Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Bagana (Papua New Guinea) Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Kerinci (Indonesia) Intermittent gas-and-steam and ash plumes during June-early November 2019

Bezymianny (Russia) Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

Mayon (Philippines) Gas-and-steam plumes and summit incandescence during May-October 2019

Merapi (Indonesia) Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Manam (Papua New Guinea) Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Tangkuban Parahu (Indonesia) Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Sheveluch (Russia) Frequent ash explosions and lava dome growth continue through October 2019



Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).


Bagana (Papua New Guinea) — December 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Bagana volcano is found in a remote portion of central Bougainville Island in Papua New Guinea. The most recent eruptive phase that began in early 2000 has produced ash plumes and thermal anomalies (BGVN 44:06, 50:01). Activity has remained low between January-July 2019 with rare thermal anomalies and occasional steam plumes. This reporting period updates information for June-November 2019 and includes thermal anomalies and intermittent gas-and-steam emissions. Thermal data and satellite imagery are the primary sources of information for this report.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed an increased number of thermal anomalies within 5 km from the summit beginning in late July-early August (figure 38). Two Sentinel-2 thermal satellite images showed faint, roughly linear thermal anomalies, indicative of lava flows trending EW and NS on 7 July 2019 and 6 August, respectively (figure 39). Weak thermal hotspots were briefly detected in late September-early October after a short hiatus in September. No thermal anomalies were recorded in Sentinel-2 past August due to cloud cover; however, gas-and-steam emissions were visible on 7 July and in September (figures 39, 40, and 41).

Figure (see Caption) Figure 38. Thermal anomalies near the crater summit at Bagana during February-November 2019 as recorded by the MIROVA system (Log Radiative Power) increased in frequency and power in early August. A small cluster was detected in early October after a brief pause in activity in early September. Courtesy of MIROVA.
Figure (see Caption) Figure 39. Sentinel-2 thermal satellite imagery showing small thermal anomalies at Bagana between July-August 2019. Left: A very faint thermal anomaly and a gas-and-steam plume is seen on 7 July 2019. Right: Two small thermal anomalies are faintly seen on 6 August 2019. Both Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. A gas-and-steam plume rising from the summit of Bagana on 18 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

The Deep Carbon Observatory (DCO) scientific team partnered with the Rabaul Volcano Observatory and the Bougainville Disaster Office to observe activity at Bagana and collect gas data using drone technology during two weeks of field work in mid-September 2019. For this field work, the major focus was to understand the composition of the volcanic gas emitted at Bagana and measure the concentration of these gases. Since Bagana is remote and difficult to climb, research about its gas emissions has been limited. The recent advancements in drone technology has allowed for new data collection at the summit of Bagana (figure 41). Most of the emissions consisted of water vapor, according to Brendan McCormick Kilbride, one of the volcanologists on this trip. During 14-19 September there was consistently a strong gas-and-steam plume from Bagana (figure 42).

Figure (see Caption) Figure 41. Degassing plumes seen from drone footage 100 m above the summit of Bagana. Top: Zoomed out view of the summit of Bagana degassing. Bottom: Closer perspective of the gases emitted from Bagana. Courtesy of Kieran Wood (University of Bristol) and the Bristol Flight Laboratory.
Figure (see Caption) Figure 42. Photos of gas-and-steam plumes rising from Bagana between 14-19 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brendan McCormick Kilbride, University of Manchester, Manchester M13 9PL, United Kingdom (URL: https://www.research.manchester.ac.uk/portal/brendan.mccormickkilbride.html, Twitter: https://twitter.com/BrendanVolc); Kieran Wood, University of Bristol, Bristol BS8 1QU, United Kingdom (URL: http://www.bristol.ac.uk/engineering/people/kieran-t-wood/index.html, Twitter: https://twitter.com/DrKieranWood, video posted at https://www.youtube.com/watch?v=A7Hx645v0eU); University of Bristol Flight Laboratory, Bristol BS8 1QU, United Kingdom (Twitter: https://twitter.com/UOBFlightLab).


Kerinci (Indonesia) — December 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam and ash plumes during June-early November 2019

Kerinci, located in Sumatra, Indonesia, is a highly active volcano characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 and included intermittent explosions with ash plumes. Volcanism continued from June-November 2019 with ongoing intermittent gas-and-steam and ash plumes. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and MAGMA Indonesia.

Brown- to gray-colored ash clouds drifting in different directions were reported by PVMBG, the Darwin VAAC, and MAGMA Indonesia between June and early November 2019. Ground observations, satellite imagery, and weather models were used to monitor the plume, which ranged from 4.3 to 4.9 km altitude, or about 500-1,100 m above the summit. On 7 June 2019 at 0604 a gray ash emission rose 800 m above the summit, drifting E, according to a ground observer. An ash plume on 12 July rose to 4 km altitude and drifted SW, as determined by satellite imagery and weather models. An eruption produced a gray ash cloud on 31 July that rose to 4.6 km altitude and drifted NE and E, according to PVMBG and the Darwin VAAC (figure 17). Another ash cloud rose up to 4.3 km altitude on 3 August. On 2 September a possible ash plume rose to a maximum altitude of 4.9 km and drifted WSW, according to the Darwin VAAC advisory.

Figure (see Caption) Figure 17. A gray ash plume at Kerinci rose roughly 800 m above the summit on 31 July 2019 and drifted NE and E. Courtesy of MAGMA Indonesia.

Brown ash emissions rose to 4.4 km altitude at 1253 on 6 October, drifting WSW. Similar plumes reached 4.6 km altitude twice on 30 October and moved NE, SE, and E at 0614 and WSW at 1721, based on ground observations. On 1-2 November, ground observers saw brown ash emissions rising up to 4.3 km drifting ESE. Between 3 and 5 November the brown ash plumes rose 100-500 m above the summit, according to PVMBG.

Gas emissions continued to be observed through November, as reported by PVMBG and identified in satellite imagery (figure 18). Seismicity that included volcanic earthquakes also continued between June and early November, when the frequency decreased.

Figure (see Caption) Figure 18. Sentinel-2 thermal satellite imagery showing a typical white gas-and-steam plume at Kerinci on 9 August 2019. Sentinel-2 satellite image with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — December 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

The long-term activity at Bezymianny has been dominated by almost continuous thermal anomalies, moderate gas-steam emissions, dome growth, lava flows, and an occasional ash explosion (BGVN 44:06). The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT. Throughout the reporting period of June to November 2019, the Aviation Colour Code remained Yellow (second lowest of four levels).

According to KVERT weekly reports, lava dome growth continued in June through mid-July 2019. Thereafter the reports did not mention dome growth, but indicated that moderate gas-and-steam emissions (figure 32) continued through November. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, based on analysis of MODIS data, detected hotspots within 5 km of the summit almost every day. KVERT also reported a thermal anomaly over the volcano almost daily, except when it was obscured by clouds. Infrared satellite imagery often showed thermal anomalies generated by lava flows or dome growth (figure 33).

Figure (see Caption) Figure 32. Photo of Bezymianny showing fumarolic activity on 4 July 2019. Photo by O. Girina (IVS FEB RAS, KVERT); courtesy of KVERT.
Figure (see Caption) Figure 33. Typical infrared satellite images of Bezymianny showing thermal anomalies in the summit crater, including a lava flow to the WNW. Top: 21 August 2019 with SWIR filter (bands 12, 8A, 4). Bottom: 17 September 2019 with Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Mayon (Philippines) — November 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and summit incandescence during May-October 2019

Mayon, located in the Philippines, is a highly active stratovolcano with recorded historical eruptions dating back to 1616. The most recent eruptive episode began in early January 2018 that consisted of phreatic explosions, steam-and-ash plumes, lava fountaining, and pyroclastic flows (BGVN 43:04). The previous report noted small but distinct thermal anomalies, gas-and-steam plumes, and slight inflation (BGVN 44:05) that continued to occur from May into mid-October 2019. This report includes information based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Sentinel-2 satellite imagery.

Between May and October 2019, white gas-and-steam plumes rose to a maximum altitude of 800 m on 17 May. PHIVOLCS reported that faint summit incandescence was frequently observed at night from May-July and Sentinel-2 thermal satellite imagery showed weaker thermal anomalies in September and October (figure 49); the last anomaly was identified on 12 October. Average SO2 emissions as measured by PHIVOLCS generally varied between 469-774 tons/day; the high value of the period was on 25 July, with 1,171 tons/day. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during May-September 2019 (figure 50).

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite imagery of Mayon between May-October 2019. Small thermal anomalies were recorded in satellite imagery from the summit and some white gas-and-steam plumes are visible. Top left: 30 May 2019. Top right: 9 June 2019. Bottom left: 22 September 2019. Bottom right: 12 October 2019. Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Small SO2 plumes rising from Mayon during May-September 2019 recorded in DU (Dobson Units). Top left: 28 May 2019. Top right: 26 July 2019. Bottom left: 16 August 2019. Bottom right: 23 September 2019. Courtesy of NASA Goddard Space Flight Center.

Continuous GPS data has shown slight inflation since June 2018, corroborated by precise leveling data taken on 9-17 April, 16-25 July, and 23-30 October 2019. Elevated seismicity and occasional rockfall events were detected by the seismic monitoring network from PHIVOLCS from May to July; recorded activity decreased in August. Activity reported by PHIVOLCS in September-October 2019 consisted of frequent gas-and-steam emissions, two volcanic earthquakes, and no summit incandescence.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/).


Merapi (Indonesia) — October 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Merapi is an active volcano north of the city of Yogyakarta (figure 79) that has a recent history of dome growth and collapse, resulting in block-and-ash flows that killed over 400 in 2010, while an estimated 10,000-20,000 lives were saved by evacuations. The edifice contains an active dome at the summit, above the Gendol drainage down the SE flank (figure 80). The current eruption episode began in May 2018 and dome growth was observed from 11 August 2018-onwards. This Bulletin summarizes activity during April through September 2019 and is based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), Sutopo of Badan Nasional Penanggulangan Bencana (BNPB), MAGMA Indonesia, along with observations by Øystein Lund Andersen and Brett Carr of the Lamont-Doherty Earth Observatory.

Figure (see Caption) Figure 79. Merapi volcano is located north of Yogyakarta in Central Java. Photo courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 80. A view of the Gendol drainage where avalanches and block-and-ash flows are channeled from the active Merapi lava dome. The Gendol drainage is approximately 400 m wide at the summit. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

At the beginning of April the rate of dome growth was relatively low, with little morphological change since January, but the overall activity of Merapi was considered high. Magma extrusion above the upper Gendol drainage resulted in rockfalls and block-and-ash flows out to 1.5 km from the dome, which were incandescent and visible at night. Five block-and-ash flows were recorded on 24 April, reaching as far as 1.2 km down the Gendol drainage. The volume of the dome was calculated to be 466,000 m3 on 9 April, a slight decrease from the previous week. Weak gas plumes reached a maximum of 500 m above the dome throughout April.

