Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Kadovar (Papua New Guinea) Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

Sangay (Ecuador) Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Karangetang (Indonesia) Incandescent block avalanches through mid-January 2020; crater anomalies through May

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020



Nevados de Chillan (Chile) — May 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — July 2020 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

The steeply sloped 1.4-km-diameter Kadovar Island is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed observed eruption began in early January 2018, with ash plumes and lava extrusion resulting in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). A dome appeared at the base of the E flank during March-May 2018 (Planka et al., 2019); by November activity had migrated to a new dome growing near the summit on the E flank. Pulsating steam plumes, thermal anomalies, and periodic ash emissions continued throughout 2019 (BGVN 44:05, 45:01), and from January-June 2020, the period covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photographs from visitors.

Activity during January-June 2020. Intermittent ash plumes, pulsating gas and steam plumes, and thermal anomalies continued at Kadovar during January-June 2020. MIROVA thermal data suggested persistent low-level anomalies throughout the period (figure 45). Sentinel-2 satellite data confirmed thermal anomalies at the summit on 5 and 25 January 2020, and an ash emission on 20 January (figure 46). Persistent pulsating steam plumes were visible whenever the skies were clear enough to see the volcano.

Figure (see Caption) Figure 45. Persistent low-level thermal activity at Kadovar was recorded in the MIROVA graph of radiative power from 2 July 2019 through June 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 satellite data confirmed thermal anomalies at the summit of Kadovar on 5 (left) and 25 January 2020, and an ash emission and steam plume that drifted SE on 20 January (center). Pulsating steam-and-gas emissions left a trail in the atmosphere drifting SE for several kilometers on 25 January (right). Left image uses Atmospheric penetration rendering (bands 12, 11, 8a), center and right images use Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

On 2 February 2020 the Darwin VAAC reported a minor eruption plume that rose to 1.5 km altitude and drifted ESE for a few hours. Another plume was clearly discernible in satellite imagery on 5 February at 2.1 km altitude moving SE. RVO issued an information bulletin on 7 February reporting that, since the beginning of January, the eruption had continued with frequent Vulcanian explosions from the Main Vent with a recurrence interval of hours to days. Rocks and ash were ejected 300-400 m above the vent. Rumbling could be heard from Blupblup (Rubrub) island, 15 km E, and residents there also observed incandescence at night. On clear days the plume was sometimes visible from Wewak, on the mainland 100 km W. Additional vents produced variable amounts of steam. The Darwin VAAC reported continuous volcanic ash rising to 1.5 km on 22 February that extended ESE until it was obscured by a meteoric cloud; it dissipated early the next day. A small double ash plume and two strong thermal anomalies at the summit were visible in satellite imagery on 24 February (figure 47).

Figure (see Caption) Figure 47. Ash emissions and thermal anomalies continued at Kadovar during February 2020. Two small plumes of ash or dense steam rose from the summit on 24 February 2020, seen in this Natural color rendering (bands 4, 3, 2) on the left. The same image rendered in Atmospheric penetration (bands 12, 11, 8a) on the right shows two thermal anomalies in the same locations as the ash plumes. Courtesy of Sentinel Hub Playground.

The Darwin VAAC reported continuous ash emissions beginning on 13 March 2020 that rose to 1.5 km altitude and drifted SE. The plume was visible intermittently in satellite imagery for about 36 hours before dissipating. During April, pulsating steam plumes rose from two vents at the summit, and thermal anomalies appeared at both vents in satellite data (figure 48). Small but distinct SO2 anomalies were visible in satellite data on 15 and 16 April (figure 49).

Figure (see Caption) Figure 48. Steam plumes and thermal anomalies continued at Kadovar during April 2020. Top: A thermal anomaly at the summit accompanied pulsating steam plumes that drifted several kilometers SE before dissipating on 4 April 2020. Bottom left: Two gas-and-steam plumes drifted E from the summit on 9 April. Bottom right: Two adjacent thermal anomalies were present near the summit on 19 April. Top and bottom right images use Atmospheric penetration rendering (bands 12, 11, 8a), bottom left image uses Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. Small but distinct SO2 anomalies were detected at Kadovar on 15 and 16 April 2020 with the TROPOMI instrument on the Sentinel-5P satellite. Nearby Manam often produces larger SO2 plumes that obscure evidence of activity at Kadovar. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Two summit vents remained active throughout May and June 2020, producing pulsating steam plumes that were visible for tens of kilometers and thermal anomalies visible in satellite data (figure 50). A strong thermal anomaly was visible beneath meteoric clouds on 8 June.

Figure (see Caption) Figure 50. During May and June 2020 thermal and plume activity continued at Kadovar. Top: Gas-and-steam plumes drifted NW from two sources at the summit of Kadovar on 19 May 2020. Bottom left: Two thermal anomalies marked the E rim of the summit crater on 28 June 2020. Bottom right: A zoomed out view of the same 28 June image shows pulsating steam plumes drifting 10 km NW from Kadovar. Top image is Natural color rendering (bands 4, 3, 2). Bottom images are Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel-2 images. Courtesy of Sentinel Hub Playground.

Visitor observations on 21 October 2019. Claudio Jung visited Kadovar on 21 October 2019. Shortly before arriving on the island an ash plume rose tens of meters above the summit and drifted W (figure 51). From the NW side of the summit crater rim, Jung saw the actively growing dome on the side of a larger dome, and steam and gas issuing from the growing dome (figure 52). The crater rim was covered with dead vegetation, ash, and large bombs from recent explosions (figure 53). The summit dome had minor fumarolic activity around the summit area and dead vegetation halfway up the flank (figure 54) while the fresh blocky lava of the actively growing dome on the E side of the summit produced significant steam and gas emissions. The growing dome produced periodic pulses of dense steam during his visit (figure 55).

Figure (see Caption) Figure 51. Views looking S show the shoreline dome at the base of the E flank of Kadovar that was active during March-May 2018 (left), and an ash plume drifting W from the summit dome located on the E side of the summit crater (right) on 21 October 2019. Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 52. A panorama looking SE from the crater rim of Kadovar on 21 October 2019 shows the actively growing dome on the far left with a narrow plume of steam and gas being emitted. A large dome fills the summit crater; the crater rim is visible on the right. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 53. The crater rim of Kadovar on 21 October 2019 was covered with dead vegetation, ash, and large bombs from recent explosions. Person is sitting on a large bomb; weak fumarolic activity is visible along the rim. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 54. The summit dome of Kadovar on 21 October 2019 had minor fumarolic activity around most of its summit and dead vegetation half-way up the flank (left). The dead tree stumps suggest that vegetation covered the lower half of the dome prior to the eruption that began in January 2018. The fresh blocky lava of the actively growing dome on the E side of the summit dome produced significant steam and gas emissions (right). Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 55. Dense steam from the growing dome on the E side of the summit drifted W from Kadovar on 21 October 2019. Copyrighted photo courtesy of Claudio Jung, used with permission.

Reference: Planka S, Walter T R, Martinis S, Cescab S, 2019, Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery, Journal of Volcanology and Geothermal Research, v. 388, 15 December 2019, 106704, https://doi.org/10.1016/j.jvolgeores.2019.106704.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Claudio Jung (URL: https://www.instagram.com/jung.claudio/).


Sangay (Ecuador) — July 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars reported since 1628. Its remoteness on the east side of the Andean crest make ground observations difficult; remote cameras and satellites provide important information on activity. The current eruption began in March 2019 and continued through December 2019 with activity focused on the Cráter Central and the Ñuñurco (southeast) vent; they produced explosions with ash plumes, lava flows, and pyroclastic flows and block avalanches. In addition, volcanic debris was remobilized in the Volcan river causing significant damming downstream. This report covers ongoing similar activity from January through June 2020. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery. Visitors also provided excellent ground and drone-based images and information.

Throughout January-June 2020, multiple daily reports from the Washington Volcanic Ash Advisory Center (VAAC) indicated ash plumes rising from the summit, generally 500-1,100 m. Each month one or more plumes rose over 2,000 m. The plumes usually drifted SW or W, and ashfall was reported in communities 25-90 km away several times during January-March and again in June. In addition to explosions with ash plumes, pyroclastic flows and incandescent blocks frequently descended a large, deep ravine on the SE flank. Ash from the pyroclastic flows rose a few hundred meters and drifted away from the volcano. Incandescence was visible on clear nights at the summit and in the ravine. The MIROVA log radiative power graph showed continued moderate and high levels of thermal energy throughout the period (figure 57). Sangay also had small but persistent daily SO2 signatures during January-June 2020 with larger pulses one or more days each month (figure 58). IG-EPN published data in June 2020 about the overall activity since May 2019, indicating increases throughout the period in seismic event frequency, SO2 emissions, ash plume frequency, and thermal energy (figure 59).

Figure (see Caption) Figure 57. This graph of log radiative power at Sangay for 18 Aug 2018 through June 2020 shows the moderate levels of thermal energy through the end of the previous eruption in late 2018 and the beginning of the current one in early 2019. Data is from Sentinel-2, courtesy of MIROVA.
Figure (see Caption) Figure 58. Small but persistent daily SO2 signatures were typical of Sangay during January-June 2020. A few times each month the plume was the same or larger than the plume from Columbia’s Nevado del Ruiz, located over 800 km NE. Image dates are shown in the header over each image. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 59. A multi-parameter graph of activity at Sangay from May 2019 to 12 June 2020 showed increases in many types of activity. a) seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN). b) SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (TROPOMI: red squares; source: MOUNTS) and by the IG-EPN (DOAS: green bars). c) height of the ash plumes (meters above crater) detected by the GOES-16 satellite sensor (source: Washington VAAC). d) thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimate of the accumulated lava volume (million M3, thin lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

Activity during January-March 2020. IG-EPN and the Washington VAAC reported multiple daily ash emissions throughout January 2020. Gas and ash emissions generally rose 500-1,500 m above the summit, most often drifting W or SW. Ashfall was reported on 8 January in the communities of Sevilla (90 km SSW), Pumallacta and Achupallas (60 km SW) and Cebadas (35 km WNW). On 16 January ash fell in the Chimborazo province in the communities of Atillo, Ichobamba, and Palmira (45 km W). Ash on 28 January drifted NW, with minor ashfall reported in Púngala (25 km NW) and other nearby communities. The town of Alao (20 km NW) reported on 30 January that all of the vegetation in the region was covered with fine white ash; Cebadas and Palmira also noted minor ashfall (figure 60).

Figure (see Caption) Figure 60. Daily ash plumes and repeated ashfall were reported from Sangay during January 2020. Top left: 1 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-2, JUEVES, 2 ENERO 2020). Top right: 20 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-21, MARTES, 21 ENERO 2020). Bottom left: 26 January-1 February 2020 expedition (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY). Bottom right: 30 January 2020, minor ashfall was reported in the Province of Chimborazo (#IGAlInstante Informativo VOLCÁN SANGAY No. 006, JUEVES, 30 ENERO 2020). Courtesy of IG-EPN.

A major ravine on the SE flank has been the site of ongoing block avalanches and pyroclastic flows since the latest eruption began in March 2019. The pyroclastic flows down the ravine appeared incandescent at night; during the day they created ash clouds that drifted SW. Satellite imagery recorded incandescence and dense ash from pyroclastic flows in the ravine on 7 January (figure 61). They were also reported by IG on the 9th, 13th, 26th, and 28th. Incandescent blocks were reported in the ravine several times during the month. The webcam captured images on 31 January of large incandescent blocks descending the entire length of the ravine to the base of the mountain (figure 62). Large amounts of ash and debris were remobilized as lahars during heavy rains on the 25th and 28th.

Figure (see Caption) Figure 61. Sentinel-2 satellite imagery of Sangay from 7 January 2020 clearly showed a dense ash plume drifting W and ash and incandescent material from pyroclastic flows descending the SE-flank ravine. Left image uses natural color (bands 4, 3, 2) rendering and right images uses atmospheric penetration (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 62. Pyroclastic flows at Sangay produced large trails of ash down the SE ravine many times during January 2020 that rose and drifted SW. Top left: 9 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-9, JUEVES, 9 ENERO 2020). Top right: 13 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-14, MARTES, 14 ENERO 2020). On clear nights, incandescent blocks of lava and pyroclastic flows were visible in the ravine. Bottom left: 16 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-17, VIERNES, 17 ENERO 2020). Bottom right: 31 January (#IGAlInstante Informativo VOLCÁN SANGAY No. 007, VIERNES, 31 ENERO 2020). Courtesy of IG-EPN.

