that split the southeastern side of SEC on 4 February. On the W wall of the Valle del Bove, lava issued from a number of ephemeral vents about halfway down the slope, feeding flows that advanced a few hundred meters.

While lava effusion continued unabated, the rate of lava production appeared lower than during the first six weeks of the eruption, possibly in the range of 1-3 m3/s. The volume of lava produced thus far exceeded 20 x 106 m3.

Observations on 14 April. Decreased lava effusion from the 4 February fissure was observed by Behncke and a German television team on 14 April. Near the W rim of Valle del Bove, lava came to the surface in a few places and produced very small flows. Halfway between the Valle del Bove rim and the hornitos, two main vents fed chanellized flows. Activity was more vigorous than the lower area, but had decreased markedly since one week before.

A notable feature is the formation of pressure ridges, tumuli, and small-volume extrusions from cracks in older lavas. Most of this was caused by very slow intrusion of lava from tubes towards the surface once the tube was blocked or slowed, forcing the lava upwards. Lava oozed through the cracks and formed new flows, but in many cases the lava formed bulbous protuberances which often resembled the lobes of pillow lavas forming underwater.

Observations on 30 April. Behncke and others descended into the Valle del Bove on 30 April. One main effusive vent, at ~2,700 m elevation (~100 m below the rim of Valle del Bove), was feeding several flows which in part disappeared into lava tubes and resurfaced tens of meters downslope. The mean effusion rate appeared to be around 1 m3/s or slightly less. The maximum flow length was ~300 m. The farthest flow fronts were stagnant above the floor of the Valle del Bove. There was no explosive activity around the effusive vents. Only one feeder tube appeared to be active, located in the central part of the field on the W slope of Valle del Bove.

Observations on 12 May. During early May, little significant change affected the activity. Lava flowing from the area of the 4 February fissure through a lava tube appeared at the surface at ~2,600 m elevation on the W wall of Valle del Bove. Active lava fronts did not extend below 2,000 m.

On 12 May, Behncke and Scarpinati visited the summit area, including Bocca Nuova and SEC, and entered the Valle del Bove. The summit craters were quiet, apart from near-continuous passive emissions of light brown ash from the NW vent of Bocca Nuova. This activity, which was most likely caused by internal collapse, was entirely noiseless and ash plumes barely rose above the crater rim. A deposit several centimeters thick covered the S, SE, and E sides of the main summit cone.

After descending from the main summit cone to the saddle which separates it from the SE Cone, Behncke climbed to the summit of the SEC. The crater was practically gas-free, so it could be seen that its floor had collapsed and the conduit was no longer open. There was, however, some gas and vapor emission from the upper part of the fracture which had split the SE flank of the cone on 4 February.

There was no visible activity anywhere above the Valle del Bove rim, the only surface flows appearing ~200-250 m below the original eruptive fissure, in Valle del Bove. Lava was issuing from two ephemeral vents on the N and E sides of a large tumulus. It was ~10-15 m across and consisted of uplifted, tilted, craggy blocks of older lava and minor volumes of more recent smooth-surfaced pahoehoe. The N vent fed a small well-channelized flow while from the vent on the E side of the tumulus lava was squeezed out like toothpaste.

Behncke and Scarpinati heard continuous cracking and knocking sounds from below, and small rockfalls from the sides of the tumulus were frequently observed; rocks at the surface of the tumulus were slowly fracturing. It was evident that magma was forcefully pushing from below, and lava was rising slowly within cracks between the blocks at the surface. After about 15 minutes of observation, Behncke and Scarpinati left the unstable tumulus area and continued their observation from 15 m upslope. For another 20-30 minutes, the tumulus gradually extended in all directions. Fracturing on the slope above the tumulus indicated a larger volume of magma arriving at the end of the feeder tube and nearing the surface.

After about 35-45 minutes of observation, the large blocks of older lava began to fall apart while ever larger rockfalls and collapses occurred on the flanks of the tumulus. After this, the entire tumulus area became highly mobile, and its E and SE sides, perched above the steep Valle del Bove slope, began to slide downhill, producing spectacular cascades of incandescent blocks and exposing the fluid, incandescent interior. The most dramatic phase, which lasted no longer than 5 minutes, saw the virtual unfolding of the whole structure as older blocks slipped into the Valle del Bove. Where the observers had walked only 30 minutes before, an incandescent chasm 15 m wide and 5-6 m deep opened, and lava slowly flowed from draining lava tubes. Fresh lava welled up at the W end of the collapse depression, rapidly filling it and spilling over its SE rim, causing further rockfalls. Some rocks at least 20 m3 in volume fell, with fresh incandescent lava attached to them. The overflowing lava appeared to be more voluminous than that which had previously issued from the two vents.

The previously active flows, cut off from their supply, soon stagnated, and small lava tubes with still-incandescent walls became visible. Fresh lava spilled down in a southeasterly direction, forming two branches which traveled 100-150 m in about 30 minutes.