Six block-and-ash flows were generated on 5 May, lasting up to 77 seconds. Throughout May there were no significant changes to the dome morphology but the volume had decreased to 458,000 by 4 May according to drome imagery analysis. Lava extrusion continued above the Gendol drainage, producing rockfalls and small block-and-ash flows out to 1.2 km (figure 81). Gas plumes were observed to reach 400 m above the top of the crater.

Figure (see Caption) Figure 81. An avalanche from the Merapi summit dome on 17 May 2019. The incandescent blocks traveled down to 850 m away from the dome. Courtesy of Sutopo, BNPB.

There were a total of 72 avalanches and block-and-ash flows from 29 January to 1 June, with an average distance of 1 km and a maximum of 2 km down the Gendol drainage. Photographs taken by Øystein Lund Andersen show the morphological change to the lava dome due to the collapse of rock and extruding lava down the Gendol drainage (figures 82 and 83). Block-and-ash flows were recorded on 17 and 20 June to a distance of 1.2 km, and a webcam image showed an incandescent flow on 26 June (figure 84). Throughout June gas plumes reached a maximum of 250 m above the top of the crater

Figure (see Caption) Figure 82. The development of the Merapi summit dome from 2 June 2018 to 17 June 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 83. Photos taken of the Merapi summit lava dome in June 2019. Top: This nighttime time-lapse photograph shows incandescence at the south-facing side of the dome on the 16 June. Middle: A closeup of a small rockfall from the dome on 17 June. Bottom: A gas plume accompanying a small rockfall on 17 June. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 84. Blocks from an incandescent rockfall off the Merapi dome reached out to 1 km down the Gendol drainage on 26 June 2019. Courtesy of MAGMA Indonesia.

Analysis of drone images taken on 4 July gave an updated dome volume of 475,000 m3, a slight increase but with little change in the morphology (figure 85). Block-and-ash flows traveled 1.1 km down the Gendol drainage on 1 July, 1 km on the 13th, and 1.1 km on the 14th, some of which were seen at night as incandescent blocks fell from the dome (figure 86). During the week of 19-25 July there were four recorded block-and-ash flows reaching 1.1 km, and flows traveled out to around 1 km on the 24th, 27th, and 31st. The morphology of the dome continued to be relatively stable due to the extruding lava falling into the Gendol drainage. Gas plumes reached 300 m above the top of the crater during July.

Figure (see Caption) Figure 85. The Merapi dome on 30 July 2019 producing a weak plume. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 86. Incandescent rocks from the hot lava dome at the summit of Merapi form rockfalls down the Gendol drainage on 14 July 2019. Courtesy of Øystein Lund Andersen.

During the week of 5-11 August the dome volume was calculated to be 461,000 m3, a slight decrease from the week before with little morphological changes due to the continued lava extrusion collapsing into the Gendol drainage. There were five block-and-ash flows reaching a maximum of 1.2 km during 2-8 August. Two flows were observed on the 13th and 14th reaching 950 m, out to 1.9 km on the 20th and 22nd, and to 550 m on the 24th. There were 16 observed flows that reached 500-1,000 m on 25-27 August, with an additional flow out to 2 km at 1807 on the 27th (figure 87). Gas plumes reached a maximum of 350 m through the month.

Figure (see Caption) Figure 87. An incandescent rockfall from the Merapi dome that reached 2 km down the Gendol drainage on 27 August 2019. Courtesy of BPPTKG.

Brett Carr was conducting field work at Merapi during 12-26 September. During this time the lava extrusion was low (below 1 m3 per second). He observed small rockfalls with blocks a couple of meters in size, traveling about 50-200 m down the drainage every hour or so, producing small plumes as they descended and resulting in incandescence on the dome at night. Small dome collapse events produced block-and-ash flows down the drainage once or twice per day (figure 88) and slightly larger flows just over 1 km long a couple of times per week.

Figure (see Caption) Figure 88. A rockfall on the Merapi dome, towards the Gendol drainage at 0551 on 20 September 2019. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

The dome volume was 468,000 m3 by 19 September, a slight increase from the previous calculation but again with little morphological change. Two block-and-ash flows were observed out to 600 m on 9 September and seven occurred on the 9th out to 500-1,100 m. Two occurred on the 14th down to 750-900 m, three occurred on 17, 20, and 21 September to a maximum distance of 1.2 km, and three more out to 1.5 km through the 26th. A VONA (Volcano Observatory Notice for Aviation) was issued on the 22nd due to a small explosion producing an ash plume up to approximately 3.8 km altitude (about 800 m above the summit) and minor ashfall to 15 km SW. This was followed by a block-and-ash flow reaching as far as 1.2 km and lasting for 125 seconds (figure 89). Preceding the explosion there was an increase in temperature at several locations on the dome. Weak gas plumes were observed up to 100 m above the crater throughout the month.

Figure (see Caption) Figure 89. An explosion at Merapi on 22 September 2019 was followed by a block-and-ash flow that reached 1.2 km down the Gendol drainage. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA (URL: https://www.ldeo.columbia.edu/user/bcarr).


Manam (Papua New Guinea) — October 2019 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Manam is a frequently active volcano forming an island approximately 10 km wide, located 13 km north of the main island of Papua New Guinea. At the summit are the Main Crater and South Crater, with four valleys down the NE, SE, SW, and NW flanks (figure 57). Recent activity has occurred at both summit craters and has included gas and ash plumes, lava flows, and pyroclastic flows. Activity in December 2018 prompted the evacuation of nearby villages and the last reported activity for 2018 was ashfall on 8 December. Activity from January through September 2019 summarized below is based on information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), the University of Hawai'i's MODVOLC thermal alert system, Sentinel-5P/TROPOMI and NASA Aqua/AIRS SO2 data, MIROVA thermal data, Sentinel-2 satellite images, and observations by visiting scientists. A significant eruption in June resulted in evacuations, airport closure, and damage to local crops and infrastructure.

Figure (see Caption) Figure 57. A PlanetScope image of Manam showing the two active craters with a plume emanating from the South Crater and the four valleys at the summit on 29 August 2019. Image copyright 2019 Planet Labs, Inc.

Activity during January-May 2019. Several explosive eruptions occurred during January 2019 according to Darwin VAAC reports, including an ash plume that rose to around 15 km and dispersed to the W on the 7th. RVO reported that an increase in seismic activity triggered the warning system shortly before the eruption commenced (figure 58). Small explosions were observed through to the next day with ongoing activity from the Main Crater and a lava flow in the NE valley observed from around 0400. Intermittent explosions ejected scoria after 0600, depositing ejecta up to 2 cm in diameter in two villages on the SE side of the island. Incandescence at both summit craters and hot deposits at the terminus of the NE valley are visible in Sentinel-2 TIR data acquired on the 10th (figure 59).

Figure (see Caption) Figure 58. Real-Time Seismic-Amplitude Measurement graph representing seismicity at Manam over 7-9 January 2019, showing the increase during the 7-8 January event. Courtesy of RVO.
Figure (see Caption) Figure 59. Sentinel-2 thermal infrared (TIR) imagery shows incandescence in the two Manam summit craters and at the terminus of the NE valley near the shoreline on 10 January 2019. Courtesy of Sentinel-Hub Playground.

Another explosion generated an ash plume to around 15 km on the 11th that dispersed to the SW. An explosive eruption occurred around 4 pm on the 23rd with the Darwin VAAC reporting an ash plume to around 16.5 km altitude, dispersing to the E. Activity continued into the following day, with satellites detecting SO2 plumes on both 23 and 24 January (figure 60). Activity declined by February with one ash plume reported up to 4.9 km altitude on 15 February.

Figure (see Caption) Figure 60. SO2 plumes originating from Manam detected by NASA Aqua/AIRS (top) on 23 January 2019 and by Sentinel-5P/TROPOMI on 24 January (bottom). Images courtesy of Simon Carn, Michigan Technological University.

Ash plumes rose up to 3 km between 1 and 5 March, and dispersed to the SE, ESE, and E. During 5-6 March the plumes moved E, and the events were accompanied by elevated seismicity and significant thermal anomalies detected in satellite data. During 19-22 March explosions produced ash plumes up to 4.6 km altitude, which dispersed to the E and SE. Simon Carn of the Michigan Technological University noted a plume in Aqua/AIRS data at around 15 km altitude at 0400 UTC on 23 January with approximately 13 kt measured, similar to other recent eruptions. Additional ash plumes were detected on 29 March, reaching 2.4-3 km and drifting to the E, NE, and N. Multiple SO2 plumes were detected throughout April (figure 61).

Figure (see Caption) Figure 61. Examples of elevated SO2 (sulfur dioxide) emissions from Manam during April 2019, on 9 April (top left), 21 April (top right), 22 April (bottom left), 28 April (bottom right). Courtesy of the NASA Space Goddard Flight Center.

During 19-28 May the Deep Carbon Observatory ABOVE (Aerial-based Observations of Volcanic Emissions) scientific team observed activity at Manam and collected gas data using drone technology. They recorded degassing from the South Crater and Main Crater (figure 63 and 64), which was also detected in Sentinel-5P/TROPOMI data (figure 65). Later in the day the plumes rose vertically up to 3-4 km above sea level and appeared stronger due to condensation. Incandescence was observed each night at the South Crater (figure 66). The Darwin VAAC reported an ash plume on 10 May, reaching 5.5 km altitude and drifting to the NE. Smaller plumes up to 2.4 km were noted on the 11th.

Figure (see Caption) Figure 62. Degassing plumes from the South Crater of Manam, seen from Baliau village on the northern coast on 24 May 2019. Courtesy of Emma Liu, University College London.
Figure (see Caption) Figure 63. A strong gas-and-steam plume from Manam was observed moving tens of kilometers downwind on 19 May 2019, viewed here form the SSW at dusk. Photo courtesy of Julian Rüdiger, Johannes Gutenberg University Mainz.
Figure (see Caption) Figure 64. Sentinel-5P/TROPOMI SO2 data acquired on 22 May 2019 during the field observations of the Deep Carbon Observatory ABOVE team. Image courtesy of Simon Carn, Michigan Technological University.
Figure (see Caption) Figure 65. Incandescence at the South Crater of Manam was visible during 19-21 May 2019 from the Baliau village on the northern coast of the island. Photos courtesy of Tobias Fischer, University of New Mexico (top) and Matthew Wordell (bottom).