Observations by visitors to the volcano during 9-17 January 2020 included pyroclastic flows, ash emissions, and incandescent debris descending the SE flank ravine during the brief periods when skies were not completely overcast (figure 63 and 64). More often there was ash-filled rain and explosions heard as far as 16 km from the volcano, along with the sounds of lahars generated from the frequent rainfall mobilizing debris from the pyroclastic flows. The confluence of the Rio Upano and Rio Volcan is 23 km SE of the summit and debris from the lahars has created a natural dam on the Rio Upano that periodically backs up water and inundates the adjacent forest (figure 65). A different expedition to Sangay during 26 January-1 February 2020 by IG personnel to repair and maintain the remote monitoring station and collect samples was successful, after which the station was once again transmitting data to IG-EPN in Quito (figure 66).

Figure (see Caption) Figure 63. Hikers near Sangay during 9-17 January 2020 witnessed pyroclastic flows and incandescent explosions and debris descending the SE ravine. Left: The view from 40 km SE near Macas showed ash rising from pyroclastic flows in the SE ravine. Right: Even though the summit was shrouded with a cap cloud, incandescence from the summit crater and from pyroclastic flows on the SE flank were visible on clear nights. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 64. The steep ravine on the SE flank of Sangay was hundreds of meters deep in January 2020 when these drone images were taken by members of a hiking trip during 9-17 January 2020 (left). Pyroclastic flows descended the ravine often (right), coating the sides of the ravine with fine, white ash and sending ash billowing up from the surface of the flow which resulted in ashfall in adjacent communities several times. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 65. Debris from pyroclastic flows that descended the SE Ravine at Sangay was carried down the Volcan River (left) during frequent rains and caused repeated damming at the confluence with the Rio Upano (right), located 23 km SE of the summit. These images show the conditions along the riverbeds during 9-17 January 2020. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 66. An expedition by scientists from IG-EPN to one of the remote monitoring stations at Sangay during 26 January-1 February 2020 was successful in restoring communication to Quito. The remote location and constant volcanic activity makes access and maintenance a challenge. Courtesy of IG-EPN (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY).

During February 2020, multiple daily VAAC reports of ash emissions continued (figure 67). Plumes generally rose 500-1,100 m above the summit and drifted W, although on 26 February emissions were reported to 1,770 m. Ashfall was reported in Macas (40 km SE) on 1 February, and in the communities of Pistishi (65 km SW), Chunchi (70 km SW), Pumallacta (60 k. SW), Alausí (60 km SW), Guamote (40 km WNW) and adjacent areas of the Chimborazo province on 5 February. The Ecuadorian Red Cross reported ash from Sangay in the provinces of Cañar and Azuay (60-100 km SW) on 25 February. Cebadas and Guamote reported moderate ashfall the following day. The communities of Cacha (50 km NW) and Punín (45 km NW) reported trace amounts of ashfall on 29 February. Incandescent blocks were seen on the SE flank multiples times throughout the month. A pyroclastic flow was recorded on the SE flank early on 6 February; additional pyroclastic flows were observed later that day on the SW flank. On 23 February a seismic station on the flank recorded a high-frequency signal typical of lahars.

Figure (see Caption) Figure 67. Steam and ash could be seen drifting SW from the summit of Sangay on 11 February 2020 even though the summit was hidden by a large cap cloud. Ash was also visible in the ravine on the SE flank. Courtesy of Sentinel Hub Playground, natural color (bands 4, 3, 2) rendering.

A significant ash emission on 1 March 2020 was reported about 2 km above the summit, drifting SW. Multiple ash emissions continued daily during the month, generally rising 570-1,170 m high. An emission on 12 March also rose 2 km above the summit. Trace ashfall was reported in Cebadas (35 km WNW) on 12 March. The community of Huamboya, located 40 km ENE of Sangay in the province of Morona-Santiago reported ashfall on 17 March. On 19 and 21 March ashfall was seen on the surface of cars in Macas to the SE. (figure 68). Ash was also reported on the 21st in de Santa María De Tunants (Sinaí) located E of Sangay. Ash fell again in Macas on 23 March and was also reported in General Proaño (40 km SE). The wind changed direction the next day and caused ashfall on 24 March to the SW in Cuenca and Azogues (100 km SW).

Figure (see Caption) Figure 68. Ashfall from Sangay was reported on cars in Huamboya on 17 March 2020 (left) and in Macas on 19 March (right). Courtesy IG-EPN, (#IGAlInstante Informativo VOLCÁN SANGAY No. 024, MARTES, 17 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 025, JUEVES, 19 MARZO 2020).

Incandescence from the dome at the crater and on the SE flank was noted by IG on 3, 4, and 13 March. Remobilized ash from a pyroclastic flow was reported drifting SW on 13 March. The incandescent path of the flow was still visible that evening. Numerous lahars were recorded seismically during the month, including on days 5, 6, 8, 11, 15, 30 and 31. Images from the Rio Upano on 11 March confirmed an increase from the normal flow rate (figure 69) inferred to be from volcanic debris. Morona-Santiago province officials reported on 14 March that a new dam had formed at the confluence of the Upano and Volcano rivers that decreased the flow downstream; by 16 March it had given way and flow had returned to normal levels.

Figure (see Caption) Figure 69. Images from the Rio Upano on 11 March 2020 (left) confirmed an increase from the normal flow rate related to lahars from Sangay descending the Rio Volcan. By 16 March (right), the flow rate had returned to normal, although the large blocks in the river were evidence of substantial activity in the past. Courtesy of IG (#IGAlInstante Informativo VOLCÁN SANGAY No. 018, MIÉRCOLES, 11 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 023, LUNES, 16 MARZO 2020).

Activity during April-June 2020. Lahar activity continued during April 2020; they were reported seven times on 2, 5, 7, 11, 12, 19, and 30 April. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported 9 April, likely due to a new dam on the river upstream from where the Volcan river joins it caused by lahars related to ash emissions and pyroclastic flows (figure 70). The flow rate returned to normal the following day. Ash emissions were reported most days of the month, commonly rising 500-1,100 m above the summit and drifting W. Incandescent blocks or flows were visible on the SE flank on 4, 10, 12, 15-16, and 20-23 April (figure 71).

Figure (see Caption) Figure 70. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported on 9 April 2020, likely due to a new dam upstream from lahars related to ash emissions and pyroclastic flows from Sangay. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 032, JUEVES, 9 ABRIL 2020).
Figure (see Caption) Figure 71. Incandescent blocks rolled down the SE ravine at Sangay multiple times during April 2020, including on 4 April (left). Pyroclastic flows left two continuous incandescent trails in the ravine on 23 April (right). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-95, SÁBADO, 4 ABRIL 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-114, JUEVES, 23 ABRIL 2020).

Activity during May 2020 included multiple daily ash emissions that drifted W and numerous lahars from plentiful rain carrying ash and debris downstream. Although there were only a few visible observations of ash plumes due to clouds, the Washington VAAC reported plumes visible in satellite imagery throughout the month. Plumes rose 570-1,170 m above the summit most days; the highest reported rose to 2,000 m above the summit on 14 May. Two lahars occurred in the early morning on 1 May and one the next day. A lahar signal lasted for three hours on 4 May. Two lahar signals were recorded on the 7th, and three on the 9th. Lahars were also recorded on 16-17, 20-22, 26-27, and 30 May. Incandescence on the SE flank was only noted three times, but it was cloudy nearly every day.

An increase in thermal and overall eruptive activity was reported during June 2020. On 1 and 2 June the webcam captured lava flows and remobilization of the deposits on the SE flank in the early morning and late at night. Incandescence was visible multiple days each week. Lahars were reported on 4 and 5 June. The frequent daily ash emissions during June generally rose to 570-1,200 m above the summit and drifted usually SW or W. The number of explosions and ash emissions increased during the evening of 7 June. IG interpreted the seismic signals from the explosions as an indication of the rise of a new pulse of magma (figure 72). The infrasound sensor log from 8 June also recorded longer duration tremor signals that were interpreted as resulting from the descent of pyroclastic flows in the SE ravine.

Figure (see Caption) Figure 72. Seismic and infrasound signals indicated increased explosive and pyroclastic flow activity at Sangay on 7-8 June 2020. Left: SAGA station (seismic component) of 7 and 8 June. The signals correspond to explosions without VT or tremor signals, suggesting the rise of a new magma pulse. Right: SAGA station infrasound sensor log from 8 June. The sharp explosion signals are followed a few minutes later (examples highlighted in red) by emergent signals of longer duration, possibly associated with the descent of pyroclastic material in the SE flank ravine. Courtesy if IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

On the evening of 8 June ashfall was reported in the parish of Cebadas and in the Alausí Canton to the W and SW of Sangay. There were several reports of gas and ash emissions to 1,770 m above the summit the next morning on 9 June, followed by reports of ashfall in the provinces of Guayas, Santa Elena, Los Ríos, Morona Santiago, and Chimborazo. Ashfall continued in the afternoon and was reported in Alausí, Chunchi, Guamote, and Chillanes. That night, which was clear, the webcam captured images of pyroclastic flows down the SE-flank ravine; IG attributed the increase in activity to the collapse of one or more lava fronts. On the evening of 10 June additional ashfall was reported in the towns of Alausí, Chunchi, and Guamote (figure 73); satellite imagery indicated an ash plume drifting W and incandescence from pyroclastic flows in the SE-flank ravine the same day (figure 74).

Figure (see Caption) Figure 73. Ashfall from Sangay was reported in Alausí (top left), Chunchi (top right) and Guamote (bottom) on 10 June 2020. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 049, MIÉRCOLES, 10 JUNIO 2020).
Figure (see Caption) Figure 74. Incandescent pyroclastic flows (left) and ash plumes that drifted W (right) were recorded on 10 June 2020 at Sangay in Sentinel-2 satellite imagery. Courtesy of Sentinel Hub Playground.

Ashfall continued on 11 June and was reported in Guayaquil, Guamote, Chunchi, Riobamba, Guaranda, Chimbo, Echandía, and Chillanes. The highest ash plume of the report period rose to 2,800 m above the summit that day and drifted SW. That evening the SNGRE (Servicio Nacional de Gestion de Riesgos y Emergencias) reported ash fall in the Alausí canton. IG noted the increase in intensity of activity and reported that the ash plume of 11 June drifted more than 600 km W (figure 75). Ash emissions on 12 and 13 June drifted SW and NW and resulted in ashfall in the provinces of Chimborazo, Cotopaxi, Tungurahua, and Bolívar. On 14 June, the accumulation of ash interfered with the transmission of information from the seismic station. Lahars were reported each day during 15-17 and 19-21 June. Trace amounts of ashfall were reported in Macas to the SE on 25 June.

Figure (see Caption) Figure 75. The ash plume at Sangay reported on 11 June 2020 rose 2.8 km above the summit and drifted W according to the Washington VAAC and IG (left). Explosions and high levels of incandescence on the SE flank were captured by the Don Bosco webcam (right). Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 055, JUEVES, 11 JUNIO 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-164, VIERNES, 12 JUNIO 2020).

During an overflight of Sangay on 24 June IG personnel observed that activity was characterized by small explosions from the summit vent and pyroclastic flows down the SE-flank ravine. The explosions produced small gas plumes with a high ash content that did not rise more than 500 m above the summit and drifted W (figure 76). The pyroclastic flows were restricted to the ravine on the SE flank, although the ash from the flows rose rapidly and reached about 200 m above the surface of the ravine and also drifted W (figure 77).

Figure (see Caption) Figure 76. A dense ash plume rose 500 m from the summit of Sangay on 24 June 2020 and drifted W during an overflight by IG-EPN personnel. The aerial photograph is taken from the SE; snow-covered Chimborazo is visible behind and to the right of Sangay. Photo by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 77. Pyroclastic flows descended the SE flank ravine at Sangay during an overflight by IG-EPN personnel on 24 June 2020. Ash from the pyroclastic flow rose 200 m and drifted W, and infrared imagery identified the thermal signature of the pyroclastic flow in the ravine. Photo by M Almeida, IR Image by S Vallejo, courtesy of IG EPN (Jueves, 25 Junio 2020 12:24, SOBREVUELO AL VOLCÁN SANGAY).

Infrared imagery taken during the overflight on 24 June identified three significant thermal anomalies in the large ravine on the SE flank (figure 78). Analysis by IG scientists suggested that the upper anomaly 1 (125°C) was associated with explosive activity that was observed during the flight. Anomaly 2 (147°C), a short distance below Anomaly 1, was possibly related to effusive activity of a small flow, and Anomaly 3 (165°C) near the base of the ravine that was associated with pyroclastic flow deposits. The extent of the changes at the summit of Sangay and along the SE flank since the beginning of the eruption that started in March 2019 were clearly visible when images from May 2019 were compared with images from the 24 June 2020 overflight (figure 79). The upper part of the ravine was nearly 400 m wide by the end of June.