Observations on 15-19 May. Surface activity resumed at the 4 February fissure on 15 May, after about a month of lava flowing through tubes to the Valle del Bove. A luminous spot in the hornito area was sighted through binoculars on the evening of 15 May by Giuseppe Scarpinati from his home in Acireale. Earlier that day Harry Pinkerton (Environmental Sciences Division, University of Lancaster) and others working in the area had noted no active lava. The next day (16 May), lava was slowly extruded from three small vents. The rate of emission increased during the following two days, and a larger vent fed sluggish flows that advanced across the N part of the flow-field.

On 19 May, Behncke, Antonella Lentini, Mariangela Porravecchio (DGSUC), Valentina Giambarresi (Catania University), and others visited Etna's summit area and the effusive vents. A part of this group climbed to the SEC summit. Since the previous visit by Behncke on 12 May, all emissions of vapor from the obstructed crater floor had ceased. The crater floor was ~70 m below the W rim, and the crater walls were vertical in most places. Fumarolic activity was occurring from numerous locations around the crater rim.

While the group stayed on the SEC summit, ash emissions from Bocca Nuova and Northeast Crater produced dilute plumes ~100-150 m above the respective crater rims. Rumbling sounds came from the direction of the Voragine or (less likely) Northeast Crater. No visible emissions were associated with the noise, and no more sounds were heard when everybody had returned to the hornito area.

The new vent 80-100 m below the hornitos lay in a drained channel ~3 m wide in its central portion. The shift of the currently active vent downslope was evident in the form of a ridge built by a series of crusted-over vents. The emission of lava was frequently accompanied by strong degassing, indicating that the lava here was more gas-rich than that issuing from the ephemeral vent on the Valle del Bove slope. Some 20 m downslope from this active vent, one of the initial three vents (of 16 May) was still extruding small amounts of bulbous lava, forming a tumulus.

The visit to the ephemeral vent on the Valle del Bove slope was highly instructive regarding the properties of effusive vents and lava channels. Lava was still flowing from two vents on the floor of the depression formed during the 12 May collapse of the large tumulus. Flow fronts did not extend to the Valle del Bove floor. Four or five well-channelized flows ~1 m wide were moving down the slope; towards their fronts two of these flows were seen to thicken and broaden to 2-3 m height and 5 m width.

The floor of the depression left after the tumulus collapse was partially covered with new lava, mostly aa with one small lobe of very smooth pahoehoe, and the main effusive vent had shifted ~2 m downslope. A second effusive vent 4-5 m downflow produced a small volume of lava.

Investigation of what remained of the collapsed tumulus revealed that the two effusive vents observed on 12 May had not been completely destroyed. Vent 1 lay on the N side of the tumulus, and while still active it had fed lava into a well-defined channel. Vent 2, on the E side of the tumulus, had squeezed out lava much like toothpaste, which had spilled down the steep E face of the tumulus. Both vents were cut off from lava supply as the tumulus collapsed, and when the area of vent 1 was observed shortly thereafter, lava was still draining from the flow channel. Observation on 19 May revealed that the channel had completely drained, its depth being ~1.5 m (compared to a width of 0.8-0.9 m). This is a much higher depth-width ratio than in most other lava channels on Etna and many other volcanoes, but normally lava channels are not drained as completely as in this case since the supply of lava decreases gradually, allowing some of the lava to remain and "freeze" on the channel floor.

Vent 2, one week after the cessation of its activity, was a roughly circular hole open towards the downslope side, and evolving into a thoroughly drained flow channel that had been hidden under the lava when observed before the tumulus collapse. Like at vent 1, this flow channel was deeper than wide. The vent 2 channel is on much steeper terrain, but this apparently had no effect on the depth and width of the flow channel. The vent itself, ~1.5 m wide at its rim, widened at depth to a subcircular cavity from whose floor some bulbous lava had oozed, probably, at some stage of the tumulus collapse. This indicates that there had been a lava pocket ~1 m below the vent. Vent 2 was surrounded by peculiar lava features. There was something like a "basal" lava type, of chocolate brown color, and with a very smooth ripply surface, onto which patches of black, scoriaceous lava were attached. Many of these features are almost certainly related to the frequent and rapid shifting of the locus of extrusion, and the shearing of actively extruding lava along solidified lava on the vent or flow channel walls.

Effusive activity from the 4 February fissure continued at a slowly decreasing rate through the end of May. This decrease was accompanied by an apparent increase of activity in the summit craters, possibly caused by the rise of the magma in the central conduit system below these craters, as less magma escaped through the 4 February fissure. A new surge of activity at this fissure occurred in mid-June; more detail will be provided in a future Bulletin.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Dipartimento di Scienze Geologiche, Palazzo delle Scienze, Università di Catania, Corso Italia 55, 95129 Catania, Italy.


Galeras (Colombia) — May 1999 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Low seismicity and variable Radon-222 fluxes during March and April

During March and April 1999, seismic activity continued at low levels, similar to those reported in previous months (BGVN 24:02). The biggest source of seismic energy release, 2.1 x 1015 ergs, was associated with volcano-tectonic (VT) events attributed to fracturing. In total, 75 VT earthquakes were registered, located at depths between 0.4 and 20 km below the summit. The largest event, on 3 April, had a magnitude of 2.7 and was located SW of the volcano. During this two-month period the sum of the seismic energy released by 46 long-period events and 27 tremor episodes amounted to 9.8 x 1013 ergs. Radon-222 emissions at four stations located around the volcano measured between 23 and 3,608 pCi/l, values similar to those seen in previous months.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Observatorio Vulcanológico y Sismológico de Pasto (OVSP), Carrera 31, 18-07 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Ibu (Indonesia) — May 1999 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


March-May ash plumes are white and rise up to 700 m above crater rim

"White ash emissions" were noted between 9 March and 24 May, rising as high as 700 m above the crater rim but more often 100-200 m. On 11 March it was noted that larger eruptions, accompanied by booming noises and thick ash emission, had decreased to every 10-15 minutes from every 5 minutes during the previous observations on 2 February. Signals from seismic events were dominated by those from the eruptive events, which occurred at a rate of over 100 per day in March and reduced to half that number in April and May.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Iwatesan (Japan) — May 1999 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


A M 3.6 tectonic earthquake in September preceded ongoing seismic swarms

A large tectonic earthquake near Iwate on 3 September 1998 (BGVN 23:09) was followed by elevated rates of seismicity and ground deformation that declined in subsequent months (figure 3). In late 1998 volcanic tremor was recorded up to ten times per month and earthquakes around the Moho discontinuity occurred >10 times per month.

Figure (see Caption) Figure 3. Daily numbers of earthquakes at Iwate (recorded at the Matsukawa station) during 1 January 1998-14 May 1999. Courtesy JMA.

At 1909 on 22 May 1999, a M 3.6 earthquake occurred around the W edge of Nishi-Iwate. The earthquake was followed 8 minutes later by another of M 2.2. These volcanic earthquakes were the largest of a swarm centered at 3-6 km depth. No episodes of tremor were observed and no surface manifestations were detected by video monitoring or during a helicopter flight.

The National Coordination Committee for Prediction of Volcanic Eruption said that the largest earthquakes in the swarm occurred in the W region of the volcano, where shallow (5-10 km in depth) low-frequency volcanic earthquakes had been increasing (figure 4). They also observed that deep (~30 km in depth) low-frequency earthquakes had been occurring regularly with some minor increases and decreases in frequency. GPS observation showed relatively low but steady ground-deformation in the western region of the volcano. Gas measurement showed an increase in below-ground temperature and also indicated the gas chemistry had become more magmatic since September 1998. Their conclusion was that Iwate was showing a slight increase in activity.

Figure (see Caption) Figure 4. Hypocenters of earthquakes around Iwate during 1 April-13 May 1999. Courtesy JMA.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Hiroyuki Hamaguchi, Faculty of Science, Tohoku University, Sendai 980, Japan; Kazuo Sekine, Sendai District Meteorological Observatory, Japan Meteorological Agency, 1-3-15 Gorin, Miyagino-ku, Sendai 983, Japan; Volcano Research Center, Earthquake Research Institute (ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html).


Karangetang (Indonesia) — May 1999 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


During March-May, weak ash emissions and rare incandescence

Between 9 March and 24 May, a "thick white ash plume" was emitted from the main crater and rose to 300-500 m, while a "thin white ash plume" rose to ~150 m from Crater II. Occasionally incandescence was seen in the column rising from the main crater to heights of 25 m. Some A-type earthquakes occurred throughout the reporting period, but seismicity was dominated by tectonic events that frequently exceeded 200/week.

Karangetang (Api Siau) lies at the northern end of the island of Siau, N of Sulawesi, and contains five summit craters strung along a N-S line. One of Indonesia's most active volcanoes, Karangetang has had more than 40 recorded eruptions since 1675. Twentieth century eruptions have included frequent explosions, sometimes accompanied by pyroclastic flows and lahars.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Kikai (Japan) — May 1999 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


1997-99 summary; early 1999 eruption deposited 5 cm of ash at crater

The following summarizes activity at Satsuma-Iwo-jima (also called Tokara-Iwo-jima), an island on the NW rim of Kikai Caldera. Information concerning events in 1997-98 was provided through communications from Yosihiro Sawada, forwarded by Dan Shackelford. More recent information is available at the Japanese Meteorological Agency (JMA) website.

JMA initiated seismic observation at Kikai in September 1997; from the beginning, several volcanic earthquakes were recorded each day. The number of earthquakes increased suddenly in April 1998 to 60-80/day with some days having more than 100 events. Earthquakes were at this high level during a field inspection on 4-5 May 1998. High numbers of earthquakes continued well into June, then gradually waned, before returning to levels seen in March (~10 events/day). Events decreased to <20/day by late June 1998, but increased again to 20-40/day during September, and to more than 60/day in late 1998.

During the inspection in May 1998, JMA staff found a newly deposited ash layer 5 cm thick around the crater, suggesting that an eruption had occurred in late-April or early-May. The Geological Survey of Japan (GSJ) analyzed the ash and concluded that it was composed of silicic and altered lava fragments of Iwo-dake lava (rhyolite). Residents of this volcanic island witnessed ash falls in August and October 1998. In early November GSJ scientists saw intermittent ash emissions from the crater and found ash deposits in the middle of the SE flank.

Volcanic earthquakes occurred 50-100 times/day during January and February 1999, and 90-130 times/day after February. Hypocenters of these earthquakes were located just below Iwo-dake. Island residents observed ash falling on 24 January [and 14 February 1999].

Geophysical activity is monitored by the Sakura-jima Volcano Observatory, Kyoto University, and JMA; geochemical data are maintained by GSJ.

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Yosihiro Sawada, Volcanological Division, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Volcano Research Center, Earthquake Research Institute (ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Dan Shackelford, 3124 E. Yorba Linda Blvd., Apt. H-33, Fullerton, CA 92831-2324 USA.


Kilauea (United States) — May 1999 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Bench collapse on 13 April; a 33-hour eruptive pause on 5 May

The eruption of Pu`u `O`o continued to generate a variety of effects on the pali (cliff or fault scarp) and coastal plain during April and May as lava traveled from the vent through a lava-tube system to the ocean. At the coastal lava-entry area the lava bench repeatedly changed as new deposits built up and collapsed. Frequent explosions threw lava fragments into the ocean, onto the bench, and to the top of the adjacent sea cliff.

In the past, the supply of magma to the vent has been cut off for short periods; the 23rd such pause in the eruption began at about 1300 on 4 May and ended around 2200 on 5 May, only about 33 hours. That was long enough for both the steam plume at the ocean-entry area to stop (figure 136) and for a sluggish 6-week-old pahoehoe flow on the coastal plain to cease advancing. The eruption resumed slowly, and as lava moved through the tube system, only a few small sluggish flows broke out onto the pali and coastal plain (figure 137). Lava finally reached the ocean through the preexisting tube system on 7 May.

Figure (see Caption) Figure 136. View of Kilauea on the island of Hawaii's SE flank looking W on the morning of 6 May 1999, about 12 hours after the eruptive pause ended. The entire area from the ocean and lava bench (bottom) to Pu`u `O`o (top) can be seen. Courtesy of HVO.
Figure (see Caption) Figure 137. A short-lived pahoehoe flow at Kilauea that began after pause #23 (4-5 May 1999) had ended. Courtesy of HVO; photograph by S.R. Brantley.
Figure (see Caption) Figure 138. A pahoehoe flow from Kilauea on the coastal plain emerging after pause #23 and inflating with new lava. Note the crack at the top of the flow; this crack formed when the top crust fractured as the molten interior of the flow swelled or inflated with new lava. Courtesy of HVO.
Figure (see Caption) Figure 139. Another view of the same Kilauea pahoehoe flow shown on figure 138 taken as the lava spread laterally. Typical of pahoehoe flows, this moved forward as lava spread across the ground in budding toes and small sheets. The lava flow inflated as molten material continued to move through its main body. Courtesy of HVO.
Figure (see Caption) Figure 140. Location of the source of a breakout from the main lava tube on the coastal plain as seen on 31 March. The surface of the new pahoehoe flow is about 2 m below the top of the rise at its source. Courtesy of HVO; photograph by J. Kauahikaua.

Lava broke out from the tube system on 26 March about 2 km from the ocean. The breakout fed a wide, slow-moving pahoehoe flow for the next five weeks. The flow had advanced to within ~700 m of the ocean when the supply of lava was shut off by the pause on 4 May.

No significant changes have occurred recently at the Pu`u `O`o cone. Observations into the deep crater of Pu`u `O`o are usually not possible because of the thick plume of steam and SO2 gas. The vent continued to release an average of 2,000 tons of SO2 gas each day during April and May. Lava was sometimes visible in the northernmost pit on the crater floor; and when viewed on 6 May, a small spatter cone was visible in this pit.

Explosions at lava bench on 13 April. A series of strong explosions from the active lava bench on 13 April was likely related to the progressive collapse of the leading edge of the delta. As the lava tubes were sheared off by the collapses, seawater entered the tube system and a much larger than usual volume of lava was suddenly exposed to seawater. Both processes led to strong steam-driven explosions that hurled lava bombs and hot rocks into the air as high as 80 m and inland nearly 100 m from the bench's edge (figure 141). These ballistics did not land behind the warning signs posted by the National Park Service about 90 m from the sea cliff above the bench.

Figure (see Caption) Figure 141. Lava bombs flying inland from the site of steam explosions at the ocean entry point on 13 April. Courtesy of HVO; photograph by J. Wightman.

USGS observers said that when they arrived at the ocean entry area at 1400 on 13 April two plumes rose from the edge of the active bench. The widest part of the bench was ~40-45 m, where a few hours earlier the bench was as wide as 80 m. Starting just before 1600 the W plume area began venting steam from a hole (probably a skylight) just inland from the outer edge of the bench; the venting sounded like a jet engine. A few moments later explosions from this new vent hurled spatter into the air and formed bubble fountains as large as 10-15 m in diameter.

This activity turned highly explosive within a few minutes, hurling spatter and rocks into the air (average height of spatter was between 50 and 60 m). Ejected materials fell to the ground atop the sea cliff more than 75 m from the source. Explosive activity continued steadily for about 90 minutes and returned intermittently during the next few hours. One explosive episode caused lightning in the plume. When the witnesses returned to their car, parked 5 km away at the end of the Chain of Craters road, they found a thin layer of tiny brown flakes of glass from the explosions on the windshield.

Background. Kilauea is one of five coalescing volcanoes that comprise the island of Hawaii. Historically its eruptions originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. The latest Kilauea eruption began in January 1983 along the east rift zone. The eruption's early phases, or episodes, occurred along a portion of the rift zone that extends from Napau Crater on the uprift (toward the summit) end to ~8 km E on the downrift end (toward the sea). Activity eventually centered on the area and crater that were later named Pu`u `O`o. Between July 1986 and January 1992, the Kupaianaha lava lake was active ~3 km NE (downrift) of Pu`u `O`o. It was during this period that the town of Kalapana and most of the 181 homes lost were destroyed. In December 1991, one month before the shutdown of Kupaianaha, eruptive activity returned to Pu`u `O`o. More than 1 km3 of lava was erupted from January 1983 through January 1997.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Klyuchevskoy (Russia) — May 1999 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Series of ash explosions and shallow earthquakes during May

Seismicity at Kliuchevskoi was above background levels during most of May. Earthquakes were concentrated near the summit crater and at depths of 25-30 km. On 29-30 April, a plume rose 200-400 m above the crater. An ash explosion began at 1330 on 1 May and on the evening of 2 May a fumarolic plume rose 2,700 m above the crater. During 3-5 May plumes rose 200-1,500 m above the crater before extending a few kilometers NE.

Short-lived explosive eruptions began at 1143 on 7 May, as seen from the nearby town of Klyuchi [(30 km NNE)]. Activity began with a powerful gas-and-steam blowout that became dark gray as ash mixed with steam rose above the summit. Ash explosions continued to occur every three minutes until the series ended abruptly at 1217. The height of the ash column reached 3,000 m and the plume extended 8 km NW. Authorities increased the color-coded warning level to yellow. Less vigorous gas-and-steam explosions, with plume heights of 400-700 m, occurred during the day at intervals of 7-10 minutes. At 1453 an ash-poor explosion column rose 2,500 m above the crater. Explosions were observed every 3-5 minutes with plumes 200-1,000 m above the crater during much of 8-9 May. A plume released on 8 May extended 30 km to the S and at 1230 on 9 May a plume rose 2,000 m above the crater. Moderate seismic and fumarolic activity returned and continued until the end of May.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Krakatau (Indonesia) — May 1999 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Occasional explosions producing ash columns

Following several months of intense activity that began on 5 February (BGVN 24:04), Anak Krakatau became relatively quiet in late April. From the end of April until the end of May, only several explosions were heard. On 26 April a weak explosion sent a white-gray ash plume 200-500 m high. Between 4 and 17 May there were two blasts per week, each accompanied by a glow and white-gray ash reaching between 100 and 400 m high. In the week from 18 to 24 May, in addition to two explosions, a shock on the morning of 20 May registered at 2 on the MMI scale.

Anak Krakatau was very active from 1992 to 1997, depositing 6.8 x 106 m3 of lava flows. The island was enlarged by 378,527 m2 and the height of the cone increased from 159 to ~300 m.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Lewotobi (Indonesia) — May 1999 Citation iconCite this Report

Lewotobi

Indonesia

8.542°S, 122.775°E; summit elev. 1703 m

All times are local (unless otherwise noted)


March-May ash eruptions

The current phase of activity at Lewotobi Lakilaki began at 0547 on 21 March, when observers noted a vigorous steam plume rising 250 m above the summit. This was noteworthy because when the volcano is in a non-active phase its steam plume rises no higher than ~25 m. On 30 March a rumbling noise was heard and the volcano's status was raised to Level II, or "Alert." The following day observers twice noted ash plumes ~250 m high accompanied by a rumbling noise. On 1 April observers saw such plumes at three different times.

From 27 April to 3 May the ash eruption continued. The observed ash was whitish-gray, of weak to moderate pressure, and extending 300 m above the summit. Eruption events were sometimes accompanied by detonations. On 29 April, glowing material was ejected 50-75 m above the crater and it fell over an area with 50 m radius. Thin ash fell over the Boru area the following day at 1600. The seismic record totals for the week showed four volcanic type-B, nine tectonic, four eruption, and nine emission events.

Ash eruptions reached heights of 500 m during 4-10 May and were sometimes accompanied by strong detonations. On 7 and 9 May glowing materials were again ejected to 50-75 m heights, falling within a 50 m radius. On 7 May ash fell around the areas of Boru, Riang Boru, Hokeng, and Wolorona. Deposits were ~1 mm thick. Seismic events for the week decreased, with three eruptive and five emission events. From 11 through 17 May ash eruptions continued to reach heights of 500 m and were sometimes accompanied by strong detonations. During the week of 18-24 May emission heights decreased to 300 m and blast sounds became less frequent. Thin ash fell during 19 May on the Boru and Riagulu regions.

Geologic Background. The Lewotobi "husband and wife" twin volcano (also known as Lewetobi) in eastern Flores Island is composed of the Lewotobi Lakilaki and Lewotobi Perempuan stratovolcanoes. Their summits are less than 2 km apart along a NW-SE line. The conical Lakilaki has been frequently active during the 19th and 20th centuries, while the taller and broader Perempuan has erupted only twice in historical time. Small lava domes have grown during the 20th century in both of the crescentic summit craters, which are open to the north. A prominent flank cone, Iliwokar, occurs on the E flank of Perampuan.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Lokon-Empung (Indonesia) — May 1999 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


March-May included variable seismicity and meager plumes

During 9 March-24 May visual observations suggested stable conditions, with a "white ash plume" rising 25-75 m above the crater rim. But the seismic record showed extreme variation. Between 9 March and 23 March, volcanic A-type events increased from 7 to 53 and volcanic B-type events rose from 15 to 64. Tectonic events decreased from 34 to 17 in that same period. During the week of 23-29 March event numbers dropped to 23 for A-type and 43 for B-type. Tectonic events rose to 35. Weekly event incidence declined in May, hovering under 10 for A-type, under 20 for B-type, and under 25 for tectonic.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Marapi (Indonesia) — May 1999 Citation iconCite this Report

Marapi

Indonesia

0.38°S, 100.474°E; summit elev. 2885 m

All times are local (unless otherwise noted)


Declining activity and weak ash emissions

Activity of Marapi volcano was subdued during the period from late April to late May. From 27 April-3 May, only the emissions events increased (from 21 to 30) from the previous week; volcanic type-A, type-B, and tectonic events, along with eruptions, all decreased. During 4-17 May observed activity was limited to thin white-gray ash emissions that rose 100-400 m above the summit.

Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Merapi (Indonesia) — May 1999 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Frequent lahars, lava avalanches, and pyroclastic flows during March-May

Merapi remained active throughout the reporting period of 9 March through 24 May. Although no deaths were reported, the volcano continually threatened surrounding populated areas with lahars, lava avalanches, and pyroclastic flows. Throughout the period, Merapi exhibited weakly pressured, thick, white, sulfur-tinted ash plumes extending 100-700 m above the summit.

During the week of 9-15 March a vigorous "white ash plume" was observed, weakly pressured, with 550 m maximum height above the summit. Observers additionally identified lava glowing along the SW flank, in the direction of the Blongkeng, Lamat, and Sat drainages (the maximum run-out distance was 0.8 km). On 11 March a small pyroclastic flow was noted traveling SW with 0.8 km of run-out distance. During this week multiphase events dominated seismic activity, presumably resulting from the emission of lava and glowing debris. A small lahar traveled down the Sat drainage on 13 March.

During 16-22 March, ash emissions and lava avalanches continued. Avalanches again traveled SW, with maximum run-out distances of 0.4 km. Glow at the lava dome was weak. Surface shocks (assumed to be from lava avalanches) dominated seismicity. From 23 to 29 March the lava avalanches continued in the direction of the SW-flank rivers with 1.8 km maximum run-out distances. These drainages glowed at night. On 24 March a small pyroclastic flow started at the edge of the lava dome, moved in the direction of the Sat River, and attained a 0.6 km run-out distance; no glow was observed at the dome. Seismicity was dominated by surface events mostly interpreted as lava avalanches.

During the week of 27 April to 3 May, sulfur-tinted ash plumes reached their highest point during the recording period, 700 m above the summit. Lava avalanches continued in the direction of Blongkeng, Sat, and Lamat with 0.9 km run-out distances; again night glow was observed in these drainages. In contrast, the body of the lava dome lacked glowing areas. A small pyroclastic flow from the edge of the 1998 lava moved downslope SW for a distance of 1.3 km. Surface events continued to dominate seismicity. A small lahar buried two trucks and a digging machine at Putih on 1 May; no injuries were reported.

Lava avalanches during 4-17 May continued towards the SW-flank drainages with 1-km maximum distances each week. There was a weak glow on the lava dome during the first week and none the second. There was one small pyroclastic flow each week from the edge of the 1998 lava, which again moved SW out to 1 km distance. From 18 to 24 May lava avalanches had 1.8 km run-out distances. Glow within cracks on the lava dome was weak. Seismicity during May continued to be dominated by multiphase shocks and surface events identified as lava avalanches.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Peuet Sague (Indonesia) — May 1999 Citation iconCite this Report

Peuet Sague

Indonesia

4.903°N, 96.289°E; summit elev. 2785 m

All times are local (unless otherwise noted)


March-May activity initially increased and later slackened; minor ash emissions

During 9 March-24 May activity initially increased but later diminished. Volcanic activity increased during 9-15 March and people in the local settlement heard booming noises about 20 times/day. From 16 to 22 March, volcanic activity continued at the same scale, but the booming noises weakened. The seismic record also illustrated decreased intensity. Activity continued through the week of 23-29 March without diminishing, but the booming noises ceased. Volcanic and tectonic events increased, with volcanic type-B earthquakes rising from 6 to 15 and tectonic events increasing from 1 to 18. From 27 April to 3 May volcanic earthquakes increased and an eruption emitted white-gray ash to 200 m.

Activity began tapering during 4-10 May. A white plume was observed at heights of 10-20 m. Volcanic shocks decreased. Activity continued to decline during 11-17 May, with a plume ranging from 10 to 200 m heights. Volcanic activity was not recorded during 18-24 May, but observers reported 14 "thin white ash plumes" rising 10-50 m.

The Peuet Sague stratovolcano contains four summit peaks. The crater believed to be active resides SE of one of the peaks of the lava dome (Mount Tutung). This narrow crater has a diameter of about 70 m and a depth of 80 m. The last major eruption occurred in 1918-21 when ash was emitted, a lava dome was formed, and pyroclastic flows spilled into surrounding uninhabited forests. A 1975 team that reached the peak found no eruptive activity, but documented a lake (500 x 800 m) at the foot of Mount Tutung. Within Tutung's crater they found a small (40 x 75 m) blue lake surrounded by four solfataras. Scientists inspecting the summit area in 1984 found burned trees surrounding the main crater, likely due to a 1979 eruption. Local eyewitnesses and pilots reported ash columns above the summit in 1979, 1986, and 1991.

Geologic Background. Peuet Sague is a large volcanic complex in NW Sumatra. The volcano, whose name means "square," contains four summit peaks, with the youngest lava dome being located to the N or NW. This extremely isolated volcano lies several days journey on foot from the nearest village and is infrequently visited. The first recorded historical eruption took place from 1918-21, when explosive activity and pyroclastic flows accompanied summit lava-dome growth. The active crater is located NE of the Gunung Tutung lava dome and has typically produced small-to-moderate explosive eruptions.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Popocatepetl (Mexico) — May 1999 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Seismicity, rockfalls, and gas-and-ash ejections

During May, Popocatépetl generally displayed low activity. Seismicity included small, isolated exhalations of gas, steam, and ash. The alert status remained at "Yellow" with a 7-km radius of restricted access.

A gas-and-steam exhalation at 1315 on 5 May lasted 12 minutes and produced a plume to ~1 km above the crater. Gas-and-steam exhalations at 1435 and 1623 on 6 May lasted 30 and 14 minutes, respectively, and both produced plumes rising ~1 km above the crater. Separate seismic events at 2053 and 2133 on 10 May were possibly rockfalls on the S flank. Visibility was obstructed by clouds. The next morning a steam column from the crater was seen rising about 500 m above the summit. Beginning at 2200 on 13 May, a sequence of seismic events with variable amplitudes was accompanied by high-frequency tremor. Stable seismic conditions returned after about an hour.

Activity increased on 15 May and included small rivulets of meltwater. At 0246 on 16 May a moderately large explosion occurred. Later (at 0706) a moderate exhalation, lasting three minutes, produced an ash column rising 2,500 m above the summit before dispersing to the SW. No ashfall was reported. Several volcano-tectonic events were recorded on 17 May; their signals possibly related to small rivulets of meltwater descending the N flank.

During the night of 23 May a swarm of three tectonic earthquakes was centered 2.5 km E of the crater. The first, at 2251, had M 1.7 and was located at a depth of 4.5 km; the next occurred at 2338, had M 1.9, and was located at a depth of 5.2 km; and the last was at 2339, had M 2.0, and was located at a depth of 5.8 km.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz-Reyna1,2, Roberto Quaas1,2; Carlos Valdés G.2, and Alicia Martinez Bringas1. 1-Centro Nacional de Prevencion de Desastres (CENAPRED), Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacán, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); 2-Instituto de Geofisica, UNAM, Coyoacán 04510, México D.F., México.


Sangeang Api (Indonesia) — May 1999 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


March to May plumes are thin and rise to 150 m above the summit

As of 21 February the seismograph was under repair so the volcano was monitored visually. During 9 March-24 May a "white ash plume" rose 10-150 m above the summit. During 27 April - 3 May the plume remained thin, but after 4 May it vacillated between thick and thin.

Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large volcanic cones, 1,949-m-high Doro Api and 1,795-m-high Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Semeru (Indonesia) — May 1999 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Mass wasting in March; ash eruptions continue; 9-km-high ash cloud in May

Due to increased seismicity, officials raised the status to "Caution" during the week of 23-29 March. Earlier, during the week of 9-15 March a white-gray ash plume attained heights of 400-500 m and the number of events involving debris flows rose from 6 to 42 (with a maximum run-out of 2 km). In addition, weekly volcanic B-type events increased from 1 to 35, tectonic events went from 9 to 27, and explosions increased from 280 to 385. From 23 to 29 March there were 224 earthquakes related to emissions. In addition there was one volcanic A-type, one volcanic B-type, and 14 events associated with moving debris.

On 19 April the Darwin Volcanic Ash Advisory Center (VAAC) issued an advisory to aviators, citing reported eruption ash clouds at 9 km. There was no evidence of the ash cloud from satellite imagery.

Seismic events decreased during 27 April-3 May, but a white-gray ash plume continued to reach up to 600 m. There was a marked increase in seismic events from 4-17 May. From 18-24 May the ash plume varied from white-gray to white-brown and extended to between 400 and 600 m above the summit. Eruptions dominated the seismic record, with a decrease in volcanic events. During the week pilots reported occasional ash clouds drifting NW. On 24 May the plume height reached ~6 km, drifting NW.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Slamet (Indonesia) — May 1999 Citation iconCite this Report

Slamet

Indonesia

7.242°S, 109.208°E; summit elev. 3428 m

All times are local (unless otherwise noted)


Tremor and ash emission mark greatest unrest since last eruption in 1989

Mount Slamet has been predominantly quiet since its last eruption in 1989. During the week of 27 April-3 May, however, the volcano's status was raised to "Alert." That week and the next, "white ash emissions" reached 400 m and hot-spring temepratures ranged from 40 to 81°C. Tremors constituted the dominate seismic events. Slamet ejected black ash from its crater over 1-2 May, prompting concern. Government officials warned residents to stay away from the area following several outbursts within a 10-day period.

During 4-17 May seismicity was dominated by tremor with 4- to 30-mm amplitudes, and "thin-to-thick white ash plumes" reached 400 m height. During 18-24 May ash plumes only rose 25-100 m; tremor amplitudes declined to 0.5-20 mm. There was an increase in volcanic events, with B-type events increasing from 9 to 68 and A-type increasing from 10 to 26.

Geologic Background. Slamet, Java's second highest volcano at 3428 m and one of its most active, has a cluster of about three dozen cinder cones on its lower SE-NE flanks and a single cinder cone on the western flank. It is composed of two overlapping edifices, an older basaltic-andesite to andesitic volcano on the west and a younger basaltic to basaltic-andesite one on the east. Gunung Malang II cinder cone on the upper E flank on the younger edifice fed a lava flow that extends 6 km E. Four craters occur at the summit of Gunung Slamet, with activity migrating to the SW over time. Historical eruptions, recorded since the 18th century, have originated from a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the summit and have consisted of explosive eruptions generally lasting a few days to a few weeks.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Soufriere Hills (United Kingdom) — May 1999 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Sporadic explosive eruptions and pyroclastic flows during January-March

January, February, and March were characterized by sporadic low-intensity events and little seismic activity. In early- to mid-January (7, 13, 14, 15, and 16) there was a series of small explosive eruptions, some generating substantial ash clouds. These events were followed by episodes of ash venting and correlated with seismic tremors. There were occasional small-volume pyroclastic flows (mostly generated by dome collapse, but some perhaps due to fountain collapse during earlier eruptions). Several pyroclastic-flow signals (for example, 7 January) had low-frequency precursors and observers heard associated booming noises in the S of the island. Subsequent vigorous ash venting suggested that the collapses came from violent degassing of the dome. SO2 levels generally decreased during January, although they remained elevated. Ash samples were coarse with lithic and crystal fragments up to 6 mm in size in the Richmond Hills and St. Georges area; those from the dome-collapse pyroclastic flows were very fine-grained.

At the end of January the observatory conducted an extensive photographic and theodolite survey at 12 sites; they also used a GPS-equipped helicopter. The information was used to produce a detailed dome map. The researchers gauged the dome's volume at 76.8 x 106 m3 and measured its highest point (at the top of the White River Valley) at 977 m. Also noted was a deep split in the dome from the 3 July 1998 collapse and subsequent events. The N part of the split comprised two-thirds of the total dome volume (including the three main buttresses above Gages, the N flank, and the Tar River). The scar cuts 100 m into the older English's Crater and has removed a minimum of 5.4 x 106 m3 of old rock.

February activity consisted of a short period of ash venting and pyroclastic flows, and two small mudflows. There was reduced deformation, and the SO2 flux continued to decline.

Activity in March was dominated by 23 small explosive and ash-venting episodes on 1, 7, 12, 26, and 30 March. The largest produced a 7-km-tall ash cloud, ashfall as far as Salem and Runaway Ghaut, lightning, and pyroclastic flows reaching the Tar River delta. Deformation rates decreased, gas emissions were moderate, and SO2 fluxes dropped. Seismicity was dominated by signals from ash venting. Events had impulsive origins with gradual declines in amplitude toward the signal's end.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).