Activity during June 2019. Ash plumes rose to 4.3 km and drifted SW on 7-8 June, and up to 3-3.7 km and towards the E and NE on 18 June. Sentinel-2 thermal satellite data show hot material around the Main Crater on 24 June (figure 66). On 27 June RVO reported that RSAM (Real-time Seismic Amplitude Measurement, a measure of seismic activity through time) increased from 540 to over 1,400 in 30 minutes. "Thundering noise" was noted by locals at around 0100 on the 28th. An ash plume drifting SW was visible in satellite images acquired after 0620, coinciding with reported sightings by nearby residents (figure 67). The Darwin VAAC noted that by 0910 the ash plume had reached 15.2 km altitude and was drifting SW. When seen in satellite imagery at 1700 that day the large ash plume had detached and remained visible extending SW. There were 267 lightning strokes detected within 75 km during the event (figure 68) and pyroclastic flows were generated down the NE and W flanks. At 0745 on 29 June an ash plume reached up to 4.8 km.

Villages including Dugulava, Yassa, Budua, Madauri, Waia, Dangale, and Bokure were impacted by ashfall and approximately 3,775 people had evacuated to care centers. Homes and crops were reportedly damaged due to falling ash and scoria. Flights through Madang airport were also disrupted due to the ash until they resumed on the 30th. The Office of the Resident Coordinator in Papua New Guinea reported that as many as 455 homes and gardens were destroyed. Humanitarian resources were strained due to another significant eruption at nearby Ulawun that began on 26 June.

Figure (see Caption) Figure 66. Sentinel-2 thermal satellite data show hot material around the Main Crater and a plume dispersing SE through light cloud cover on 24 June 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 67. Himawari-8 satellite image showing the ash plume rising above Manam and drifting SW at 0840 on 28 June. Satellite image courtesy of NCIT ScienceCloud.
Figure (see Caption) Figure 68. There were 267 lightning strokes detected within 75 km of Manam between 0729 on 27 June and 0100 on 29 June 2019. Sixty of these occurred within the final two hours of this observation period, reflecting increased activity. Red dots are cloud to ground lightning strokes and black dots are in-cloud strokes. Courtesy of Chris Vagasky, Vaisala Inc.

Activity during July-September 2019. Activity was reduced through July and September. The Darwin VAAC reported an ash plume to approximately 6 km altitude on 6 July that drifted W and NW, another plume that day to 3.7 km that drifted N, and a plume on the 21st that rose to 4.3 km and drifted SW and W. Diffuse plumes rose to 2.4-2.7 km and drifted towards the W on 29 September. Thermal anomalies in the South Crater persisted through September.

Fresh deposits from recent events are visible in satellite deposits, notably in the NE after the January activity (figure 69). Satellite TIR data reflected elevated activity with increased energy detected in March and June-July in MODVOLC and MIROVA data (figure 70).

Figure (see Caption) Figure 69. Sentinel-2 thermal infrared images acquired on 12 October 2018, 20 May 2019, and 12 September 2019 show the eruption deposits that accumulated during this time. A thermal anomaly is visible in the South Crater in the May and September images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 70. MIROVA log radiative power plot of MODIS thermal infrared at Manam during February through September 2019. Increases in activity were detected in March and June-July. Courtesy of MIROVA.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Office of the Resident Coordinator, United Nations, Port Moresby, National Capital District, Papua New Guinea (URL: https://papuanewguinea.un.org/en/about/about-the-resident-coordinator-office, https://reliefweb.int/report/papua-new-guinea/papua-new-guinea-volcanic-activity-office-resident-coordinator-flash-2); Himawari-8 Real-time Web, developed by the NICT Science Cloud project in NICT (National Institute of Information and Communications Technology), Japan, in collaboration with JMA (Japan Meteorological Agency) and CEReS (Center of Environmental Remote Sensing, Chiba University) (URL: https://himawari8.nict.go.jp/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Emma Liu, University College London Earth Sciences, London WC1E 6BS (URL: https://www.ucl.ac.uk/earth-sciences/people/academic/dr-emma-liu); Matthew Wordell, Boise, ID, USA (URL: https://www.matthhew.com/biocontact); Julian Rüdiger, Johannes Gutenberg University Mainz, Saarstr. 21, 55122 Mainz, Germany (URL: https://www.uni-mainz.de/).


Tangkuban Parahu (Indonesia) — October 2019 Citation iconCite this Report

Tangkuban Parahu

Indonesia

6.77°S, 107.6°E; summit elev. 2084 m

All times are local (unless otherwise noted)


Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Tangkuban is located in the West Bandung and Subang Regencies in the West Java Province and has two main summit craters, Ratu and Upas (figure 3). Recent activity has largely consisted of phreatic explosions and gas-and-steam plumes at the Ratu crater. Prior to July 2019, the most recent activity occurred in 2012-2013, ending with a phreatic eruption on 5 October 2013 (BGVN 40:04). Background activity includes geothermal activity in the Ratu crater consisting of gas and steam emission (figure 4). This area is a tourist destination with infrastructure, and often people, overlooking the active crater. This report summarizes activity during 2014 through September 2019 and is based on official agency reports. Monitoring is the responsibility of Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Figure (see Caption) Figure 3. Map of Tangkuban Parahu showing the Sunda Caldera rim and the Ratu, Upas, and Domas craters. Basemap is the August 2019 mosaic, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 4. Background activity at the Ratu crater of Tangkuban Parahu is shown in these images from 1 May 2012. The top image is an overview of the crater and the bottom four images show typical geothermal activity. Copyrighted photos by Øystein Lund Andersen, used with permission.

The first reported activity in 2014 consisted of gas-and-steam plumes during October-December, prompting PVMBG to increase the alert level from I to II on 31 December 2014. These white plumes reached a maximum of 50 m above the Ratu crater (figure 5) and were accompanied by elevated seismicity and deformation. This prompted the implementation of an exclusion zone with a radius of 1.5 km around the crater. The activity decreased and the alert level was lowered back to I on 8 January 2015. There was no further reported activity from January 2015 through mid-2019.

Figure (see Caption) Figure 5. Changes at the Ratu crater of Tangkuban Parahu during 25 December 2014 to 8 January 2015. Rain water accumulated in the crater in December and intermittent gas-and-steam plumes were observed. Courtesy of PVMBG (8 January 2015 report).

From 27 June 2019 an increase in activity was recorded in seismicity, deformation, gas chemistry, and visual observations. By 24 July the responsible government agencies had communicated that the volcano could erupt at any time. At 1548 on 26 July a phreatic (steam-driven) explosion ejected an ash plume that reached 200 m; a steam-rich plume rose to 600 m above the Ratu crater (figures 6, and 7). People were on the crater rim at the time and videos show a white plume rising from the crater followed by rapid jets of ash and sediment erupting through the first plume. Deposition of eruption material was 5-7 cm thick and concentrated within a 500 m radius from the point between the Rata and Upas craters, and wider deposition occurred within 2 km of the crater (figures 8 and 9). According to seismic data, the eruption lasted around 5 minutes and 30 seconds (figure 10). Videos show several pulses of ash that fell back into the crater, followed by an ash plume moving laterally towards the viewers.

Figure (see Caption) Figure 6. These screenshots are from a video taken from the Ratu crater rim at Tangkuban Parahu on 26 July 2019. Initially there is a white gas-and-steam plume rising from the crater, then a high-velocity black jet of ash and sediment rises through the plume. This video was widely shared across multiple social media platforms, but the original source could not be identified.
Figure (see Caption) Figure 7. The ash plume at Tangkuban Parahu on 26 July 2019. Courtesy of BNPB.
Figure (see Caption) Figure 8. Volcanic ash and lapilli was deposited around the Ratu crater of Tangkuban Parahu during a phreatic eruption on 26 July 2019. Note that the deposits have slumped down the window and are thicker than the actual ashfall. Courtesy of BNPB.
Figure (see Caption) Figure 9. Ash was deposited on buildings that line the Ratu crater at Tangkuban Parahu during a phreatic eruption on 26 July 2019. Photo courtesy of Novrian Arbi/via Reuters.
Figure (see Caption) Figure 10. A seismogram showing the onset of the 26 July 2019 eruption of Tangkuban Parahu and the elevated seismicity following the event. Courtesy of PVMBG via Øystein Lund Andersen.

On 27 July, the day after the eruption, Øystein Lund Andersen observed the volcano using a drone camera, operated from outside the restricted zone. Over a period of two hours the crater produced a small steam plume; ashfall and small blocks from the initial eruption are visible in and around the crater (figure 11). The ashfall is also visible in satellite imagery, which shows that deposition was restricted to the immediate vicinity to the SW of the crater (figure 12).

Figure (see Caption) Figure 11. Photos of the Ratu crater of Tangkuban Parahu on 27 July 2019, the day after a phreatic eruption. A small steam plume continued through the day. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 12. PlanetScope satellite images showing the Ratu crater of Tangkuban Parahu before (17 July 2019) and after (28 July 2019) the explosion that took place on 26 July 2019. Natural color PlanetScope Imagery, copyright 2019 Planet Labs, Inc.

Another eruption occurred at 2046 on 1 August 2019 and lasted around 11 minutes, producing a plume up to 180 m above the vent. Additional explosions occurred at 0043 on 2 August, lasting around 3 minutes according to seismic data, but were not observed. Explosions continued to be recorded at 0145, 0357, and 0406 at the time of the PVMBG report when the last explosion was ongoing, and a photo shows an explosion at 0608 (figure 13). The explosions produced plumes that reached between 20 and 200 m above the vent. Due to elevated activity the Alert Level was increased to II on 2 August. Ash emission continued through the 4th. During 5-11 August events ejecting ash continued to produce plumes up to 80 m, and gas-and-steam plumes up to 200 m above the vent. Ashfall was localized around Ratu crater. The following week, 12-18 August, activity continued with ash and gas-and-steam plumes reaching 100-200 m above the vent. During 19-25 August, similar activity sent ash to 50-180 m, and gas-and-steam plumes to 200 m. A larger phreatic explosion occurred at 0930 on 31 August with an ash plume reaching 300 m, and a gas-and-steam plume reaching 600 m above the vent, depositing ash and sediment around the crater.

Figure (see Caption) Figure 13. A small ash plume below a white gas-and-steam plume erupting from the Ratu crater of Tangkuban Parahu on 2 August 2019 at 0608. Courtesy of PVBMG (2 August 2019 report).

In early September activity consisted of gas-and-steam plumes up to 100-180 m above the vent with some ash plumes observed (figure 14). Two larger explosions occurred at 1657 and 1709 on 7 September with ash reaching 180 m, and gas-and-steam up to 200 m above the vent. Ash and sediment deposited around the crater. Due to strong winds to the SSW, the smell of sulfur was reported around Cimahi City in West Bandung, although there was no detected increase in sulfur emissions. A phreatic explosion on 17 September produced an ash plume to 40 m and a steam plume to 200 m above the crater. Weak gas-and-steam emissions reaching 200 m above the vent continued through to the end of September.

Figure (see Caption) Figure 14. A phreatic explosion at Tangkuban Parahu in the Ratu crater at 0724 on 4 September 2019, lasting nearly one minute. The darker ash plume reached around 100 m above the vent. Courtesy of PVGHM (4 September 2019 report).

Geologic Background. Gunung Tangkuban Parahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The Sunda caldera rim forms a prominent ridge on the western side; elsewhere the rim is largely buried by deposits of the current volcano. The dominantly small phreatic eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/tangkuban-prahu/tangkuban-prahu-volcano-west-java-one-day-after-the-26th-july-phreatic-eruption/); Reuters (URL: https://www.reuters.com/news/picture/editors-choice-pictures-idUSRTX71F3E).


Sheveluch (Russia) — November 2019 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Frequent ash explosions and lava dome growth continue through October 2019

After a lull in activity at Sheveluch, levels intensified again in mid-December 2018 and remained high through April 2019, with lava dome growth, strong explosions that produced ash plumes, incandescent lava flows, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). This report summarizes activity between May and October 2019. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT).

According to KVERT, explosive activity continued to generate ash plumes during May-October 2019 (table 13). Strong fumarolic activity, incandescence and growth of the lava dome, and hot avalanches accompanied this process. There were also reports of plumes caused by re-suspended ash rather than new explosions. Plumes frequently extended a few hundred kilometers downwind, with the longest ones remaining visible in imagery as much as 1,000-1,400 km away. One of the larger explosions, on 1 October (figure 52), also generated a pyroclastic flow. Some of the stronger explosions sent the plume to an altitude of 10-11 km, or more than 7 km above the summit. The Aviation Color Code remained at Orange (the second highest level on a four-color scale) throughout the reporting period, except for several hours on 6 October when it was raised to Red (the highest level).

Table 13. Explosions and ash plumes at Sheveluch during May-October 2019. Dates and times are UTC, not local. Data courtesy of KVERT.

Dates Plume altitude (km) Drift Distance and Direction Remarks
30 Apr-02 May 2019 -- 200 km SE Resuspended ash.
03-10 May 2019 -- 50 km SE, SW Gas-and-steam plumes containing some ash.
13 May 2019 -- 16 km SE Resuspended ash.
11-12 Jun 2019 -- 60 km WNW Explosions and hot avalanches seen in video and satellite images.
24, 27 Jun 2019 4.5 E, W Ash plumes.
05 Aug 2019 2.5 40 km NW Diffuse ash plume.
25 Aug 2019 4.5-5 500 km NW Ash plumes.
29 Aug 2019 10 Various; 550 km N Explosions at 1510 produced ash plumes.
30 Aug 2019 7-7.5 50 km SSE Explosions at 1957 produced ash plumes.
03 Sep 2019 5.5 SE --
02-03, 05 Sep 2019 10 660 km SE Ash plumes seen in satellite images.
05 Sep 2019 -- -- Resuspended ash.
11-12 Sep 2019 -- 250 km ESE Resuspended ash plumes. Satellite and webcam data recorded ash emissions and a gas-and-steam plume with some ash drifting 50 km ESE on 12 Sep.
12-15, 17, 19 Sep 2019 -- 200 km SW, SE, NE Ash plumes.
20-21, 23, 26 Sep 2019 7 580 km ESE Explosions produced ash plumes.
29 Sep, 01-02 Oct 2019 9 1,400 km SE, E Explosions produced ash plumes. Notable pyroclastic flow traveled SE on 1 Oct.
04 Oct 2019 -- 170 km E Resuspended ash.
06 Oct 2019 10 430 km NE; 1,080 km ENE Ash plumes. Aviation Color Code raised to Red for several hours.
08 Oct 2019 -- 170 km E Resuspended ash.
06, 09 Oct 2019 6.5-11 1,100 km E --
11-13, 15 Oct 2019 6.5-7 620 km E, SE Explosions produced ash plumes.
16-17 Oct 2019 -- 125 km E Resuspended ash.
19-20 Oct 2019 -- 110 km SE Resuspended ash.
21 Oct 2019 10-11 1,300 km SE Explosions produced ash plumes.
Figure (see Caption) Figure 52. An explosion of Sheveluch on 1 October 2019. A pyroclastic flow was also reported by KVERT this day. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Numerous thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were observed every month. Consistent with this, the MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded thermal anomalies almost daily. According to KVERT, a thermal anomaly over Sheveluch was identified in satellite images during the entire reporting period, although cloudy weather sometimes obscured observations.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 26, Number 11 (November 2001)

Managing Editor: Richard Wunderman

Avachinsky (Russia)

Modest October steam plumes reach 10 km long; minor ash eruption 5 October

Cameroon (Cameroon)

Late June non-volcanic floods and landslides take ten's of lives; 1,000 homeless

Fonualei (Tonga)

Typical steam emissions observed in August 2000

Kavachi (Solomon Islands)

Daily eruptions August to mid-September 2001; eruption 27 November

Kick 'em Jenny (Grenada)

Submarine eruptions recorded during December 2001

Lokon-Empung (Indonesia)

March, May, and August eruptions; plumes to 1.5 km over summit

Poas (Costa Rica)

Fluctuating water level in crater lake; variable fumarole activity

Rincon de la Vieja (Costa Rica)

Fumarolically active through August 2001

San Cristobal (Nicaragua)

Minor ash eruptions during May-November 2001; elevated seismicity

Turrialba (Costa Rica)

Seismic and fumarolic activity during January 2000-August 2001

Unnamed (Tonga)

Possible source for September T-waves and November pumice rafts

Yasur (Vanuatu)

Still erupting despite 10-fold tremor decrease beginning November 1999



Avachinsky (Russia) — November 2001 Citation iconCite this Report

Avachinsky

Russia

53.256°N, 158.836°E; summit elev. 2717 m

All times are local (unless otherwise noted)


Modest October steam plumes reach 10 km long; minor ash eruption 5 October

Seismic activity increased at Avachinsky during early December 1998 (BGVN 23:11). After that, seismicity stayed mostly at background levels until 25 August 2001, when it increased slightly, and was variable through at least October.

On 31 August, three earthquakes were registered, M 1.7, 2.2, and 2.6. On 20 September an M 1.7 earthquake occurred. On 21 September from 1705 until 1721, a series of earthquakes within the volcano's edifice was recorded, including an M 2.5 event at a depth of ~4 km. On 22 September at 0500 UTC, a 3-pixel thermal anomaly was clearly seen in an AVHRR image of Avachinsky.

At 0750 on 5 October, with an accompanying M 1.5 earthquake, a small explosion lofted ash to less than 1 km above the crater with minor ash falling on the SE flank. Around 19 October a series of weak local earthquakes (~ 50 events of M 0.5-1.5) was registered within 24 hours in the edifice at a depth of ~700 m beneath the summit.

Weak fumarolic activity was observed during 20, 23, 26, and 28 September, and 2-4, 10, 11, 16, and 17 October. In contrast, on 6 October fumarolic activity was observed over the entire crater. Small mudflows down the SE flank were visible in late September after every snowfall, presumably due to strong thermal activity of a fumarole on the SE crater rim. Gas-and-steam plumes were observed several times during September and October 2001 (figure 2 and table 1) when clouds did not obscure the volcano.

Figure (see Caption) Figure 2. Avachinsky (summit elevation, 2,741 m) and Koryaksky (3,456 m) stratovolcanoes as seen from the city of Petropavlovsk on 13 October 2001. They reside 35-40 km NE of the city and their summits are separated by 12 km. A white plume is extending E from Avachinsky. Courtesy of KVERT.

Table 1. Gas-and-steam plumes reported at Avachinsky during September and October 2001. Courtesy KVERT.

Date Time Plume height / location
19 Sep 2001 -- 30 m above crater.
06 Oct 2001 1250 Low over crater, extending 10 km SE.
07 Oct 2001 0850 Rising 50 m over the crater and extending SSE.
07 Oct 2001 1700 Rising 200 m above crater.
09 Oct 2001 -- Rising low above crater, extending 5 km E.
11 Oct 2001 0940 Rising 200 m and extending 5 km E.
12 Oct 2001 2000 Rising over the crater and extending 1 km E.
13 Oct 2001 1130 Extending 10 km E.
13 Oct 2001 2000 Extending 10 km E.
20 Oct 2001 1430-1930 Rising ~1 km above the crater; extending 20 km SE.
21-22 Oct 2001 -- Rising 50-200 m above the crater and extending SE, E, and NE.

A band-6 satellite image on 2 October showed a broad area of warm ground that appeared to follow the rim of the crater, with a small area in the center of the crater. Band-7 data on 2 October showed hotter areas in the SE and SW parts of the crater, and possibly on the N side. On 5 October, the Concern Color Code was increased from Green (volcano is dormant; normal seismicity and fumarolic activity) to Yellow (volcano is restless; eruption may occur). A large, elongate cloud was recorded extending to the SE from the volcano at 1830 on 8 October.

The last explosive eruption at Avachinsky occurred in 1991 and lasted 6 days. The eruption began with two ash explosions directed SW toward Petropavlovsk, and covered the town with an ash layer a few millimeters thick. Effusion of lava began 28 hours later. Further explosive activity occurred simultaneously with the lava emission. As a result of the eruption, a lava plug filled the entire crater.

The Kamchatka Volcanic Eruptions Response Team (KVERT) speculated that the recent activity at Avachinsky could indicate the occurrence of a scenario similar to the eruptions in the years 1737 and 1827. Present activity could lead to a large eruption accompanied by directed blasts with voluminous tephra, debris avalanches, and mudflows. Or, gradual damage of the plug might occur by various means, including earthquakes, small explosive discharges, mudflows, etc. Both scenarios could pose a potential hazard to nearby farm cottages (dachas), the Radyugina settlement, and Petropavlovsk-Kamchatsky city.

Geologic Background. Avachinsky, one of Kamchatka's most active volcanoes, rises above Petropavlovsk, Kamchatka's largest city. It began to form during the middle or late Pleistocene, and is flanked to the SE by the parasitic volcano Kozelsky, which has a large crater breached to the NE. A large horseshoe-shaped caldera, breached to the SW, was created when a major debris avalanche about 30,000-40,000 years ago buried an area of about 500 km2 to the south underlying the city of Petropavlovsk. Reconstruction of the volcano took place in two stages, the first of which began about 18,000 years before present (BP), and the second 7000 years BP. Most eruptive products have been explosive, with pyroclastic flows and hot lahars being directed primarily to the SW by the breached caldera, although relatively short lava flows have been emitted. The frequent historical eruptions have been similar in style and magnitude to previous Holocene eruptions.

Information Contacts: Olga Girina and Lilia Bazanov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; John C. Eichelberger and Tom Murray, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska. edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Cameroon (Cameroon) — November 2001 Citation iconCite this Report

Cameroon

Cameroon

4.203°N, 9.17°E; summit elev. 4095 m

All times are local (unless otherwise noted)


Late June non-volcanic floods and landslides take ten's of lives; 1,000 homeless

Heavy downpours struck Limbe (formerly Victoria), a coastal town located on the southern foot of Mt. Cameroon, during 26-27 June 2001. They led to a series of floods and landslides that killed ~23 people and rendered over 1,000 people homeless. People were buried alive as the floods and landslides reduced houses to mud. The disaster took hundreds of thousands of dollars in property and left surviving residents deeply shaken.

Limbe (population, over 80,000) lies ~25 km directly S of Mt. Cameroon's summit. The town sits on the Atlantic coastal plain, an area bordered on its E and N sides by high, steep slopes of unconsolidated pyroclastic cones. Most of these cones are still geologically very young, most likely Late Quaternary in age, judging from their freshness and lack of vegetation. Other cones appear older as they have developed an appreciable soil overburden capable of supporting deep-rooted woody vegetation.

The main landslide occurred in the section of Limbe called Mabeta. There it covered four houses and killed 21 people. Rescue teams deployed from neighboring towns used a front-end loader to search for survivors and to excavate battered corpses who were seen by passing residents. The floods also took a boy who had sought refuge in a coconut tree. Many other sections of the town, including Down Beach Limbe, also suffered significant losses and damage. Some news sources cited 19 people confirmed dead and an additional 15 missing.

A government crisis commission was set up to handle the disaster. They were charged with finding ways to move people away from the disaster zone and resettle them elsewhere, and to propose new ways of avoiding future disasters in Limbe.

Geologic Background. Mount Cameroon, one of Africa's largest volcanoes, rises above the coast of west Cameroon. The massive steep-sided volcano of dominantly basaltic-to-trachybasaltic composition forms a volcanic horst constructed above a basement of Precambrian metamorphic rocks covered with Cretaceous to Quaternary sediments. More than 100 small cinder cones, often fissure-controlled parallel to the long axis of the 1400 km3 edifice, occur on the flanks and surrounding lowlands. A large satellitic peak, Etinde (also known as Little Cameroon), is located on the S flank near the coast. Historical activity was first observed in the 5th century BCE by the Carthaginian navigator Hannon. During historical time, moderate explosive and effusive eruptions have occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea. Explosive activity from two vents on the upper SE flank was reported in May 2000.

Information Contacts: B. Ateba, R.U. Ubangoh, N. Ntepe, and F.T. Aka., IRGM/ARGV, P.O. Box 370, Buea, Cameroon; International Federation of Red Cross and Red Crescent Societies (IFRC), PO Box 372, CH-1211 Geneva 19, Switzerland (URL: http://www.ifrc.org/).


Fonualei (Tonga) — November 2001 Citation iconCite this Report

Fonualei

Tonga

18.023°S, 174.317°W; summit elev. 188 m

All times are local (unless otherwise noted)


Typical steam emissions observed in August 2000

In February 1974 a ship's captain reported that Fonualei was "emitting small quantities of steam, foam, and rocks all around the crater" (CSLP Card 1802). Large fluctuations in fumarolic activity were observed by geologists in July 1979 (SEAN 04:12).

On 19 August 2000, Jeff and Raine Williams, aboard the S/Y Gryphon, passed Fonualei enroute from Tonga to Wallis Island. They noted that the lower part of the island was covered with lush tropical vegetation, but the upper parts were scarred brown and gray, and steam was venting from the top of the island. Along the coast were rugged volcanic cliffs and black sand beaches.

[Sections about seismicity and pumice rafts have been moved. Later investigations showed that they probably originated from an unnamed submarine volcano in the Tonga Islands.]

Geologic Background. The small island of Fonualei (~2 km diameter) contains a fumarolically active crater breached to the SE with a fresh lava flow extending to the sea and forming a rugged shoreline. Steep, inward-facing scarps mark the rim of a partially exposed caldera. Blocky lava flows fill much of the northern caldera moat and reach the sea to the north and east. In contrast to the andesitic and basaltic rocks of other islands of the Tonga arc, Fonualei lavas are of dominantly dacitic composition. Eruptions have been recorded since 1791, with the largest taking place in June 1846, when explosive eruptions produced large pumice rafts, ashfall damaged crops on the island of Vava'u (70 km SSE), and ash was reported by vessels up to 950 km distant. In 1939 explosive and effusive activity occurred from summit and flank vents, and water spouts were reported 1.6 km SE of the island.

Information Contacts: Jeff and Raine Williams, P.O. Box 729, Funkstown, MD 21734, USA.


Kavachi (Solomon Islands) — November 2001 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Daily eruptions August to mid-September 2001; eruption 27 November

The last report (BGVN 25:04) described the submarine eruption that occurred in May 2000. During August through mid-September 2001, Corey Howell of the Wilderness Lodge (adjacent Peava village, Gatokae Island; 8° 47'S, 158° 14'E) reported that Kavachi erupted daily. During August ash and volcanic projectiles were observed rising ~400 m above sea level and the glow from the volcano was visible from the coast of Gatokae Island 32 km away. [According to Howell, the current phase of eruptive activity has been in progress since at least November 1999, with eruptions ranging from a minimum of once a week to eruptions from 5-15 minutes sustained over several days.]

Howell reported that activity waned in late September. As of 1 November no eruptive activity had been observed at Kavachi for about five weeks, but the observation post sat at the coast of Gatokae (also written Nggatokae) Island ~26 km NE of the volcano (see regional maps, CSLP Card 8028; BGVN 16:04). Low-level activity may have occurred that was not visible from the observation post.

A visit on 25 November revealed upwelling sulfur, mud, and tiny pieces of volcanic rock. The pieces of rock covered the sea surface over an area ~200 m across. A brownish green stain clouded the seawater. No explosive eruptions were seen during 6 hours of observation. Howell further noted that on 27 November Kavachi resumed explosive activity with columns reaching ~2 km high.

Reference. Johnson, W., and Tuni, D., Kavachi, 1987, An active forearc volcano in the western Solomon Islands: reported eruptions between 1950 and 1982, in Taylor, B., and Exon, N.F. (eds.), Marine geology, geophysics, and geochemistry of the Woodlark Basin, Solomon Islands: Circum-Pacific Council Energy Min Resour Earth Sci Ser, v. 7, p. 89-112.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island about 30 km N of the site of subduction of the Indo-Australian plate beneath the Pacific plate. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Corey Howell, The Wilderness Lodge, PO Box 206, Honiara, Solomon Islands (URL: http://www.thewildernesslodge.org).


Kick 'em Jenny (Grenada) — November 2001 Citation iconCite this Report

Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


Submarine eruptions recorded during December 2001

Submarine volcanic eruptions occurred at Kick-'em-Jenny during 4-6 December 2001. The last reported activity at the volcano was in March 1990 when strong acoustic T-phase signals were recorded and interpreted to have been associated with a submarine eruption (BGVN 15:03).

The Seismic Research Unit (SRU) of the University of the West Indies reported that the first signs of unrest at Kick-'em-Jenny were observed in October 2001 when a slight increase in seismicity was recorded at stations close to the volcano. Due to the observed increase in seismicity, on 12 September the Alert Level at the volcano was raised from Green ("volcano is quiet") to Yellow ("volcano is restless"). Increased seismicity continued through November, further increasing during 1-2 December when three small earthquakes were recorded.

On 4 December a burst of seismicity began at 0600 and lasted until 1100 (figure 1). During 0600 to 1000 the Mount St. Catherine seismograph in Grenada, ~16 km SSW of the volcano (figures 1 and 2), recorded one event every 4 minutes. By about 1000 the earthquake rate had increased to more than one per minute until 1100. Seismographs at the Sisters station, ~2 km E of the volcano, recorded earthquakes in such rapid succession that activity appeared to be continuous.

Figure (see Caption) Figure 1. The number of earthquakes from Kick-'em-Jenny recorded per hour and cumulatively at Mount St. Catherine seismograph station during 4 December at 0630 to 6 December at 1830. The station is 16 km SSW of the volcano. "T's" represent the times when T-Phase signals were recorded. In addition to those shown, a short T-phase signal was recorded on 6 December at 1829 that is not on this figure. The number of earthquakes recorded at The Sisters seismograph station, located on a group of rocks less than 2 km E of the volcano, were 10-20 times more numerous than those recorded at the Mount St. Catherine station. Courtesy of SRU.
Figure (see Caption) Figure 2. Map of the monitoring system at and in the vicinity of Kick-'em-Jenny. The system was significantly upgraded during 2000-2001 with the addition of seismographs, tide gauges, hydrophones, and tiltmeters in Northern Granada and The Grenadines. Courtesy of SRU.

Magnitudes of the larger earthquakes increased throughout 4 December; during 0600-0700 the largest earthquake was M 2, during 0800-0900 it was M 2.4, by 1400-1500 it was M 2.7, and the maximum magnitude earthquake recorded that day, M 3, occurred around 1600. Due to the increase in seismicity, at 1830 on 4 December the Alert Level was raised from Yellow to Orange ("Highly elevated level of seismic and/or fumarolic activity or other unusual activity. Eruption may begin with less than 24 hours notice."). This level of alert meant that ships were not permitted to enter either of two concentric exclusion zones; the first zone was 1.5 km in radius around the volcano and the second was 5 km in radius.

The first clear sign of an eruption at Kick-'em-Jenny occurred on 4 December at 1918 when seismometers recorded T-phase signals (acoustic waves generated from an earthquake or underwater explosion that travel through the ocean) (figure 1). The signals lasted about 5 minutes as registered at the Mount St. Catherine station. Another T-phase signal followed at 1926 with a lower amplitude and a shorter duration (3 minutes). Following this eruption the number of discrete earthquakes diminished dramatically; during 1919-2000 there were only eight. Forty five discrete earthquakes preceded the next T-phase signals at 2115. These T-phase signals consisted of a very low-frequency segment followed by a higher-frequency segment that lasted for 6 minutes. A similar event, but with a narrower spectral signature, occurred at 2123.

About an hour later, at 2231, the largest T-wave signal during the December episode was recorded at the Mount St. Catherine station, lasting until 2312. T-phase signals were also recorded at the station in Trinidad about 175 km to the S. While this was the largest eruption recorded during the December episode, it was small in comparison to those of March 1990 (BGVN 15:03). Following the 2231 eruption the number of discrete earthquakes was very low, and by 5 December at 0700 only 19 earthquakes occurred.

By 6 December seismicity at Kick-'em-Jenny consisted of only occasional small earthquakes. The SRU confirmed that no signs of volcanic activity were visible on the sea surface. By this time, activity seemed to have stopped, but SRU scientists maintained the Orange Alert level for another 24 hours as a precaution.

In retrospect, the premonitory earthquake swarms were more severe than any previously recorded at Kick-'em-Jenny, but the size of the eruption as interpreted from the intensity of the T-phase signals was very low. SRU's updates stated that on 6 December as of 1115, many small pleasure craft that were observed traveling directly over Kick-'em-Jenny would be in danger if a larger eruption were to occur.

The SRU determined that what was initially thought to be a fairly strong local earthquake (Mt 2.7) on 6 December at 2208 was actually the culmination of a minor swarm of 10-15 microearthquakes directly beneath the volcano. At this point the Alert Level remained at Orange because scientists believed that the eruptions on 4 December probably deposited a layer of hot rock around the summit that would continue to release heat for a long period of time. This hot water would cause the area near the volcano to be turbulent and pose a threat to ships in the vicinity. The Orange Alert Level was further extended after careful scrutiny of seismograph records on 7 December showed that a short T-phase signal was generated from Kick-'em-Jenny on 6 December at 1829. The signal was interpreted to represent a minor eruption, therefore, the Alert Level was extended until 8 December at 1000.

Following the 6 December seismicity, there was no further volcanic or seismic activity at Kick-'em-Jenny. After consultation with the government of Grenada, on 8 December at 1000 the SRU reduced the Alert Level at the volcano from Orange to Yellow. The change in Alert Level included a reduction in boating restrictions to only include the first exclusion zone (1.5 km radius from the volcano).

Geologic Background. Kick 'em Jenny, a historically active submarine volcano 8 km off the N shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred since 1939, when an eruption cloud rose 275 m above the sea. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

Information Contacts: John Shepard, Richie Robertson, Jan Lindsay, and Joan Latchman, Seismic Research Unit of the University of the West Indies, St. Augustine, Trinidad, W.I. (URL: http://www.uwiseismic.com/).


Lokon-Empung (Indonesia) — November 2001 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


March, May, and August eruptions; plumes to 1.5 km over summit

During February through at least 2 December 2001 at Lokon-Empung, seismic activity varied, three eruptions occurred, and plumes were observed rising 25-1,500 m above the summit (table 1). The volcano was at Alert Level 3 (on a scale of 1-4) until the week of 27 February - 5 March, when it was decreased to 2, remaining there through at least 2 December.

Table 1. Summary of seismicity and character of plumes at Lokon-Empung during February to 2 December 2001. At times, seismic data were not available because of a broken seismograph. During March, there were 13 deep and 12 shallow volcanic events on the 25th; there were 6 deep and 7 shallow volcanic events on the 26th. Courtesy of VSI.

Date Deep volcanic Shallow volcanic Tectonic Tremor Plume height above summit Comment
Feb 2001 -- -- 1 (M 1) -- 50-350 m Thin-to-thick white plumes.
Mar 2001 21 19 32 5 minutes (2-16 mm amplitude) 25-1,500 m Thin white plumes; 26 March explosion yielded dark ash plume, ashfall.
Apr 2001 4 2 114 Four episodes 40-300 m Thin white plume.
May 2001 92 218 124 Discontinuous (0.5-7 mm amplitude) 50-900 m White plumes; explosion on 20 May and gray-black plume drifting N.
Jun 2001 20 20 96 Discontinuous 25-300 m White plumes.
Jul 2001 162 263 134 Discontinuous (0.5-8 mm amplitude) 25-200 m White plumes.
Aug 2001 57 261 45 Discontinuous (0.5-1 mm amplitude) 25-270 m Thin white plume; 18 August explosion with ashfall.
Sep 2001 132 112 156 Discontinuous 25-250 m Thin white plumes.
Oct 2001 48 165 82 Discontinuous 50-250 m White and gray plumes.
Nov-2 Dec 2001 184 113 67 Discontinuous 50-250 m White to gray plumes.

Immediately following the 28 January eruption (BGVN 26:01), activity decreased. An M 1 tectonic earthquake was registered the week of 20-26 February. On 26 March at 1440 an eruption sent a dark ash plume 1,500 m above the crater rim that drifted E and N. No incandescent material was observed, but 25 minutes after the explosion ash started to fall at Kinilow and Kakaskasen villages (3.5 and 4 km from the crater, respectively). Activity slowly decreased though 1510, when thick white gas emissions rose 400 m above the crater. The ashfall was 0.3-0.5 cm thick at Kinilow, 0.1-0.3 cm thick at Kakaskasen, and 1-2 cm thick around the Pasahapen River ~1 km from the crater. After the initial explosion, volcanic tremor recorded between 1442 and 1457 had a maximum amplitude of 2-16 mm.

Another eruption began at 2014 on 20 May, ejecting glowing material that rose as high as 400 m and then fell around the crater. The explosion produced a gray-black plume that rose to 900 m and drifted N. At 1510, a thick-white plume reached 400 m above the summit. Based on field observations, 1-2 mm of ash was deposited in a wide area around the volcano, including Pineleng village and the provincial capital of Manado (25 km N of the volcano). In anticipation of the eruption, the Volcanological Survey of Indonesia (VSI) coordinated with local government agencies, contacted the Sam Ratulangi and Cengkareng airports, and warned people living around the volcano.

During early July, instrumental monitoring showed increased activity, based on the high number of shallow volcanic earthquakes. During 30 July-12 August seismic activity decreased. Small explosions produced plumes that rose 25-250 m above the summit.

On 18 August at 2230 an explosion produced an ash cloud that rose ~800 m above the crater and drifted over N Manado. Based on visual observations, activity did not change significantly after the explosion, but the seismicity showed a major increase. Deep and shallow volcanic earthquakes averaged 8 events per day, higher than the normal average of about 5 events per day. During July to August, seismicity decreased to nearly normal levels.

During mid-October, seismicity increased again. On 19 October an M 1 tectonic earthquake was registered, and the number of volcanic earthquakes increased significantly, followed by an interval of high-frequency tremor. Seismicity continued to increase through mid-November, to an average of 19 events per day. During the week 12-18 November, seismicity began to decrease again but still remained higher than normal, at about 10 events per day. Seismicity continued to decrease through November, and by 2 December had returned to normal levels.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No.57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Poas (Costa Rica) — November 2001 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Fluctuating water level in crater lake; variable fumarole activity

During July 2000 through August 2001, the level of the crater lake fluctuated ten's of centimeters. The color of the lake was generally blue, with sulfur particles floating on the surface. The crater-lake temperature varied between 24 and 35°C. Bubbling continued in the S, SW, NE, and central parts of the lake. A convection cell was observed in the central part of the lake during August-October 2000. During the reporting interval, the following areas showed movement toward the crater lake; the W wall, E, NW, and SW terrace, and NE, N, and NW sides of the pyroclastic cone.

Most fumarolic activity was concentrated in the pyroclastic cone area, with gas columns reaching heights of 300-500 m on the crater floor and blowing chiefly towards the W and SW flanks during July through May 2001. During May 2001, the points of greater gas pressure were in the N wall of the dome. During July 2001, a fumarole appeared in the NE wall with sulfur deposition.

Temperatures of fumaroles ranged between 87 and 111°C, and the typically reported-on access points were 92-94°C. During September 2000, relatively new fumaroles at the NE terrace (94°C) continued to deposit sulfurous sublimates that began accumulating during the previous month. During March 2001 fumarolic activity remained vigorous in the dome and towards the NE and E on the foot of the walls. Thermal sources of these fumaroles were 92-94°C. During May 2001, new fumaroles continued to appear on the floor and the E and NE walls, with sulfur deposition and increasing gas emissions. During May 2001, the fumarole of the N terrace had a temperature of 110°C. During June 2001, vigorous steaming from fumaroles in the area of the lake formed some plumes 100 m tall.

On 28 June, an M 4 earthquake registered by instruments in the Central Valley and Puntarenas area was centered 100 km beneath the volcano. The earthquake was attributed to regional subduction tectonics, but influenced the volcano's seismic and fumarolic activity. On 29 August an M 3 earthquake was registered at a depth of 5.5 km and located 1.7 km SW of the active crater.

The geodetic network lacked significant evidence of deformation during July-August 2000. The 35 hours of low-frequency tremor registered during March 2001 mainly occurred during 1-3 March. These medium and high frequency earthquakes continued to be associated with the appearance of new fumaroles within the main crater and the pyroclastic cone. A summary of earthquakes at Poás during July 2000 to August 2001 is shown in table 11.

Table 11. Summary of seismicity at Poás during July 2000 to August 2001. All columns represent cumulative monthly totals except for the first data column, which shows daily averages of reported low-frequency earthquakes (the predominant type registered). In cases where the seismometer failed to work for a portion of a month, the monthly sum was scaled up and presented assuming the rate of generated events remained constant. Missing months indicate that no data were available. LF indicates low-frequency earthquakes. Paired AB-type earthquakes arrived closely spaced in time. Courtesy of OVSICORI-UNA.

Month Daily average LF earthquakes (1.5-2.3 Hz) AB-type (medium frequency) AB-type double events Tremor duration VT Monthly total
Jul 2000 163 77 2 32 minutes 7 5,146
Aug 2000 210 27 242 120 minutes 55 6,880
Sep 2000 300 371 21 73 minutes 20 9,427
Mar 2001 239 319 -- 35 hours 2 7,742
May 2001 277 530 13 7 hours 41 9,154
Jul 2001 230 238 -- -- -- 7,390
Aug 2001 166 128 -- -- -- 5,286

During July and August 2001 modest portions of the crater wall were unstable. During August the collapse of a portion of the E wall mobilized an unusual amount of material towards the bottom of the crater (figure 73). The collapse has been associated with the cracks and permanent fumarolic action weakening the E part of the crater.

Figure (see Caption) Figure 73. Photo of a collapsed portion of the E wall at Poás, August 2001. Lines show where the rock detached from the sub-vertical wall and where the loosened rock came to rest. The affected part of the wall was cracked and fumarolically altered. Courtesy OVSICORI-UNA.

General References. Casertano, L., Borgia, A., Cigolini, C., Morales, L.D., Montero, W., Gómez, M., and Fernández, J.F., 1985, Investigaciones geofísicas y caracteristicas geoquímicas de las aguas hidrotermales: Volcán Poás, Costa Rica: Geofísica Internacional, v. 24, p. 315-332.

Prosser, J., 1985, Geology and medium-term temporal magmatic variation found at the summit region of Poás volcano, Costa Rica: Boletín de Vulcanología, n. 15, p. 21-39.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Rincon de la Vieja (Costa Rica) — November 2001 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Fumarolically active through August 2001

During March 2000 through at least August 2001, fumarolic and seismic activity continued at Rincón de la Vieja. Fumarolic gases often irritated the eyes, skin, and throat.

On 1 March 2000 the crater lake was blue, with sulfur particles in suspension, a constant surge, and a temperature of 37°C. Compared to a visit in September 1999, the level of the lake was higher and the bubbling in the SW part had ended. The fumaroles on the NE (91°C) and SW walls were no longer steaming. The fumaroles on the NE flank (89°C) were steaming slightly. The edge of the crater displayed concentric 50-m-long and 40-cm-wide cracks.

During October 2000, the lake was gray with a high water level, sulfur particles floating on the surface, evaporation, and a temperature of 44°C. Fumarolic activity was observed in the SW and N wall of the main crater. The fumarolic area of the N flank (60°C) was steaming slightly, and sublimate deposition occurred.

During July 2001, OVSICORI-UNA reported that the level of the lake had descended ~2 m since mid-March. The lake was gray in color with sulfur particles floating on the surface; vigorous evaporation made observation of its bottom difficult, and its temperature stood at 58°C. In the SW wall there were small areas sliding towards the lake, and a new noisy fumarole appeared on the S wall. The fumaroles on the NE and SW walls remained active, producing gas columns that reached up to 300 m. The columns, often visible from the N and NW flanks, were blown by predominant winds towards the W and SW flanks. Low-frequency events and microearthquakes increased during June and August 2001. A summary of earthquakes at Rincón de la Vieja appears in table 4.

Table 4. Summary of earthquakes at Rincón de la Vieja during May 2000 to August 2001, registered by a seismograph at a station located 5 km SW of the main crater. The reported earthquakes include microseisms with amplitudes under 5 mm. The reported tremor durations were sums of discontinuous segments and were of low frequency (below 2 Hz). Missing months indicate that no data were available at the time of report preparation. Courtesy of OVSICORI-UNA.

Month LF HF Micro-earthquakes Tremor duration VT Total
May 2000 3 1 25 105 minutes -- 29
Aug 2000 8 -- 21 30 minutes -- 29
Sep 2000 7 -- -- 210 minutes 11 18
Mar 2001 2 -- 5 -- -- 7
May 2001 5 -- 2 -- -- 7
Jun 2001 12 -- 20 -- 1 33
Aug 2001 35 -- 50 -- -- 85

General References. Barquero, J., and others, 1978-1986, Estado de los Volcanes de Costa Rica (15 annual or semi-annual reports): Boletín de Vulcanología, nos. 2-13 and 15-17.

Garcia, M.O., and Malavassi, E. (eds.), 1983, Memoir, USA-Costa Rica Joint Seminar in Volcanology, San José, January 1982: Universidad Nacional, Heredia, 155 p. (18 papers).

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


San Cristobal (Nicaragua) — November 2001 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Minor ash eruptions during May-November 2001; elevated seismicity

Ash fell at San Cristóbal during May and June 2000. Relative calm prevailed after then until May 2001, when activity began to increase. Thousands of earthquakes per month occurred during June through at least October 2001. Explosive eruptions in mid-August produced columns that reached 400 m.

Seismic signals registered on 2, 4, and 7 May 2001 indicated that small explosions had probably occurred. At 0900 on 11 May, seismic tremor increased to a level exceeding that observed during the eruption in December 1999 and the early months of 2000 (BGVN 25:02). The volcano emitted ash and gas beginning on 12 May. A total of 2,748 seismic events were registered during the month. No dominant frequency was observed during the beginning of the month, but during the rest of the month dominant frequencies of up to 6.7 Hz were noted. Pulses of gas-and-ash emissions were seen rising up to 100 m above the crater rim, and light ash fell in the town of Santa Barbara, 14 km SW of the volcano. The volcano was relatively calm at the end of May.

During June there were three periods of increased seismicity, rapid degassing, and release of gas and ash. The total of 2,276 earthquakes during the month were mostly associated with degassing. On 7 June at 0240, seismic tremor increased, and minutes later dark clouds were observed. At 0500, gray ashfall was reported 10 km SW of the volcano. Activity decreased beginning 9 June until 16 June, when high-energy seismic activity and ash emissions increased for about five hours. The dominant frequency of the 16 June earthquakes ranged between 10 and 12 Hz. On 20 June at 1048 tremor increased again and ashfall began one hour later. A vibration was felt, and noise was heard as far as 6 km from the volcano. The activity ceased five hours later.

According to news reports, on 21 June an explosion sent an ash cloud to a height of 800 m that extended ~25 km downwind and caused ashfall in the town of Chinandega, ~15 km SW. The same day, Jorge Cruz of Indiana Carcache and Martha Navarro of INETER visited the volcano and observed abundant gas-and-ash emissions. Gas sampled on 22 June contained 2.6 mg/m3 of SO2 and 250 ppm CO2. The low concentrations suggest weakened gas pressure and no new magmatic material.

During July 2001, San Cristóbal displayed reduced seismic tremor, but the number of volcanic earthquakes was high. More than 6,111 seismic events were registered, including long-period (LP) earthquakes and signals of small gas explosions. LP earthquakes are common at active volcanoes, and have been observed at other Nicaraguan volcanoes just before eruptions. This was the first time this type of signal had been observed at San Cristóbal, so it was not clear if they had occurred prior to or during past explosions. According to Chouet (1996), LP earthquakes are generated by resonance in fractures closed at their ends and filled with volcanic fluids (water or magma) with a certain dissolved gas level, in which an abrupt pressure change takes place. On 22 July at 0134, an LP earthquake was registered that lasted ~17 seconds with a dominant frequency of 1.2 Hz. Three seismic stations recorded the earthquakes, the most distant located ~15 km W of the volcano. In addition to these seismic data, Vicente Perez ascended the volcano during July and heard both landslides moving down the crater's walls and several rumblings.

During August 2001 tremor remained low to moderate and 4,552 earthquakes were registered. The number of earthquakes was high (averaging ~300 events per day) during 1-4 August, but began dropping gradually on 5 August. The dominant frequency of LP events was ~1 Hz. On 8 August tremor began to increase but the number of earthquakes decreased compared to the previous days. On 10 August, 9 seismic events were registered and tremor increased. On 11 August tremor stood at 30-40 RSAM units. Most of the earthquakes had dominant frequencies of 1-7 Hz. On 12 August, tremor increased again until it reached 80 RSAM units. The increase in tremor lasted until the evening of 13 August when it lowered to 30 RSAM units. During 14-15 August tremor increased again, reaching 90 RSAM units. On 14 August incandescence was visible in the crater for the first time during the current episode. INETER stated that gas and clouds above the summit crater were illuminated from below.

On 15 August beginning at 1620 a dense cloud was formed from continuous abundant out-gassing. Rumbling, incandescence, and explosions were observed during 15-17 August. On 16 August, Vicente Perez ascended the volcano to make observations and found an increase in fumarole temperatures. During 0900 through 1030, gas explosions occurred with columns that reached 400 m. Seismic tremor gradually decreased until approximately 1400 on 17 August when strong seismic activity began again. Fumarolic activity increased and small lagoons within the crater had dried. On 18 August tremor lowered to normal levels of 20 units RSAM. The absence of earthquakes and LP events was noted during this time. The dominant frequency of most of the tremor was 1.0-6.0 Hz. Ash explosions were observed until the afternoon of 19 August.

Based on the recent activity at San Cristóbal, INETER believes that magma rose slowly in the volcano's open conduit and remained close to the crater's floor, which allowed the incandescence observed at night. This was consistent with the observed increase in fumarole temperatures.

During September, seismic activity continued, along with degassing and noise in the interior of the crater. A total of 4,695 earthquakes were registered during the month. After the eruptive activity that occurred during August, San Cristóbal maintained a low level of tremor (less than 20 RSAM units). Tremor increased on 7 September, accompanied by earthquakes with dominant frequencies of 2-6 Hz that occurred every minute for 24 hours. Few LP events were registered. On 8 September, Perez again ascended the volcano and found a slight increase in the temperatures of most of the fumaroles. Abundant degassing took place during the month and noises were heard in the interior of the crater. During 17-19 September tremor increased again, and was accompanied by earthquakes that occurred in bands of time that lasted, on average, one hour. During the last week of September, another increase in tremor took place, as well as an increase in the number of earthquakes. On this occasion, tremor lasted several days and was accompanied by earthquakes approximately every hour.

During October 2001, seismic tremor remained at 20-40 RSAM units. The dominant frequency of tremor was 4-6 Hz. A total of 7,421 earthquakes were registered during the month. Most of the earthquakes had dominant frequencies of from 5 to over 10 Hz. Few events registered dominant frequencies less than 1 Hz. Despite the increase in earthquakes since June 2001, little eruptive activity has taken place (small ash explosions and gas emanations). During the month San Cristóbal displayed emanations of gas, ash, and noise in the interior of the crater. On the night of 3 October, Perez reported ashfall on surrounding communities. On 7 October, Perez ascended the volcano and reported that a collapse had occurred in the S part of the crater.

INETER reported that during the evening of 12 November small ash emissions at San Cristóbal produced ash clouds that remained around summit level. According to the Washington VAAC, on 12 November at 1645 GOES-8 imagery showed a small area of possible ash drifting NW. Ground observers noted moderate volcanic activity until 1800. Ash had dissipated by 2100 and the next day there were no ground reports of volcanic activity.

General Reference. Chouet, B.A., 1996, Volcano long-period seismicity: its source and uses in eruption forecasting: Nature v. 380, p. 309-316.

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Virginia Tenorio, Department of Geophysics, Instituto Nicaragüense de Estudios Territoriales (INETER), P.O. Box 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); La Noticia (URL: http://www.lanoticia.com.ni/); El Nuevo Diario (URL: http://www.elnuevodiario.com.ni/); La Prensa (URL: http://www.laprensa.com.ni/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch, NOAA/NESDIS/E/SP23, NOAA Science Center Room 401, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).


Turrialba (Costa Rica) — November 2001 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Seismic and fumarolic activity during January 2000-August 2001

During January 2000 to at least August 2001, seismic and fumarolic activity continued at Turrialba (table 5). On 12 March 2000 an M 3.2 earthquake was registered at a depth of 7 km, 6.5 km E of the active crater. The EDM lines (radial lines of distances) as well as the dry clinometers did not show significant changes during 2000.

Table 5. Summary of earthquakes and fumarolic temperatures at Turrialba during January 2000 to August 2001, registered by a seismograph at station VTU, located ~0.5 km SE of the active crater. Microearthquakes were defined as earthquakes registered on the local seismic system with amplitudes under 15 mm. Missing months indicate that no data was available for that month. NR indicates information not reported. Courtesy of OVSICORI-UNA.

Month AB earthquakes LF earthquakes Micro-earthquakes Total earthquakes Maximum fumarolic temperature (°C) Comment
Jan 2000 29 2 33 64 NR Seismicity registered only 13 days.
Feb 2000 91 -- 75 166 NR Seismicity registered only 16 days.
Mar 2000 44 -- 65 113 91 --
Apr 2000 NR NR NR NR 90 --
May 2000 286 5 330 616 NR --
Jul 2000 50 -- 104 167 90 --
Aug 2000 76 -- 148 229 89 --
Sep 2000 243 -- 244 493 89 --
Oct 2000 NR NR NR NR 93 --
Mar 2001 399 948 718 2075 NR --
May 2001 128 -- 334 464 92 An average of 15 earthquakes per day.
Jun 2001 3 -- 185 194 92 Six VT earthquakes.
Jul 2001 24 -- 310 334 91 --
Aug 2001 14 -- 261 275 90 --

Fumarolic activity was persistent in the N, NW, NE, and E walls of the main crater. Fumarolic activity in the S and SW walls diminished by July 2000 and began to reappear during October 2000. Activity in the N wall during May 2001 was more vigorous than previously. Small landslides persisted in the walls of the main crater, covering some fumaroles at the bottom and revealing other new ones.

During March 2001 sulfur precipitation and gaseous emanations in the internal walls occurred throughout most of the central craters. Gaseous activity also persisted in the W crater walls. During June 2001, a small patch of vegetation at the center of the main crater showed partial burns due to the gas escaping in the NE part of the main crater.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Unnamed (Tonga) — November 2001 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Possible source for September T-waves and November pumice rafts

[The following originally appeared as part of a report on Fonualei. Later investigations showed that the seismicity and pumice rafts in question most likely came from an unnamed submarine volcano in the Tonga Islands.]

Seismicity. During 28-29 September 2001 numerous short T-waves were registered by the French Polynesian Seismic Network. The preliminary location of the seismicity was determined to be near the Tonga archipelago at 18.18°S (well constrained) and 174°W (not as well constrained). This spot lies ~40 km W of Fonualei.

The swarm began at 0550 on 28 September and ended at 1113 on 29 September (figure 1). The strongest T-wave was registered at 1229 on 28 September at the PAE seismic station in Tahiti (figure 2). The hydro-acoustic activity was interpreted to be volcanic and explosive and not related to seismicity at the Tonga trench. According to the Laboratoire de Géophysique, the source could be near Fonualei.

Figure (see Caption) Figure 1. A plot showing the overall character of the T-wave swarm inferred to have come from Fonualei during 28-29 September 2001. Basically, the cluster of T waves seen in the main part of the swarm (28 September) consisted of signals with short (15-second) periods. Some of these signals were comparatively strong. T waves seen later in the swarm (1100 on 29 September) had long (120-second) period. Courtesy of Laboratoire de Géophysique.
Figure (see Caption) Figure 2. Seismic trace of the strongest of the T-wave signals attributed to Fonualei during the swarm of 28-29 September 2001. The trace was recorded at 1229 on 28 September at the PAE seismic station in Tahiti (the trace was labeled "PAE CPZ1 (Brut)"). Courtesy of Laboratoire de Géophysique.

Pumice rafts. Roman Leslie, a Ph.D. student at the University of Tasmania visited Fiji (hundreds of kilometers W of Tonga) during 9-25 November 2001. There he observed large (100-m diameter) pumice rafts of gray, aphyric pumice clasts ranging from sand-sized to ~20 cm in diameter. Local residents hadn't seen such large rafts before, but had noticed occasional clasts in recent history.

Leslie initially observed the pumice rafts while on Kadavu island of the Lomaiviti Group while diving on the southern Astrolabe Reef from the 10th-15th. He again saw pumice rafts in the Koro Sea during a flight from Suva to Koro on the 16th. Next, he found them on the coral coast (southern Viti Levu) on the 24th, where samples were collected ~5 km E of Sigatoka.

There he collected pumice samples from the beach at or near the high-tide mark, where they formed discontinuous wave-derived lag deposits of limited thickness, with ~5 m lateral extent. Beach pumice deposits and floating rafts (up to ~150 m in length) were poorly sorted and consisted of brown-grey clasts ranging from ~2 to 100 mm in diameter. Clasts were sub-angular to sub-rounded and appeared to contain small phenocrysts of clinopyroxene and plagioclase. Judging from the approximate color index and mineralogy it seemed that the samples were broadly andesitic.

Whether or not the pumice rafts seen in Fiji during November are related to the activity that registered as T-waves from Tonga during late September is uncertain. The rafts and T-waves may be entirely unrelated in terms of source location, or they may result from a common eruption, perhaps at Fonualei.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Olivier Hyvernaud; Laboratoire de Géophysique; PO Box 640 Papeete; Tahiti; French Polynesia; Roman Leslie, Centre for Ore Deposit Research, University of Tasmania, GPO Box 252-79, Hobart, TAS 7001, Australia (URL: http://www.utas.edu.au/codes/).


Yasur (Vanuatu) — November 2001 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Still erupting despite 10-fold tremor decrease beginning November 1999

Since the end of Yasur's recent very active period during June-November 1999 (BGVN 24:07), volcanic tremor underwent an abrupt drop (figure 23). IRD seismologists define tremor amplitudes at "level 3" for signals 12-60 um and "level 4" for signals over 60 um. As figure 23 shows, the number of tremors at level 3 recorded between January 2000 and November 2001 was ten-times lower than that recorded each year between 1995 and 1998. In that same 22-month period, only a few dozen seismic events of over 60 µm amplitude were recorded (BGVN 24:04).

Figure (see Caption) Figure 23. Tremor recorded at Yasur during late January 1993 through November 2001. Bars relate to the left-hand scale and show the yearly number of level 3 events (amplitudes of 12-60 µm). Points connected by lines relate to the right-hand scale and show the yearly number of level 4 events (amplitudes over 60 µm). Asterisks indicate years with incomplete data, as follows: (a) for 1993, only level 3 data were available for the entire year; and (b) the 2001 data shown only extends through 1 November 2001. Courtesy Michel Lardy, Janette Tabbagh, Douglas Charley, and Sandrine Wallez.

The eruptive activity observed at vent A, in the southern part of the crater (figures 24, 25, and 26), shifted following a violent event that affected the northern part of the crater at areas B and C in October 1999. Since this event, the explosive activity has remained mild, and limited to vent C, the northernmost vent of the crater.

Figure (see Caption) Figure 24. A view of the crater of Yasur on 2 October 1999, taken facing N while on the southern edge. Copyrighted photo courtesy of Michel Lardy, IRD.
Figure (see Caption) Figure 25. A view of the crater of Yasur on 9 September 2001, taken facing N while on the southern edge. Copyrighted photo courtesy of Michel Lardy, IRD.
Figure (see Caption) Figure 26. A September 2001 visit to Yasur's summit craters with GPS and laser telemetry resulted in this sketch map and N-S cross section. Courtesy of Douglas Charley and Sandrine Wallez (Vanuatu Department of Geology, Mines and Water Resources), and Michel Lardy (IRD).

A comparison of photographs taken from the southern crater rim in October 1999 (figure 24) and in September 2001 (figure 25) revealed no profound difference in crater morphology. However, during September 2001 vents A and B were plugged and only vent C was active, with ejecta being sent 170 m above the bottom of the crater.

During September 2001, Douglas Charley, Michel Lardy, and Sandrine Wallez undertook a detailed survey of the craters. They used GPS positioning and laser telemetry to produce a map and cross-section showing crater topography and nomenclature (figure 26).

Observations on 12 October 2000. Jeff and Raine Williams, sailing aboard the S/Y Gryphon, visited Yasur on 12 October 2000. From ~8 km away a thick plume of steam and smoke could be seen rising from the peak. The route carried the visitors close to the base of the volcano and across the ash plain that stretches for nearly 1.5 km in each direction from the N flank of the mountain. A narrow stream cuts through the plain at its lowest point, and until recently a freshwater lake had filled the lower basin. Heavy rains earlier in the year resulted in the destruction of the lake's natural dam and left eroded ravines. Their guide drove up through the jungle to the steepest part of the unvegetated cinder cone. From there they hiked ~400 m to the crater rim, a ridge with a sheer 90-120 m drop to the crater floor. Only one of the crater pits was active, producing a constant pillar of steam and smoke. Occasionally the wind would blow strong enough to clear the crater floor, allowing views of the lava glow. Every five or ten minutes the volcano would "cough" or "bark" while throwing red-hot cinders hundreds of feet in the air, tracing red arcs back to the sides of the crater where they glowed for several more minutes. One explosion sent ejecta as high as the rim, but away from the observers. As night fell, red light from the crater was illuminating the pit and the rising steam.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Janette Tabbagh, Université Paris VI, UMR 7619, Coordination des recherches Volcanologiques (CRV), 4 Place Jussieu, 75252 Paris Cedex 05, France; Michel Lardy, Institut de Recherche pour le développement (IRD), CRV, BP A 5 Nouméa, Nouvelle Calédonie; Sandrine Wallez and Douglas Charley, Department of Geology, Mines and Water Resources, PMB 01, Port-Vila, Vanuatu; Jeff and Raine Williams, P.O. Box 729, Funkstown, MD 21734, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).