Figure (see Caption) Figure 78. A thermal image of the SE flank of Sangay taken on 24 June 2020 indicated three thermal anomalies. Anomaly 1 was associated with explosive activity, Anomaly 2 was associated with effusive activity, and Anomaly 3 was related to pyroclastic-flow deposits. Image prepared by S Vallejo Vargas, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 79. Aerial and thermal photographs of the southern flank of the Sangay volcano on 17 May 2019 (left: visible image) and 24 June 2020 (middle: visible image, right: visible-thermal overlay) show the morphological changes on the SE flank, associated with the formation of a deep ravine and the modification of the summit. Photos and thermal image by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Arnold Binas (URL: https://www.doroadventures.com).


Karangetang (Indonesia) — June 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent block avalanches through mid-January 2020; crater anomalies through May

The Karangetang andesitic-basaltic stratovolcano (also referred to as Api Siau) at the northern end of the island of Siau, north of Sulawesi, Indonesia, has had more than 50 observed eruptions since 1675. Frequent explosive activity is accompanied by pyroclastic flows and lahars, and lava-dome growth has created two active summit craters (Main to the S and Second Crater to the N). Rock avalanches, observed incandescence, and satellite thermal anomalies at the summit confirmed continuing volcanic activity since the latest eruption started in November 2018 (BGVN 44:05). This report covers activity from December 2019 through May 2020. Activity is monitored by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and ash plumes are monitored by the Darwin VAAC (Volcanic Ash Advisory Center). Information is also available from MODIS thermal anomaly satellite data through both the University of Hawaii's MODVOLC system and the Italian MIROVA project.

Increased activity that included daily incandescent avalanche blocks traveling down the W and NW flanks lasted from mid-July 2019 (BGVN 44:12) through mid-January 2020 according to multiple sources. The MIROVA data showed increased number and intensity of thermal anomalies during this period, with a sharp drop during the second half of January (figure 40). The MODVOLC thermal alert data reported 29 alerts in December and ten alerts in January, ending on 14 January, with no further alerts through May 2020. During December and the first half of January incandescent blocks traveled 1,000-1,500 m down multiple drainages on the W and NW flanks (figure 41). After this, thermal anomalies were still present at the summit craters, but no additional activity down the flanks was identified in remote satellite data or direct daily observations from PVMBG.

Figure (see Caption) Figure 40. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling down multiple flanks of the volcano. This was reflected in increased thermal activity seen during that interval in the MIROVA graph covering 5 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 41. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling up to 1,500 m down drainages on the W and NW flanks of the volcano. Top left: large thermal anomalies trend NW from Main Crater on 5 December 2019; about 500 m N a thermal anomaly glows from Second Crater. Top center: on 15 December plumes of steam and gas drifted W and SW from both summit craters as seen in Natural Color rendering (bands 4,3,2). Top right: the same image as at top center with Atmospheric penetration rendering (bands 12, 11, 8a) shows hot zones extending WNW from Main Crater and a thermal anomaly at Second Crater. Bottom left: thermal activity seen on 14 January 2020 extended about 800 m WNW from Main Crater along with an anomaly at Second Crater and a hot spot about 1 km W. Bottom center: by 19 January the anomaly from Second Crater appeared slightly stronger than at Main Crater, and only small anomalies appeared on the NW flank. Bottom right: an image from 14 March shows only thermal anomalies at the two summit craters. Courtesy of Sentinel Hub Playground.

A single VAAC report in early April noted a short-lived ash plume that drifted SW. Intermittent low-level activity continued through May 2020. Small SO2 plumes appeared in satellite data multiple times in December 2019 and January 2020; they decreased in size and frequency after that but were still intermittently recorded into May 2020 (figure 42).

Figure (see Caption) Figure 42. Small plumes of sulfur dioxide were measured at Karangetang with the TROPOMI instrument on the Sentinel-5P satellite multiple times during December 2019 (top row). They were less frequent but still appeared during January-May 2020 (bottom row). Larger plumes were also detected from Dukono, located 300 km ESE at the N end of North Maluku. Courtesy of Global Sulfur Dioxide Monitoring Page.

PVMBG reported in their daily summaries that steam plumes rose 50-150 m above the Main Crater and 25-50 m above Second Crater on most days in December. The incandescent avalanche activity that began in mid-July 2019 also continued throughout December 2019 and January 2020 (figure 43). Incandescent blocks from the Main Crater descended river drainages (Kali) on the W and NW flanks throughout December. They were reported nearly every day in the Nanitu, Sense, and Pangi drainages, traveling 1,000-1,500 m. Incandescence from both craters was visible 10-25 m above the crater rim most nights.

Figure (see Caption) Figure 43. Incandescent block avalanches descended the NW flank of Karangetang as far as 1,500 m frequently during December 2019 and January 2020. Left image taken 13 December 2019, right image taken 6 January 2020 by PVMBG webcam. Courtesy of PVMBG, Oystein Anderson, and Bobyson Lamanepa.

A few blocks were noted traveling 800 m down Kali Beha Barat on 1 December. Incandescence above the Main crater reached 50-75 m during 4-6 December. During 4-7 December incandescent blocks appeared in Kali Sesepe, traveling 1,000-1,500 m down from the summit. They were also reported in Kali Batang and Beha Barat during 4-14 December, usually moving 800-1,000 m downslope. Between 5 and 14 December, gray and white plumes from Second Crater reached 300 m multiple times. During 12-15 December steam plumes rose 300-500 m above the Main crater. Activity decreased during 18-26 December but increased again during the last few days of the month. On 28 December, incandescent blocks were reported 1,500 m down Kali Pangi and Nanitu, and 1,750 m down Kali Sense.

Incandescent blocks were reported in Kali Sesepi during 4-6 January and in Kali Batang and Beha Barat during 4-8 and 12-15 January (figure 44); they often traveled 800-1,200 m downslope. Activity tapered off in those drainages and incandescent blocks were last reported in Kali Beha Barat on 15 January traveling 800 m from the summit. Incandescent blocks were also reported traveling usually 1,000-1,500 m down the Nanitu, Sense, and Pangi drainages during 4-19 January. Blocks continued to occasionally descend up to 1,000 m down Kali Nanitu through 24 January. Pulses of activity occurred at the summit of Second Crater a few times in January. Steam plumes rose 25-50 m during 8-9 January and again during 16-31 January, with plumes rising 300-400 m on 20, 29, and 31 January. Incandescence was noted 10-25 m above the summit of Second Crater during 27-30 January.

Figure (see Caption) Figure 44. Incandescent material descends the Beha Barat, Sense, Nanitu, and Pangi drainages on the NW flank of Karangetang in early January 2020. Courtesy of Bobyson Lamanepa; posted on Twitter on 6 January 2020.

Activity diminished significantly after mid-January 2020. Steam plumes at the Main Crater rose 50-100 m on the few days where the summit was not obscured by fog during February. Faint incandescence occurred at the Main Crater on 7 February, and steam plumes rising 25-50 m from Second Crater that day were the only events reported there in February. During March, steam plumes persisted from the Main Crater, with heights of over 100 m during short periods from 8-16 March and 25-30 March. Weak incandescence was reported from the Main Crater only once, on 25 March. Very little activity occurred at Second Crater during March, with only steam plumes reported rising 25-300 m from the 22nd to the 28th (figure 45).

Figure (see Caption) Figure 45. Steam plumes at Karangetang rose over 100 m above both summit craters multiple times during March, including on 26 March 2020. Courtesy of PVMBG and Oystein Anderson.

The Darwin VAAC reported a continuous ash emission on 4 April 2020 that rose to 2.1 km altitude and drifted SW for a few hours before dissipating. Incandescence visible 25 m above both craters on 13 April was the only April activity reported by PVMBG other than steam plumes from the Main Crater that rose 50-500 m on most days. Steam plumes of 50-100 m were reported from Second Crater during 11-13 April. Activity remained sporadic throughout May 2020. Steam plumes from the Main Crater rose 50-300 m each day. Satellite imagery identified steam plumes and incandescence from both summit craters on 3 May (figure 46). Faint incandescence was observed at the Main Crater on 12 and 27 May. Steam plumes rose 25-50 m from Second Crater on a few days; a 200-m-high plume was reported on 27 May. Bluish emissions were observed on the S and SW flanks on 28 May.

Figure (see Caption) Figure 46. Dense steam plumes and thermal anomalies were present at both summit craters of Karangetang on 3 May 2020. Sentinel 2 satellite image with Natural Color (bands 4, 3, 2) (left) and Atmospheric Penetration rendering (bands 12, 11, 8a) (right); courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Bobyson Lamanepa, Yogyakarta, Indonesia, (URL: https://twitter.com/BobyLamanepa/status/1214165637028728832).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 26, Number 05 (May 2001)

Managing Editor: Richard Wunderman

Ahyi (United States)

Brief explosive activity on 24 April 2001 detected seismically

Atmospheric Effects (1995-2001) (Unknown)

Volcanic aerosol optical thicknesses derived from lunar eclipse observations

Colima (Mexico)

Surficial fractures preceded a light-colored dome emplaced aseismically

Deception Island (Antarctica)

Moderate seismicity; magnetic and geochemical studies gather new data

Etna (Italy)

Strombolian activity and lava flows during January-April 2001

Fournaise, Piton de la (France)

Eruptions during late March 2001 and on 11 June 2001

Galeras (Colombia)

Low-level seismicity and eruptive activity during April 2000-March 2001

Mayon (Philippines)

April 2000-May 2001 summary; dome growth beginning in January 2001

Niuafo'ou (Tonga)

New hot spring in caldera during May-June 1999

San Cristobal (Nicaragua)

Small gas-and-ash plumes during May and June 2001 cause ashfalls

Sturge Island (Antarctica)

Elongate cloud on 12 June possibly a result of volcanic emissions

Three Sisters (United States)

Radar interferometry suggests uplift during 1996-2000

Ulawun (Papua New Guinea)

Eruption on 30 April 2001 sends an ash cloud to a height of ~13.7 km



Ahyi (United States) — May 2001 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Brief explosive activity on 24 April 2001 detected seismically

A short episode of explosive submarine volcanism was recorded 24 April 2001 by the Laboratoire de Géophysique's (LDG) Pomariorio (PMO) seismic station on Rangiroa Atoll, Tuamotu Archipelago. This episode began at 1110 UTC, and ended at 1900 UTC, with more than 40 explosive T-waves at a fairly uniform rate. The wave forms were similar to those of December 1989 (from a source NW of Supply Reef, SEAN 14:12), and suggested a source in the Mariana Islands. LDG scientists identified these explosive events on records from some other IRIS and Freesia stations, and computed a well-constrained location at 20.34°N, 145.02°E with an error of 15 km (figure 1).

Figure (see Caption) Figure 1. Map showing Ahyi and other volcanic edifices along part of the Mariana Arc just north of 20°N, 145°E. The location of the April 2001 activity is indicated, as well as activity reported between Farallon de Pajaros and Supply Reef in 1967, 1969, 1979, 1985, and 1989. Contour interval is 200 m; bathymetry is based on US Navy narrow-beam SASS data. Thick black bars show 1985 dredge locations. Scale and volcanic activity locations are approximate. Base map modified from Bloomer and others (1989).

The summit of Ahyi lies within this location uncertainty, approximately 10 km N. Ahyi seamount is a large conical submarine volcano that rises to within about 140 m of the sea surface about 18 km SE of Farallon de Pajaros. Water discoloration has been observed over the volcano, and in 1979 the crew of a fishing boat felt shocks over the summit area followed by upwelling of sulfur-bearing water (SEAN 04:11).

Regional volcanic activity. Most of the recent historical activity in this area is based on acoustic detection methods from great distances, making exact location determinations difficult. The following presents background information about other volcanoes close to the April 2001 event, with a description of recent volcanism.

The small 2-km-wide island of Farallon de Pajaros (also known as Uracas) is the northernmost and most active volcano of the Mariana Islands. Its relatively frequent historical eruptions dating back to the mid-19th century have caused it to be referred to as the "lighthouse of the western Pacific." Flank fissures have fed historical lava flows that form platforms along the coast. Summit vents have also been active during historical time, and eruptions have been observed from nearby submarine vents. Aerial observations of fuming were reported in July 1981 (with discolored water), August 1990, and May 1992. Makhahnas seamount, which rises to within 640 m of the sea surface, lies about 10 km SW. A possible eruption during March-April 1967 on the SW flank of this seamount was identified on the basis of T-phase recordings by Norris and Johnson (1969).

Supply Reef is a conical submarine volcano that rises to within 8 m of the sea surface. The seamount lies about 10 km NW of the Maug Islands, the emergent summit of a submarine volcano that is joined to Supply Reef by a low saddle at a depth of about 1,800 m. Several submarine eruptions have been detected by sonar signals originating from points very approximately located at distances of 15-25 km NW of Supply Reef. An event in March 1969 was detected using T-phase recordings and located by the crew of a fishing boat who heard explosion sounds and saw water discoloration (CSLP Cards 528 and 534). Activity in August-September 1985 (SEAN 10:09 and 10:11) and September and December 1989 (SEAN 14:10 and 14:12) were in the same approximate location, 30 km S of Farallon de Pajaros, about midway between Makhahnas and Supply Reef. Both of these events were identified and located using T-phase data, but discolored water was also observed during the 1985 event by an airline pilot.

References. Bloomer, S.H., Stern, R.J., and Smoot, N.C., 1989, Physical volcanology of the submarine Mariana and Volcano arcs: Bulletin of Volcanology, v. 51, p. 210-224.

Norris, R.A., and Johnson, R.H., 1969, Submarine volcanic eruptions recently located in the Pacific by Sofar hydrophones: Journal of Geophysical Research, v. 74, no. 2, p. 650-664.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the sea surface about 18 km SE of the island of Farallon de Pajaros (Uracas) in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area of the seamount, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: Olivier Hyvernaud, Laboratoire de Géophysique, PO Box 640, Pamatai, Tahiti, French Polynesia.


Atmospheric Effects (1995-2001) (Unknown) — May 2001 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Volcanic aerosol optical thicknesses derived from lunar eclipse observations

The following report, discussing volcanic aerosol optical thicknesses since 1960 as derived from lunar eclipse observations, was provided by Richard Keen. About once per year, on average, the moon is eclipsed as it passes into the Earth's shadow; at these times the moon can be used as a remote sensor of the global average optical depth of stratospheric aerosols of volcanic origin. Volcanic aerosols and lunar eclipses can be linked because the moon is visible during total lunar eclipses due to sunlight refracted into the shadow (umbra) by the Earth's atmosphere (primarily by the stratosphere), stratospheric aerosols reduce the transmission of sunlight into the umbra, and the path length of sunlight through a stratospheric aerosol layer is about 40 times the vertical thickness of the layer. Therefore, the brightness of the eclipsed moon is extremely sensitive to the amount of aerosols in the stratosphere.

Methodology and data reduction. Aerosol optical thicknesses can be calculated for the date of an eclipse from the difference between the observed brightness of the eclipse and a modeled brightness computed for an aerosol-free standard atmosphere, modified by assumed distributions of ozone and cloud. Details of this technique, applied to observations during 1960 through 1982, appear in Keen (1983); updates following the eruption of Pinatubo appeared in February 1993 (Bulletin v. 18, no. 2) and November 1997 (Bulletin v. 22, no. 11). This report updates the time series through the lunar eclipse of 9 January 2001, the last total lunar eclipse until May 2003.

Figure 12 plots the global optical thicknesses derived from 38 total or near-total lunar eclipses during 1960-2001. Results from eight eclipses during 1880-1888 have been added to figure 12 to allow comparison with the effects of Krakatau in 1883. The plotted values are actual derived optical depths, modified as follows: Due to the higher concentration of aerosols from Agung and El Chichón in the Southern and Northern Hemispheres, respectively, a sampling bias due to the moon's passing though the southern or northern portion of the umbra was removed by using an empirical adjustment factor of 0.8 (thus, if the moon passed S of the Earth's shadow axis during an eclipse following an Agung eruption, the derived optical thickness was multiplied by 0.8, while the derived value was divided by 0.8 if the moon passed N of the axis). Furthermore, no lunar eclipses occurred until 18 months following the Pinatubo eruption in June 1991, while results from Agung and El Chichón indicate that peak optical depths occurred about 9 months after those eruptions. Therefore, for plotting purposes on figure 12, the time series of optical thicknesses following Pinatubo was extrapolated backwards to a date 9 months after the eruption using a composite decay curve (with a time constant of 1.92 years) derived from the Agung and El Chichón eclipse data. Finally, the global optical depths were set to zero on the dates of the eruptions of Krakatau, Agung, Fuego, and Pinatubo; observed values were near zero for eclipses close to the dates of the eruptions of Fernandina and El Chichón.

Figure with caption Figure 12. Global optical thicknesses derived from 38 total or near-total lunar eclipses during 1880-1888 and 1960-2001. Details about the methodology and data reduction used to construct this figure are in the report text. Courtesy of Richard Keen.

The time series. The volcanic eruptions probably responsible for the major peaks in the times series are identified, although the identification of Fernandina with the 1968 peak is highly uncertain. Comparative maximum global optical thicknesses are: Pinatubo (1991), 0.15; Krakatau (1883), 0.13; Agung (1963), 0.10; El Chichón (1982), 0.09; Fernandina (1968), 0.06; Fuego (1974), 0.04.

The results indicate that the volcanic aerosol veil from Pinatubo disappeared between the eclipses of November 1993, and April 1996, with optical depth probably reaching zero sometime in 1995. Since 1995, optical depths have stayed near zero ( ± 0.01), indicating no further major injections of volcanic aerosols into the stratosphere. However, slight increases to observed values slightly above 0.01 in 1979 and in late 1997 are close to the noise level due to the uncertainty in the brightness observations; if real, they could indicate aerosols from the eruptions of Soufriere St. Vincent (1979) and Soufriere Hills on Montserrat (1997).

Acknowledgments. Thanks are due to the following observers who supplied observations of the three eclipses in the 2000-2001 series: C. Drescher, F. Farrell, M. Matiazzo, A. Pearce, and D. Seargent (Australia), W. de Souza and J. Aguiar (Brazil), J. Finn (Canada), K. Hornoch (Czech Republic), A. Shahin (Dubai, United Arab Emirates), G. Glitscher (Germany), N. Abanda, S. Abdo, W. Abu Alia, E. Al-Ashi, H. Al-Dalee', A. Al-Niamat,K. Al-Tell, and M. Odeh (Jordan), R. Bouma (Netherlands), B. Granslo and O. Skilbrei (Norway), A. Pereira and C. Vitorino (Portugal), J. Atanackov and J. Kac (Slovenia), T. Cooper (South Africa), T. Karhula and P. Schlyter (Sweden), R. Eberst and A. Pickup (UK), R. Keen, T. Mallama, and J. Marcus (USA).

References. Keen, R., 1983, Volcanic aerosols and lunar eclipses: Science, v. 222, p. 1011-1013.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Richard A. Keen, Program for Atmospheric and Oceanic Sciences (PAOS) , 311 UCB, University of Colorado, Boulder, CO 80309 USA.


Colima (Mexico) — May 2001 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Surficial fractures preceded a light-colored dome emplaced aseismically

This report describes two visits to the rim of Colima's main crater (17 March and 26 May 2001) and summarizes collateral data collected around that time. On the earlier visit, observers found an enlarged main crater, they noted the disappearance of an older (1994) crater, and they photographed a recent crater with a sulfur-encrusted, warped, and fractured floor. By the time of the later visit, an unusual new dome had appeared, composed of more fragmentary and lighter color clasts than typical for Colima's lava domes. Effusive activity was previously seen during November 1998-February 1999.

Crater rim observations. On 17 March 2001, Nick Varley and Juan Carlos Gavilanes ascended to Colima's crater rim (figures 40 and 41). It was the first visit there since January 1999. Circumnavigating the main crater, they prepared a map of the current crater and environs (figure 40). The main crater was 230-260 m in diameter, 15-40 m deep, and ~1.4 x 106 m3 in volume. Its diameter had grown two-fold larger than it was before the 1998-99 eruption, reaching its largest size since the early 1960s.

Figure (see Caption) Figure 40. A sketch map of Colima's crater zone showing the main summit crater geometry after the 1998-99 eruption, and the dome seen on 26 May 2001. The small triangles on the crater rim indicate GPS-surveyed points (way points obtained using various receivers on 17 March and 26 May 2001); values at the map margins are UTM coordinates. The photograph shown in figure 41 was shot from the vantage point indicated by the bold rectangle on the main crater's eastern rim. Historical lava flows traveled down the volcano along routes indicated by small arrows. Fumaroles Fa and Fb indicate areas with temperatures over 850°C and over 800°C during December 1995 and May 1998, respectively. The locations of the craters formed during the 1994 and 1987 explosions were based on an August 1996 survey by A. Cortés, J.C. Gavilanes, and J. Ramos. The current map was prepared by J.C. Gavilanes, N. Varley, A. Rivera, and J. Heredia.
Figure (see Caption) Figure 41. Pre-extrusion views of Colima's up-warped crater floor as seen from the point on the main crater rim indicated on the map (figure 40) on 17 March 2001. The upper photo provides an overview shot of the 22 February 2001 crater; the lower photo is zoomed in on the deformed crater floor. The crater floor displays both fractures and buckling of sufficient intensity to create a visibly undulatory surface. The color version of the photos shows bright yellow sulfur incrustations over extensive portions of the up-warped crater floor. Photo and caption provided courtesy of J.C. Gavilanes.

On their 17 March visit Varley and Gavilanes found a smaller crater located inside the main crater's N sector (figure 40). This inner crater was assumed to be formed by the 22 February 2001 explosion. The inner crater was then estimated to be 127 m in diameter, 15 m deep, and ~0.2 x 106 m3 in volume. In the NE sector of the inner crater they observed an inflated, buckled, and fractured surface (figure 41). They inferred that this inflated surface stemmed from an intrusion initiated sometime after the 22 February explosion.

Figure 42 records the scene Varley and Gavilanes found when they ascended to the crater rim on 26 May 2001. Close to the inflated surface observed on 17 March they found a new lava dome. It stood ~115 m across its base, ~57 m across its top, ~30 m high, and was ~0.15 x 106 m3 in volume. The two observers also noted that in comparison to conditions witnessed during the previous crater ascent, new and stronger fumarolic zones surrounded the new dome, mainly to its N, NE, and E (figure 40).

Figure (see Caption) Figure 42. A photo of the new dome shot from the Colima's E crater rim on 26 May 2001. The photo of the new dome was taken from the vantage point indicated by the rectangle on figure 40, ~ 135 m from the center of the dome. Courtesy of J.C. Gavilanes.

Collateral observations. Later review of seismic, deformation, and GOES radiation data (figure 43) showed that dome extrusion may have started on 8 May, a day with distinct increases in both thermal radiation and tilt. No increase in seismic activity was observed; the proposed explanation for this is that the lava was plastic enough to avoid the shear fracturing of surrounding structures. Assuming that the extrusion started on 8 May 2001, the resulting growth rate (for 8-26 May, 19 days) was ~0.1 m3 s-1. Fieldwork in the crater's vicinity took place over a 3-hour interval and included gas sampling. Only a small rockfall was heard.

Figure (see Caption) Figure 43. Plots of four monitored parameters at Colima acquired during April-May 2001. The common time axis allows the comparison of seismic (RSAM) data (A), remotely sensed radiance (B), and tilt (C and D). The tilt data (C and D) were recorded at a station 1.02 km E of the dome. The arrow indicates the inferred date when the dome began extruding. Seismic data represent the cumulative amplitude of reduced seismic energy (RSAM) measured at station EZV4, 1.7 km from the crater. Seismicity remained relatively quiet (see text). The radiance plot (B) was made using mid-infrared (3.9 mm) data. This plot presents infrared volcanic radiance acquired by NOAA's geostationary GOES-8 satellite. The radiance values shown depict the hottest pixel within the 500 x 500 pixel box that lies centered on Colima. These data were made available by the Institute of Geophysics & Planetology of the University of Hawaii. The figure was compiled by V. M. Zobin using data processed by the University of Hawaii, and data collected and processed by T. Dominguez, C. Navarro, and H. Santiago.

The new dome appeared anomalous in certain ways. It was not composed of large dark-colored blocks (as observed for the effusive events that occurred during the last 40 years), but instead consisted mainly of smaller-sized blocks with a light-gray color. The new dome could be an example of endogenous dome growth, where no new molten material reaches the surface.

On 1 May 2001 the measured SO2 flux was 200 t/d, and on March 16 it was 145 t/d. These are only slightly higher than mean values recorded during the calm period of 1997, which were less than 100 t/d.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Observatorio Vulcanológico de la Universidad de Colima, Colima, Col., 28045, México; Facultad de Ciencias de la Universidad de Colima, Colima, Col., 28045, México (URL: http://www.ucol.mx/).


Deception Island (Antarctica) — May 2001 Citation iconCite this Report

Deception Island

Antarctica

63.001°S, 60.652°W; summit elev. 602 m

All times are local (unless otherwise noted)


Moderate seismicity; magnetic and geochemical studies gather new data

During the most recent austral summer, December 2000-March 2001, the Spanish Antarctic Programme (SAP) carried out its yearly survey of Deception Island. Researchers from Spain, Italy, and México took part in the seismological, magnetic, and geochemical study of the entire island.

The seismic network's stations were deployed in a variety of configurations (figure 15). The instruments used were as follows: two dense seismic antennas each with 16 short-period seismometers, two small antennas each with four seismometers, three short-period seismometers, two broadband seismic stations, and four autonomous three-component short-period seismic stations.

Figure (see Caption) Figure 15. Seismic instruments deployed in the December 2000-March 2001 field survey of Deception Island. Seismic arrays are detailed in large squares. Courtesy of SAP.

Seismicity is summarized in figure 16. Registered seismic events featured volcano-tectonic earthquakes (VT), a few episodes of volcanic tremor, long-period events (LP), and hybrid events (VT + LP). More than 75 VT, 500 LP, and 20 hybrid events were recorded; this constituted moderate activity compared to previous surveys. Hybrid events, which were difficult to detect in previous studies, peaked at the end of January 2001. Volcanic tremor episodes occurred with durations between hours and a few days; workers interpreted these events, together with the LP events, as a consequence of hydrothermal activity.

Figure (see Caption) Figure 16. Histogram of the volcano-tectonic (VT), long period (LP), and hybrid events recorded during 20 December 2000-15 February 2001. Courtesy of SAP.

The magnetic field in the area was monitored using a proton magnetometer deployed near the Argentinean base, which is the position used in previous surveys (figure 17). The recorded values of the magnetic field are being processed and corrected according to external variations in order to observe whether volcano-magnetic effects produced variation in the local magnetic field.

Figure (see Caption) Figure 17. Map showing morphological features, bases, and the sites selected to measure CO2 flux. Courtesy of the SAP.

Geochemical investigations consisted of recording gas composition and temperature of the fumaroles in Fumarole Bay and measuring CO2 flux at 26 points around the island (figure 16). The chemical analyses of the fumarolic samples are being processed. Fumarole temperatures averaged ~100°C, similar to values of previous years. The majority of points, including those bordering Fumarole Bay, had a very low flux of CO2. Two of them, however, Murature Point and Cerro Caliente hill (figure 17), had high fluxes. Future studies will conduct similar surveys in order to establish a CO2 flux map for the entire island.

Geologic Background. Ring-shaped Deception Island, one of Antarctica's most well known volcanoes, contains a 7-km-wide caldera flooded by the sea. Deception Island is located at the SW end of the Shetland Islands, NE of Graham Land Peninsula, and was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides entrance to a natural harbor that was utilized as an Antarctic whaling station. Numerous vents located along ring fractures circling the low, 14-km-wide island have been active during historical time. Maars line the shores of 190-m-deep Port Foster, the caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions from Deception Island during the past 8700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.

Information Contacts: Alicia García and Ramón Ortiz, Dpto. Volcanología, Museo Nacional de Ciencias Naturales, CSIC, José Gutierrez Abascal 2, 28006, Madrid, Spain; Jesús M. Ibáñez, Enrique Carmona, José Benito Martín, and Carmen Martínez, Instituto Andaluz de Geofísica, Apartado 2145, University of Granada, 18071 Granada, Spain; José Luis Pérez-Cuadrado, Universidad de Cartagena, 30202 Murcia, Spain; Mauricio Bretón, Universidad de Colima, Colima, Col., 28045, México; Mario La Rocca, Osservatorio Vesuviano, Via Diocleziano 328, 80124 Napoli, Italy.


Etna (Italy) — May 2001 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian activity and lava flows during January-April 2001

As reported by Sistema Poseidon, activity at Etna (figure 85) during December 2000-8 April 2001 was characterized by episodic Strombolian blasts, steam and ash emissions, and lava flows.

Figure (see Caption) Figure 85. Aerial photograph of Etna looking E towards the Bocca Nuova vent within the central crater on 6 December 2000. Northeast Crater is also partially visible (in the left background), as well as Southeast Crater (right). Courtesy of Sistema Poseidon.

Minor activity during December 2000 through mid-January 2001. Low-intensity gas emissions dominated activity during this period. Observations on 6 December revealed three distinct cavities in the interior of the Bocca Nuova (BN) vent. The two near the center of the crater trended NW, were deep and full of material, and were delineated by pit-craters. The smaller cavity to the SE was encircled by a high wall of scoria; it weakly emitted light brown ash, possibly due to internal collapse. White steam emissions from BN in early January were visible during the early morning hours, and became more evident as each day progressed due to increased humidity. Sporadic ash ejections also occurred.

At the end of December, adverse atmospheric conditions prevented detailed observations, but during rare periods of visibility observers saw snow covering the W flanks of the central crater and Southeast Crater (SEC). A weak intermittent fumarolic emission emerged from the base of the fracture that runs from the SEC to the lava cairn at its base. The SEC also produced weak fumarolic emissions in early January from the W edge of the crater's summit. On the evening of 14 January a weak, diffused illumination was observed at SEC, likely coming from the E edge of the crater, where during recent months there was visible night incandescence.

Increased activity during mid-late January 2001. The BN vent produced abundant steam during the middle of January. Brown ash was weakly emitted on 16 and 19 January; darker ash ejections occurred on the 18th and 21st. Ash fell on the E flank of the volcano for five hours during the morning of the 18th, and weak illumination was visible for 30 minutes that night coming from BN. Ash-and-gas emissions increased toward the end of January. Isolated night glow suggested weak explosive Strombolian activity confined to inside the central crater. Activity alternated between visible degassing and intense phases of ash emission; one particularly acute phase occurred on 31 January.

New activity initiated from SEC on the evening of 15 January. Low-energy Strombolian eruptions were seen at night by distant observers. Activity increased in frequency during 16-17 January, reaching a maximum on 18 January when explosions occurred every 3-4 minutes, interspersed with high-energy episodes that repeated at variable intervals of ~1-2 hours. Ejected material from these events reached ~50 m high on the edge of the SEC, falling back into the crater. Strombolian activity continued through 19 January. Lava began to flow from the radial fracture cutting the N flank of the SEC beginning during the day on 21 January and persisting discontinuously until the end of the month. Intermittent flows formed several finger-like fronts. The flow reached down to ~2,800 m elevation, and remained confined to the Valle del Leone.

Strombolian explosions at Bocca Nuova during February-April 2001. During the nights of 1 and 4 February, frequent illumination was observed in the BN vent. Strombolian activity continued from BN throughout February. As during January, strong degassing and dark gray ash emissions were sporadic. High ambient humidity during morning hours made gas plumes distinct, especially on 10 February; activity was particularly consistent during 20-22 February. The fixed Montagnola camera captured images of frequent flashes from the crater interior, but activity did not extend beyond the crater area.

The BN vent produced increased explosive activity during March from two vents (W and E) inside the depression. The W vent exhibited Strombolian explosions; during some periods these were continuous and sent incandescent material just above the crater rim. A small number of lava fragments fell outside of the crater and rolled down its flanks. Explosive activity at the E vent did not eject material above the crater rim. Alternating degassing and dark gray ash emission continued as in February. Fine-grained material blown by wind fell as far as 2 km from the summit. Activity was more intense on 6 and 28 March when BN emitted copious amounts of ash from the NW and SE sectors of the crater. The Montagnola camera detected almost continuous night illumination of the crater, suggesting Strombolian activity from multiple vents. Strombolian activity also occurred from Northeast Crater, although it was rarely visible.

Strombolian activity and ash emission from BN continued throughout April. On the evening of 4 April an intense phase at the S zone of the central crater included ejection of some incandescent material above the crater rim. During 7-8 April, a slight increase in the frequency of ash emissions was observed, while night-time incandescence was sporadic.

Lava flows from Southeast Crater during February-April 2001. Early in February lava emission from the N-flank of SEC diminished; it produced modest regular lava flows for the rest of the month. On 4 February observers saw intense flashes that indicated explosive lava ejection from the fracture. Flashes and illumination visible in camera footage evidenced erratic SEC effusive activity throughout February. One early February lava flow from a vent at 3,100 m continued for several days. Bubbles frequently burst from the lava, indicating high gas content within the magma. The lava flow was ~2 m wide near the source, grew to 5 m wide toward the base, and reached an elevation of 2,900 m. During mid-February a vent at 3,150 m elevation produced a flow down a 2-m-wide canal. The flow ran N initially, but ~100 m downslope it headed E and formed a lava tube about 20-25 m wide. The flow moved toward the Valle del Bove, in the direction of Monte Sinome; it continued through the end of the month and reached 2,600 m elevation.

Through mid-March lava continued to flow from the fracture at 3,080 m elevation on the SEC's N flank. Near the vent the flow was ~1 m wide and ~80 cm deep. After having flowed less than 2 m it divided into two forks that ran roughly parallel to each other. The principal flow retained a width of ~1 m and headed N for ~100 m before deviating toward the NE and reaching an elevation of ~2,800 m. The secondary flow was about half a meter in width; it traveled at ~4 m/s near the fork and ~2 m/hour near the flow front where it spread to ~5 m across at an elevation of about 2,970 m. Effusive activity appeared to diminish on 23 March. The vent observed three days before was no longer active. A single flow was fed by a new vent about 5 m below the previous vent. A steep slope at the vent's mouth produced flow velocities of ~6 m/minute. This flow reached down to an elevation of 2,950 m, where it traveled at 1 m/hour over the flows of three days before. The flow front measured 5 m wide and 1 m high. On 30 March conspicuous white vapor issued from the SEC.

A 4 April survey of the flows revealed a moderate flow from the N flank of SEC. The vent had built up a small cone ~6 m tall at 3,095 m elevation. Two flows, each ~1 m wide and 1-2 m deep, traveled away from the cone and joined together 20-25 m away, flowing E. The flows in the two channels moved at a speed of ~0.1 m/s and an estimated 0.2-0.4 m3 of molten material emerged each second. The maximum length of the overall flow was ~350 m. During the evening of 8 April strong, persistent illumination from the E base of SEC probably indicated a new lava flow. The incandescence was distinctly visible as it reflected off of a steam plume from the summit crater.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sistema Poseidon, a cooperative project supported by both the Italian and the Sicilian regional governments, and operated by several scientific institutions (URL: http://www.ct.ingv.it/en/chi-siamo/la-sezione.html).


Piton de la Fournaise (France) — May 2001 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptions during late March 2001 and on 11 June 2001

In 1998, after 5.5 years of calm, Piton de la Fournaise erupted twice. Two eruptions occurred in 1999, while in 2000, three eruptions took place (BGVN 25:12). Only 4.5 months after the last eruption in October 2000, Piton de la Fournaise erupted once more on 27 March 2001 at 1320. As described below, precursor extensometer and tiltmeter measurements, in conjunction with historical data, provided an accurate forecast of an eruption sometime near the end of March. The March eruption was followed by another at 1350 on 11 June.

Geodetic measurements. After 1 January 2001, the Château Fort extensometer showed a significant, regular increase (figure 61), and, beginning 21 January, the Magne extensometer showed the same tendency. Plots of the measurements from these two stations show remarkably constant slopes of 0.0038 mm/day at Château Fort and 0.005 mm/day at Magne. In 1999 and 2000, such variations were observed 2-3 months before the eruptions of 19 July 1999, 23 June 2000, and 23 October 2000 on the E and SE flanks of the volcano. Using these historical data and the fact that the maximal variation of spread for all these eruptions was 0.25 to 0.35 mm for the Château Fort station and 0.3 to 0.5 mm for the Magne station, extrapolations of the deformation were used to forecast a late March eruption.

Figure (see Caption) Figure 61. Extensometer measurements from the Château Fort station at Piton de la Fournaise during mid-December 2000-early April 2001. Courtesy of T. Staudacher, OVPF.

Almost simultaneous with the extensometer-measured tilt increases, important variations were registered by the Dolomieu Sud and La Soufrière tiltmeters. The Dolomieu Sud radial tiltmeter measurements increased considerably after 6 January 2001 compared to those for the previous two years; similar variations were observed before the 12 October 2000 and 28 September 1999 eruptions (figure 62). The measured increase of ~110 µrad of radial tilt as observed at Dolomieu Sud between January and March 2001 could not be explained by temperature changes. Rather, it indicated a significant inflation of the summit prior to the eruption.

Figure (see Caption) Figure 62. Tilt variation from the Dolomieu Sud station at Piton de la Fournaise compared between 1999, 2000, and 2001. Courtesy of T. Staudacher, OVPF.

Seismicity. Intense seismicity on Piton de la Fournaise increased early in 2001. During 20 January-10 February, 133 tremors were registered (generally M < 0.5). Then, after 13 days of calm, a new series of tremors began on 25 February that included 315 events. These events were weak (M < 1.5), but increased in intensity with respect to the events earlier in the year. On 3 March, 40 summit tremors occurred within one hour, and a total of 126 tremors were observed that day. All of these tremors took place beneath the Dolomieu crater at ~0.5 km below sea level.

The number of tremors increased again starting on 12 March and continuing until the eruption on 27 March. Tremor hypocenters measured on 23 March occurred 1.5 km below sea level, but rose the next day to 0.5 km below sea level. Seismometers recorded 145 tremors on 25 March. Tremor intensity increased gradually during the period with numerous events of M 1.0-1.9. In addition, precursory seismicity and deformation measurements were correlated as shown in figure 63. Figure 63 indicates that, in January, summit inflation preceded the first period of seismicity by about 10 days, while the second increase in inflation, which began on 24 January, occurred simultaneously with the second period of strong seismicity. The latter continued essentially until the eruption. On 27 March, 120 tremors were detected, including one at 1255 of M 2.0. At 1320, an eruption began on the SE flank. Tremor that began with the eruption on 27 March diminished regularly until 2 April; after eight days of activity, the eruption ended on 4 April at about 0700.

Figure (see Caption) Figure 63. Total number of earthquakes at Piton de la Fournaise compared with tilt variation during 1 January - mid-April 2001. Note that the total number of earthquakes exceeds the scale of the figure during and after the 27 March eruption. Courtesy of T. Staudacher, OVPF.

Ground observations. Ground observations were undertaken several hours after the eruption began. Five major fissures were active; their exact positions were determined later using GPS measurements. The first fissure, ~250 m long, began 100 m below the edge of Dolomieu Sud while the last ended between Piton Morgabim and the Signal de L'Enclos. The general trend of the fissures was ESE.

Three significant aa flows were observed. The first was fed by the highest fissure and descended along the S flank ending at about 1,800 m elevation. A second flow, which began at a lower altitude, wound around the Piton Morgabim toward the S and along the path of the previous flows from the June and October 2000 eruptions. The most significant flow was fed by the lowest fissure, which went N along the path of the June and October 2000 flows and came down the Grandes Pentes. By 27 March at 1700, this flow reached an elevation of 700 m, descending to 500 m on 28 March and continuing down to 350 m elevation on 29 March. These fissures were active for only several hours, and on 28 March the eruption became concentrated on the last fissure where the cone Piton Tourkal formed during the next few days. The cone was located midway between the Signal de l'Enclos and the Piton Morgabim (figure 64).

Figure (see Caption) Figure 64. Photograph showing lava flows and the future location of the soon-to-be-formed Piton Tourkal cone, between the Signal de l'Enclos (bottom left) and the Piton Morgabim (middle left). Courtesy of T. Staudacher, OVPF.

Between 27 March and 3 April, a total of nine samples were gathered for chemical analysis. On 3 April, the lava temperature was measured to be 1,150°C. No significant variation in the rates of radon emission was measured during 27 March - 3 April.

Continuous extensometer and tiltmeter variations occurred, and increased seismic activity was recorded beginning in late May. A short seismic crisis with 126 recorded events started on 11 June at 1327 and, at 1350, extensometer variations indicated that a new eruption had started on the SE flank in the same area as the 27 March eruption. En echelon fissures formed on the S flank at ~2,500 m elevation, 200 m below the Dolomieu summit crater. More fissures were located between 2,000 and 1,800 m elevation on the E flank at the southern base of crater Signal de l'Enclos and N of the Ducrot crater. Several lava flows descended the Grand Brûlé but progressed very slowly; at 1700 the front of the lava flow reached an elevation of 1,450 m. On the morning of 12 June, only the lower fissure at 1,800 m elevation was still active. It measured ~200 m long, with several lava fountains that sent material 20-30 m high. The lava flow followed the N border of the 27 March lava flow and reached about 400 m elevation on the Grand Brûlé.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher and Jean Louis Cheminée, Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, Institut National des Sciences de l'Univers, 14 RN3 - Km 27, 97418 La Plaine des Cafres, Réunion, France (URL: http://www.ipgp.fr/fr/ovpf/observatoire-volcanologique-piton-de-fournaise).


Galeras (Colombia) — May 2001 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Low-level seismicity and eruptive activity during April 2000-March 2001

According to reports by the Observatorio Vulcanológico y Sismológico de Pasto (OVSP), volcanic unrest at Galeras continued during 16 April 2000-March 2001. However, OVSP reports for November-December 2000 were not available when this report went to press.

Two small eruptive episodes occurred on 22 April and 18 May 2000. The associated seismic records included long-period (LP) events and spasmodic tremor similar to those registered during eruptive episodes on 21 March and 5 April 2000 (BGVN 25:03). Elevated seismicity continued with two volcano-tectonic (VT) events on 30 July and 17 September 2001. These events were focused ENE of the active cone; previous activity initiating within this source region was sporadic. During January-March 2001 activity continued at low levels. VT events occurred during mid- to late-January, and were followed by similar events during late March.

New crater formation during April 2000. Spasmodic tremor starting on 22 April at 1558 lasted for 175 seconds, followed by three smaller tremor episodes with durations of 90, 320, and 170 seconds, respectively. Five small LP events also occurred; the final LP event was recorded at 1634. Peak frequency for the main event was ~5.0 Hz (figure 91), but at the nearest station to the active crater other frequencies ranging from 1 to 13 Hz were observed.

Figure (see Caption) Figure 91. Main event seismic signal from 22 April 2000 at 1558 and its spectrum recorded at Anganoy station, 0.9 km E of Galeras's crater. Courtesy of OVSP.

Field inspections on 27 April revealed that within the Chavas fumarole area, on the WSW edge of the main crater, a new crater approximately 8 x 4 m in area and 1.5 m deep had formed. Several gas-emitting fissures were observed along the crater wall. Temperatures recorded at the border of the new crater on 27 April and 1 May were 408°C and 393°C, respectively, which are not anomalously higher than those observed previously.

During 16 April-30 June 2000, radon-222 emissions from soil monitored at several stations around Galeras showed values of 78-2,966 picocuries/liter (pCi/l). These levels are similar to those found in previous months. The highest value corresponded to the Sismo 2 station, located 5 km NE of the summit.

Activity during May-October 2000. An eruptive event at 1411 on 18 May was seismically characterized by an initial LP event with a dominant frequency of ~2.1 Hz figure 92), followed by five spasmodic tremor episodes and nine more LP events. The last LP event was recorded at 1806 later that day.

Figure (see Caption) Figure 92. Main event seismic signal from 18 May 2000 at 1411 and its spectrum recorded at Anganoy station, 0.9 km E of Galeras's crater. Courtesy of OVSP.

On 30 July at 0935 an earthquake swarm occurred 9 km ENE of the active cone, in the suburban area adjacent to the city of Pasto. The main event (M 4.5) was distinctly felt inside the city and in other neighboring communities. Aftershocks of lesser magnitude (M 2.3-3.4) continued through 4 August.

On 17 September 2000 at 2246 residents of Pasto and neighboring communities felt a M 3.9 event. Seismographs also detected aftershocks of M 2.6. Figure 93 shows a map view of volcano-tectonic earthquakes that occurred during July-October 2000. According to a report, movement of fluids within volcanic conduits remained at low levels.

Figure (see Caption) Figure 93. Map view showing volcano-tectonic earthquakes registered at Galeras during July-October 2000. Courtesy of OVSP.

During 1 July-30 October 2000, radon-222 emission from soil monitored around Galeras showed average values lower than 3,000 pCi/l. Peak values at the Zanjón station, located 16 km NW of the summit, reached 9,620 pCi/l on 8 September. The highest values at the San Antonio 2 station, 14 km W of the summit, occurred on 13 July and 1 September with recorded values of 15,119 pCi/l and 11,587 pCi/l, respectively.

Activity during January-March 2001. A VT earthquake swarm located near the active crater occurred during 15-17 January. The swarm was composed of 17 quakes with depths less than 3.5 and M < 1.3. A single event on 24 January and two more on 26 January (M 2.3-2.7, depths of 6-8 km) followed. Seismometers recorded three further events (M 2.5-2.7, depths of 8-9 km) on 20, 21, and 23 March. The majority of the January-March 2001 earthquakes occurred NE of the summit and were felt in the neighboring communities of Pasto and Puyito. During the first quarter of 2001, instruments detected 52 events located within the active cone area (figures 94 and 95).

Figure (see Caption) Figure 94. Map view showing volcano-tectonic earthquakes registered at Galeras during January-March 2001. Courtesy of OVSP.
Figure (see Caption) Figure 95. Cross-sectional view (N-S) showing earthquakes registered at Galeras during January-March 2001. Courtesy of OVSP.

The occurrence of four tornillo ("screw-type") events with dominant frequencies of 3.2, 8.7, 12.8, and 18.7 Hz suggested that flow of volcanic material within interior conduits continued at low levels. Tremor episodes of short duration were also recorded. Spectral analysis of the registered tremor showed dominant frequencies of 2.3-3.5 Hz.

Field workers at Galeras near the Chavas fumarole (W of the active crater) reported hearing a sound similar to the rushing current of a river, which correlated with increased rates of gas emission.

During 2000 the temperature of the Deformes fumarole (S of the active crater) measured an average of 111°C and showed a slight cooling over time. The fumarole temperature averaged 100°C during the first three months of 2001.

During 1 January-31 March 2001, radon-222 emission from soil measured up to 4,000 pCi/l at most stations. The San Juan 1 station (10 km NE of the active cone) and Sismo 5 station (7 km N of the active cone) detected higher values of 6,754 pCi/l and 5,455 pCi/l, res

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Patricia Ponce, Observatorio Vulcanológico y Sismológico de Pasto (OVSP), INGEOMINAS, Carrera 31, 18-07 Parque Infantil, P.O. Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Mayon (Philippines) — May 2001 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


April 2000-May 2001 summary; dome growth beginning in January 2001

Since the last report (BGVN 25:04), activity was variable at Mayon. The following report covers activity during April 2000-May 2001, but does not include the event that began on 24 June 2001; details of that eruption will appear in a subsequent issue. This report was compiled from reports posted on the Philippine Institute of Volcanology and Seismology (PHIVOLCS) website.

April-June 2000. Mayon's hazard status remained at 2 (on a scale of 0-5) as of 2 April. At that time, no entry was allowed within the 6-km-radius Permanent Danger Zone (PDZ) and the 7-km-radius Extended Danger Zone (EDZ) in the SE sector. Low-frequency (LF) and high-frequency (HF) earthquakes, and short-duration HF tremors, were recorded. Around this time, SO2 flux increased from 3,600 metric tons/day (t/d) to 6,210 t/d. The summit crater emitted a weak to moderate steam plume which drifted WSW. Faint crater glow was observed during the evening. Similar activity continued through the end of April, although the SO2 emission rate had decreased to 4,061 t/d as of 26 April.

Seismicity during 2-3 May included seven LF earthquakes with relative amplitudes of 55-56 mm, but there was no other variation in activity. On May 3 PHIVOLCS raised the Alert Level from 2 to 3. The next Mayon volcano bulletin, issued on 1 June, noted that SO2 flux on 21 May was 680 t/d, slightly above the baseline of 500 t/d.

By 1 June the hazard status had been decreased to Alert Level 0. Seismicity had also decreased markedly; only two HF events and two short- duration HF tremors were reported on 1 June. Crater illumination resumed the same day. SO2 flux readings were not available for the month.

July 2000. On 16 July at 0629 a phreatic explosion occurred that was visible only from the E due to thick clouds on the other sides. The explosion produced a small volume of gray ash as well as steam clouds that rose ~1 km above the summit before drifting NNE. Mayon Volcano Observatory at Ligñon Hill (MVO) seismographs recorded an explosion-type seismic signal that lasted for 1.5 minutes. Tiltmeters at Buang and Mayon Resthouse stations did not, however, detect significant ground movement, which suggested that the explosion was caused by shallow activity.

On 30 July at 1315, Mayon produced a mild ash ejection. MVO reported a small ash plume that rose 1 km. Seismicity associated with the event lasted for about 1 minute. As with the 16 July event, other monitoring, including SO2 flux readings, did not indicate further activity. Mayon's Alert Level was undisclosed for the month.

August-December 2000. A mild ash ejection at 1432 on 31 August sent a small gray ash cloud ~1 km above the summit. An activity update on 1 September noted that small explosions similar to those in July had occurred in the previous weeks. PHIVOLCS suggested that these shallow explosions were probably due to rainwater seepage into the February-March 2000 lava deposits (BGVN 25:04). No further reports were issued in 2000.

January 2001. A resurgence of activity was observed as of [8] January. MVO reported an apparently growing lava dome which emitted voluminous gases from its summit. During the previous week there had been increases in both the number of earthquakes and in tilt, presumably due to magma ascent. [These] events led PHIVOLCS to set the Alert Level to 2.

On 10 January aerial observers noted that the dome appeared to have a spiny, blocky surface, which resulted from the crater floor being pushed upward by rising magma. Slight incandescence was also emanating from the crater. Correlation spectrometer (COSPEC) measurements detected an elevated SO2 emission rate of 2,300 t/d. Seismicity also remained elevated. Ground deformation measured on the N flank continued to indicate tilting. Over the next week, activity remained high. Crater glow, however, was weak, and only visible from a distance with a telescope.

Activity escalated further after 19 January. Sixty seismic events occurred on 20 January, and a high number of earthquakes continued to occur. SO2 flux spiked up to ~8,070 t/d. A brown steam puff rose from the lava dome at 0932 on 22 January. This brief emission of ash-laden steam coincided with a volcanic earthquake. A second ash emission occurred later the same day. Alert Level 3 became effective as of 25 January. Five ash emissions rose from Mayon's summit on 28 January followed by two more the next day. Plumes rose ~500 m and generally drifted WNW or NW. The earthquakes associated with these late January events were noticeably larger than those in previous weeks. Inflation of the edifice was also detected.

February-May 2001. The Alert Level remained at 3 for the entire period; high seismicity and moderate steaming prevailed. Inflationary trends were shown by tiltmeter readings through the end of March, when uplift tapered off slightly. On 24 February a small ash-and-steam plume rose 250 m and was blown ENE. SO2 flux decreased through February with a reading of 2,889 t/d on the 28th. Crater glow was observed rarely during February, and not at all during March.

On 2 April the SO2 flux rose to 7,205 t/d, but then dropped to 444 t/d two days later. SO2 emission rates ranged from ~2,000 to 4,000 t/d during the rest of April. Low-intensity crater glow was observed sporadically during the month. On 7 May more intense crater glow was observed. A small ash emission occurred at 1752 on 11 May and sent material 50 m above the summit.

On 12 May a series of explosions were detected by a seismometer S of the summit. Ash ejection occurred, and late in the day the SE portion of the dome partially collapsed, causing a small lava avalanche that reached ~300 m down into Bonga Gully. Following the avalanche, MVO workers noted incandescence at the dome and continuing rockfalls into the gully. Workers speculated that active magma transport upward toward the crater was increasing.

Rockfalls due to molten lava fragments rolling down from the dome dominated activity during 13-14 May. When conditions cleared briefly on 14 May observers saw that the partial dome collapse had produced a V-shaped gash; this breach was the source of the outpouring lava. Avalanches had reached 500 m downslope as of this date.

Rockfalls and lava emissions ceased on 15 May but resumed the following day. Fresh lava began to refill the previously formed gash. SO2 flux remained high, and tiltmeters detected consistent inflation through 31 May. Similar activity, accompanied by elevated seismicity that included rockfall-induced signals, continued through the month.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Raymundo S. Punongbayan and Ernesto Corpuz, Philippine Institute of Volcanology and Seismology (PHIVOLCS), C.P. Garcia Avenue, U.P. Diliman, 1101 Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/).


Niuafo'ou (Tonga) — May 2001 Citation iconCite this Report

Niuafo'ou

Tonga

15.6°S, 175.63°W; summit elev. 260 m

All times are local (unless otherwise noted)


New hot spring in caldera during May-June 1999

On 8 May 1999 a group of natives were traveling around the E shore of Vai Si'i, the smaller of the two lakes that occupy the caldera in the center of the island. The water level in the lake was reported to be noticeably higher (about 0.5 m) than usual. At a locality on the E shore of the lake, below the caldera wall (figure 3) a new hot spring had formed. At the time of this observation it was below the level of the lake. Bubbles were being produced from the site and the water was noticeably warmer than usual.

Figure (see Caption) Figure 3. Map showing the location of the new hot spring adjacent to the Vai Si'i crater lake in the caldera of Niuafo'ou that was reported in May 1999 and observed in June 1999. Courtesy of Paul Taylor.

This report of the new hot spring was communicated to Paul Taylor, a volcanic geologist who was conducting a workshop on the island during the first week of June 1999. When Taylor visited the lake on 1 June the water level had returned to its normal level, but the hot spring was clearly present in a small embankment on the side of the track that followed the edge of the lake. A small amount of steam and a quantity of hot water were still being produced by the spring at that time. The temperature of the water was estimated to be about 70-80°C. A small stream of the warm water was flowing across the track and into Vai Si'i. A strong smell of sulfur was present in the immediate area of the spring. A large deposit of dark, sulfur-rich mud was present along the shore within Vai Si'i near the new hot spring. Vegetation had withered noticeably and a large number of dead fish were present along the shoreline. The new hot spring represents the first reported activity in the NE part of the central caldera, and the first activity reported on the island in more than a decade.

Geologic Background. Niuafo'ou ("Tin Can Island") is a low, 8-km-wide island that forms the summit of a largely submerged basaltic shield volcano. Niuafo'ou is an isolated volcanic island in the north central Lau Basin about 170 km west of the northern end of the Tofua volcanic arc. The circular island encloses a 5-km-wide caldera that is mostly filled by a lake whose bottom extends to below sea level. The inner walls of the caldera drop sharply to the caldera lake, named Big Lake (or Vai Lahi), which contains several small islands and pyroclastic cones on its NE shore. Historical eruptions, mostly from circumferential fissures on the west-to-south side of the island, have been recorded since 1814 and have often damaged villages on this small ring-shaped island. A major eruption at Niuafo'ou in 1946 forced evacuation of most of its 1200 inhabitants.

Information Contacts: Paul W. Taylor, Australian Volcanological Investigations, PO Box 291, Pymble, NSW 2073, Australia.


San Cristobal (Nicaragua) — May 2001 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Small gas-and-ash plumes during May and June 2001 cause ashfalls

Beginning on 11 May 2001 volcanic activity increased above normal levels, with small eruptions producing gas-and-ash clouds that deposited small amounts of ash on a neighboring town. The previous report of anomalous volcanic activity at San Cristóbal was in May 2000 when a series of lahars occurred as a result of the remobilization of ash that had been deposited on the volcano from the 20 November eruption (BGVN 25:02 and 25:05).

On 22 July 2000, ten months prior to the May 2001 eruption, Alain Creusot visited the summit of the volcano. He reported that seismic activity during 18-19 July caused two lakes to empty that were observed during a previous trip. He also found that active fissures inside the crater were partially sealed, which caused the intensity of degassing to decrease.

INETER reported that on 11 May 2001 tremor began to rise at a seismic station on San Cristóbal (figure 9). The tremor reached a maximum level at noon and then slightly diminished, but stayed at relatively high levels for several days. Seismic activity during this period exceeded the maximum level of seismicity throughout the entire December 1999-February 2000 eruption (BGVN 25:02). Beginning on 11 May INETER personnel stationed near the summit of the volcano occasionally observed small plumes of volcanic gas with small amounts of ash emanating from the volcano. In contrast, on 10 May very low levels of gas were emitted from the crater. On 14 May observers noted that gas emissions with small amounts of ash continued. On 17 May the level of seismic activity significantly increased, and pulses of gas and ash rose ~100 m above the crater rim. Small amounts of ash fell in the town of Santa Barbara, 14 km SW of the volcano.

Figure (see Caption) Figure 9. Seismic amplitude recorded at CRIN seismic station on San Cristóbal during 7-17 May 2001. Courtesy of INETER.

INETER noted that rain could mix with ash deposited on the flanks of the volcano and generate dangerous lahars. This occurred after the 1999-early 2000 eruption when rainfall in May 2000 mixed with ash that accumulated on the flanks of the volcano. The lahars were especially strong in the S part of the volcano.

According to news reports, on 21 June an explosion at San Cristóbal sent an ash cloud to a maximum height of 800 m. The cloud extended approximately 25 km downwind of the crater, and ash fell in the town of Chinandega, ~15 km SW of the volcano.

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Department of Geophysics, Instituto Nicaragüense de Estudios Territoriales (INETER), P.O. Box 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua (URL: http://www.ine.gob.ni/); La Noticia (URL: http://www.lanoticia.com.ni/); El Nuevo Diario (URL: http://www.elnuevodiario.com.ni/); La Prensa (URL: http://www.laprensa.com.ni/).


Sturge Island (Antarctica) — May 2001 Citation iconCite this Report

Sturge Island

Antarctica

67.4°S, 164.83°E; summit elev. 1167 m

All times are local (unless otherwise noted)


Elongate cloud on 12 June possibly a result of volcanic emissions

An unusual cloud formation was spotted on 12 June satellite imagery from the Balleny Islands region by Petty Officer Eugenia Dowling, of the U.S. National Ice Center, while performing a weekly analysis of Ross Sea imagery. In addition to AVHRR (Advanced Very High Resolution Radiometer), the National Ice Center uses OLS (Optical Line Scan) Imagery from a Defense Meteorological Satellite (visible/IR, 0.55 km resolution). The cloud was seen in OLS imagery and brought to the attention of Paul Seymour, who then forwarded it for further evaluation to Ralph Meiggs, Applied Technology Branch Chief and part of the NOAA Operational Significant Event Imagery team. From there it came to the attention of the Washington Volcanic Ash Advisory Center (VAAC), who consulted with volcanologists and other international meteorologists familiar with identifying volcanic plumes from satellite data.

Preliminary interpretations based on satellite data were made by analysts in the United States (NOAA/Washington VAAC), Australia (Bureau of Meteorology/Darwin VAAC), and New Zealand (MetService NZ/Wellington VAAC). More detailed research and analysis was provided by Fred Prata of Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO), Atmospheric Research Division. Thoughtful comments were also provided by Steve Pendelbury and Neil Adams of the Australian Bureau of Meteorology.

The feature was first seen on AVHRR imagery from 1352 UTC on 12 June 2001. It appeared to be almost detached from the island on AVHRR images at 1631 and 1652, but was still visible emanating from the island on MODIS imagery at 2245.

Preliminary interpretations from Volcanic Ash Advisory Centers. Based on analysis of NOAA-14, -15, and -16 AVHRR imagery by the Washington VAAC, the plume reached a size of ~20 x 200 km and an altitude of ~1,300 m (later analysis, below, showed the plume to be much higher); temperatures were estimated to be about -53°C (220 K). Channel differencing revealed no ash content, which suggests that the cloud was mainly steam. A short video was created from satellite imagery showing the progression of the plume.

During a discussion with Andrew Tupper (Darwin VAAC), Lance Cowled, a senior meteorologist in the Tasmania/Antarctic office of the Australian Bureau of Meteorology, noted that at first sight it looked like a banner cloud shed by the island that developed with the onset of cirrus overcast thickening, but that it may have been caused by an interaction between the moisture field and any gas being emitted. The summit of Sturge Island has a lower elevation (1,167 m) than both nearby Young Island (1,340 m) and Buckle Island (1,239 m). With this in mind, Tupper stated that the chance of a banner cloud forming only on Sturge without some volcanic influence was less likely, but difficult to know without more topographical knowledge of the islands.

James Travers, Operations Manager for the Aviation Services Division of the MetService NZ and Wellington VAAC, stated that, based on his experience, the feature was more likely to be associated with volcanic activity rather than with an orographically induced cloud.

Analysis by Australian CSIRO Atmospheric Research. Fred Prata (CSIRO Atmospheric Research) obtained MODIS (Moderate Resolution Imaging Spectroradiometer), ATSR-2 (Along Track Scanning Radiometer), and AVHRR-2 LAC (Local Area Coverage) data for this mysterious plume seen on AVHRR GAC (Global Area Coverage) data. His analysis and interpretation follows. "My first impression was that it was volcanic in origin. However, the AVHRR LAC, MODIS and ATSR-2 data do not show an ash signature when processed using a technique that usually discriminates ash (figure 1). So, either there was no ash or it's not volcanic. The case for it being volcanic with no ash is sustainable as the MODIS 7.3 µm channel does give an indication of SO2, but this signal is weaker than normal (figure 2). It is also possible that the ash is there but the signal is concealed by ice coating the ash. We have seen a few instances of this in the past. The plume could also be mostly steam (and then ice or liquid water drops once in the atmosphere). The case for it not being volcanic relies on the observation that there were winds streaming over these islands which spawned a cloud (looking like a banner cloud) in the lee of Sturge Island. You can easily convince yourself that this is possible when looking at the NOAA animation. I have examined MODIS 250-m data (at different times of year) and found that when Sturge forms these clouds the other islands also form clouds (Buckle and Young) and more often the clouds are lee waves rather than banner clouds.

Figure (see Caption) Figure 1. Satellite image of the Sturge Island plume from AVHRR LAC data acquired on 12 June 2001 at 1652 UTC showing the extent of the plume. The temperature difference image of the 11 µm channel - 12 µm channel (T4-T5) is usually negative for 'ash' plumes. This positive difference suggests that there is no ash content, or an undetectable amount. These data are at the edge of the satellite reception capability, resulting in many missing or bad lines. Courtesy of F. Prata, CSIRO.
Figure (see Caption) Figure 2. Satellite image of the Sturge Island plume showing MODIS 1-km data acquired on 12 June 2001 at 2245 UTC. This image of temperature difference between the 6.7 and 7.3 µm channels is an SO2 sensitive combination, giving some indication of SO2, but the interpretation is not clear in this case. Young and Buckle islands, to the NW, exhibit no plume. Courtesy of F. Prata, CSIRO.

"Looking at AVHRR temperatures I find that the thickest part of the plume (near the island) is at around 213 K (12 µm) and the surrounding scene temperatures are 250 K or higher. This puts the cloud top at around 6 km assuming a lapse rate of 6.5 K per km and the cloud is opaque (which it isn't quite). The cloud also extends a long way downwind (I calculate that it is visible for 300 km from Sturge) and there is no such cloud coming off Young or Buckle. Finally, looking at the AVHRR LAC it is apparent that there are regions in the plume that are more opaque - as if there were discrete pulses, possibly from several eruptions (figure 3). So my conclusion is that it is more likely to be an eruption cloud than a banner cloud, but there is a degree of doubt."

Figure (see Caption) Figure 3. Satellite image of the Sturge Island plume showing AVHRR LAC data acquired on 12 June 2001 at 1352 UTC. The image is an 11 µm brightness temperature (K) image with black as cold and white as warm, annotated to show the possible "puffs" or pulses of volcanic activity. Courtesy of F. Prata, CSIRO.

Further comments by Australian Bureau of Meteorology. Steve Pendelbury, a Supervisory Meteorologist in the Bureau of Meteorology and his colleague Neil Adams (Senior Meteorologist) identified the plume as a banner cloud, and noted that the "pulses" seen in AVHRR imagery seemed like lee wave activity. The plume was similar to one recorded on AVHRR imagery over Heard Island where orographic banner was suspected. Orographic influence is also suggested because the upwind part of the plume mirrors the breadth of the island. A reason for the plume only being off this island is the differences in island height and perhaps variations in the static stability with height. They noted that the estimated height of the plume top (6 km by Fred Prata's estimation) would mean that ejected volcanic material, albeit even steam, would have had to rise approximately 5 km; this might be difficult in the intrinsically stable atmosphere of high southern latitude waters, but orographic clouds can form that high via vertically propagating waves. Another possibility, assuming that the moisture could have risen to 6 km, is that volcanic venting provided moisture needed to produce a cloud in otherwise invisible lee waves that may be present downwind of all three islands. They agreed that the data are inconclusive.

AVHRR band 4 mosaics from the Casey HRPT ground station, reduced to 4 km resolution, showed a good banner cloud along with a wake cloud evident off Young Island, the northern island in the Balleny Island chain, at 0830 UTC on 5 July image. Another image at 2130 UTC still has evidence of a wake cloud but the banner cloud is no longer visible.

Seismicity. No earthquakes recorded within 100 km of the Balleny Islands during 6-20 June 2001 were present in the USGS National Earthquake Information Center's database as of 20 June.

Summary of interpretations. Basic observations about this cloud/plume are as follows: It is unlikely that this plume contained ash, but there may have been some SO2 content. This plume clearly originated above Sturge Island, but not above the two other Balleny Islands with higher elevations. The cloud was not consistent throughout the period it was observed, exhibiting variable opacity. Explanations can be constructed to explain all of these features that are based on orographic influences, volcanic emissions, or some combination of the two. Local static stability might have assisted cloud formation above this lower-elevation island, but not above the nearby higher islands. Water vapor provided by volcanic emissions may also have resulted in cloud formation, either directly or orographically. Likewise, the variable opacity of the cloud could be caused by pulses of emissions or orographic lee waves. Without independent evidence of volcanism, the satellite imagery is not conclusive.

Background. A 160-km-long chain of volcanic islands forms the Balleny Islands just off the coast of Antarctica's Victoria Land. The islands are located at the southern end of a submarine ridge system that extends north to New Zealand, but is offset by the Indian-Antarctic ridge system. No detailed geologic studies have been conducted in the inaccessible Balleny Islands.

Sturge is the largest and southernmost of the Balleny Islands. The 44-km-long island is completely mantled by an icecap and has a prominent summit, Russel Peak, at the northern end. "Volcanic activity" was reported on a U.S. Navy chart, but no indications of present or past activity were noted in 1959 (Catalog of Active Volcanoes of the World).

Buckle Island is in the center of the Balleny Islands. The elongated, 21-km-long island is capped by a gently sloping icecap that descends steeply to the sea between rocky cliffs. Dark eruption columns were reported during 1839 and 1899.

Young Island is the northernmost and second largest of the Balleny Islands. Captain Balleny, the discoverer of the islands, reported "smoke" issuing from Freeman Peak on Young Island on 12 February 1839. The island has a broad plateau-like summit reaching 1,340 m and is almost completely mantled by ice.

Geologic Background. Sturge is the largest and southernmost of the Balleny Islands, which are located just off the coast of Antarctica's Victoria Land. The 44-km-long island is completely mantled by an icecap and has a prominent summit, Russel Peak, at the northern end. "Volcanic activity" was reported on a U.S. Navy chart, but no indications of present or past activity were noted in 1959 (Catalog of Active Volcanoes of the World). No detailed geologic studies have been conducted in the inaccessible Balleny Islands.

Information Contacts: Grace Swanson, Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch, NOAA/NESDIS/E/SP23, NOAA Science Center Room 401, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Fred Prata, Senior Principal Research Scientist, CSIRO Atmospheric Research, PB 1 Aspendale, Victoria 3195, Australia (URL: https://www.cmar.csiro.au/); Steve Pendelbury and Lance Cowled, Weather Services, Bureau of Meteorology, GPO Box 727G, Hobart, Tasmania 7001, Australia; Neil Adams, Antarctic Co-operative Research Centre and Bureau of Meteorology, PO Box 421, Kent Town, SA 5071, Australia; Andrew Tupper, Darwin VAAC, Northern Territory Regional Office, Bureau of Meteorology, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); National Ice Center, Federal Building 4, 4251 Suitland Road, Washington, DC 20395 USA (URL: http://www.natice.noaa.gov/); National Earthquake Information Center (NEIC), US Geological Survey, Mail Stop 967, Federal Center Box 25046, Denver, CO 80225, USA (URL: http://earthquakes.usgs.gov/).


Three Sisters (United States) — May 2001 Citation iconCite this Report

Three Sisters

United States

44.133°N, 121.767°W; summit elev. 3159 m

All times are local (unless otherwise noted)


Radar interferometry suggests uplift during 1996-2000

United States Geological Survey (USGS) scientists detected a slight uplift of the ground surface over a broad region centered 5 km W of South Sister volcano in the Three Sisters region (figure 1). The area is located within the central Oregon Cascade range, 35 km W of Bend, and 100 km E of Eugene, Oregon. The measured uplift, which occurred during 1996-2000, covered an area ~15-20 km in diameter; the maximum amount of uplift at the region's center was ~10 cm. Several close aerial inspections of the area revealed no unusual surface features.

Figure (see Caption) Figure 1. Radar interferogram showing ground uplift pattern centered ~ 5 km W of South Sister. Each shaded region represents ~ 2.8 cm of ground movement in the direction of the satellite. In this case, four concentric shaded bands show that the surface moved toward the satellite (close to vertical) by as much as 10 cm between August 1996 and October 2000. Data gaps occur where forest vegetation or other factors hinder the acquisition of useful radar data. A numerical model places the source of the uplift ~ 7 km beneath the ground surface. After a color version by Wicks and others (2001), which uses radar images from the European Space Agency's ERS satellites.

The uplift was detected by using satellite radar interferometry (InSAR), which uses satellite data to make radar images of the ground surface (figure 1). InSAR can detect even minor (down to a few centimeters) changes in ground elevation over time. Images from 1996 and 2000 were compared and revealed the rise in ground level. The exact timing of uplift between the two dates, or whether it will continue, is unknown, but is being studied further.

The specific cause of the uplift was also uncertain. Uplift in the Three Sisters region may reflect intrusion of a relatively small volume of magma at a possible depth of 7 km. If this is the result of intrusion, it indicates that the region remains active, but does not suggest eruptive activity without additional precursors. In the Three Sisters area, earthquake activity appeared to be at or near background levels and gas emissions were low as of May 2001. The USGS plans to enhance the existing monitoring network in the region to more accurately detect possible precursors and to better understand the uplift phenomenon. Installation of one or more additional seismometers, a global positioning system (GPS) receiver, a resurvey of existing benchmarks and installation of new ones, and periodic airborne and ground-based sampling of gases are all being considered.

References. Wicks, C., Jr., Dzurisin, D., Ingebritsen, S.E., Thatcher, W., and Lu, Z., 2001, Ground uplift near the Three Sisters volcanic center, central Oregon Cascade Range, detected by satellite radar interferometry: in prep.

Geologic Background. The north-south-trending Three Sisters volcano group dominates the landscape of the Central Oregon Cascades. All Three Sisters stratovolcanoes ceased activity during the late Pleistocene, but basaltic-to-rhyolitic flank vents erupted during the Holocene, producing both blocky lava flows north of North Sister and rhyolitic lava domes and flows south of South Sister volcano. Glaciers have deeply eroded the Pleistocene andesitic-dacitic North Sister stratovolcano, exposing the volcano's central plug. Construction of the main edifice ceased at about 55,000 yrs ago, but north-flank vents produced blocky lava flows in the McKenzie Pass area as recently as about 1600 years ago. Middle Sister volcano is located only 2 km to the SW and was active largely contemporaneously with South Sister until about 14,000 years ago. South Sister is the highest of the Three Sisters. It was constructed beginning about 50,000 years ago and was capped by a symmetrical summit cinder cone formed about 22,000 years ago. The late Pleistocene or early Holocene Cayuse Crater on the SW flank of Broken Top volcano and other flank vents such as Le Conte Crater on the SW flank of South Sister mark mafic vents that have erupted at considerable distances from South Sister itself, and a chain of dike-fed rhyolitic lava domes and flows at Rock Mesa and Devils Chain south of South Sister erupted about 2000 years ago.

Information Contacts: Cascades Volcano Observatory (CVO), U.S. Geological Survey (USGS), 5400 MacArthur Blvd., Vancouver, WA 98661 USA (URL: https://volcanoes.usgs.gov/observatories/cvo/); Volcano Hazards Team, USGS, 345 Middlefield Road, Menlo Park, CA 94025-3591 USA (URL: http://volcanoes.usgs.gov/); Pacific Northwest Seismograph Network, University of Washington Geophysics Program, Box 351650, Seattle, WA 98195-1650 USA (URL: http://www.geophys.washington.edu/SEIS/PNSN/); Oregon Department of Geology and Mineral Industries, 800 NE Oregon St., Suite 965, Portland, OR 97232 USA (URL: http://www.oregongeology.org/sub/default.htm).


Ulawun (Papua New Guinea) — May 2001 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Eruption on 30 April 2001 sends an ash cloud to a height of ~13.7 km

On 30 April 2001 a moderate-sized ash cloud from an eruption at Ulawun was visible on Geostationary Meteorological Satellite (GMS), U.S. National Oceanic and Atmospheric Administration (NOAA) weather satellite, and Total Ozone Mapping Spectrometer (TOMS) imagery. There had been no reports of anomalous volcanic activity at Ulawun since the 28 September-2 October 2000 eruption sent an ash cloud 12-15 km above the volcano (BGVN 25:11).

The Darwin VAAC received a pilot report that a "smoke" cloud had been emitted from Ulawun on 30 April at 0730. The Rabaul Volcano Observatory (RVO) confirmed the report. The cloud reached an altitude of ~9 km and drifted NW and SW, expanding to 80-113 km in radius. GMS and NOAA weather satellite imagery indicated that the cloud may have reached a maximum height of ~13.7 km and that the eruption ceased by approximately 1530. By 3 May volcanic activity had decreased, but, because further ash emissions could occur, RVO placed the volcano at Stage 2 Alert. RVO reported that limited evacuations occurred. Ash was not observed on satellite imagery after the 30 April eruption, although ash clouds may have been obscured by meteorological clouds near the volcano.

On 30 April around noon, a few hours after reports of an eruption at Ulawun, the Earth Probe TOMS detected a SO2 cloud over SW New Britain,. A gap between successive TOMS swaths over the volcano unfortunately precluded measurement of the full extent of this cloud. Elevated levels of SO2 were recorded in a region bounded approximately by longitudes 147°E and 150°E (swath edge) and by latitudes 5°S and 7°S, at a maximum distance of ~400 km WSW from Ulawun. The highest SO2 concentrations (38 milli atm cm) were recorded in a NNW-SSE trending region ~300 km WSW of the volcano. Preliminary analysis indicates that the portion of the cloud visible in TOMS imagery contained ~5 kilotons of SO2.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Darwin VAAC, Regional Director, Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Simon Carn, Joint Center for Earth System Technology (NASA/UMBC), University of Maryland Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports