Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020

Kikai (Japan) Ash explosion on 29 April 2020

Fuego (Guatemala) Ongoing ash explosions, block avalanches, and intermittent lava flows

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

Piton de la Fournaise (France) Fissure eruptions in February and April 2020 included lava fountains and flows

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020



Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — May 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Ash explosion on 29 April 2020

The Kikai caldera is located at the N end of Japan’s Ryukyu Islands and has been recently characterized by intermittent ash emissions and limited ashfall in nearby communities. On Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera, there was a single explosion with gas-and-steam and ash emissions on 2 November 2019, accompanied by nighttime incandescence (BGVN 45:02). This report covers volcanism from January 2020 through April 2020 with a single-day eruption occurring on 29 April based on reports from the Japan Meteorological Agency (JMA).

Since the last one-day eruption on 2 November 2019, volcanism at Kikai has been relatively low and primarily consisted of 107-170 earthquakes per month and intermittent white gas-and-steam emissions rising up to 1.3 km above the crater summit. Intermittent weak hotspots were observed at night in the summit in Sentinel-2 thermal satellite imagery and webcams, according to JMA (figures 14 and 15).

Figure (see Caption) Figure 14. Weak thermal hotspots (bright yellow-orange) were observed on 7 January (top) and 6 April 2020 (bottom) at Satsuma Iwo Jima (Kikai). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 15. Incandescence at night on 10 January 2020 was observed at Satsuma Iwo Jima (Kikai) in the Iodake crater with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, January 2nd year of Reiwa [2020]).

Weak incandescence continued in April 2020. JMA reported SO2 measurements during April were 400-2000 tons/day. A brief eruption in the Iodake crater on 29 April 2020 at 0609 generated a gray-white ash plume that rose 1 km above the crater (figure 16). No ashfall or ejecta was observed after the eruption on 29 April.

Figure (see Caption) Figure 16. The Iwanogami webcam captured a brief gray-white ash and steam plume rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 29 April 2020 at 0609 local time. The plume rose 1 km above the crater summit. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, April 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash explosions, block avalanches, and intermittent lava flows

Fuego is a stratovolcano in Guatemala that has been erupting since 2002 with historical eruptions that date back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 44:10) detailed activity that included multiple ash explosions, ash plumes, ashfall, active lava flows, and block avalanches. This report covers this continuing activity from October 2019 through March 2020 and consists of ash plumes, ashfall, incandescent ejecta, block avalanches, and lava flows. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity October 2019-March 2020. Daily activity persisted throughout October 2019-March 2020 (table 20) with multiple ash explosions recorded every hour, ash plumes that rose to a maximum of 4.8 km altitude each month drifting in multiple directions, incandescent ejecta reaching a 500 m above the crater resulting in block avalanches traveling down multiple drainages, and ashfall affecting communities in multiple directions. The highest rate of explosions occurred on 7 November with up to 25 per hour. Dominantly white fumaroles occurred frequently throughout this reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows that reached a maximum length of 1.2 km were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 128), but rarely in the Trinidad drainage. Thermal activity increased slightly in frequency and strength in late October and remained relatively consistent through mid-March as seen in the MIROVA analysis of MODIS satellite data (figure 129).

Table 20. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by avalanche blocks Villages reporting ashfall
Oct 2019 4.3-4.8 km 10-25 km, W-SW-S-NW Seca, Taniluyá, Ceniza, Trinidad, El Jute, Honda, and Las Lajas Panimaché I and II, Morelia, Santa Sofía, Porvenir, Finca Palo Verde, La Rochela, San Andrés Osuna, Sangre de Cristo, and San Pedro Yepocapa
Nov 2019 4.0-4.8 km 10-20 km, W-SW-S-NW Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa
Dec 2019 4.2-4.8 km 10-25 km, W-SW-S-SE-N-NE Seca, Taniluya, Ceniza, Trinidad, and Las Lajas Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, La Rochela, and San Andrés Osuna
Jan 2020 4.3-4.8 km 10-25 km, W-SW-S-N-NE-E Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, Ceilán
Feb 2020 4.3-4.8 km 8-25 km, W-SW-S-SE-E-NE-N-NW Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna
Mar 2020 4.3-4.8 km 10-23 km, W-SW-S-SE-N-NW Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda
Figure (see Caption) Figure 128. Sentinel-2 thermal satellite images of Fuego between 21 November 2019 and 20 March 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the crater summit. An ash plume can also be seen on 21 November 2019, accompanying the lava flow. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 129. Thermal activity at Fuego increased in frequency and strength (log radiative power) in late October 2019 and remained relatively consistent through February 2020. In early March, there is a small decrease in thermal power, followed by a short pulse of activity and another decline. Courtesy of MIROVA.

Activity during October-December 2019. Activity in October 2019 consisted of 6-20 ash explosions per hour; ash plumes rose to 4.8 km altitude, drifting up to 25 km in multiple directions, resulting in ashfall in Panimaché I and II (8 km SW), Morelia (9 km SW), San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, La Rochela and San Andrés Osuna. The Washington VAAC issued multiple aviation advisories for a total of nine days in October. Continuous white gas-and-steam plumes reached 4.1-4.4 km altitude drifting generally W. Weak SO2 emissions were infrequently observed in satellite imagery during October and January 2020 (figure 130) Incandescent ejecta was frequently observed rising 200-400 m above the summit, which generated block avalanches that traveled down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), El Jute, Honda, and Las Lajas (SE) drainages. During 3-7 October lahars descended the Ceniza, El Mineral, and Seca drainages, carrying tree branches, tree trunks, and blocks 1-3 m in diameter. During 6-8 and 13 October, active lava flows traveled up to 200 m down the Seca drainage.

Figure (see Caption) Figure 130. Weak SO2 emissions were observed rising from Fuego using the TROPOMI instrument on the Sentinel-5P satellite. Top left: 17 October 2019. Top right: 17 November 2019. Bottom left: 20 January 2020. Bottom right: 22 January 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During November 2019, the rate of explosions increased to 5-25 per hour, the latter of which occurred on 7 November. The explosions resulted in ash plumes that rose 4-4.8 km altitude, drifting 10-20 km in the W direction. Ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa. Multiple Washington VAAC notices were issued for 11 days in November. Continuous white gas-and-steam plumes rose up to 4.5 km altitude drifting generally W. Incandescent ejecta rose 100-500 m above the crater, generating block avalanches in Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza drainages. Lava flows were observed for a majority of the month into early December measuring 100-900 m long in the Seca and Ceniza drainages.

The number of explosions in December 2019 decreased compared to November, recording 8-19 per hour with incandescent ejecta rising 100-400 m above the crater. The explosions generated block avalanches that traveled in the Seca, Taniluya, Ceniza, Trinidad, and Las Lajas drainages throughout the month. Ash plumes continued to rise above the summit crater to 4.8 km drifting up to 25 km in multiple directions. The Washington VAAC issued multiple daily notices almost daily in December. A continuous lava flow observed during 6-15, 21-22, 24, and 26 November through 9 December measured 100-800 m long in the Seca and Ceniza drainages.

Activity during January-March 2020. Incandescent Strombolian explosions continued daily during January 2020, ejecting material up to 100-500 m above the crater. Ash plumes continued to rise to a maximum altitude of 4.8 km, resulting in ashfall in all directions affecting Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, and Ceilán. The Washington VAAC issued multiple notices for a total of 12 days during January. Block avalanches resulting from the Strombolian explosions traveled down the Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas drainages. An active lava flow in the Ceniza drainage measured 150-600 m long during 6-10 January.

During February 2020, INSIVUMEH reported a range of 4-16 explosions per hour, accompanied by incandescent material that rose 100-500 m above the crater (figure 131). Block avalanches traveled in the Santa Teresa, Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna drainages. Ash emissions from the explosions continued to rise 4.8 km altitude, drifting in multiple directions as far as 25 km and resulting in ashfall in the communities of Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna. Washington VAAC notices were issued almost daily during the month. Lava flows were active in the Ceniza drainage during 13-20, 23-24, and 26-27 February measuring as long as 1.2 km.

Figure (see Caption) Figure 131. Incandescent ejecta rose several hundred meters above the crater of Fuego on 6 February 2020, resulting in block avalanches down multiple drainages. Courtesy of Crelosa.

Daily explosions and incandescent ejecta continued through March 2020, with 8-17 explosions per hour that rose up to 500 m above the crater. Block avalanches from the explosions were observed in the Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, Santa Teresa, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia drainages. Accompanying ash plumes rose 4.8 km altitude, drifting in multiple directions mostly to the W as far as 23 km and resulting in ashfall in San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda. Multiple Washington VAAC notices were issued for a total of 15 days during March. Active lava flows were observed from 16-21 March in the Trinidad and Ceniza drainages measuring 400-1,200 m long and were accompanied by weak to moderate explosions. By 23 March, active lava flows were no longer observed.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Crelosa, 3ra. avenida. 8-66, Zona 14. Colonia El Campo, Guatemala Ciudad de Guatemala (URL: http://crelosa.com/, post at https://www.youtube.com/watch?v=1P4kWqxU2m0&feature=youtu.be).


Ebeko (Russia) — June 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

The current moderate explosive eruption of Ebeko has been ongoing since October 2016, with frequent ash explosions that have reached altitudes of 1.3-6 km (BGVN 42:08, 43:03, 43:06, 43:12, 44:12). Ashfall is common in Severo-Kurilsk, a town of about 2,500 residents 7 km ESE, where the Kamchatka Volcanic Eruptions Response Team (KVERT) monitor the volcano. During the reporting period, December 2019-May 2020, the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

During December 2019-May 2020, frequent explosions generated ash plumes that reached altitudes of 1.5-4.6 km (table 9); reports of ashfall in Severo-Kurilsk were common. Ash explosions in late April caused ashfall in Severo-Kurilsk during 25-30 April (figure 24), and the plume drifted 180 km SE on the 29th. There was also a higher level of activity during the second half of May (figure 25), when plumes drifted up to 80 km downwind.

Table 9. Summary of activity at Ebeko, December 2019-May 2020. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. In the plume distance column, only plumes that drifted more than 10 km are indicated. Dates based on UTC times. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-05 Dec 2019 3 -- NE, E Intermittent explosions.
06-13 Dec 2019 4 -- E Explosions all week. Ashfall in S-K on 10-12 Dec.
15-17 Dec 2019 3 -- E Explosions. Ashfall in S-K on 16-17 Dec.
22-24 Dec 2019 3 -- NE Explosions.
01-02 Jan 2020 3 30 km N N Explosions. TA over dome on 1 Jan.
03, 05, 09 Jan 2020 2.9 -- NE, SE Explosions. Ashfall in S-K on 8 Jan.
11, 13-14 Jan 2020 3 -- E Explosions. Ashfall in S-K.
19-20 Jan 2020 3 -- E Ashfall in S-K on 19 Jan.
24-31 Jan 2020 4 -- E Explosions.
01-07 Feb 2020 3 -- E, S Explosions all week.
12-13 Feb 2020 1.5 -- E Explosions. Ashfall in S-K.
18-19 Feb 2020 2.3 -- SE Explosions.
21, 25, 27 Feb 2020 2.9 -- S, SE, NE Explosions. Ashfall in S-K on 22 Feb.
01-02, 05 Mar 2020 2 -- S, E Explosions.
08 Mar 2020 2.5 -- NE Explosions.
13, 17 Mar 2020 2.5 -- NE, SE Bursts of gas, steam, and small amount of ash.
24-25 Mar 2020 2.5 -- NE, W Explosions.
29 Mar-02 Apr 2020 2.2 -- NE, E Explosions. Ashfall in S-K on 1 Apr. TA on 30-31 Mar.
04-05, 09 Apr 2020 1.5 -- NE Explosions. TA on 5 Apr.
13 Apr 2020 2.5 -- SE Explosions.
18, 20 Apr 2020 -- -- -- TA on 18, 20 Apr.
24 Apr-01 May 2020 3.5 180 km SE on 29 Apr E, SE Explosions all week. Ashfall in S-K on 25-30 Apr.
01-08 May 2020 2.6 -- E Explosions all week. Ashfall in S-K on 3-5 May. TA on 3 May.
08-15 May 2020 4 -- E Explosions. Ashfall in S-K on 8-12 May. TA during 12-14 May.
14-15, 19-21 May 2020 3.6 80 km SW, S, SE during 14, 20-21 May -- Explosions. TA on same days.
22-29 May 2020 4.6 60 km SE E, SE Explosions all week. Ashfall in S-K on 22, 24 May.
29-31 May 2020 4.5 -- E, S Explosions. TA on 30 May.
Figure (see Caption) Figure 24. Photo of ash explosion at Ebeko at 2110 UTC on 28 April 2020, as viewed from Severo-Kurilsk. Courtesy of KVERT (L. Kotenko).
Figure (see Caption) Figure 25. Satellite image of Ebeko from Sentinel-2 on 27 May 2020, showing a plume drifting SE. Image using natural color rendering (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Piton de la Fournaise (France) — May 2020 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Fissure eruptions in February and April 2020 included lava fountains and flows

Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Recent volcanism is characterized by multiple fissure eruptions, lava fountains, and lava flows (BGVN 44:11). The activity during this reporting period of November 2019-April 2020 is consistent with the previous eruption, including lava fountaining and lava flows. Information for this report comes from the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and various satellite data.

Activity during November 2019-January 2020 was relatively low; no eruptive events were detected, according to OVPF. Edifice deformation resumed during the last week in December and continued through January. Seismicity significantly increased in early January, registering 258 shallow earthquakes from 1-16 January. During 17-31 January, the seismicity declined, averaging one earthquake per day.

Two eruptive events took place during February-April 2020. OVPF reported that the first occurred from 10 to 16 February on the E and SE flanks of the Dolomieu Crater. The second took place during 2-6 April. Both eruptive events began with a sharp increase in seismicity accompanied by edifice inflation, followed by a fissure eruption that resulted in lava fountains and lava flows (figure 193). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed the two eruptive events occurring during February-April 2020 (figure 194). Similarly, the MODVOLC algorithm reported 72 thermal signatures proximal to the summit crater from 12 February to 6 April. Both of these eruptive events were accompanied by SO2 emissions that were detected by the Sentinel-5P/TROPOMI instrument (figures 195 and 196).

Figure (see Caption) Figure 193. Location maps of the lava flows on the E flank at Piton de la Fournaise on 10-16 February 2020 (left) and 2-6 April 2020 (right) as derived from SAR satellite data. Courtesy of OVPF-IPGP, OPGC, LMV (Monthly bulletins of the Piton de la Fournaise Volcanological Observatory, February and April 2020).
Figure (see Caption) Figure 194. Two significant eruptive events at Piton de la Fournaise took place during February-April 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 195. Images of the SO2 emissions during the February 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Top left: 10 February 2020. Top right: 11 February 2020. Bottom left: 13 February 2020. Bottom right: 14 February 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 196. Images of the SO2 emissions during the April 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Left: 4 April 2020. Middle: 5 April 2020. Right: 6 April 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

On 10 February 2020 a seismic swarm was detected at 1027, followed by rapid deformation. At 1050, volcanic tremors were recorded, signaling the start of the eruption. Several fissures opened on the E flank of the Dolomieu Crater between the crater rim and at 2,000 m elevation, as observed by an overflight during 1300 and 1330. These fissures were at least 1 km long and produced lava fountains that rose up to 10 m high. Lava flows were also observed traveling E and S to 1,700 m elevation by 1315 (figures 197 and 198). The farthest flow traveled E to an elevation of 1,400 m. Satellite data from HOTVOLC platform (OPGC - University of Auvergne) was used to estimate the peak lava flow rate on 11 February at 10 m3/s. By 13 February only one lava flow that was traveling E below the Marco Crater remained active. OVPF also reported the formation of a cone, measuring 30 m tall, surrounded by three additional vents that produced lava fountains up to 15 m high. On 15 February the volcanic tremors began to decrease at 1400; by 16 February at 1412 the tremors stopped, indicating the end of the eruptive event.

Figure (see Caption) Figure 197. Photo of a lava flow and degassing at Piton de la Fournaise on 10 February 2020. Courtesy of OVPF-IPGP.
Figure (see Caption) Figure 198. Photos of the lava flows at Piton de la Fournaise taken during the February 2020 eruption by Richard Bouchet courtesy of AFP News Service.

Volcanism during the month of March 2020 consisted of low seismicity, including 21 shallow volcanic tremors and near the end of the month, edifice inflation was detected. A second eruptive event began on 2 April 2020, starting with an increase in seismicity during 0815-0851. Much of this seismicity was located on the SE part of the Dolomieu Crater. A fissure opened on the E flank, consistent with the fissures that were active during the February 2020 event. Seismicity continued to increase in intensity through 6 April located dominantly in the SE part of the Dolomieu Crater. An overflight on 5 April at 1030 showed lava fountains rising more than 50 m high accompanied by gas-and-steam plumes rising to 3-3.5 km altitude (figures 199 and 200). A lava flow advanced to an elevation of 360 m, roughly 2 km from the RN2 national road (figure 199). A significant amount of Pele’s hair and clusters of fine volcanic products were produced during the more intense phase of the eruption (5-6 April) and deposited at distances more than 10 km from the eruptive site (figure 201). It was also during this period that the SO2 emissions peaked (figure 196). The eruption stopped at 1330 after a sharp decrease in volcanic tremors.

Figure (see Caption) Figure 199. Photos of a lava flow (left) and lava fountains (right) at Piton de la Fournaise during the April 2020 eruption. Left: photo taken on 2 April 2020 at 1500. Right: photo taken on 5 April 2020 at 1030. Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).
Figure (see Caption) Figure 200. Photo of the lava fountains erupting from Piton de la Fournaise on 4 April 2020. Photo taken by Richard Bouchet courtesy of Geo Magazine via Jeannie Curtis.
Figure (see Caption) Figure 201. Photos of Pele’s hair deposited due to the April 2020 eruption at Piton de la Fournaise. Samples collected near the Gîte du volcan on 7 April 2020 (left) and a cluster of Pele’s hair found near the Foc-Foc car park on 9 April 2020 (right). Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); GEO Magazine (AFP story at URL: https://www.geo.fr/environnement/la-reunion-fin-deruption-au-piton-de-la-fournaise-200397); AFP (URL: https://twitter.com/AFP/status/1227140765106622464, Twitter: @AFP, https://twitter.com/AFP); Jeannie Curtis (Twitter: @VolcanoJeannie, https://twitter.com/VolcanoJeannie).


Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 28, Number 05 (May 2003)

Managing Editor: Edward Venzke

Anatahan (United States)

Nearly continuous ash plumes through May

Blanco, Cerro (Argentina)

Satellite surveys during May 1996-October 2000 indicate subsidence

Chikurachki (Russia)

Eruption continued through May; long plumes and some ashfall

False Reports (Unknown)

Mongolia: Fumaroles and minor seismicity since October 2002

Fournaise, Piton de la (France)

Eruption on 30 May generates lava flows within Dolomieu crater

Karangetang (Indonesia)

Ash explosions from January through May 2003

Karymsky (Russia)

Frequent ash plumes generated from October 2002 through May 2003

Kilauea (United States)

Continued lava flows during December 2002-June 2003 enter the ocean

Lokon-Empung (Indonesia)

Increased explosive activity during January-April 2003; local ashfall

Mayon (Philippines)

Three small ash-and-steam explosions during April-May 2003

Monowai (New Zealand)

Volcanic earthquake swarm April-May detected by T-waves

Nyiragongo (DR Congo)

2002-2003 lava lake activity, thermal radiation, and CO2 and SO2 emissions

Ruapehu (New Zealand)

Steam plume issued from warm Crater Lake in May, but no eruption

Sabancaya (Peru)

Inflation at Hualca Hualca detected by satellite surveys from June 1992 to April 1996

Santa Maria (Guatemala)

Lahars during January-October 2002; explosions and pyroclastic flows

Stromboli (Italy)

Lava effusion continues through mid-June; infrared satellite observations

Uturuncu (Bolivia)

Deformation detected by satellite surveys; low-level seismicity and active fumaroles



Anatahan (United States) — May 2003 Citation iconCite this Report

Anatahan

United States

16.35°N, 145.67°E; summit elev. 790 m

All times are local (unless otherwise noted)


Nearly continuous ash plumes through May

The explosive eruption that began on 10 May is the first documented eruption from Anatahan in historical time. There were no residents on the island due to their evacuation following a shallow earthquake swarm in 1990 (Moore and others, 1994), and another in 1993 (Sako and others, 1995). Anatahan is a composite volcano that erupts lavas that are primarily dacitic in composition. It has the largest caldera of the volcanoes in the Commonwealth of the Northern Mariana Islands (CNMI). The presence of this caldera indicates that large explosive eruptions are possible.

Strong activity continued over the next few days (BGVN 28:04), with high ash plumes seen in satellite imagery. The area within ~55 km of the island was also placed off-limits to all boats and aircraft not approved by the CNMI Emergency Management Office (EMO). A smaller but nearly continuous eruption column rose from the E crater of Anatahan for the next several weeks. Activity was continuing in early July, but at low levels.

The EMO invited USGS scientists to provide assistance in tracking the volcano's activity and assessing potential hazards shortly after the eruption began. USGS scientists first arrived in Saipan on 30 May to work directly with EMO officials to install and maintain monitoring equipment and interpret data from overflights and a single seismometer operating on Anatahan. This station became operational on 5 June.

Beginning of the eruption, 10-12 May 2003. On 6 May researchers from Washington University, Scripps Institution of Oceanography, and the EMO aboard the MV Super Emerald deployed a seismograph on Anatahan as part of a joint US-Japan Mariana Subduction Imaging Experiment, which is funded by the National Science Foundation. There were no indications of an impending eruption. During the night of 10-11 May the ship was again approaching Anatahan when scientists observed a tremendous lightning display ahead. As morning broke, they saw a pillar of steam and ash billowing to an altitude of 9 km. The ship had to detour around the island to avoid the ashfall.

Initial reports indicated that the eruption began around 2100 on 10 May. Satellite data interpreted by the Washington Volcanic Ash Advisory Center (VAAC) showed that the eruption appeared to have started by 1730. An ash plume was clearly visible in imagery at 2232, resulting in an advisory being issued to the aviation community at 2300 (1300 UTC). Plume heights were reported to be 10-12 km in the early stages of the eruption, with one ash advisory indicating ash to 13.4 km altitude on the 11th. At times multiple clouds were moving in different directions at different altitudes.

On 13 May Joe Kaipat from the CNMI Emergency Management Office (EMO) and seismologist Doug Weins (Washington University) flew to Sarigan (6.5 km W of Anatahan) to retrieve seismic data from a broadband instrument installed on 6 May. Records from the Sarigan station showed increased seismicity commencing at about 1300 on 10 May. The activity remained very strong for about 36 hours before decreasing.

Activity during 13-30 May 2003. A helicopter overflight on 13 May showed that the island was still erupting, but with less intensity than on 11 May. Large volcanic bombs were observed flying high in the air over the crater region, and the whole W side of the island was covered with ash, including the seismograph site. The village appeared to have 15-30 cm of ash (figure 5). Ash advisories for 13-14 May reported that a dense ash cloud was drifting W away from the island, but that it was not continuous and varied in size. Ash plumes through 17 May generally drifted NW or WNW. The eruption clouds through May after the initial activity were generally below ~6 km.

Figure (see Caption) Figure 5. The village on Anatahan covered with ash, 13 May 2003. The recently deployed seismograph is barely visible in the clearing to the left. Note the ash on the roofs. Courtesy of Doug Weins.

On 18 May the EMO group took an overflight accompanied by David Hilton (Scripps Institution of Oceanography) and Tobias Fischer (University of New Mexico). They reported a rising plume comprised of steam and ash. The cloud was much lighter in color, with a reduced ash component compared to the initial phases of the eruption. Bombs, possibly up to several meters in size, were being tossed into the air; most fell back into the E crater. The ash was being blown W, but most of the ashfall was still on the E side of the island. The team landed on the E side of the island and deployed a PS- 2 seismometer that appears to have recorded earthquakes and some tremor. At that site they found ejecta thought to be from the initial stage of the eruption. The ground/vegetation near and under the ejecta was not scorched. Most of the material appeared to be non- juvenile. The largest fragments were up to 50 cm across. The team heard "booms" coming from the crater.

The ongoing explosive activity excavated a deep crater within Anatahan's E crater. Scientists estimated the inner crater was nearly at sea level by about 20 May; before the eruption, the floor of the E crater was 68 m above sea level. On 20 May the EMO group took an overflight and installed a telemetered seismic station. Pressure waves from detonations in the E crater were felt on the E flank. From a helicopter the team also observed rocks several meters across being thrown up above the E crater rim and falling back into the crater. Ash continued to fall on the western two-thirds of the island and out to sea. The ash cloud size and length was variable during 17-23 May; it continued in general to drift WNW from the island, at times spreading over a wide area.

On 23-24 May, typhoon Chan-hom shifted the prevailing east winds to the S, blowing the eruption column toward Saipan and Guam. Light ashfall resulted in flight cancellations and the closure of the Saipan and Guam international airports. Residents of Saipan reported a rotten egg smell associated with the ashfall. The report from Saipan was that 1-2 mm of ash had fallen on the island.

EMO personnel took an overflight on 27 May and reported that ash cloud heights reached 3 km, significantly lower than during the first few days of the eruption. The ash cloud was more opaque and laden with ash; the color was closer to that of 10-11 May than more recent plumes. The streaming ash cloud, still exhibiting variable size and length, drifted NW and NNW through 29 May.

Fieldwork on 21 May 2003. Hilton and Fischer arrived by ship at Anatahan at approximately 0630 on 21 May. The activity level was similar to that on their visit 2 days earlier. The ship sailed through the ashfall out to the SW side of the island, and continued along the W coast. The W coast was draped in ash; vegetation was completely covered giving the island a gray pallor. They landed at 0815 and spent ~4 hours ashore. A trench through the recent deposits on the beach area exposed a 25-cm section from the present eruptive phase with three main layers. The lowermost layer consisted of ~5 cm of fine-grained ash. Next was a layer ~15 cm thick comprised of accretionary lapilli with some fine ash. At the top was a 5-cm-thick layer that was a mixture of coarser grained ash and angular clasts of scoriaceous material. The abandoned village, where a team led by Patrick Shore (Washington University) was working on the seismic station installed on 6 May, was similarly covered in ash with many buildings having collapsed roofs. Two sections also revealed initial ash, covered by accretionary lapilli, then a mixture of ash and scoriaceous material. Pumice was floating in water-collection vessels by the buildings.

From the ship the scientists set up the COSPEC instrument and started a traverse through the plume around 1330. The telescope was oriented vertically and the ship made a N-to-S transect through the volcanic plume at a distance of ~1.5 km from shore. Sulfur dioxide (SO2) in the plume was recorded immediately. The transect took 50 minutes until no SO2 was being detected. In addition, they sailed through the ash fallout. During the traverse, the volcano erupted every 5 minutes with a deep resonating boom. The width of the volcanic plume was ~6 km and its direction was to the SW. From the COSPEC measurements and wind speed data provided by NOAA, the SO2 flux was estimated to be 3,000-4,500 metric tons/day. As the group sailed away from the island around 1430 there was a very large eruption with a significantly louder "boom" than had been heard previously, followed by a dark billowing ash-laden plume.

MODVOLC Thermal Alerts. Thermal satellite observations of the current eruption of Anatahan provided by the HIGP MODIS Thermal Alert Team (http://modis.higp.hawaii.edu) confirmed that activity was heavily concentrated in the E crater (figure 6). The most recent hot-spot (as of 1700 UTC on 28 May) was observed on 24 May. The large amounts of ash produced during the eruption will have obscured some thermal anomalies from the MODIS sensor. Plumes were clearly visible on MODIS imagery on 14, 21, 22, 25, 26, 28, and 30 May (figure 7). The persistent, long plume from this island volcano was frequently detected in imagery from a wide variety of satellite platforms.

Figure (see Caption) Figure 6. Summary of MODIS thermal alerts detected at Anatahan, 11-28 May 2003. Each dot defines the geodetic location of the pixels flagged by the MODVOLC algorithm (Wright and others, 2002) as containing volcanic hot-spots. However, although the coordinate describes the center point of each pixel, the hot-spots could have been located anywhere in the square boxes (which portray the nominal 1-km pixel size of the MODIS instrument.) The shaded circles denote the absolute limits within which the volcanic hot-spots responsible for the anomalies must have been sited (based on a statistical analysis of long-term hot-spot location stability at other volcanoes). The hot-spot locations are referenced to WGS-84 ellipsoid. Map coordinates are in UTM zone 55 (north). Courtesy of the HIGP MODIS Thermal Alert Team (http://modis.higp.hawaii.edu).
Figure (see Caption) Figure 7. Ash plume from Anatahan (indicated by arrows) visible in MODIS imagery from the Aqua satellite, 0320 UTC on 30 May. Image processed by NOAA with data from NASA. Courtesy of NOAA/NASA.

SO2 data from TOMS. Simon Carn reported that the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) has observed SO2 and ash emissions from the ongoing eruption. No emissions were detected in the EP TOMS overpass at 0116 UTC on 10 May, several hours before the reported eruption onset. On May 11 a data gap over the Marianas prevented detection of proximal emissions, though a small ash cloud (no larger than ~120 km across) was detected ~500 km ESE of Anatahan at 0027 UTC. Washington VAAC estimates suggested a height of 14-15 km for this cloud. A weak SO2 cloud was also observed, displaced from the ash cloud and centered ~560 km SE of Anatahan. This cloud contained an estimated SO2 mass of ~10 kilotons (kt), but it is suspected to be only the distal end of a larger SO2 plume obscured by the data gap. Diffuse ash was also apparent at least 500 km W of the volcano at 0205 UTC, but no measurable SO2.

The EP TOMS orbit was better placed on 12 May at 0115 UTC. At this time an ash cloud extending ~560 km on its long axis was centered ~570 km W of Anatahan. An SO2 cloud, again displaced from the ash, extended ~1,100 km from a point ~510 km W of the volcano to a point ~700 km SE of it. This cloud contained ~110 kt of SO2. On 13 May a data gap covered the Marianas though ash was detected farther W, with no significant new SO2 evident. On 14 May a low-level SO2 plume appeared to be drifting W from Anatahan.

As of May 30 the Earth Probe TOMS instrument continued to detect significant SO2 emissions from Anatahan. No TOMS data were collected during 15-23 May due to a technical fault on the spacecraft. Thereafter, TOMS detected SO2 clouds in the region of Anatahan on 24 May (~19 kt SO2), 25 May (~23 kt minimum), 26 May (~35 kt), 28 May (~70 kt), and 30 May (~50-100 kt). Data gaps covered the Marianas on other days. Given the persistent ash plume from the volcano reported by the Washington VAAC, these SO2 clouds are presumed to be the product of continuous emissions and not discrete explosive events.

Observations from 20 May-8 June 2001. Anatahan was visited during 20 May-8 June 2001 as part of fieldwork in the Northern Marianas (Trusdell and others, 2001), including helicopter observations on 4 June. At that time line lengths on the Anatahan EDM network were measured and showed no significant changes. Most line lengths exhibited small contractions when compared to the data from the 1994 survey. Deformation appeared to be slowing down with no significant changes. Temperatures were measured for several boiling pots and springs on the floor of the E crater. The temperature of the ponds as well as fumaroles ranged from a minimum of 96.7°C to a maximum of 100.3°C.

References. Moore, R.B., Koyanagi, R.Y., Sako, M.K., Trusdell, F.A., Kojima, G., Ellorda, R.L., and Zane, S., 1994, Volcanologic investigations in the Commonwealth of the Northern Mariana Islands, September-October 1990: U.S. Geological Survey Open-File Report 91-320, 31 p.

Sako, M.K., Trusdell, F.A., Koyanagi, R.Y., Kojima, G., and Moore, R.B., 1995, Volcanic investigations in the Commonwealth of the Northern Mariana Islands, April to May 1994: U.S. Geological Survey Open-File Report 94-705, 57 p.

Trusdell, F.A., Sako, M.K., Moore, R.B., Koyanagi, R.Y., and Schilling, S., 2001, Preliminary studies of seismicity, ground deformation, and geology, Commonwealth of the Northern Mariana Islands, May 20 to June 8, 2001: U.S. Geological Survey, prepared for the Office of the Governor, the Emergency Management Office, and the Office of the Mayor of the Northern Islands, Commonwealth of the Northern Mariana Islands.

Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L., and Pilger, E., 2002, Automated volcanic eruption detection using MODIS: Remote Sensing of Environment, v. 82, p. 135-155.

Geologic Background. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of a large stratovolcano with a 2.3 x 5 km compound summit caldera. The larger western portion of the caldera is 2.3 x 3 km wide, and its western rim forms the island's high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern portion of the caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. A submarine cone, named NE Anatahan, rises to within 460 m of the sea surface on the NE flank, and numerous other submarine vents are found on the NE-to-SE flanks. Sparseness of vegetation on the most recent lava flows had indicated that they were of Holocene age, but the first historical eruption did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera.

Information Contacts: Juan Takai Camacho and Ramon Chong, Commonwealth of the Northern Mariana Islands Emergency Management Office, P.O. Box 10007, Saipan, MP 96950 (URL: http://www.cnmihsem.gov.mp/); Frank Trusdell, Hawaiian Volcano Observatory, PO Box 51, Hawaii National Park, HI, 96718-0051 (URL: https://volcanoes.usgs.gov/nmi/activity/); Doug Wiens and Patrick Shore, Washington University, St. Louis, McDonnell Hall 403 Box 1169, St. Louis, MO 63130; Allan Sauter and David Hilton, Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla CA, 92093-0225; Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Simon A. Carn, TOMS Volcanic Emissions Group, Joint Center for Earth Systems Technology (NASA/UMBC), University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA (URL: https://so2.gsfc.nasa.gov/); Rob Wright, Luke Flynn, Harold Garbeil, Andy Harris, Matt Patrick, Eric Pilger, and Scott Rowland, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); George Stephens, Operational Significant Event Imagery (OSEI) team, World Weather Bldg., 5200 Auth Rd Rm 510 (E/SP 22), NOAA/NESDIS, Camp Springs, MD 20748USA.


Cerro Blanco (Argentina) — May 2003 Citation iconCite this Report

Cerro Blanco

Argentina

26.789°S, 67.765°W; summit elev. 4670 m

All times are local (unless otherwise noted)


Satellite surveys during May 1996-October 2000 indicate subsidence

A satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc (Pritchard and Simons, 2002) revealed deformation in the Robledo caldera between May 1992 and October 2000 (figure 1). Subsidence was detected, with a maximum deformation rate in the radar line-of-sight of 2-2.5 cm/year. The subsidence rate seemed to be decreasing with time. The inferred source depth was 4.5-6 km below sea level. Additional details about the study and analysis are available in Pritchard and Simons (2002).

Figure (see Caption) Figure 1. Shaded relief topographic map of the central Andes with insets showing areas of deformation detected by Pritchard and Simons (2002). Interferograms (draped over shaded relief) indicate active deformation; each color cycle corresponds to 5 cm of deformation in the radar line-of-sight (LOS). The LOS direction from ground to spacecraft (black arrow) is inclined 23° from the vertical. Black squares indicate radar frames, and black triangles show potential volcanic edifices. Courtesy of Matthew Pritchard.

Reference. Pritchard, M., and Simons, M., 2002, A satellite geodetic survey of large-scale deformation of volcanic centres in the Central Andes: Nature, v. 418, p. 167-170.

Geologic Background. The Cerro Blanco volcanic complex contains the 6-km-wide Cerro Blanco caldera (also known as the Robledo caldera) in NW Argentina and is located 80 km SW of the much larger and better known Cerro Galán caldera. Cerro Blanco was the site of the largest known Holocene eruption in the Central Andes about 4200 years BP (Fernandez-Turiel et al., 2013). The rhyolitic eruption produced plinian ashfall deposits of about 110 km3 and widespread ignimbrite deposits. The Holocene Cerro Blanco del Robledo lava dome is located on the southern rim of the caldera and is surrounded by extensive rhyolitic pumice-fall deposits. Satellite geodetic surveys in the central Andes (Pritchard and Simons, 2002) showed subsidence of the caldera in the 1990s.

Information Contacts: Matthew Pritchard and Mark Simons, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA (URL: http://www.gps.caltech.edu/).


Chikurachki (Russia) — May 2003 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


Eruption continued through May; long plumes and some ashfall

The eruption that began on 18 April 2003 (BGVN 28:04) continued throughout May and into early June. According to observers, ash fell on the town of Severo-Kurilsk (~60 km from the volcano) on 1 May. Observers from Vasiliev Cape noted weak fumarolic activity on 3 May and satellite data from the USA and Russia that day revealed a gas-and-steam plume more than 150 km long and moving towards the ESE and S. Satellite data continued to show gas-and-steam plumes, possibly containing ash, throughout the remainder of May (table 1). Satellite imaging was obscured by clouds on other days. On 13 May, ash deposits were reported on the ENE and SSE flanks of the volcano and near the summit. At 1800 on 15 May, observers on Paramushir Island reported a strong ashfall at Podgorny settlement.

Table 1. Satellite data reports of gas-and-steam and ash plumes emanating from Chikurachki, May 2003. Courtesy of KVERT.

Date Time (UTC) Estimated Plume Length (km) Direction
05 May 2003 -- 50 NW
07/08 May 2003 -- 150 E-SE
12 May 2003 0019 20 SE
12 May 2003 0449 156 E
13 May 2003 0043 100 E
13 May 2003 0102 70 SE
13 May 2003 0200 50 E
13 May 2003 0423 178 E-SE
13 May 2003 0639 400 E-SE
17 May 2003 -- 50 SW
18 May 2003 -- 50 NE
21 May 2003 -- 10 NW
27 May 2003 0600 100 NE
27 May 2003 2200 100 NE
29 May 2003 AM 15-20 NE

During the period 1930 to 2310 on 27 May, Leonid Kotenko on Paramushir Island reported that ash explosions attaining heights of 500 m above the crater were observed from Shelekhov Bay. The ash plume at 0900 on 28 May (2200 UTC, 27 May), rose 4,000 m above the crater. On 29 May an ash plume rose ~1,200 m above the crater and ash fell on the town of Severo-Kurilsk.

Additional information about the 2002 eruption. Previous KVERT reports indicated that the eruption that began on 25 January 2002 had continued through 16 March (BGVN 27:04), but no further reports were made about that activity. However, later information was received that showed the eruption continuing through at least 22 April. According to satellite data from AVO for 18 March, two consecutive GMS infrared images (1732 and 1832 UTC) showed a narrow, ~150-km-long cloud, which extended SE from Paramushir Island. There was no indication of ash based on the split-window technique. On the afternoon of 20 March, a gas-and-steam plume with some ash extended 200 km SE. Paramushir Island was obscured by clouds during the next 2 weeks. On 6 May L. Kotenko (A KVERT contact on the island) reported that hunters had observed fresh ash deposits on the SW flank on 22 April and that ashfall was also noted in Severo-Kurilsk.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is actually a relatively small cone constructed on a high Pleistocene volcanic edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic plinian eruptions have occurred during the Holocene. Lava flows from 1781-m-high Chikurachki reached the sea and form capes on the NW coast; several young lava flows also emerge from beneath the scoria blanket on the eastern flank. The Tatarinov group of six volcanic centers is located immediately to the south of Chikurachki, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov volcanoes are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of only one eruption in historical time from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


False Reports (Unknown) — May 2003 Citation iconCite this Report

False Reports

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Mongolia: Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. False or otherwise incorrect reports of volcanic activity.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Piton de la Fournaise (France) — May 2003 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruption on 30 May generates lava flows within Dolomieu crater

Eruptions are common at Piton de la Fournaise, with the most recent activity occurring in January 2002 (BGVN 26:12) and November-December 2002 (BGVN 27:11). At the end of the November 2002 eruption, seimicity beneath Dolomieu crater increased from 28 November to 23 December. On 22 December there were 5,700 seismic events recorded. At 1002 on 23 December a magnitude 3 event occurred and seismicity stopped. The next day a new crater was observed in the SW part of the larger Dolomieu crater.

Since March 2003, the extensometer network and GPS measurements had indicated inflation of Piton de la Fournaise. A new eruption began on 30 May within Dolomieu crater. The eruption proceeded in multiple phases through at least 24 June; activity through 6 June is reported below.

Seismicity increased slightly on 28 May. At 1137 on the morning of 30 May a seismic crisis began that lasted 17 minutes with a total of 34 events. Tremor appeared at 1155 beneath Dolomieu crater, and an eruption started within the pit crater formed on 23 December 2002. Lava fountaining was observed until 1400, after which most surface activity stopped. A lava flow ~400 m long and 250 m wide extended into the W part of Dolomieu. The total volume of lava emitted during the 30 May activity was estimated to be 0.2-0.3 x 106 m3. Seismicity beneath the crater continued, with intermittent weak tremor being registered through 3 June. No deflation was detected, and there was strong degassing in the collapse area.

On 4 June at 1155 the eruption started again from the same site, enlarging the lava flow in the W part of Dolomieu crater. Lava fountains reached 15 m in height. Steady lava emission continued into 6 June (figures 69 and 70). Volcanic tremor remained stable until the morning of 6 June, when a decreasing tendency was noted. After a short phreatic eruption, the second phase of this eruption stopped on the evening of 6 June. The lava-flow field had grown to ~600 x 400 m in size by that time (figure 71).

Figure (see Caption) Figure 69. Photograph of the SW part of Dolomieu crater at Piton de la Fournaise at 0812 on 6 June 2003 showing the active vent and part of the recent lava-flow field. View is towards the W. Courtesy of OVPF.
Figure (see Caption) Figure 70. Photograph of the W part of Dolomieu crater at Piton de la Fournaise at 0850 on 6 June 2003 showing the active vent and most of the recent lava-flow field. View is towards the SW. Courtesy of OVPF.
Figure (see Caption) Figure 71. Topographic map of Dolomieu crater at Piton de la Fournaise showing the extent of the lava-flow field on 30 May and 6 June 2003. Elevations are in meters, and the Gauss-Laborde Piton des Neiges system is used for the map coordinates. Courtesy of OVPF.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire volcanologique du Piton de la Fournaise (OVPF), Institut de Physique du Globe de Paris, 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France.


Karangetang (Indonesia) — May 2003 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Ash explosions from January through May 2003

During 6 January-4 May 2003 explosions produced ash that fell on various parts of the crater. The S (main) crater emitted "white-gray ash" that reached 150-400 m high. On some nights, a red glow was visible reaching 25-50 m over the crater. The N crater emitted a "white-thin ash" plume that reached 50-300 m high. Fluctuating seismicity was dominated by multiphase earthquakes and emissions (table 7). The Alert Level remained at level 3 (on a scale of 1 to 4) through at least 4 May.

Table 7. Seismicity at Karangetang during 6 January-4 May 2003. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Explosion Multiphase Emission Tectonic Avalanche
06 Jan-12 Jan 2003 11 16 2 178 178 28 --
13 Jan-19 Jan 2003 9 16 2 133 42 40 --
20 Jan-26 Jan 2003 12 37 -- 189 52 27 --
27 Jan-02 Feb 2003 6 28 1 228 118 22 --
03 Feb-09 Feb 2003 17 84 1 162 306 23 --
10 Feb-16 Feb 2003 9 30 1 85 102 16 --
17 Feb-23 Feb 2003 9 46 -- 97 8 32 --
24 Feb-02 Mar 2003 48 68 -- 78 17 34 --
03 Mar-09 Mar 2003 19 29 1 48 9 24 398
10 Mar-16 Mar 2003 14 11 -- 27 7 30 125
17 Mar-23 Mar 2003 24 145 -- 82 4 23 4
24 Mar-30 Mar 2003 21 68 -- 35 1 33 2
31 Mar-06 Apr 2003 8 83 -- 30 -- 36 --
07 Apr-13 Apr 2003 18 143 -- 116 6 50 --
14 Apr-20 Apr 2003 12 257 32 226 26 32 7
21 Apr-27 Apr 2003 13 373 2 93 6 17 309
28 Apr-04 May 2003 32 255 -- 243 1 21 29

On 11 and 12 January, ash explosions at the S crater were accompanied by glowing material that reached 200 m high and scattered 500 m toward the E and W parts of the crater. An ash column rose up to 500 m above the crater. Two explosions at the S crater on 14 January produced an ash column up to 300 m high; glowing material rose up to 50 m and fell around the crater. Some of the material entered the Beha River, and ash fell into the sea E of the island. Explosions on 29 January and 6 February caused ashfall SW (Beong village) and SSW (Akesembeka village, Tarurane, Tatahadeng, Bebali, and Salili), respectively. A booming noise was heard frequently throughout the report period, and during early February was sometimes accompanied by thick gray emissions up to 350 m above the crater.

Beginning in early March, the booming noise was accompanied by glowing lava avalanches that traveled from the summit towards the Kahetang (1,250 m), Batuawang (750 m), Batang (1,000 m), and Beha (750 m) rivers. On 6 March an explosion from the S crater ejected ash 750 m high that fell in the E part of the crater. The noises and avalanches decreased during mid-to-late March.

An explosion on 15 April was followed by lava avalanches toward the W and S parts of the crater. A loud blasting sound was heard, and a dark-gray ash column reached 1,500 m. Ash fell to the E around Dame and Karalung villages, and over the sea. Lava avalanches from the S crater traveled 1,000 m toward the Batang and Batu rivers. On 20 April another explosion produced a 1,500-m-high ash column, and ash fell E over the sea. This explosion was followed by lava avalanches and a pyroclastic flow toward the Batang river that reached as far as 2,500 m. Lava avalanches extended 1,500 m down the S and W slopes. Blasting noises occurred for about 3 minutes.

On 22 April an explosion ejected ash and glowing material. The ash column reached 1,750 m and ash fell on the W slope, including Lehi, Mini, Kinali, and Hiung villages, while glowing material rose up to 750 m. This explosion was followed by lava avalanches towards the W and S that were accompanied by a pyroclastic flow toward the Batang river that extended 2,250 m. On 24 April, an explosion ejected ash to 750 m and ash fell eastward into the sea. Glowing material from the explosion traveled toward the W slope. During late April, the booming noises were once again accompanied by continuous glowing avalanches. These decreased during the first days of May.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Karymsky (Russia) — May 2003 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Frequent ash plumes generated from October 2002 through May 2003

According to the Kamchatka Volcanic Eruptions Response Team (KVERT), the alert level Color Code remained at Yellow (volcano is restless; eruption may occur) from October 2002 to 27 February 2003, when it was dropped to Green (volcano is dormant; normal seismicity and fumarolic activity). The level was raised again to Yellow in March, lowered to Green on 29 March, and raised to Yellow on 18 April, where it remained through May. Seismicity was above background levels until 20 February, after which it fluctuated between at and above background levels until 16 May, when seismicity remained above background levels. All times are local (= UTC + 11 hours, + 12 hours after 26 October).

Activity during October 2002. From 4 to 31 October, ~200-250 local shallow seismic events occurred per day. The character of the seismicity indicated ash-and-gas explosions to heights of 1,000 m above the volcano (~2,500 m altitude) and gas blow-outs. A faint 10-km-long plume extending SSE was visible in an AVHRR satellite image; no ash was detected. Seismicity on 25-26 October indicated possible vigorous gas emissions lasting 5-10 minutes, with the probability of a lava flow. At 1350 on 31 October, pilots reported that an ash plume rose 4 km and extended SE. According to seismic data from the Kamchatka Experimental and Methodical Seismological Department (KEMSD), the character of seismicity after 1400 on 31 October indicated a moving lava flow. At 1314 on 31 October, the MODIS satellite image showed a large bright thermal anomaly at the volcano and a plume ~60 km long that extended WSW. At 1100 on 1 November, pilots reported that an ash plume rose 4 km and extended SE.

Activity during November 2002. Local shallow seismic events totaled ~200-250 each day. The character of the seismicity indicated ash-and-gas explosions to heights of 1,000-2,000 m above the volcano and vigorous gas emissions lasting 5-10 minutes. At 1605 on 1 November, a 50-km-long plume was observed extending E in satellite imagery; no ash was detected. According to data from KEMSD, at 2357 on 20 November, a seismic event lasting 20 minutes indicated that ash explosions to heights of 1,000 m above the crater and hot avalanches possibly occurred. On 27 November, a >100-km gas-and-steam plume extending ESE from the crater of the volcano was observed in MODIS satellite imagery. Helicopter observations by KVERT scientists at 1151 on 1 December identified an ash plume to ~500 m above the crater extending SE.

Activity during December 2002. Local shallow seismic events totaled ~190-230 each day. The character of seismicity indicated that ash-gas explosions to heights of 1,000 m above the volcano (~2,500 m altitude) and vigorous gas emissions lasting 5-10 minutes were possibly occurring. The top of the volcano and its SE flank were covered with recent ashfall and debris from continuing Vulcanian / Strombolian eruptions. The old crater was covered by the new cinder-ash cone. On 12 December, two sectors of ash falls extending S and SE from the volcano were noted in a MODIS satellite image.

Activity during January 2003. Local shallow seismic events totaled ~110-200 each day. The character of seismicity indicated that ash-gas explosions to heights of 1,000 m above the volcano (~2,500 m or 8,200 ft. ASL) and vigorous gas emissions lasting 5-10 minutes were possibly occurring. From 1559 until 1609 on 8 January, a series of shallow events that possibly indicated hot avalanches were registered. On 9 January, a ~50-km plume extending ESE from the volcano was noted.

Activity during February 2003. The alert level Color Code remained at Yellow until 27 February, when it was lowered to Green (volcano is dormant; normal seismicity and fumarolic activity). According to satellite data from Russia, a weak thermal anomaly was noted on 3 February. Seismic activity was at background levels on 20-23 February.

Activity during March 2003. The alert level Color Code was raised to Yellow as the activity of the volcano slightly increased. Seismic activity was at background levels on 13-18 March and slightly above background levels on 19 March when seismic data indicated possible hot avalanches. Weak volcanic earthquakes were also registered on this day. According to MODIS-satellite data from Russia and the USA, ash deposits extending more than 30 km SW from the volcano on 17-20 March and gas-steam plumes drifting more than 15 km NW and SW on 18 March and on 20 March, respectively, were noted. Seismic activity dropped to background levels for the week of 20 March. According to satellite data from Russia, a weak thermal anomaly was observed on 25 March, and a gas-and-steam plume extending 10 km ESE was noted on 28 March. According to helicopter observations on 31 March by the Institute of Volcanology (IV), Far East Division, Russian Academy of Sciences, the large old active crater of the volcano and its black ESE flank were noted, but the new cinder-ash cone was not seen. This cone was probably destroyed and its products formed ash-deposits extending >35 km ESE, which were noted on the 17-18 March MODIS-satellite images.

Activity during April 2003. The alert level Color Code was dropped to Green during the week of 29 March-4 April, when seismic activity was at background levels. Seismicity rose above background levels during the week of 18-24 April, when ~40-100 volcanic earthquakes per day were recorded, and the hazard status was raised to Yellow. The character of the seismicity indicated ash-and-gas explosions up to 1,000 m above the crater. According to satellite data from Russia, ash deposits up to 35 km or longer extended in different directions on 19-22 April. According to observers from IV, on 18-24 April occasional ash-gas explosions up to 2,500 m above the crater occurred each day, and on 21 April, an ash-gas plume rose 1,500 m. Seismic activity was above background levels on 24-27 April and at background levels on 27-30 April. During 24-26 April 50-100 volcanic earthquakes per day were registered. The character of the seismicity indicated that three eruption events (possibly ash-and-gas explosions and rock avalanches) occurred on 24 April. According to satellite data from Russia, wide ash deposits longer than 35 km and three narrow ash deposits less than 5 km long extending SE and W and SW from the volcano, respectively, were noted on 25 April and 28-29 April. According to observers from IV FED RAS, on 24 April, an ash-gas plume rose 2,500 m above the crater.

Activity during May 2003. The alert level Color Code remained at Yellow for the month, with intermittent explosive eruptions continuing. Occasional explosions up to 1,500 m above the volcano, producing ash, were considered to be possible, as well as ashfall within a few tens of kilometers. Seismic activity was at background levels during 3-16 May. According to satellite data from Russia, the summit of the volcano was black on 4 May. For the week of 10-16 May, seismic data indicated that 10 ash-and-gas explosions reached heights up to 1,000 m above the crater, and hot avalanches possibly occurred. According to satellite data from the USA and Russia, a weak 1-pixel thermal anomaly on 14 May, and strips of ash deposits extending >10 km to the S, SSE and SE on 14-15 May were noted. Seismicity was above background levels on 16-30 May.

During 18-21 May, 150-320 local shallow events occurred per day. The character of the seismicity indicated ash-and-gas explosions to heights of 1,000 m above the volcano, gas blow-outs and hot avalanches. According to satellite data from the USA and Russia, a 2-4-pixel thermal anomaly was observed during 18-22 May. Ash deposits on snow E and SE of the volcano were noted on 18 May. Gas-steam plumes extending up to 45 km NE and N of the volcano on 19 and 21 May were noted. For the week of 24-30 May, 280-330 local shallow seismic events occurred per day. The character of the seismicity indicated ash-and-gas explosions to heights of 1,000 m and gas blow-outs. A thermal anomaly continued to be observed. On 25-26 May, gas-and-steam plumes extending 15-115 km SSE from the volcano were noted. Ash deposits on the snow in a different direction from the volcano were noted on 26-27 May.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Kilauea (United States) — May 2003 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Continued lava flows during December 2002-June 2003 enter the ocean

From December 2002 through June 2003, lava from Kilauea continued to flow down the S flanks and into the ocean at several points. Seismicity generally continued at normal (background) levels. The Mother's Day flow, which began erupting 12 May 2002, continued through June 2003 (figure 158).

Figure (see Caption) Figure 158. Map of lava flows erupted during 1983 through 16 May 2003 from Pu`u `O`o and Kupaianaha. The most recently active flows are on the SW side of the flow-field. Courtesy of HVO.

Lava flows. During December 2002, lava continued to flow into the sea at entry points from two lava deltas. Moderate-to-large littoral explosions tossed spatter onto the front of the West Highcastle delta. Surface lava flows were visible on the coastal flat. On 15 December, shortly after 0700, the Wilipe'a lava delta partially collapsed, losing about 1/3 of its area. The tip of the delta retreated shoreward about 260 m and most of the collapse was in the central part of the delta. Around 15 and 16 December a substantial collapse occurred at the West Highcastle delta. On 28 December moderate collapses occurred at the Wilipe'a lava delta, apparently in the area of the 15 December collapse. Surface lava flows were visible on the coastal flat and upslope on Pulama pali.

During January and February 2003, lava continued to flow into the sea at the West Highcastle entry. Surface lava flows were visible on the coastal flat and upslope of it on Paliuli. Most of the surface lava flows on the coastal flat crusted over, so that less incandescence was visible than previously. Relatively large surface lava flows were visible starting on 21 January around 2035. Around 28 January a large lava breakout occurred from the West Highcastle lava tube about 170 m inland from the old sea cliff. As of 2 February the area of the new breakout was about 6.15 hectares (6.15 x 104 m2), and surface flows and lava in lava tubes traveled down the Pulama pali fault scarp. The Chain of Craters road was closed due to a wildfire that was started by lava flows. Surface lava flows continued to travel through vegetation, igniting fires and causing methane explosions. Rangers' office huts, restrooms, and signs were moved out of the path of the lava flow, which reached the Chain of Craters Road on 19 February at 1005. Beginning 15 February and going into March, lava flowed into the sea at the Kohala entry. Fresh lava oozed out of the cooling Kohala lava flow, both within the body of the flow and along its E margin.

During 26 February to 3 March lava continued to enter the sea at the West Highcastle entry, but the lava-flow rate was reduced to a small trickle at the Kohala entry. Small surface flows occurred along the W edge of the Kohala lava flow and surface lava flows were visible above the Pulama pali fault scarp. Tongues of lava were visible traveling down Pulama pali, part of the activity that began on 12 May 2002 (named the Mother's Day flow).

Through April 2003, Kilauea continued to erupt, sending lava down its SE flank either traveling over the land surface or through tubes. Lava entered the sea at the West Highcastle entry; activity there was sometimes weak, though one or more glowing areas were typically seen. On 16 April a large tract of land not over-run by surrounding lava (a kipuka or ahu in the local parlance) remained within the Kohola lava flow, still ~30 cm above the top of inflated lavas that surround it. On the eastern margin of the swath of lava flows going down the steep slopes of Pulama pali, one partly crusted-over lava stream was highly visible. The crater of Pu`u `O`o was dark and obscured by fumes, but eruptive activity at Pu`u `O`o continued unabated. The flows on Pulama pali were frequently visible at night as streams of incandescence from the top of the pali down to the coastal flats. Late in April, the E arm of the Mother's Day flow split in two with the W segment being more active. A new ocean entry near Lae'apuki only lasted a day before the flow stagnated. Scattered surface breakouts were seen throughout the inflating Kohola flow, especially on its W side. As of 24 April, lava entered the ocean at two points along the West Highcastle delta.

In early May, lava flows continued to descend the S flanks and pour into the sea. On 12 May lava began to enter the sea again at the West Highcastle lava delta. Surface lava flows were visible on the coastal flat and the Pulama Pali fault scarp. During June, lava continued to flow down Kilauea's SE flank, with surface lava flows occasionally visible on the coastal flat and upslope at Pulama pali, and Paliuli. Small amounts of lava continued to flow into the sea at Highcastle beach.

Geophysical activity. During December 2002 and January 2003, seismicity was generally at normal levels. The swarm of long-period earthquakes and tremor beneath Kilauea's caldera, occasionally seismically active since June 2002, continued to show some short bursts of tremor interspersed with small earthquakes. Small inflation and deflation events occurred at Pu`u `O`o and Uwekahuna tilt meters. The Pu`u `O`o tiltmeter showed deflation for about one week from 10 to 17 December. During 27-28 December, slight deflation occurred at the Uwekahuna and Pu`u `O`o tiltmeters.

Kilauea's summit began to deflate on 20 January 2003 at 1710, and Pu`u `O`o began to deflate a few tens of minutes later. Both areas deflated well into the next day. On the 21st at 1610 rapid, brief inflation began at the summit. The inflation and preceding deflation were centered near the NE corner of Halemaumau Crater, the normal center of small deformation events. Seismicity increased with the deformation events, returning to normal levels afterwards. By 22 January seismicity had returned to its normal level, with the long-lasting swarm of long-period earthquakes and tremor at Kilauea's summit continuing at weak-to-moderate levels.

During February and March, seismicity was at background levels. The long-lasting swarm of long-period earthquakes and tremor at Kilauea's summit continued at low-to-moderate levels. On 9 and 10 February, short periods of deflation and inflation occurred at the Uwekahuna and Pu`u `O`o tiltmeters. Moderate tremor was recorded by the nearest seismometer to Pu`u `O`o until the seismometer broke on 5 March. Moderate deflation occurred on 8 March, first at the Uwekahuna tiltmeter and then at the Pu`u `O`o tiltmeter. According to a news report, a member of a tour group suffered burns on 10 March when he fell on hot lava while hiking near Chain of Craters road.

For about a week in early April, volcanic tremor at Pu`u `O`o was relatively high and small deformation changes occurred, mostly at Pu`u `O`o. During 16-17 April, the Uwekahuna tiltmeter at Kilauea's summit recorded three small inflations, the last apparently right at its crest. Pu`u `O`o has generally followed suit, though in this case showing only two of the inflations very well. These tilts are not major but continue to illustrate the clear connection between Kilauea's summit, where most tilt events start, and Pu`u `O`o, 20 km away, where the tilt events follow a few minutes later. Seismicity during the week was at low to normal levels. Instruments continued to register the summit swarm of long-period earthquakes and tremor, which began last June. Volcanic tremor at Pu`u `O`o remained elevated, as has been the norm for more than a week.

During 30 April to 6 May, distances measured across Kilauea caldera between two points ~10 km apart, remained stable as they have since early 2003. There had been consistent progressive lengthening of this distance during late 2001 through mid-2002, and some minor fluctuations after that. In general, tilt during late April through 2 May changed little at Uwekahuna station (W side of the caldera), and showed a progressive decline at Pu`u `O`o station (E of the caldera). In the first few days of May slight inflationary tilt appeared at both stations.

Seismicity at Kilauea's summit was at moderate-to-high levels from about 1 June through 14 June, with many small, low-frequency earthquakes occurring at shallow depths beneath the summit caldera. The tiny earthquakes occurred at the notably high rate of 2-4 per minute. Little or no volcanic tremor accompanied the swarm, however. Volcanic tremor at Pu`u `O`o remained moderate to high, as is the norm. A quasi-cyclic inflation and deflation occurred at Kilauea's summit and at Pu`u `O`o during the week of 6-13 June, but did not culminate in significant overall tilt.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Lokon-Empung (Indonesia) — May 2003 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Increased explosive activity during January-April 2003; local ashfall

During 6 January-4 May 2003, higher-than-normal activity was dominated by deep and shallow volcanic earthquakes (table 5), along with gas-and-ash emissions. Several explosions occurred during a period of increased activity in late January-early April. Throughout the report period, a "white-thick ash" emission rose 25-500 m above Tompaluan crater. The Volcanological Survey of Indonesia (VSI) issued a special report during 1-13 February 2003 that described activity in 2002 and early 2003 leading up to the recent increase in activity (table 6).

Table 5. Seismicity at Lokon during 6 January-4 May 2003. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Emission Tectonic Explosion
06 Jan-12 Jan 2003 1 6 10 13 --
13 Jan-19 Jan 2003 1 3 -- 20 --
20 Jan-26 Jan 2003 8 6 4 23 --
27 Jan-02 Feb 2003 6 4 31 11 --
03 Feb-09 Feb 2003 239 763 4 9 --
10 Feb-16 Feb 2003 32 23 7 14 4
17 Feb-23 Feb 2003 239 763 4 9 1
24 Feb-02 Mar 2003 97 353 52 19 12
03 Mar-09 Mar 2003 -- 3 185 6 2
10 Mar-16 Mar 2003 -- -- 90 14 --
17 Mar-23 Mar 2003 2 4 38 17 --
24 Mar-30 Mar 2003 49 335 33 7 1
31 Mar-06 Apr 2003 7 130 5 18 1
07 Apr-13 Apr 2003 4 15 86 17 --
14 Apr-20 Apr 2003 44 285 -- 17 --
21 Apr-27 Apr 2003 46 98 -- 14 --
28 Apr-04 May 2003 25 71 -- 24 --

Table 6. Summary of a special report of activity at Lokon during 2002-2003. Courtesy VSI.

Date Event
09 Feb 2002 An explosion ejected ash to ~ 1,000 m above the crater. Ash fell on Kakaskasen, Telete, and Rurukan villages in the Tondano District in thicknesses of 0.5-2 cm.
10 Apr 2002 At 2302 volcanic earthquakes began to increase, reaching a total of 184 events. An explosion at the same time ejected ash to ~ 1,000 m and glowing material to 250 m above the crater. Ash fell on some villages in thicknesses of 1-3 mm.
12 Apr 2002 At 1816 an explosion ejected ash to 800 m and glowing material to 150 m. Ash drifted S and fell around Kayawu village.
23 Dec 2002 At 0532 an explosion at Tompaluan crater produced an 800-m-high ash column. Ash drifted S and fell around the edifice. Before the explosion, an increase in seismicity (130 volcanic earthquakes in less than 12 hours) was noted.
03 Feb 2003 Volcanic earthquakes began to increase, with a total of 255 events occurring through 7 February.
08 Feb 2003 Tremor was followed by an explosion at 0443 that ejected ash to 1,400 m above the crater. The ash drifted S and was accompanied by glowing material. Ash fell around Taratara, Waloan, and Kayawu villages, at thicknesses of 0.5-1 cm.
10 Feb 2003 After two days repose, at 2219 an explosion occurred. The height of the ash column could not be observed due to heavy rain near the summit. The explosion was preceded by a booming sound. Based on seismograph recordings, the explosion was of medium-high intensity. Explosion earthquakes stopped at 2335. A phreatic eruption at 1406 lasted for 8 minutes.
12 Feb 2003 A significant increase in volcanic earthquakes, mainly during 0100-1000. An explosion at 1408 was followed by a larger explosion at 1102 (based on seismic data; visual observation obscured by thick fog). At 1133 the explosion diminished. At 1225 continuous tremor began with amplitudes of 13-55 mm that continued until 0046 on 13 February.

On 25 January, there was a felt shock (I on the MMI scale). During late January, ash emissions from the crater thickened and emission earthquakes increased. On 3 February the number of deep volcanic earthquakes began to increase at 0600; by 1000, 35 had occurred.

Ash emissions continued to thicken and deep and shallow volcanic earthquakes increased during early February. Emission earthquakes also increased, indicating some low ash explosions. On 8 February at 0443 an explosion ejected ash and glowing material. A booming sound was heard for 30 seconds. A dense ash cloud reached 1,400 m above the crater. Ash fell over the S part of the crater and around Kayau, Tara-tara I and II, and Woloan II and III villages. Ashfall reached thicknesses of 0.5-1 mm. The Alert Level was increased from 2 to 3 (on a scale of 1-4).

Explosions occurred on 10 February at 1405 and 2219. The maximum amplitude of the explosion earthquakes was 50 mm. The height of the ash column could not be observed due to heavy rain. Explosion activity continued on 12 and 16 February. VSI reported that the Alert Level was increased to 4 on 12 February at 0800. From that time through 1100 on 12 February, shallow volcanic earthquakes increased to a total of 164. An explosion followed at 1102, but the ash column could not be observed due to heavy rain. Tremor was recorded beginning on 13 February with amplitudes of 0.5-38 mm.

VSI reported that during 18-20 February, there were 16 explosions and a "white-gray ash" column rose 500 m. An explosion on 22 February was preceded by a swarm of 224 shallow volcanic earthquakes. On 21 February, 29 deep volcanic earthquakes occurred. Within two days, the number of volcanic earthquakes decreased gradually and ended with a large explosion on 23 February at 1034. The explosion was accompanied by thundering and a booming sound, and a "thick-gray ash" column reached 2,500 m above the crater. Ash drifted toward the SE. Tremor (with an amplitude of 1-20 mm) began soon after the explosion. Lokon was at Alert Level 3 during 17-23 February.

During 24 February-2 March, 12 explosions occurred and a "white-gray ash" column rose 300 m. An explosion on 2 March at 2129 was accompanied by glowing material that fell within the crater. A dark gray ash column rose 1,500 m above the crater and ash fell toward the Tondano area (~14.5 km from the crater) with a thickness of ~1 mm. Tremor (with amplitudes of 0.5-25 mm) began soon after the explosion. The explosion had been preceded by a swarm of 204 shallow volcanic earthquakes. A total of 77 deep volcanic earthquakes occurred during 26 February-1 March 2003. Following the 2 March explosion, there were 2 medium-intensity explosions that produced a ~600-m-high "white-gray ash" column.

Ash explosions and emission earthquakes ended on 14 March. On 24 March, the Alert Level was lowered to 2. Normal activity continued, comprised mainly of "white-thick ash" emissions from Tompaluan crater that reached up to 300 m. Tremor continued with amplitudes of 0.5-12 mm.

On 27 March at 0156, an explosion produced a 1,500-m-high ash column that was accompanied by glowing material. Booming and blasting sounds were heard. Ash drifted S and some fell around the edifice, while glowing material reached 400 m high before falling around the crater. Activity was low after the explosion. Tremor continued with amplitudes of 0.5-24 mm.

Following another explosion on 1 April, activity at Lokon decreased. A "white-thick ash" plume continued to rise 100-450 m above the crater. Seismicity was dominated by tremor with amplitudes of 0.5-25 mm. Shallow volcanic earthquakes increased on 15 April to 106 events. Through 20 April, the daily number of shallow volcanic earthquakes fluctuated between 23 and 56 events, but there were no explosions. Activity remained low, but above normal, through at least 4 May.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Mayon (Philippines) — May 2003 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Three small ash-and-steam explosions during April-May 2003

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) reported small ash and steam explosions from the Mayon volcano on 5 April, 6 May, and 14 May 2003. The alert status for the area around the volcano remained at Alert Level 1 on a scale of 0-5 (indicating an increased likelihood for steam-driven or ash explosions to occur with little or no warning). PHIVOLCS reminded the public to continue avoiding entry into the 6-km-radius Permanent Danger Zone (PDZ), especially in the sectors where life-threatening volcanic flows might be channeled by gullies.

Activity during April 2003. Following a small ash explosion on 17 March 2003 (BGVN 28:03), a brief burst of ash and steam occurred at about 0600 on 5 April. The ash column rose to ~1.5 km above the summit crater before being blown SW. The explosion was recorded as a low-frequency volcanic earthquake, signifying a shallow source. Prior to the explosion, the volcano's seismic network had detected three small low-frequency volcanic earthquakes and three low-frequency short-duration harmonic tremors in the past 24 hours. Electronic tiltmeters indicated continuing slight inflation of the edifice. The increases in activity strongly indicated the likelihood of sudden ash explosions. Although no major eruption was expected immediately after the explosion of 5 April, there was growing evidence that magma was ascending the volcano's conduit.

Activity during May 2003. A small explosion from the crater at 0721 on 6 May produced a brownish ash-and-steam column that rose to ~450 m above the summit crater and was blown SW. The ash-and-steam column rose slowly with minimal noticeable force and was not detected by the volcano's seismic network, indicating a very shallow source. No significant seismicity occurred prior to the explosion. However, electronic tiltmeters on the N and S flanks continued to show inflation. Likewise, a precise leveling survey on 24 April 2003 showed a general inflation of the N flank. Alert Level 1 remained in effect.

At 1813 on 14 May, a small ash puff was emitted from the summit crater. This very brief explosion caused a small volume of ash and steam to rise less than 100 m above the crater and to later be blown NW. The Mayon Resthouse and Sta Misericordia seismic stations recorded the ash puff as a small-amplitude event. Prior to the ash explosion, one short-duration tremor was recorded. Volcanic gas outputs were notably moderate in volume, and the sulfur dioxide emission rates increased from the previous 1,824 metric tons per day (t/d) to ~3,088 t/d. The seismic characteristics associated with the ash and steam emission appeared similar to, though smaller than, previous explosions since 22 October 2002, indicating that this ash puff was very minor. This assessment was also consistent with the smaller volume of ash produced.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, PHIVOLCS Building, C.P. Garcia Avenue, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost. gov.ph/).


Monowai (New Zealand) — May 2003 Citation iconCite this Report

Monowai

New Zealand

25.887°S, 177.188°W; summit elev. -132 m

All times are local (unless otherwise noted)


Volcanic earthquake swarm April-May detected by T-waves

Monowai is a frequently active submarine volcano, with a volcanic swarm recorded in November 2002 (BGVN 28:02) and another during April-May 2003. A major part of its volcanic activity is detected by hydro-acoustic waves (also called T-waves) generated during the eruptions, through the Réseau Sismique Polynésien (RSP), the French Polynesian seismic network (table 1).

Table 1. Seismic station codes and coordinates of instruments in the French Polynesian seismic network. Courtesy of RSP.

Station code Latitude Longitude
PAE 17.6619°S 149.5800°W
PPT 17.5682°S 149.5761°W
PPN 17.5308°S 149.4322°W
TIA 17.5578°S 149.3458°W
VO 17.7825°S 149.2517°W
MEH 17.8753°S 148.0661°W
PMOR 15.0017°S 147.8942°W
VAH 15.2364°S 147.6272°W
TBI 23.3489°S 149.4608°W
RKT 23.1197°S 134.9733°W

A strong volcanic swarm located on the Monowai seamount was recorded during April-May 2003 (figure 13). This volcanic swarm was very well located around Monowai, using the inversion of the arrival times of T-waves recorded by the network. As an example of the precision of location, with the contribution of some IRIS stations like RAR (Cook Island) to enlarge the array dimension, the ellipse of error can typically be 13 km on the major axis and 2 km on the minor axis, with a Root Mean Squared (RMS) of 0.25 s.

Figure (see Caption) Figure 13. T-wave amplitude versus time for the TVO seismic station, showing the three distinct and well separated episodes of the Monowai Seamount swarm. Courtesy of RSP.

This volcanic swarm was composed of three episodes lasting 4-5 days each. It started suddenly on 10 April 2003 with a rate of 100 events per day (about one signal every 10 minutes) and reached a maximum intensity later that day. The average rate over the first four days was 75 events per day (300 signals between 10 and 14 April), but the number of events detected is thought to be underestimated by a factor of at least 3 to 5 because only the main packets of recorded T-waves were picked. Volcanic activity started again during 19 April, with 120 events recorded in the next five days. The last episode occurred between 3 and 6 May, with ~100 volcanic signals recorded. The swarm ended as suddenly as it started.

Geologic Background. Monowai, also known as Orion seamount, rises to within 100 m of the sea surface about halfway between the Kermadec and Tonga island groups. The volcano lies at the southern end of the Tonga Ridge and is slightly offset from the Kermadec volcanoes. Small parasitic cones occur on the N and W flanks of the basaltic submarine volcano, which rises from a depth of about 1500 m and was named for one of the New Zealand Navy bathymetric survey ships that documented its morphology. A large 8.5 x 11 km wide submarine caldera with a depth of more than 1500 m lies to the NNE. Numerous eruptions from Monowai have been detected from submarine acoustic signals since it was first recognized as a volcano in 1977. A shoal that had been reported in 1944 may have been a pumice raft or water disturbance due to degassing. Surface observations have included water discoloration, vigorous gas bubbling, and areas of upwelling water, sometimes accompanied by rumbling noises.

Information Contacts: Dominique Reymond and Olivier Hyvernaud, Laboratoire de Geophysique, CEA/DASE/LDG Tahiti, PO Box 640, Papeete, French Polynesia.


Nyiragongo (DR Congo) — May 2003 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


2002-2003 lava lake activity, thermal radiation, and CO2 and SO2 emissions

Nyiragongo, located along the East African Rift (figure 27), ceased generating flank lava flows following its January 2002 eruption, but remained active inside its summit crater where it hosts a restless lava lake. Observations made by staff from the Goma Volcano Observatory (GVO) in August 2002 included the opening of a new sinkhole, and measurements of CO2 and O2 gas concentrations at three fumarolic areas (locally termed mazukus). For context, handbook values for CO2 concentrations and their resulting symptoms in humans are discussed. The GVO has also brought to light reports from local residents of abnormally rapid ripening of picked bananas (and in some cases yams) prior to the January 2002 eruption.

Figure (see Caption) Figure 27. Schematic map illustrating the trend of the East African rift. The rift's overall shape is curved, concave towards the E, and it contains a central segment composed of two branches passing on the E and W sides of Lake Victoria (V). The overlapping triangles labeled N at the N end of the rift's Western segment identify the approximate location of Nyamuragira and Nyiragongo volcanoes N of Lake Kivu. The latter volcano sits to the E and closer Lake Kivu. This figure is based on one in an online book by W.J. Klius and R.I. Tilling of the US Geological Survey. A smaller scale map showing some often mentioned local features appeared in BGVN 26:03 (Nyamuragira report).

This report also discusses GVO and resident volcanologist summit crater visits during late November 2002-early May 2003. In all cases the lava lake within the summit crater remained dynamic, with one or more windows on the crater floor exposing agitated molten lava. During this interval, degassing continued and tephra fell on the upper flanks. A summary of some ancillary observations such as seismicity measured on the GVO network is also provided.

A later section discusses ash plumes as described in aviation reports. Ash clouds extended as visible swaths on satellite imagery for up to ~100 km from the volcano. These reports include some as recent as 15 May 2003. The final section discusses MODIS thermal imagery during late 2002 through early 2003. The 2003 MODIS data reflect the lava lake seen deep within the summit crater. Finally, satellite data show atmospheric SO2 burdens for the Nyiragongo-Nyamuragira region during 13 December 2002 to 15 June 2003.

GVO's August 2002 field observations. On 12 August 2002 GVO was called to Bugarura village upslope from Munigi on the S flank. A new sinkhole had developed that morning, leaving a steaming opening ~3-4 m in diameter. Scientists could not see the opening's bottom through the steam, but they timed falling stones and estimated the sinkhole's depth at ~15 m. The odorless gas being emitted led them to believe that the steam chiefly represented vaporized groundwater.

GVO staff and collaborators hoped to advance gas monitoring efforts by measuring CO2 and other escaping gases at multiple sites in the region. They continued to make spot-checks with hand-held devices, but also sought a more-nearly continuous record from dedicated monitoring instruments. Although noxious gases are a familiar problem in volcanic areas, some of the gas concentrations in the rift are surprisingly high for areas adjacent human habitation. The Swahili word mazuku allegedly connotes places associated with "evil winds," and the term is currently used to describe fumarolic areas, which have also been described as dry gas vents.

Possible precursors to January 2002 eruption. In the weeks before the 17 January 2002 eruption, there were widespread reports of picked crops ripening at unusually rapid rates. From the settlements of Rusayo (8 km SW of the summit) and Katale (~18 km NNE of the summit and ~10 km NE of Nyamuragira's summit) people reported in early January that the normal 5-day ripening processes of bananas placed in the ground decreased to only 2 days. From Rusayo, people also reported that sweet potatoes, which are normally sun-dried on the ground surface, dried even without sun. GVO observers saw this first-hand and, as a result sought funds to hire porters and observe Nyiragongo directly, but the eruption began before the expedition started.

Although radiant or conductive heat may have been a factor (since heat speeds up the ripening process), heat's transport to broad areas on the surface by conduction through rocks would be comparatively slow. Heat at depth may have more rapidly reached the surface in the form of heated, liberated gases (such as steam). Discussions with gas chemist Vern Brown and a scan of the literature also revealed that the release of certain gases could conceivably have played another role as well. Both acetylene (C2H2, a colorless, flammable gas with an odor similar to garlic and slightly less dense than air) and C2H4 (ethylene, a colorless, faintly odorous gas less dense than air) speed up the ripening process in many agricultural products (including bananas and yams). Ethylene can cause banana peels to shift from green to yellow at low (ppm) concentrations. These gases occur naturally and may form or escape in association with heating organic material. In contrast, CO2 generally slows the ripening process. For the interval prior to the January 2002 eruption, observers lack documentation of increases in degassing or heating.

Seismicity and crater visits, November 2002-May 2003. Multiple GVO crater visits were documented: 23-25 November 2002; 9-10 and 21-22 January 2003; 4-5 and 25-26 February 2003; 18-19 March 2003; 22-24 April 2003; 6 May 2003. GVO also sent out occasional updates discussing seismicity and other observations.

During 23-25 November 2002, GVO team members Kasereka Mahinda, Ciraba Mateso, Arnaud Lemarchand, and Jacques Durieux watched the active lava lake on the crater floor. The lake was then located within the southern crater in the 16 November collapsed area. Two broad openings lay at the bottom of this new depression; both permitted viewers to see the lava lake's surface. A third, smaller opening ejected only high-temperature gases. The great quantity of gas occupying the bottom of the crater thwarted efforts to carry out a precise laser-based measurement of the depth to the lava-lake surface. The visual estimate for this depth from the summit was ~700 m.

The lava lake was very active, as it was before 1977. The lava surface was disturbed by the rise of abundant large gas bubbles. Breaking bubbles threw molten fragments onto the margins of the two openings. Consistent with the bubbles and constant degassing, a gas plume was visible at night from Goma. Occasionally, light dustings of tephra and Pele's hair came from the crater and fell on the surrounding areas. Although the current lake was impressive, the observers pointed out that the crater has contained a dynamic lava lake for nearly 50 years. The earlier lake's surface was much larger and stood nearly 500 m higher.

Jean-Christophe Komorowski accompanied GVO staff on a climb up Nyiragongo on 9-10 January 2003. While on the upper slopes, the climbers heard a few detonations associated with more energetic gas plumes. From the rim they saw a deep pit in the SW part of the inner crater. There were two vents on the crater floor separated by a thin rocky ridge. The SW vent (vent A) was characterized by a high-pressure fluctuating gas jet that gave off very loud roaring noises, along with flames of incandescent and combusting gases. Condensing steam clouds here were dense, rendering visual observations difficult. The other active vent (vent B) was just to the NE and consisted of an area of stable incandescence at least 100 m in diameter with an active lava fountain. Projections of lava spatter there took place every 30-60 seconds and typically reached 40-60 m in height.

The large area of incandescence indicated that a small lava lake must have been present deep in the pit, although the observers never saw the moving lava surface. Peak high-pressure degassing in vent A did not necessarily correlate with peak lava fountaining activity at vent B. Observations were conducted for several hours at night and during the day. Laser binocular measurements established the crater floor's depth at ~800 m. Very light ash consisting of Pele's hair and tears, and millimeter-sized vitric scoria fragments fell continuously on the rim. Conditions were made difficult at times when the SO2-rich gas plume blew towards the W.

Acid rain that flushed the volcano's SO2 gas plume, sampled at elevation 2,600 m, had a pH of 2.26. In contrast, rain collected in Kibati (below 2,000 m on the SSE flank) on 6 January had a pH of 6.15. Damage to about two-thirds of the vegetation by acid plume condensates was evident above 2,900 m on the SW and S flanks.

Compared to the last visit by GVO staff, 30-31 December 2002, degassing had increased significantly. However the level of the lava in the crater and/or lake had not risen and might have dropped lower in the conduit. The gas-plume height, measured regularly by the GVO, reached 4,500-5,000 m altitude. At times, although the very loud roaring sound remained unchanged, the entire crater became gas-filled to an extent that incandescence was entirely blocked, even from the vantage of surrounding villages. Information brought regularly to the attention of the GVO by the populations of Kibati, Mudja, Mutaho, and Rusayo villages attested to their exposure to the gas and ash plumes from Nyiragongo. Through at least early May 2003 the volcano's hazard status remained at yellow ("vigilance," the second lowest level on a 4-step scale).

Another climb enabled observers to peer into the crater during 21-22 January 2003 (figure 28). Compared to the 9-10 January observations, only one opening remained active inside the crater. The former vent A probably disappeared following a collapse. The active opening had about the same diameter and its lava fountain attained similar heights compared to earlier vent B observations. The level of the lava had not changed in the crater, remaining deep in the volcanic conduit. Degassing had increased significantly. Periodically more vigorous lava fountains sent smaller fragments to higher elevation that cooled to black scoria fragments. A small scoria cone had started to build around the active vent. Recent small lake overflows formed thin lobate lava sheets around the vent. The ascent velocity of individual gas plumes within the crater varied between 7 and 12 m/s.

Figure (see Caption) Figure 28. A photo of Nyiragongo's crater and the one opening in the lava lake visible on 22 January 2003. Copyrighted photo used with permission of GVO.

A series of incandescent pits extended to the SE of the active pit along a line that corresponds to a major pre-existing fault-fracture system trending N25°W. This system transected the crater from NW to SE and linked with the upper Shaheru fracture and 1977 vent network that reactivated in 2002. A hot fracture zone trended N10°E-N20°E in the NE part of the crater wall. This zone had extended into the active deep crater forming a conspicuous, elongate, vertical-walled canyon. Observers frequently heard and saw rockfalls, and noted that those events often generated plumes that spread and deposited ash over local vegetation. Intra-crater ash reached 5 mm in thickness. The gas plume remained rich in SO2. Rain water collected at the top of Nyiragongo had a pH of 2.84.

The late-January plume height estimated during favorable atmospheric conditions by GVO members varied from 4,500 to 5,500 m altitude. Often, the prevailing wind carried ash, cinder, and Pele's hair S towards Kibati, Rusayo, Mudja, and Mutaho villages.

A 13 February GVO report said that for four consecutive days, Pele's hair fell in Goma, 17 km SSW. Although cloudy and foggy due to the start of the rainy season, Nyiragongo's plume reached at least 5 km above the crater. Between Goma and the Nyiragongo stood heavy gray-to-black ash-rich clouds. The fall of Pele's hair was due to lava fountains inside the crater.

The same report noted that seismicity was probably lower than the previous week and consisted of low tremor, few long-period earthquakes, and almost no tectonic earthquakes. Very small-amplitude seismic noise (small earthquakes) occurred, presumably due to collapses and perhaps intra-crater explosions.

GVO went on to say that one side effect of the ash falls was that villages around Goma had serious water shortages, since they rely on collecting rainfall. All UN agencies and NGOs were informed and asked to start potable water distribution around Goma. A few more physical problems might arise because of the Pele's hair, including stress on people's eyes and breathing. Crops around the volcano in some cases have been burned by acid rains and ash, while cattle might also suffer from ingestion of ash-polluted grass.

The 25-26 February ascent revealed more robust activity than observers had seen on their 4-5 February visit. By the latter date, all vegetation had died near the main crater. Approaching the rim in the upper 220 m of the ascent, tephra falls had accumulated to form deposits several centimeters thick; those, along with acidic plumes, had killed plants. The flora and fauna at lower elevations were still surviving, although they showed signs of serious stress. Loud sounds were audible several kilometers from the central crater. Intra-crater activity seemed intense, but thick fumes in the crater area thwarted day-time visibility. On 25 February views from the W rim revealed that a spatter cone had begun to grow on the crater floor. Lava fountaining occurred all night; discharging lava probably rose more than 100 m high, but it was difficult to assess the maximum rise height. Lava fountains chiefly came out at one spot, although a second, much smaller point of emission gave off mainly flames and sometimes scoria. Pele's hair fell all night long.

An update disseminated on 27 February 2003 noted that compared to previous weeks, during 21-27 February Nyiragongo's activity had decreased, although seismicity measured on the S flanks continued to contain low-amplitude tremor. S-flank seismicity also contained comparatively few long-period (LP) earthquakes. The update also said that local winds had begun to blow predominantly from the ENE, thus sweeping plumes and associated tephra falls clear of Goma. A 22 February visit to the SW-flank settlement of Rusayo revealed conspicuous tephra deposits on roofs and trapped in the crevices of banana trees.

During a visit to Nyiragongo on 18-19 March, GVO scientists observed a thick plume engulfing the crater. Two possible emission points were noted; one was related to powerful lava and ash emissions, and the other was related to a much weaker white-pink plume. An inner active cone was visible in the crater and was at least 200 m in diameter. Lava fountains rose to maximum heights of 150-200 m and as low as 50 m. Scoria ejection made observations difficult at times. Several permanent fumaroles, also observed during the previous visit, were seen in the crater.

Dario Tedesco noted that the cone morphology seemed slightly different from the trip 3 weeks earlier. He observed that on the N side of the crater a new platform had been formed, probably due to the continuous accumulation of ejecta, scoria, and ash. The team saw a huge lava fountain of at least 150-200 m in height. In contrast, when viewed in late February, fountains seemed to remain below ~100 m in height. The lava fountains generated abundant falling ash of millimeter size at the observation point, a process that lasted all night long.

Stronger and higher lava fountains, reaching almost 300 m high, were witnessed at 0230 on 19 March. The eruptive vigor as well as the intensity of the falling tephra declined at 0530. The last witnessed activity was of 50-m-high fountains. A second pit was noted on the E side of the crater that had been hidden during the night by the very thick plume.

For many days prior to visits on 22-24 April the seismic stations considered most representative of the Nyiragongo activity only registered very weak and steady continuous tremor. Although other types of seismicity were absent in the, A-type and C-type earthquakes occurred near the volcano. Despite the comparative seismic quiet, a prominent gas plume rose from the volcano. When weather conditions permitted, the plume top was measured at 5-6 km altitude.

The 22-24 April field excursion noted five distinct vents on the crater floor, almost continuous emissions of tephra, an agitated molten-lake surface that included emerging gas, and lava splashing 50-60 m high. Occasional waves of lava rolled across portions of the crater floor and walls. Excursion members also witnessed crater-wall collapses taking place along the NW and S fracture zones.

Widely felt earthquakes also continued in the region, presumably related to extension along the massive East African rift system. For example, three C-type events occurred on 23 April below Nyiragongo at a depth of ~15 km. During the whole day of 24 April, sustained tremor plus C-type events registered. On 25 April a few seismic events occurred amid sustained tremor. A main volcano-tectonic shock had been recorded and later a series of A-type events in the Nyiragongo field, between the S flank and Lake Kivu. Increasing tremor followed. For the rest of the week, the seismic network recorded a concentration of volcanic events to the NW and the S of the volcano, along the preferential fracture axis.

On 2-3 May unusually dense ash plumes were visible from Goma. Continuous ashfall occurred in many villages close to the volcano, and permanent tremor and long-period earthquakes were recorded. SO2 emission rates were relatively high during 1-6 May, with the largest emission on 3 May (~50,000 tons, see TOMS data below). UN peace keepers provided a 3 May helicopter flight that gave volcanologists clear views of the crater. The lava lake's molten surface appeared slightly larger than during a visit to the crater rim on 22-24 April. At that time a significant plume containing gas and ash rose high above the volcano.

On 6 May GVO climbers entered the village of Kibati, the usual departure point for the ascent, ~8 km from the crater rim. Kibati residents told how ash falls and acid rains had negatively affected local crops. For example, bean leaves had been burnt in many places. Along the ascent, at 2,260 m elevation, Pele's hair was found, including some intact individual strands 30 cm long. At 2,700 m elevation, thin ash grains completely covered the vegetation. At 3,200 m elevation on the S flank (~270 m below the summit), all vegetation had died.

Atmospheric conditions initially allowed quite clear views from the crater rim. The lava lake underwent violent outbursts from bursting of gas bubbles estimated at up to 40 m wide. The resulting projections of spatters and surges splashed on the walls of the pit. The lake had regained its former dimensions (~60 m across). The wider lake, recently seen from helicopter, had shrunken, leaving a solid platform on its side. Pressure of the escaping gases seemed very high and yielded a continuous roaring. GVO climbers again witnessed intermittent pale yellow-green flames hurling from the vents up to 50 m high.

At 0644 on 6 May a seismic shock was felt by the team on top of the volcano. It was recorded by the whole network as a low-amplitude long-period earthquake. Then, fog and gases halted further sightings into the crater. The fog lifted around 0100 on 7 May; at this time viewers saw a small narrow lava flow in the southern inner wall adjacent the active pit's margin ~200 m above the crater floor. The lava escaped out of what looked like a tunnel or tube. Although the lava descended at a steep angle and appeared to escape from the tube at a constant rate, its rate of advance remained slow. The lava front had not made it to the crater center. Below the tube, however, intricate individual lava flows had formed a long delta.

Aviation reports. A Volcanic Ash Advisory (VAA) for Nyiragongo was issued by the Toulouse Volcanic Ash Advisory Center (VAAC) on 6 March 2003. That advisory stated, "A cloud probably containing ash can be seen on [visible wavelength] METEOSAT imagery extending 100 NM [(nautical miles, 185 km)] westward from the volcano. "Several hours later the ash cloud was no longer visible. Advisories were also issue on 9, 12, 14, and 15 May 2003. The one for 9 May noted "Renewed activity since early May. Ash plume witnessed during a helicopter flight around early May up to 5-6 km above sea level. Many ash falls and acid rains all around the volcano." No cloud was observable due to convective weather clouds. The reports on 14 and 15 May stated, "According to Goma observatory [GVO], a plume of steam and ash is often emitted since early May. It may rise 1,500-2,500 m above the volcano's summit. No new message from Goma observatory since early May." Meteorological satellite (METEOSAT) imagery was unable to detect an ash cloud on 14 May due to weather clouds around the volcano.

MODVOLC Thermal Alerts. During early 2002 to early 2003 Nyiragongo was monitored on a daily basis with thermal satellite imagery (1-km pixel size). Investigators Matt Patrick, Luke Flynn, Harold Garbeil, Andy Harris, Eric Pilger, Glyn Williams-Jones, and Rob Wright used NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and processed these data using the automated MODIS thermal alert system at the University of Hawaii, Manoa.

Prior to the January 2002 eruption, Nyiragongo activity appeared insignificant; anomalies were absent from the start of the MODIS-based alert system in April 2000, and through all of 2001. Anomalous pixels remained absent during 24 February-12 June 2002. The absence of anomalies could be explained either by a lack of exposure of the lava lake or by cloud cover obscuring the heat source from the satellite's view.

Nyiragongo's major effusive eruption in mid-January 2002 caused strong initial thermal anomalies (figure 29). Lava flows extending down the S flank to Lake Kivu resulted in anomalies as large as 45 pixels. Afterwards, the anomalies diminished quickly. Small intermittent anomalies (1-3 pixels) occurred near the summit for the remainder of 2002 and into early 2003, consistent with the kind of lava-lake activity described above.

Figure (see Caption) Figure 29. A plot illustrating MODIS data for Nyiragongo with the sum for short-wave (4 micron, band 21) radiance as well as the sum for long-wave (12 micron, band 32) radiance for all anomalous pixels in each image. The x-axis (time axis) starts before the eruption in December 2001 and ends in early 2003. Courtesy of Hawaii Institute of Geophysics and Planetology, University of Hawaii, Manoa.

Atmospheric SO2. The Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) SO2 data presented in figure 30 are preliminary. The bars indicated as "TOMS SO2" plotted on the lower axis of the chart represent EP TOMS measurements on days when the signal was large enough to allow retrieval of the SO2 mass. The height of these bars corresponds with the y-axis scale. Note that these values represent the SO2 mass in a satellite 'snapshot' of the volcanic cloud taken around local noon, and not an SO2 flux. The bars indicated as "Inferred SO2" on the lower axis denote days on which the presence of SO2 could be inferred from EP TOMS data, but the signal was too weak to allow retrieval of an atmospheric SO2 mass. Hence these bars are non-quantitative, but they indicate that non-trivial SO2 emissions probably occurred.

Figure (see Caption) Figure 30. Preliminary atmospheric SO2 data taken from satellite measurements of the Nyiragongo-Nyamuragira region during 13 December 2002 to 15 June 2003. The data along the lower axis are from the EP TOMS instrument; the data on the upper axis are from the GOME instrument on the European satellite ERS-2. Only the data described as "TOMS SO2" are quantitative (see text). Blank spaces for certain days and time intervals on the chart imply that either a data gap occurred over the region, or that no SO2 was detected. One of these blank intervals in the EP TOMS data took place during 15-23 May 2003, in this case due to the one instrument shutdown during the data-collection period. Courtesy of Simon Carn.

More, non-quantitative data appear as bars indicated as "GOME detection" along the upper axis of figure 30; in this case, showing dates when another instrument detected SO2 emissions in the region. These emission dates denote SO2 detection over central Africa by the European GOME (Global Ozone Monitoring Experiment) instrument aboard the ERS-2 satellite. GOME measurements are based on scans by a visible- and ultraviolet-wavelength spectrometer. GOME has inferior spatial and temporal resolution to EP TOMS, but is more sensitive to atmospheric SO2.

TOMS SO2 mass retrievals are dependent on the altitude of the volcanic plume and are also affected by meteorological cloud cover, and therefore may be adjusted as more information becomes available. The largest of these preliminary estimates during this interval was in excess of 50 kilotons (kt) SO2. These peaks in the first half of May 2003 were truncated by an instrument shutdown during 15-23 May. Given the crater and plume observations by GVO, and other data discussed above, the vast majority of the SO2 shown on figure 30 was probably emitted by Nyiragongo.

CO2 gas concentrations at three mazukus on the flanks of Nyiragongo in vicinity of Lac Vert at the ground surface measured up to ~40% by volume, but concentrations of the heavier-than-air gas dropped quickly with height above the ground surface. Spot measurements were made with a Geotechnical Instruments multi-gas landfill analyzer. Field notes reported CH4 concentrations consistently at zero and O2 concentrations at only one site where it was 22 vol. % at the ground surface and 16-17 vol. % nearby. The 15 August 2002 field excursion was led by GVO scientists Mathieu Yalire, Ciraba Mateso, and Kasereka Mahinda, with Chris Newhall present.

Effects of carbon dioxide. People in the region apparently understand the hazard of escaping CO2 gas, and in the past several years CO2 gas exposure has not led to reported human fatalities. CO2 gas, which is more dense than air at equivalent temperature and pressure, can be lethal to humans at 9-12 vol. % concentrations in as little as 5 minutes. The US standards for indoor air quality suggest that long-term human exposures remain below 0.1-0.2 vol. %, and that short-term (10- to 15-minute) exposures remain below 3 vol. %. The odor of CO2 is too weak to warn of dangerous concentrations. Table 9 lists some symptoms associated with the inhalation of air containing progressively higher levels of CO2.

Table 9. The AGA Gas Handbook included these CO2 gas concentrations (in volume percent) and accompanying symptoms for adults in good health (after Ahlberg, 1985).

Volume % CO2 Physical Symptoms
2% 50% increase in breathing rate.
3% 10-minute exposure limit; 100% increase in breathing rate.
5% 300% increase in breathing rate, headache and sweating may begin after about an hour.
8% Short-term exposure limit.
8-10% Headache after 10 or 15 minutes. Dizziness, buzzing in the ears, blood-pressure increase, high pulse rate, excitation, and nausea.
10-18% After a few minutes, cramps similar to epileptic fits loss of consciousness, and a sharp drop in blood pressure. The victims recover very quickly in fresh air.
18-20% Symptoms similar to those of a stroke.

Reference. Ahlberg, K., 1985, AGA Gas Handbook: Properties & Uses of Industrial Gases, AB, Lidingo/Sweden, ISBN 91-970061-1-4 (out of print).

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Celestin Kasereka Mahinda, Kavotha Kalendi Sadaka, Jean-Pierre Bajope, Ciraba Mateso, and Mathieu Yalire, Goma Volcano Observatory (GVO), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, D.R. Congo; Dario Tedesco, Jacques Durieux, Jean-Christophe Komorowski, Jack Lockwood, Chris Newhall, Paolo Papale, Arnaud LeMarchand, and Orlando Vaselli, UN-OCHA resident volcanologists, c/o UN Office for the Coordination of Humanitarian Affairs, United Nations Geneva , Palais des Nations,1211 Geneva 10, Switzerland (URL: http://www.unog.ch); Tolouse Volcanic Ash Advisory Center (VAAC), Toulouse, Météo-France, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France (URL: http://www.meteo.fr/vaac/); Matt Patrick, Luke Flynn, Harold Garbeil, Andy Harris, Eric Pilger, Glyn Williams-Jones, and Rob Wright, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Manoa (URL: http://modis.higp.hawaii.edu/); Vern Brown, President, ENMET Corporation, P.O. Box 979, Ann Arbor, Michigan 48106-0979 (URL: http://www.enmet.com/); Simon A. Carn, TOMS Volcanic Emissions Group, Joint Center for Earth Systems Technology (NASA/UMBC), University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA (URL: https://so2.gsfc.nasa.gov/).


Ruapehu (New Zealand) — May 2003 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Steam plume issued from warm Crater Lake in May, but no eruption

Since the middle of March 2003 the temperature of Ruapehu's summit Crater Lake had been slowly rising. The lake temperature rose from 30°C on 5 March (BGVN 28:02) to a high of 41.6°C on 15 May (table 11). Similar values were recorded in January 2003 when the lake temperature reached 42°C. This is the fourth time that the temperature of the Crater Lake has risen above 35°C since the start of 2001, and the temperature has been above 30°C since December 2002. It is not unusual for the temperature to cycle over periods of 6-9 months; minor hydrothermal activity can occur in the lake during temperature peaks. Lake temperatures dropped steadily from 41°C after mid-May. However, during the late morning of 26 May a steam plume was observed rising 200-300 m above Crater Lake. No seismicity accompanied this plume, suggesting that it was generated by atmospheric conditions alone (a warm lake and a cold, windless, morning). Steam plumes were also observed on 28 March and 21 April.

Table 11. Lake water temperatures measured at Ruapehu's Crater Lake, 5 March-1 June 2003. Courtesy of IGNS.

Date Crater Lake Temperature
05 Mar 2003 30°C
28 Mar 2003 35°C
11 Apr 2003 38°C
29 Apr 2003 39.4°C
15 May 2003 41.6°C
26 May 2003 Slightly over 40°C
29 May 2003 36°C
01 Jun 2003 33°C

Weak intermittent seismic tremor was recorded through early April, then remained at a constant moderate level during 12-17 April. The following week, 18-24 April, there was an increase in tremor accompanied by discrete volcanic earthquakes. By 2 May volcanic tremor levels had declined, but volcanic earthquakes continued to occur. Levels of volcanic tremor fluctuated during the week of 3-9 May, with several periods of enhanced tremor and small volcanic earthquakes. Tremor had declined by 16 May, and seismicity remained very low through the 30th. The level of volcanic tremor began to increase slightly in early June, but the lake temperature was still declining during the week of 7-13 June. Very low levels of activity continued through the 20th. There were no significant changes observed in the lake water chemistry. The hazard status remained unchanged at Alert Level 1.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake (Te Wai a-moe), is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3,000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).


Sabancaya (Peru) — May 2003 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Inflation at Hualca Hualca detected by satellite surveys from June 1992 to April 1996

A satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc (Pritchard and Simons, 2002) revealed deformation in the Sabancaya area during June 1992-mid 1997. Inflation was detected ~2.5 km E of the Hualca Hualca cone and 7 km N of Sabancaya (figure 16), with the maximum deformation rate in the radar line-of-sight being ~2 cm/year. While not temporally well-constrained, this inflation seems to have stopped in 1997, perhaps related to the large eruption of Sabancaya in May 1997 (BGVN 22:07). No deformation was observed between mid 1997-December 2001. The inferred source depth was 11-13 km below sea level. Additional details about the study and analysis are available in Pritchard and Simons (2002).

Reference. Pritchard, M., and Simons, M., 2002, A satellite geodetic survey of large-scale deformation of volcanic centres in the Central Andes: Nature, v. 418, p. 167-170.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Matthew Pritchard and Mark Simons, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA (URL: http://www.gps.caltech.edu/).


Santa Maria (Guatemala) — May 2003 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Lahars during January-October 2002; explosions and pyroclastic flows

At Santiaguito, the active lava-flow front continued to generate ash plumes through early 2002 (BGVN 27:05). INSIVUMEH reported that during January-October 2002, activity at Santiaguito included lahars, explosions, growth of the lava dome, and collapses from the Caliente dome. The main lahar during that period occurred on 8 January 2002. Farmers in the Monte Claro area heard rockfalls on the W flank. Field inspections near the San Isidro ravine showed an abundance of material deposited by mudflows and other volcanic debris, mainly fine ash. These deposits formed ash knolls called "hummocks." The San Isidro ravine begins at the Nimá II river, now covered by the SW lava flow, which created a dam ~200-300 m high. A rupture of the dam in the high part of the Brujo dome contributed fine material and blocks to the high-velocity lahar, which traveled ~4 km until it was stopped by old landslide deposits.

At the height of the Property Florida, there are old lahar deposits, possibly from the eruptions of Santa Maria in 1902 and/or Santiaguito in 1929, with blocks of 1, 2, 3, and 5 m in diameter. With the arrival of the rainy season, San Isidro, which became a new channel for lahars from May to October, had at least six "strong" lahars. The active lava flow from July 1999 had stopped its advance in the channel of the Nimá II river as of April 2002.

Since renewal of activity in April and May 2002, a new lava flow had been advancing on top of the high part of the existing lava flow, in front of the Santiaguito viewpoint. This constant movement was filling up the ravine that divided the lava flow from the El Faro farm. The new lava flow quickly built a small lobe reaching ~300 m high. It advanced in a fan shape toward the S and W flanks, with continuous collapses from the front.

A volcanic ash advisory issued on 16 August was based on a report from INSIVUMEH about a dome collapse with some near-summit ash. However, no ash was evident in GOES-8 satellite imagery. After 29 August there were frequent collapses from the crater rim of the Caliente cone, generating pyroclastic flows that extended to the base of the domes. The greatest collapse occurred on 3 October, accompanied by a strong explosion and several pyroclastic flows that descended all flanks of the volcano at high speeds, covering the volcano completely in a few minutes and producing abundant ashfall on the SW flank. During October there were continued collapses of the crater rim.

In the early hours of 17 October the inhabitants of the El Faro and La Florida farms, and areas such as Palmar Nuevo and part of San Felipe Retalhuleu, heard a strong explosion. At OVSAN (Vulcanológico Observatory of Santiaguito Volcano), this activity was felt, and a collapse of the dome from the edge of the crater was seen. After 19 October moderate and strong explosions occurred at a rate of 3-5 per hour, some accompanied by rumblings. There was also an increase in the number of phreatomagmatic ash explosions that sent abundant gray ash 800-1,200 m high, dispersed mainly on the SW flank. In November observers reported constant collapses of the SE and E lava flows. On the morning of 11 November there was a series of collapses from the S lava flow, and heavy ashfall on the seismic station housing.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Otoniel Matías and Gustavo Chigna, Unit of Volcanology, Geologic Department of Investigation and Services, Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), 7a Av. 14-57, Zona 13, Guatemala City, Guatemala; Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).


Stromboli (Italy) — May 2003 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Lava effusion continues through mid-June; infrared satellite observations

The latest eruptive episode from Stromboli began on 28 December 2002 (BGVN 28:01) and included a significant explosion on 5 April (BGVN 28:04). This report includes field observations provided by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) through mid-June 2003. Thermal alerts based on infrared satellite imagery over the course of this eruption have been compiled and summarized by scientists at The Open University.

Activity during 17 April-16 June 2003. Effusion of lava from vents located at ~600 m elevation, on the upper eastern corner of the Sciara del Fuoco, continued until 16 June with a generally decreasing effusion rate. This caused a significant increase in the thickness of the lava field formed since 15 February to over 50 m. Since the 5 April eruption, the summit craters of the volcano have been blocked by fallout material obstructing the conduit. Small, occasional, short-lived explosions of hot juvenile material were observed on 17 April during a helicopter survey with a hand-held thermal camera, and on 3 May from the SAR fixed camera located at 400 m elevation on the E rim of the Sciara del Fuoco.

The effusion rate from the 600-m-elevation vents on the Sciara del Fuoco showed a significant decline between 1 and 4 May, when inflation of the upper lava flow field was detected through daily helicopter-borne thermal surveys. Inflation stopped on 6 May, when two new vents opened on the inflated crust of the flow field, causing drainage and spreading new lava flows along the Sciara del Fuoco. Between the end of May and early June, gas-rich magma was extruded from the 600 m vents on the upper Sciara del Fuoco. Spattering built up two hornitos, which in a few days reached an estimated height of over 6 m. This activity was accompanied by lava flow effusion along the upper Sciara del Fuoco, with lava descending to 150 m elevation.

On 1 June, Strombolian activity resumed at Crater 1 (NE crater). It was revealed first through helicopter-borne thermal surveys, and then by direct observations from the eastern Sciara del Fuoco rim. Most of the ejecta fell within the crater, and from the lower slopes of the volcano only pulsating dark ash emissions were observed. Strombolian activity stopped around 6 June, and occasional lava flows occurred at the hornitos at 600 m elevation on 11 June. The summit craters showed discontinuous ash emission until mid-June, and the SAR fixed camera at 400 m elevation showed a Strombolian explosion with abundant ash emission on the night of 15 June.

MODVOLC Thermal Alerts. MODIS thermal anomalies for Stromboli covering the period from the start of MODIS data acquisition over Europe in May 2000 until the present were compiled using data available at http://modis.higp.hawaii.edu/.

With the exception of single-pixel alerts on 8 July and 19 September 2000 (with alert ratios of -0.798 and -0.794, both barely above the -0.800 automatic detection threshold of the thermal alerts algorithm), activity at Stromboli remained below the automatic detection threshold until November 2002 (figure 74). In that month there were two single-pixel alerts, barely above detection threshold (-0.790 on 12 November and -0.792 on 28 November). Thermal infrared radiance was higher than ever before at the time of the MODIS overpass on 20 December 2002, when there was a two-pixel alert, with alert ratios of -0.667 and -0.749.

Figure (see Caption) Figure 74. Alert-ratio, number of alert pixels, and summed 4 µm (MODIS band 21) spectral radiance for MODIS thermal alerts on Stromboli between 1 November 2002 and 13 May 2003. MODIS data courtesy of the HIGP MODIS Thermal Alert Team.

These five dates were the only MODIS thermal alerts prior to the start of effusive activity on 28 December 2002 (BGVN 27:12 and 28:01). The source of the radiance to trigger these alerts was evidently incandescence at one or more of the active vents. In the case of a volcano such as Stromboli, prior to December 2002, isolated thermal alerts are more likely to represent the chance coincidence of a short-lived peak of incandescence with the time of MODIS overpass, rather than a sustained emission of infrared radiation. However the November-December 2002 thermal alerts can with hindsight be seen to have been indicators of enhanced activity in the lead-up to the 28 December effusive eruption.

On 28 December 2002 MODIS recorded its highest ever alert ratio at Stromboli (+0.419) and highest summed radiance at 4.0 µm (MODIS band 21) in a seven-pixel alert, corresponding to the daily MODIS overpass at 2115 UTC. This is a record of radiance from 300-m-wide lava flows from the NE crater (BGVN 27:12). Subsequent to that date, thermal alerts have occurred persistently at Stromboli, and evidently reflect ongoing lava effusion. The general trend of the highest alert ratio on each date, the number of alert pixels, and the summed 4.0 µm radiance for all alert pixels on each date shows an exponential decline.

There are no thermal alerts for 3-7 April 2003 inclusive, which could be because of cloud cover. There is thus no direct record of the explosion on the morning of 5 April that completely covered the upper 200 m of the volcano with bombs. However, the mild intensification of subsequent thermal-alerts indicates slight re-invigoration of the on-going lava effusion.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Sonia Calvari, Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/); David A Rothery and Diego Coppola, Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom. MODIS data courtesy of the HIGP MODIS Thermal Alert Team.


Uturuncu (Bolivia) — May 2003 Citation iconCite this Report

Uturuncu

Bolivia

22.27°S, 67.18°W; summit elev. 6008 m

All times are local (unless otherwise noted)


Deformation detected by satellite surveys; low-level seismicity and active fumaroles

A large-scale concentric pattern of deformation was detected between May 1996 and December 2000 centered on Uturuncu volcano, Bolivia (figure 1), based on satellite geodetic surveys (Pritchard and Simons, 2002). The observed deformation is primarily surface uplift with a maximum rate at the uplift center of 1-2 cm/year in the radar line-of-sight direction (figure 2). A reconnaissance investigation by a team composed of scientists from Bolivia, Chile, the USA, and the UK, took place during 1-6 April 2003 to identify any other signs of volcanic unrest and assess past volcanic behavior.

Figure (see Caption) Figure 1. Photograph of Uturuncu viewed from the south, April 2003. Courtesy of Steve Sparks.
Figure (see Caption) Figure 2. Shaded relief topographic map of the central Andes with insets showing areas of deformation detected by Pritchard and Simons (2002). Interferograms (draped over shaded relief) indicate active deformation; each color cycle corresponds to 5 cm of deformation in the radar line-of-sight (LOS). The LOS direction from ground to spacecraft (black arrow) is inclined 23° from the vertical. Black squares indicate radar frames, and black triangles show potential volcanic edifices. Courtesy of Matthew Pritchard.

A single-component vertical one-second seismometer was placed at five locations for periods of up to 14 hours. Data were recorded at a rate of 100 samples per second on a laptop computer. Persistent low-level seismicity was observed mainly from one source location on the NW flank, close to the center of deformation observed by satellite surveys. Two other sources within the volcanic edifice could not be located with the available data. The rate of volcanic earthquakes was up to 15 per hour, and the magnitudes were in the 0.5-1.5 range based on coda length. The sources were considered to be within 3-4 km of the surface (much shallower than the deformation source); more accurate information will be available when the data are analyzed further.

The summit region of Uturuncu has two active fumarole fields with substantial sulfur production and areas of clay-silica hydrothermal alteration. Maximum temperatures in four fumaroles were measured at 79-80°C. A hot spring on the NW flanks had a temperature of 20°C.

Uturuncu is a stratovolcano composed of hypersthene andesites, hypersthene-biotite dacites, and biotite-hornblende dacites. Almost all the exposed products are extensive coulée-type lavas and domes; no pyroclastic deposits were observed. Flow features are well-preserved on the youngest lavas. A wide variety of xenoliths were found in most lavas, including mafic magmatic inclusions, cumulates, microcrystalline igneous inclusions, and hornfels of possible basement rocks including sandstones and calcareous rock types.

Lavas around the summit area appear to be the most recent products, but have been affected by glaciation; there is however no present-day ice. There is thus no evidence yet for Holocene activity. The recent unrest manifested by substantial ground deformation and reconnaissance seismicity indicate, however, that a magmatic system is still present and therefore further monitoring is warranted.

Reference. Pritchard, M., and Simons, M., 2002, A satellite geodetic survey of large-scale deformation of volcanic centres in the Central Andes: Nature, v. 418, p. 167-170.

Geologic Background. Uturuncu, the highest peak of SW Bolivia, displays fumarolic activity, and postglacial lava flows were noted by Kussmaul et al. (1977). Inspection of satellite images of the 6008-m-high peak, located SE of Quetana, did not show evidence for postglacial activity (de Silva and Francis, 1991). Andesitic and dacitic lava flows dominate on Uturuncu, and no pyroclastic deposits were observed during recent field work. Although young lava flows display well-preserved flow features, youthful-looking summit lava flows showed evidence of glaciation. Two active sulfur-producing fumarole fields are located near the summit, and large-scale ground deformation was observed beginning in May 1992 (Pritchard and Simons, 2002), indicating, along with seismicity detected in 2009-10 (Jay et al., 2012), that a magmatic system is still present.

Information Contacts: Mayel Sunagua and Ruben Muranca, Geological Survey of Bolivia, SERGEOMIN, Casilla 2729, La Paz, Bolivia; Jorge Clavero, Geological Survey of Chile, Servicio Nacional de Geología y Minería (SERGEOMIN), Avenida Santa María 0104, Casilla 10465, Santiago, Chile; Steve McNutt, Alaska Volcano Observatory and Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, PO Box 757320, Fairbanks, AK 99775-7320, USA (URL: http://www.avo.alaska.edu/); Matthew Pritchard, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA (URL: http://www.gps.caltech.edu/); C. Annen, M. Humphreys, A. le Friant, and R.S.J. Sparks, Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports