Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Erta Ale (Ethiopia) Continued summit activity and lava flow to the E during April 2018-March 2019

Etna (Italy) Lava flows from NSEC scoria cone and SE flank fissure in December 2018; ash emissions through March 2019

Manam (Papua New Guinea) Ash plumes reaching 15 km altitude in August and December 2018

Merapi (Indonesia) Dome appears at summit on 12 August 2018; grows to 447,000 m3 by late March 2019

Bagana (Papua New Guinea) Intermittent ash plumes; thermal anomalies continue through January 2019

Fuego (Guatemala) Frequent explosive activity with ash plumes, avalanches, lava flows, and lahars from July 2018 through March 2019

Stromboli (Italy) Constant explosions from both crater areas during November 2018-February 2019

Krakatau (Indonesia) Ash plumes, ballistic ejecta, and lava extrusion during October-December; partial collapse and tsunami in late December; Surtseyan activity in December-January 2019

Santa Maria (Guatemala) Daily explosions cause steam-and-ash plumes and block avalanches, November 2018-February 2019

Masaya (Nicaragua) Lava lake persists with decreased thermal output, November 2018-February 2019

Reventador (Ecuador) Multiple daily explosions with ash plumes and incandescent blocks rolling down the flanks, October 2018-January 2019

Kuchinoerabujima (Japan) Weak explosions and ash plumes beginning 21 October 2018



Erta Ale (Ethiopia) — April 2019 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued summit activity and lava flow to the E during April 2018-March 2019

Erta Ale is the most active volcano in Ethiopia, containing multiple active pit craters within both the summit and southeast calderas. Multiple recent lava flows are visible as darker-colored areas on the broad flanks. A new fissure eruption began in January 2017, forming a lava lake and multiple large lava flow fields during January 2017-March 2018. This report summarizes activity during April 2018 through March 2019 and is based on satellite data.

During April 2018 through March 2019 minor activity continued in the calderas and along the active lava flow to the E. Several persistent thermal anomalies were present in both the summit and southeast calderas (figure 88). A small lava outbreak was detected in Sentinel-2 thermal data on 25 December 2018 located approximately 6 km from the vent. Numerous small outbreak flows at the distal end of the lava flow located around 10-15 km away from the vent (figure 89).

Figure (see Caption) Figure 88. Sentinel-2 thermal satellite images showing Erta Ale activity in November and December 2018 with persistent thermal anomalies (bright orange-yellow) in the summit and southeast calderas (circled) and an active lava flow to the E. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Sentinel-2 thermal images showing small lava flow outbreaks (bright orange) in the distal part of the latest Erta Ale flow. Courtesy of Sentinel Hub Playground.

Thermal activity using MODIS detected by the MIROVA system has been stable with a slight decrease in energy since January 2019 (figure 90). The number of thermal alerts identified by the MODVOLC system was typically below 20/month (figure 91), but with notably lower numbers in April, August, September, and November 2018, and February-March 2019. There were 30 alerts noted in December 2018.

Figure (see Caption) Figure 90. Plot showing log radiative power of MODIS infrared data at Erta Ale using the MIROVA algorithm for the year ending 9 April 2019. Black lines indicate that the location of the thermal anomaly is over 5 km from the vent while blue lines indicate that the thermal anomaly is within 5 km of the vent. Courtesy of MIROVA.
Figure (see Caption) Figure 91. Graph showing the number of MODIS thermal alerts in the MODVOLC system for Erta Ale during April 2018-March 2019 (top) and the locations of the thermal alerts (bottom). Data courtesy of HIGP - MODVOLC Thermal Alerts System.

Sentinel-1 imagery analyzed by Christopher Moore, University of Leeds (Moore et al., in prep, 2019), show a lowering of the lava lake level down to 70-90 m below the rim in October 2018, consistent with broader recent trends. Lava lake activity since late 2014 can be broken down into four stages: the pre-eruption stage during October 2014-January 2017 when the level was stable at less than 20 m below the rim; the initial fissure eruption during 11-28 January 2017 when there was a rapid drop from a state of overflowing down to 80-100 m below the rim; the early stage of the eruption period during January 2017 through mid-2017 when there was a gradual rise up to 50-70 m below the rim; and the late eruption stage during mid-2017 through October 2018 when there was a gradual drop down to 70-90 m below the rim.

Reference: Moore, C., Wright, T., Hooper, A., and Biggs, J., In Prep. Insights into the Shallow Plumbing System of Erta 'Ale Volcano, Ethiopia, from the Long-Lived 2017 Eruption.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Christopher Moore, Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom (URL: https://environment.leeds.ac.uk/see/pgr/2207/chris-moore).


Etna (Italy) — April 2019 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Lava flows from NSEC scoria cone and SE flank fissure in December 2018; ash emissions through March 2019

Italy's Mount Etna on the island of Sicily has had historically recorded eruptions for the past 3,500 years and has been erupting continuously since September 2013 through at least March 2019. Lava flows, explosive eruptions with ash plumes, and Strombolian lava fountains commonly occur from its summit areas that include the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). A new crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC and has become the highest part of the SEC-NSEC complex. After several months of low-level activity in early 2018, increases in Strombolian activity at several vents began in mid-July (BGVN 43:08). This was followed by new lava flows emerging from the saddle cone and the E vent of the NSEC complex in late August and discontinuous Strombolian activity and intermittent ash emissions through November 2018 (BGVN 43:12). An eruption from a new fissure produced a lava flow into the Valle del Bove in late December 2018 and is covered in this report along with activity through March 2019 that included frequent ash emissions. Information is provided primarily by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

For the first three weeks of December 2018, Strombolian activity and ash emissions continued from the summit vents. A series of small flows from multiple vents near the scoria cone inside NSEC formed a small flow field on the E flank mid-month. A lateral eruption from a fissure on the SE flank of NSEC opened on 24 December and produced a series of flows that traveled E into the Valle del Bove for three days. Sporadic ash emissions, some with dense plumes and significant SO2 emissions, were typical throughout January and February 2019. Activity declined significantly during March 2019 to minor ash emissions and ongoing outgassing from the summit vents. The MIROVA plot of thermal energy recorded the increased heat from the lava flows during December 2018, along with minor pulses from the ash emissions and Strombolian activity in January and February (figure 240).

Figure (see Caption) Figure 240. The Etna MIROVA thermal anomaly data for 5 July 2018 through March 2019 showed a spike in thermal activity from lava flows and increased Strombolian activity in late August and during December 2018. Courtesy of MIROVA.

Activity during December 2018. Strombolian activity, with modest ash emissions, continued from the Bocca Nuova, NSEC, and NEC during the first three weeks of December. Lava flowed from the scoria cone located within the E vent of NSEC and was associated with incandescent blocks rolling down the E flank of NSEC. Variable Strombolian activity at the scoria cone beginning on 4 December produced continuous overlapping small flows from several vents near the scoria cone for two weeks (figure 241). Intermittent explosions lasted 5-10 minutes with similar length pauses; activity increased on 16 December with near-continuous lava effusion. Several small flows traveled NE, E, and SE down the E flank of NSEC during the second and third weeks of the month (figure 242). A few flows reached the base of the cone at 2,900 m elevation and were almost a kilometer in length. Small collapses of portions of the lava field also produced minor plumes of ash.

Figure (see Caption) Figure 241. Map of the summit crater area at Etna (DEM 2014). Black hatch lines outline the edge of the summit craters: BN = Bocca Nuova, with the north-western depression (BN-1) and the south-eastern depression (BN-2); VOR = Voragine; NEC = Northeast Crater; SEC = Southeast Crater; NSEC = New Southeast Crater. Yellow circles are degassing vents, and red circles are vents with Strombolian activity and/or ash emissions. The cooling lava field from the E vent scoria cone at NSEC is shown in yellow; the red flows were active on 17 December 2018. Courtesy of INGV (Report 51/2018, ETNA, Bollettino Settimanale, 10/12/2018 - 16/12/2018, data emissione 18/12/2018).
Figure (see Caption) Figure 242. The scoria cone inside the E vent of NSEC at Etna produced multiple small lava flows and Strombolian explosions for most of the first half of December 2018. (a) Strombolian activity at the scoria cone inside the E vent of the New Southeast Crater, seen from Milo (on Etna's eastern slope) on 11 December 2018. (b) Summit area of Etna seen from the south on 11 December 2018. (c) Eastern flank of the New South-East Crater seen from Fornazzo (eastern slope of Etna), with Strombolian activity and lava flows on 16 December 2018. (d) Active lava flows seen from Zafferana (eastern slope of Etna) on 16 December 2018. Courtesy of INGV (Report 51/2018, ETNA, Bollettino Settimanale, 10/12/2018 - 16/12/2018, data emissione 18/12/2018).

A lateral eruption and intense seismic swarm began on 24 December 2018 from a nearly 2-km-long fissure trending NNW-SSE on the SE flank of NSEC; it produced a flow into the Valle del Bove and covered about 1 km2 (figures 243). The other summit craters produced intense Strombolian activity and abundant ash emissions during 24-27 December. Beginning around 0800 local time on 24 December, degassing intensity from the summit craters increased significantly. In the following hours, intermittent reddish-gray ash emissions rose from Bocca Nuova and NEC becoming continuous by late morning. Shortly after noon, an eruptive fissure opened up at the southeastern base of NSEC, releasing intense Strombolian activity which rapidly formed a dense plume of dark ash. A second smaller fissure located between NSEC and NEC also opened at the same time and produced weaker Strombolian activity that lasted a few tens of minutes. Over the following two hours, the main fissure spread SE, crossing over the western edge of the Valle del Bove and reaching down to 2,400 m elevation. Continuous Strombolian activity of variable intensity occurred at NEC and Bocca Nuova. The ash cloud created by the multiple eruptive vents generated a dense plume that drifted SE, producing ashfall mainly in the area around Zafferana Etnea and Santa Venerina (figure 244).

Figure (see Caption) Figure 243. Preliminary map of the lava flows and scoria cones at Etna active during the eruption of 24-27 December 2018. The topographic base used was provided by TECNOLAB of the INGV Catania Section Observatory Etneo, Laboratory for Technological Advances in Volcano Geophysics. The abbreviations at the top left identify the various summit craters (NEC = North-East Crater, VOR = Voragine, BN = Bocca Nuova, SEC = South-East Crater, NSEC = New South-East Crater). Courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 244. Eruptive activity from the fissure at Etna that opened on 24 December 2018 included multiple flows, Strombolian explosions, and a significant ash plume that caused ashfall in nearby communities. Top left: The eruptive fissure opened near the edge of the western wall of the Valle del Bove. Top right: An ash and steam plume produced by the opening of the fissure, taken from the south. Bottom left: Ash fall on a sidewalk in Zafferana Etnea. Bottom right: Multiple lava flows were fed by an eruptive fissure that opened along the western wall of the Valle del Bove. Images taken on 24 December by B. Behncke. Courtesy of INGV (25 dicembre 2018, Redazione INGV Vulcani, L'eruzione laterale etnea iniziata il 24 dicembre 2018).

As the fissure opened it fed several flows that descended the W face of the Valle del Bove (figure 245), past Serra Giannicola Grande, merged into a single flow at the base of the wall, and continued E across the valley floor. Ash emissions decreased significantly from Bocca Nuova and NEC after 1430 on 24 December. By 1800 the fissure was active mainly at the lower end where it continued to feed the flow in the Valle del Bove with strong Strombolian activity and abundant ash emissions. Around 1830 intense Strombolian activity resumed at Bocca Nuova along with abundant ash emissions which gradually decreased overnight. Effusive activity from the fissure continued through 26 December when it decreased significantly; new lava feeding the flow ended on 27 December, but the flow front continued to move slowly (figure 246). Degassing continued at Bocca Nuova, forming a dilute ash plume that drifted hundreds of km S before dissipating. A persistent SO2 plume was measured with satellite instruments drifting SSE during 25-30 December while the eruptive fissure was active (figure 247).

Figure (see Caption) Figure 245. Visual and thermal images of the 24-27 December 2018 fissure vent at Etna taken on 26 December 2018. (a) The eruptive fissure (yellow arrows) opened on 24 December 2018 along the W wall of the Valle del Bove and sent fresh lava down the wall (black areas), the yellow dashed rectangles indicate the areas shown with thermal images in c and d. (b) The crew that carried out the overflight on 26 December, using the helicopter of the 2nd Coast Guard Air Force in Catania. (c) and (d) are thermal camera images of the eruptive fissure that highlight the flows moving down the W wall of Valle del Bove. Visible image photo by Marco Neri. Thermal images by Stefano Branca. Courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 246. The flow from the fissure eruption at Etna traveled past Serra Giannicola Grande and E into the Valle del Bove during 24-27 December 2018. By the time of this image at 1600 on 27 December, the lava flows were no longer being fed with new material and were almost stationary within the Valle del Bove. Photo by Marco Neri, courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 247. The OMPS instrument on the Suomi NPP satellite measured significant SO2 plumes from Etna during the December eruptive episode, shown here by data on (clockwise from top left) 25, 27, 29, and 30 December 2018. The SO2 plumes on these days all drifted SSE from Etna. Courtesy of NASA Goddard Space Flight Center.

A significant increase in the release of seismic strain and frequency of earthquakes began around 0830 on 24 December 2018. Around 300 events occurred during the first three hours of increased seismicity which continued throughout the week, with over 2,000 events recorded in different areas around Etna. The initial swarm was located in the summit area near the fissure with events located 0-3 km below sea level; subsequent seismicity was located in the Valle del Bove and included multiple earthquakes with magnitudes greater than M 4.0. The E and SW slopes of the volcano were also affected by seismic events. The largest earthquake (M 4.8) was recorded on 26 December at 0319 local time, located about 1 km below sea level between the towns of Fleri and Pennisi on the Faglia Fiandaca fault. It was widely felt in many urban centers and caused damage in some areas. INGV noted that it was likely not generated by movement of magmatic material in the epicentral area.

Activity during January 2019. No lava flow activity was reported in January, but sporadic ash emissions and weak Strombolian activity persisted at NEC and Bocca Nuova (figure 248); occasional nighttime incandescent bursts were seen from Voragine. During one of these ash-emission episodes, on the evening of 18 January, fine ashfall was reported on the SE flank in the towns of Zafferana Etnea and Santa Venerina. Slight increases in volcanic tremor amplitude accompanied incandescent flashes from Voragine crater on the evenings of 16 and 18 January and in the early morning of 21 January (figure 249). On 19 January gas emissions and explosions were reported from a new vent near the NE edge of VOR, about 40 m NW from the 7 August 2016 vent (figure 250).

Figure (see Caption) Figure 248. Strong degassing from the summit craters at Etna was accompanied by ash emissions from NEC on 16 (a) and 19 January 2019 (b). The images were taken with the high-resolution webcam at Monte Cagliato (located E of Etna). Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).
Figure (see Caption) Figure 249. Episodes of strong incandescence appeared at Etna's Voragine crater at 1710 UTC on 16 January (a), at 1143 UTC on 18 January (b), and at 0307 on 21 January (c). Photo (a) was taken from Tremestieri Etneo (south side of Etna), (b) and (c) were recorded by the high resolution camera in Monte Cagliato (eastern slope of Etna). Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).
Figure (see Caption) Figure 250. A newly opened vent under the NE rim of the Voragine crater at Etna was observed on 19 January 2019. Behind it on the right, about 40 m SE, is the 7 August 2016 vent. Video taken by Prof. Carmelo Ferlito, Department of Biological, Geological and Environmental Sciences of the University of Catania. Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).

Newly available higher resolution SO2 data from the TROPOMI Tropospheric Monitoring Instrument on board the Copernicus Sentinel-5 Precursor (S5P) satellite showed persistent SO2 plumes from Etna that drifted significant distances in multiple directions before dissipating for much of the month. The strongest plumes were recorded during 16-22 January 2019 (figure 251).

Figure (see Caption) Figure 251. Sulfur dioxide plumes were recorded from Etna during most days in January 2019 from the TROPOMI Tropospheric Monitoring Instrument on the Copernicus S5P satellite. The densest plumes were recorded during 16-22 January; plumes from 18, 19, 20 and 21 January 2019 are shown here. Courtesy of NASA Goddard Space Flight Center.

Ash emissions intensified during the last week of January. During the morning of 23 January 2019 a dense ash plume drifted ENE from NEC, producing ashfall on the E flank of the volcano as far as the coast, including in Giarre (figure 252). Discontinuous ash emissions were reported from Bocca Nuova on 25 January; the following morning ash emissions intensified again from NEC and drifted S, producing ashfall in the S flank as far as Catania (figure 253). Emissions persisted until sometime during the night of 26-27 January. The ashfall from 22-23 and 26 January were analyzed by INGV personnel; the components were 95-97% lithic fragments and crystals with only 3-5% juvenile material. An ash plume from Bocca Nuova on 28 January drifted E and produced ashfall in the Valle del Bove. Ash emission decreased from Bocca Nuova on 29-30 January; only dilute ash was observed from NEC during the last few days of the month.

Figure (see Caption) Figure 252. Dense ash emissions during the morning of 23 January 2019 at Etna were observed (a) from the Catania camera CUAD (ECV), (b) from the Catania CUAD high resolution camera (ECVH), (c) from the area stop at Linera on the A18 Messina-Catania motorway (photo B. Behncke), and (d) from the hamlet of Pisano, near Zafferana Etnea, on the SE slope of the volcano (photo B. Behncke). Courtesy of INGV (Report 05/2019; ETNA, Bollettino Settimanale, 21/01/2019 - 27/01/2019, data emissione 29/01/2019).
Figure (see Caption) Figure 253. Ash emissions covered the snow on the S flank of Etna on 26 January 2019. Photo was taken from the SS 121 at the Adrano junction, on the SW flank of the volcano. Photo by R. Corsaro, courtesy of INGV (Report 05/2019; ETNA, Bollettino Settimanale, 21/01/2019 - 27/01/2019 ,data emissione 29/01/2019).

Activity during February 2019. Typical degassing and discontinuous explosive activity from the summit characterized Etna during February. An explosion was observed at NEC at 0230 UTC on 2 February which initially produced a dense ash plume that drifted NE, producing ashfall in the summit area and the Piano Provenzana. Ash emission decreased throughout the day. Repeated ash emissions were visible beginning in the afternoon of 6 February from NEC after several days of cloudy weather. Continuous ash emissions were observed overnight on 7-8 February, producing a dilute plume that drifted S then SE. A similar dilute ash emission was observed on 9 February; the plume drifted SW. Analysis of the ash by INGV indicated a similar composition to the samples measured two weeks prior. Webcams captured numerous pulsating ash emissions from NEC in mid-February, many of which produced substantial SO2 plumes (figure 254). Emissions increased in intensity and frequency and were nearly continuous during most of the third week, with plumes drifting W, S, and SE resulting in ashfall in those directions, and also led to temporary air space closures in Catania and Comiso (figures 255 and 256). Also during the third week, Strombolian activity took place at BN-1, while pulsating degassing was observed at BN-2. Incandescent degassing continued at the vent located on the N edge of Voragine. Irregular ash emissions that rapidly dispersed near the summit were produced by BN on 26 and 27 February.

Figure (see Caption) Figure 254. Substantial SO2 plumes accompanied ash emissions from Etna during many days in February 2019. The largest plumes were captured with the TROPOMI instrument on the Sentinel-5P satellite on 19, 20, 21, and 22 February. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 255. Ash emission from Etna's North-East Crater (NEC) on the morning of 18 February 2019 was captured by the INGV-OE webcam in Milo. The different colored lines roughly indicate the topographic profiles observable from that position of the various summit craters of Etna: NSEC = New South-East Crater; BN = Bocca Nuova; VOR = Voragine. Courtesy of INGV (Report 09/2019, ETNA, Bollettino Settimanale, 18/02/2019 - 24/02/2019, data emissione 26/02/2019).
Figure (see Caption) Figure 256. An ash emission drifted W from Etna's NEC on 19 February 2019 as viewed from Tremestieri Etneo, located 20 km S of the volcano. Photo by Boris Behncke, courtesy of INGV-OE (Report 09/2019, ETNA, Bollettino Settimanale, 18/02/2019 - 24/02/2019, data emissione 26/02/2019).

Activity during March 2019. Discontinuous and moderate outgassing characterized activity at all the summit vents of Etna throughout March 2018 after an ash plume from Bocca Nuova on 2 March reached 4 km above the crater. The ash plume was accompanied by seismic activity that INGV concluded was likely related to an intra-crater collapse. The discontinuous degassing was interrupted on 16 March by a single small emission of brown ash from Bocca Nuova which rapidly dissipated (figure 257). During a site visit on 30 March, INGV personnel noted pulsating degassing with apparent temperatures above 250°C from the new vent formed in mid-January at the E rim of Voragine (figure 258). At NEC, low-temperature pulsating degassing was occurring at the vent at the bottom of the crater and from fumaroles along the inner walls (figure 259).

Figure (see Caption) Figure 257. A small ash emission from the BN crater on 16 March 2019 was recorded by the high-resolution webcams in Monte Cagliato, on the eastern slope of Etna (a) and in Bronte, on the west side (b). Courtesy of INGV (Report 12/2019, ETNA, Bollettino Settimanale, 11/03/2019 - 17/03/2019, data emissione 19/03/2019).
Figure (see Caption) Figure 258. Degassing continued at the vents along the E edge of Voragine crater at Etna on 30 March 2019, producing temperatures in excess of 250°C. In the background is the NE Crater (NEC) whose southern edge was affected by modest collapses in March 2019. Courtesy of INGV (Report 14/2019, ETNA, Bollettino Settimanale, 25/03/2019 - 31/03/2019, data emissione 02/04/2019).
Figure (see Caption) Figure 259. Degassing continued from the vents located on the bottom of the NE Crater at Etna on 30 March 2019 as seen from the eastern edge with visual and thermal images. Courtesy of INGV (Report 14/2019, ETNA, Bollettino Settimanale, 25/03/2019 - 31/03/2019, (data emissione 02/04/2019).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/ ); Blog INGVvulcani, Istituto Nazionale di Geofisica e Vulcanologia (INGV); (URL: http://ingvvulcani.wordpress.com); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Manam (Papua New Guinea) — February 2019 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash plumes reaching 15 km altitude in August and December 2018

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes. Activity during 2017 included a strong surge in thermal anomalies beginning in mid-February that lasted through mid-June; low levels of intermittent thermal activity continued for the rest of the year (BGVN 43:03). Activity during 2018, discussed below, included two ash explosions that rose higher than 15 km altitude, in August and December, resulting in significant ashfall and evacuations of several villages. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

Satellite imagery confirmed thermal activity in December 2017, February-April 2018, and June-December 2018. Explosive activity with ash plumes was reported in June, August-October, and December 2018. Ash plumes from explosions in late August and early December rose to over 15 km altitude and caused heavy ashfall on the island. Lava flows were reported in late August, late September to early October, and December; a pyroclastic flow on the NE flank occurred during the late August explosive episode. MODVOLC thermal alerts were issued during the same periods when lava flows were reported on the NE flank. The MIROVA Log Radiative Power graph for 2018 showed intermittent pulses of thermal activity throughout the year; levels of increased activity were apparent in late December 2017-early January 2018, mid-May, August, late September-early October, and early December 2018 (figure 42). Many of these thermal events could be confirmed with either satellite or ground-based information.

Figure (see Caption) Figure 42. The MIROVA Log Radiative Power graph for Manam during 2018 showed intermittent pulses of thermal activity throughout the year, many of which could be confirmed with satellite imagery or ground observations. Levels of increased activity were apparent in late December 2017-early January 2018, mid-May, August, late September to early October, and the first half of December 2018. Courtesy of MIROVA.

Activity during December 2017-July 2018. Both Sentinel-2 satellite imagery, and MIROVA data thermal evidence, indicated continued thermal activity at both of Manam's summit craters (Main and Southern) during December 2017-April 2018. Satellite imagery on 11, 26, and 31 December showed two thermal hotspots on each date, with a gas plume drifting E on 26 December 2017. One strong thermal anomaly was visible in satellite imagery on 19 February 2018 along with a SE-drifting gas plume (figure 43). A single anomaly was visible through atmospheric clouds on 1 March 2017 with a thin gas plume drifting NNE. On 10 April two hotspots were clearly visible, the one at Southern Crater was larger than the one at Main Crater, both with ESE drifting gas plumes. Though there was diffuse atmospheric cloud cover on 15 April, both anomalies were visible with SW-drifting gas plumes. On 25 April clouds covered the likely thermal anomalies, but a dense gas plume drifted N from the summit (figure 44).

Figure (see Caption) Figure 43. Sentinel-2 images (bands 12, 14, 2) of Manam on 11, 26, and 31 December 2017 and 19 February 2018 all showed evidence of either one or two thermal anomalies at the summit craters and gas plumes drifting in multiple directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. Thermal anomalies and/or gas plumes were visible at Manam's Main and Southern Craters on 1 March and 10, 15, and 25 April 2018 in Sentinel-2 imagery (bands 12, 14, 2), confirming continued activity at the volcano. Courtesy of Sentinel Hub Playground.

Although no satellite images confirmed thermal activity in May 2018, several anomalies were recorded by the MIROVA project (figure 42). Sentinel-2 imagery on 9 June confirmed two hotspots at the summit with Southern Crater's signal larger than the weak Main Crater signal; the first VAAC report of 2018 was issued on 10 June based on a pilot report of ash at 1.8 km altitude, but it did not appear in satellite imagery. Two thermal anomalies were both more clearly visible on 29 July, with NNE drifting gas plumes (figure 45).

Figure (see Caption) Figure 45. Two thermal anomalies with steam and gas plumes were visible in Sentinel-2 imagery (bands 12,4, 2) at the summit of Manam on 9 June and 29 July 2018. Courtesy of Sentinel Hub Playground.

Activity during August 2018.Thermal activity began increasing in early August 2018, as seen in the MIROVA data, but satellite imagery also indicated a growing hotspot at Main Crater on 13 August. The thermal source appeared to be some type of incandescent flow on the upper NE flank that was visible in 23 August imagery along with the second anomaly at Southern Crater (figure 46).

Figure (see Caption) Figure 46. Growing hotspots were visible at the summit of Manam in Sentinel-2 imagery (bands 12,4, 2) on 13 August 2018 compared with the June and July imagery (figure 45). By 23 August a much larger thermal anomaly was visible beneath cloud cover originating from Main Crater. Courtesy of Sentinel Hub Playground.

The Rabaul Volcano Observatory (RVO) issued an information bulletin early on 25 August indicating a new eruption from Main Crater (figure 47). Residents on the island reported increased activity around 0500 local time. The Darwin VAAC also issued a report a few hours later (24 August 2019 UTC) where they increased the Aviation Color code to Red, and indicated a high-impact eruption with an ash plume visible in satellite imagery that rose to 15.2 km altitude and drifted WSW after initially moving N (figure 48). Reports received at RVO indicated that ash, scoria, and mud fell in areas between the communities of Dangale on the NNE and Jogari on the SW part of the island. They also indicated that the most affected areas were Baliau and Kuluguma where wet, heavy, ashfall broke tree branches and reduced visibility (figure 49). A lava flow was observed in the NE valley slowly moving downhill, and there was evidence of a pyroclastic flow that reached the ocean in the same valley (figure 50).

Figure (see Caption) Figure 47. A large explosion at Manam on 25 August 2018 (local time) produced an ash plume that rose to over 15 km altitude. Islanders reported that ash and other debris from the eruption was so thick that sunlight was totally blocked for hours. Photo taken from the New Guinea mainland by members of the Police force. Courtesy of Scott Waide.
Figure (see Caption) Figure 48. A substantial ash plume from an explosion at Manam on 25 August 2018 (local time) rose to 15.2 km altitude and drifted WSW for about five hours. Photo by Sean Richards, courtesy of Scott Waide.
Figure (see Caption) Figure 49. Vegetation on Manam was covered and damaged by heavy, wet, ash after an explosion on 25 August 2018. Photo by Anisah Isimel, courtesy of Scott Waide.
Figure (see Caption) Figure 50. A fresh lava flow was visible in the major drainage on the NE flank at Manam a few days after a large explosion on 25 August 2018. Pyroclastic flows scorched trees and left behind debris. Posted online on 28 August 2018 by journalist Scott Waide from an article by journalist Martha Louis, EMTV.

The eruption ceased around 1030 local time and was followed by dense steam plumes rising from the summit. RVO reported the following day that six houses in Boakure village on the NE side of the island were buried by debris from the pyroclastic flow. The occupants of the houses had escaped earlier to nearby Abaria village and no casualties were reported. The OMI instrument on NASA's Aura satellite captured a significant SO2 plume drifting WSW a few hours after reports of the 25 August eruption (figure 51). The Darwin VAAC reported a possible ash eruption on 28 August that was drifting WNW at 3.4 km altitude for a brief period before dissipating. According to RVO, several mudflows were reported in areas between the NW and SW parts of the island after the 25 August 2018 eruption, triggered by the heavy rainfall that followed.

Figure (see Caption) Figure 51. The OMI instrument on NASA's Aura satellite captured a significant SO2 plume drifting WSW from Manam a few hours after reports of the 25 August 2018 eruption. Courtesy of NASA Goddard Space Flight Center.

Activity during September-November 2018. Satellite evidence during September 2018 confirmed the ongoing activity at the summit where a thermal anomaly was visible at Southern Crater on 7 September. On 12 September a gas plume drifted NW from the thermal anomaly at Southern crater while an incandescent lava flow was visible on the NE flank below Main Crater. (figure 52). RVO reported increased activity at Southern Crater during 20-24 September that included variable amounts of steam and gray to brown ash plumes. The Darwin VAAC reported a short-lived ash plume visible in satellite imagery on 23 September that rose to 8.5 km altitude and drifted NW. A small ash emission seen in visible imagery on 25 September rose to 2.4 km altitude and extended SE briefly before dissipating. Although partially obscured by clouds, the lava flow was still visible on the upper NE flank on 27 September (figure 52).

Figure (see Caption) Figure 52. Satellite evidence (Sentinel-2, bands 12, 4, 2) during September 2018 at Manam confirmed the ongoing activity at the summit where a thermal anomaly was visible at Southern Crater on 7 September. On 12 September a gas plume drifted NW from Southern Crater while an incandescent flow traveled down the NE flank from Main Crater. Although partially obscured by clouds, the flow was still visible on the upper NE flank on 27 September. A nearly clear satellite image on 2 October showed incandescent lava reaching almost to the ocean in two lobes on the NE flank of the island. Courtesy of Sentinel Hub playground.

Continuous ash emissions from a new explosion were first reported based on satellite imagery by the Darwin VAAC on 30 September (UTC) at 4.3 km altitude extending SW, and also at 3.0 km altitude drifting W. The emissions at 4.3 km altitude dissipated the following day, but lower level emissions continued at 2.1 km altitude drifting NW through 3 October. On 1 October residents reported hearing continuous loud roaring, rumbling, and banging noises, and reports from Tabele on the SW side of the island indicated very bright incandescence at the summit area. The incandescence was also visible from the Bogia Government Station on the mainland. Small amounts of fine ash and scoria were reported at Jogari and surrounding villages to the N on 1 October. Field observations on 1 October confirmed the presence of a two-lobed lava flow into the NE valley. The smaller lobe traveled towards Kolang village on the N side of the valley and the larger lobe went to the S towards Boakure village. Both flows stopped before reaching inhabited areas. A nearly clear satellite image on 2 October showed the incandescent lava reaching almost to the ocean in the two lobes on the NE flank of the island (figure 52). An SO2 plume drifting SW from Manam was captured by the OMI instrument on the Aura satellite on 1 October 2018 (figure 53).

Figure (see Caption) Figure 53. The OMI instrument on NASA's Aura satellite captured an SO2 plume drifting SW from Manam on 1 October 2018. Courtesy of NASA Goddard Space Flight Center.

RVO reported that during 2-12 October Southern Crater produced variable amounts of brown, gray-brown and dark gray ash clouds that rose between a few hundred meters and a kilometer above the summit craters before drifting NW. The Darwin VAAC reported an ash emission to 10.4 km altitude on 5 October that extended 25 km W before dissipating within a few hours. Continuous emissions to 2.4 km altitude extending WNW began a few hours later and were intermittently visible in satellite imagery through 12 October. Incandescent lava was visible in satellite imagery on the NE flank on 12 October (figure 54). Activity decreased significantly during the rest of October and most of November 2018, with no ground reports, VAAC reports, or satellite imagery indicating thermal activity; only the MIROVA data showed low-level thermal anomalies (figure 42). A satellite image on 26 November 2018 indicated that thermal activity continued at one of the summit craters (figure 54).

Figure (see Caption) Figure 54. Incandescent lava was visible on the NE flank of Manam on 12 October 2018 in this Sentinel-2 satellite image (bands 12, 4, 2). A single hotspot appeared through meteoric clouds on 26 November. Courtesy of Sentinel Hub Playground.

Activity during December 2018. The Darwin VAAC reported a minor ash emission on 6 December 2018 that rose to 5.2 km altitude and drifted SE for a few hours before dissipating. A much larger ash emission on 8 December was clearly observed in satellite imagery and reported by a pilot, as well as by ground and ocean-based observers. It was initially reported at 12.2 km altitude but rose to 15.2 km a few hours later, drifting E for about 10 hours before dissipating (figure 55). This was followed later in the day by an ongoing ash emission at 8.2 km altitude that drifted E before dissipating on 9 December. According to the UNHCR news organization Relief Web, the eruption started around 1300 local time on 8 December and lasted until about 1000 on 9 December. Based on reports from the ground, the eruption affected the NE part of the island. In particular, a lava flow affected Bokure (Bokuri) and Kolang (NE Manam). Communities in both localities were evacuated. The Loop PNG reported that RVO noted that the flow stopped before reaching Bokure. Ash and scoria fall was described as being moderate in downwind areas, including Warisi village on the SE side of the island. An SO2 plume was also identified by satellite instruments. Hotspots were visible from both craters on 11 December and from one of the craters on 16 December (figure 56).

Figure (see Caption) Figure 55. This image of an eruption at Manam on 8 December 2018 (local time) was likely taken from a Papua New Guinea government ship, and made available via Jhay Mawengu of the Royal Papua New Guinea Constabulary.
Figure (see Caption) Figure 56. Sentinel-2 satellite images indicated thermal activity continuing as hotspots at the summit of Manam on 11 and 16 December 2018. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Scott Waide (URL: https://mylandmycountry.wordpress.com/2018/08/, Twitter: @Scott_Waide); Jhay Mawengu, Royal Papua New Guinea Constabulary (URL: https://www.facebook.com/mawengu.jeremy.7); Relief Web, United Nations Office for the Coordination of Humanitarian Affairs, Resident Coordinator's Office, 380 Madison Avenue, 7th floor, New York, NY 10017-2528, USA (URL: https://reliefweb.int/); LOOP Pacific (URL: http://www.looppng.com/).


Merapi (Indonesia) — April 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Dome appears at summit on 12 August 2018; grows to 447,000 m3 by late March 2019

Merapi volcano in central Java, Indonesia (figure 69), has a lengthy history of major eruptive episodes. Activity has included lava flows, pyroclastic flows, lahars, Plinian explosions with heavy ashfall, incandescent block avalanches, and dome growth and destruction. Fatalities from these events were reported in 1994, 2006, and during a major event in 2010 (BGVN 36:01) where hundreds were killed and hundreds of thousands of people were evacuated. Renewed phreatic explosions in May 2018 cancelled airline fights and generated significant SO2 plumes in the atmosphere. The volcano then remained quiet until an explosion on 11 August 2018 marked the beginning of the growth of a new lava dome. The period June 2018 through March 2019 is covered in this report with information provided primarily by Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG, which monitors activity specifically at Merapi.

Figure (see Caption) Figure 69. A drone aerial photo of Merapi taken on 11 November 2018 shows the Gendol river drainage in the foreground and the upper part that is often referred to as Bebeng. Pyroclastic flows descended through this drainage in both 2006 and 2010. Courtesy of Øystein Lund Andersen.

The first sign of renewed activity at Merapi came with an explosion and the appearance of a lava dome at the summit on 12 August 2018. The growth rate of the dome fluctuated between August 2018 and January 2019, with a low rate of 1,000 m3/day in late September to a high of 6,200 m3/day in mid-October. By mid-December the dome was large enough to send block avalanches down the Kali Gendol ravine on the SSE flank. The rate of dome growth declined rapidly during January 2019, when most of the new lava moved down the ravine in numerous block avalanches. By late March 2019 the dome had reached 472,000 m3 in volume and block avalanches were occurring every few days.

After the eruptive events between 11 May and 1 June 2018, seismicity fluctuated at levels slightly above normal during June and July, with the highest levels recorded on 18 and 29 July. A VONA on 3 June reported a plume of steam that rose 800 m above the summit; for the rest of June the plume heights gradually decreased to a maximum of 400 m by the third week. During July steam plume heights varied from 30 to 350 m above the summit.

On 1 August 2018 an explosion was heard at the Babadan Post. An explosion on 11 August was heard by residents of Deles on the SE flank. Photos taken in a survey by drone the following day indicated the presence of new material in the middle of the 2010 dome fracture (figure 70). The presence of a new lava dome was confirmed with a site visit on 18 August 2018. The dome was 55 m long and 25 m wide, and about 5 m below the 2010 dome surface (figure 71). As of 23 August, the volume of the dome was 23,000 m3, growing at an average rate of 2,700 m3/day. By the end of the month the volume was estimated to be 54,000 m3 with a growth rate of 4,000 m3/day (figure 72). Throughout the month, persistent steam plumes rose 50-200 m above the summit.

Figure (see Caption) Figure 70. The first sign of new dome growth at Merapi appeared in this drone photo taken on 12 August 2018. Courtesy of BPPTKG (Siaran Pers 18 Agustus 2018 Pukul 17:00 WIB, Press Release 18 August 2018, 1700 local time).
Figure (see Caption) Figure 71. The new dome at the summit of Merapi on 18 August 2018. Courtesy of BPPTKG (Siaran Pers 18 Agustus 2018 Pukul 17:00 WIB, Press Release 18 August 2018, 1700 local time).
Figure (see Caption) Figure 72. A comparison of the dome on 18 (top) and 28 (bottom) August 2018 at Merapi taken from the Puncak webcam on the N flank. By the end of August 2018, the dome size was about 54,000 m3. Courtesy of BPPTKG (posted via Twitter on 27 August 2018).

During September-November 2018 the summit dome grew at varying rates from 1,000 to 6,200 m3/day (table 22). At the beginning of September its volume was 54,000 m3; it had reached 329,000 m3 by the end of November (figure 73). Steam plumes in September rose from 100 to 450 m above the summit. They were lower in October, rising only 50-100 m high. During November they rose 100 to400 m above the summit. Intermittent seismic activity remained above background levels. By mid-November, the growth of the dome was clearly visible from the ground 4.5 km S of the summit (figure 74).

Table 22. The volume and growth rate of the lava dome at Merapi was measured weekly from late August 2018 through January 2019. Data courtesy of BPPTKG Merapi weekly reports.

Date Size (m3) Rate (m3 / day)
23 Aug 2018 23,000 2,700
30 Aug 2018 54,000 4,000
06 Sep 2018 82,000 3,900
13 Sep 2018 103,000 3,000
20 Sep 2018 122,000 3,000
27 Sep 2018 129,000 1,000
04 Oct 2018 135,000 1,000
11 Oct 2018 160,000 3,100
18 Oct 2018 201,000 6,200
21 Oct 2018 219,000 6,100
31 Oct 2018 248,000 2,900
07 Nov 2018 273,000 3,500
14 Nov 2018 290,000 2,400
21 Nov 2018 308,000 2,600
29 Nov 2018 329,000 2,500
06 Dec 2018 344,000 2,200
13 Dec 2018 359,000 2,200
19 Dec 2018 370,000 2,000
27 Dec 2018 389,000 2,300
03 Jan 2019 415,000 3,800
10 Jan 2019 439,000 3,400
16 Jan 2019 453,000 2,300
22 Jan 2019 461,000 1,300
29 Jan 2019 461,000 --
07 Feb 2019 461,000 --
14 Feb 2019 461,000 --
21 Feb 2019 466,000 --
05 Mar 2019 470,000 --
21 Mar 2019 472,000 --
Figure (see Caption) Figure 73. Images from September-November 2018 show the growth of the lava dome at the summit of Merapi. In each pair the left image is from the Deles webcam, and the right image is from the Puncak webcam on the same date. Top: 26 September 2018, left growth lines show change from 8 to 27 September, from 18 to 26 September on right; Middle: 22 October 2018, both sets of growth lines are from 13 September to 22 October; Bottom: 22 November 2018, left growth lines are from mid-September to 21 November and right growth lines are 15 and 22 November. In each Puncak image the red outline at the center is the dome outline on 18 August 2018. Courtesy of BPPTKG, from weekly reports of Merapi activity, 21-27 September, 19-25 October, and 16-22 November 2018.
Figure (see Caption) Figure 74. A comparison of the crater area of Merapi on 2 June 2018 (left) and 11 November 2018 (right). The new dome is clearly visible in the later photo. The images were taken about 4.5 km S of the summit. Persistent gas emissions rose from both the new dome and around the summit crater. Courtesy of Øystein Lund Andersen.

The lava dome continued to grow during December 2018, producing steam plumes that rose 50-200 m. As the height of the dome increased, block avalanches began descending into the upper reaches of Kali Gendol ravine on the SSE flank. Avalanches on 16 and 19 December reached 300 m down the drainage; on 21 December a larger avalanche lasted for 129 seconds and traveled 1 km based on the duration of the seismic data (figure 75). By the end of December BPPTKG measured the volume of the dome as 389,000 m3.

Figure (see Caption) Figure 75. Steam and gas from a recent block avalanche rose from the edge of the new dome at Merapi on 21 December 2018 (top). By the end of December BPPTKG measured the volume of the dome as 389,000 m3. Top image from BPPTKG press release of 21 December 2018; bottom images from the weekly Merapi Mountain activities report of 21-27 December. Courtesy of BPPTKG.

The rate of dome growth declined steadily during January 2019, and by the third week most of the lava extrusion was collapsing as block avalanches into the upper part of Kali Gendol, and dome growth had slowed. Steam plumes rose 50-450 m during the month. In spite of slowing growth, a comparison of the dome size between 11 November 2018 and 13 January 2019 indicated an increase in volume of over 150,000 m3 of material (figure 76). Incandescence at the dome and in the block avalanches was visible at night when the summit was clear (figures 77 and 78). Three block avalanches occurred during the evening of 29 January; the first traveled 1.4 km, the second 1.35 km, and the third 1.1 km down the ravine; each one lasted for about two minutes. By the end of January the size of the dome was reported by BPPTKG to be about 461,000 m3.

Figure (see Caption) Figure 76. A comparison of the dome growth at Merapi from 11 November 2018 to 13 January 2019 showed an increase in volume of over 150,000 m3 according to Indonesian authorities (BPPTKG), as well as the accumulation of debris as material fell down the ravine. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 77. Incandescence appeared at the growing dome at the summit of Merapi late on 13 January 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 78. Incandescent blocks from the growing dome at Merapi traveled several hundred meters down Kali Gendol on 14 January 2019. Courtesy of Øystein Lund Andersen.

Numerous block avalanches were observed during February 2019 as almost all of the lava extrusion was moving down the slope. Multiple avalanches were reported on 7, 11, 18, 25, and 27 February, with traveling distances ranging from 200 to 2,000 m. Steam plumes did not rise more than 375 m during the month. By the end of February, the dome had only grown slightly to 466,000 m3. Seventeen block avalanches were reported during March 2019; they traveled distances ranging from 500 to 1,900 m down the Kali Gendol ravine. A drone measurement on 5 March determined the volume of the dome to be 470,000 m3; it was only 2,000 m3 larger when measured again on 21 March.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/).


Bagana (Papua New Guinea) — February 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent ash plumes; thermal anomalies continue through January 2019

The relatively remote Bagana volcano, located on Bougainville Island, Papua New Guinea, is poorly monitored and most of the available data is obtained by satellites (figure 30). The most recent eruptive phase began on or before early 2000 with intermittent ash plumes and detected thermal anomalies (BGVN 41:04, 41:07, 42:08, 43:05). The Darwin Volcanic Ash Advisory Centre (VAAC) monitors satellite imagery for ash plumes that could impact aviation.

Figure (see Caption) Figure 30. Sentinel-2 satellite image (natural color, bands 4, 3, 2) of Bagana on 28 May 2018. Courtesy of Sentinel Hub Playground.

Cloud cover obscured the volcano during much of the reporting period, but significant ash plumes were identified five times by the Darwin Volcanic Ash Advisory Centre (VAAC), in May, July, and December 2018 (table 6). Infrared satellite imagery from Sentinel-2 frequently showed thermal anomalies, both at the summit and caused by hot material moving down the flanks (figure 31).

Table 6. Summary of ash plumes from Bagana reported during May 2018 through January 2019. Courtesy of the Darwin Volcanic Ash Advisory Centre (VAAC).

Date Max Plume Altitude (km) Plume Drift
08 May 2018 2.1 W
11 May 2018 2.1 SW
22 Jul 2018 2.4 W
29-30 Jul 2018 1.8-2.1 SW
01 Dec 2018 3-6.1 SE
Figure (see Caption) Figure 31. Infrared satellite images from Sentinel-2 (atmospheric penetration, bands 12, 11, 8A) showing hot areas at the summit and on the flanks on 7 July (top left), 31 August (top right), 14 November (bottom left) and 14 December (bottom right) 2018. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, recorded a large number of thermal alerts within 5 km of the summit throughout this reporting period (figure 32). Thermal alerts increased in number and intensity beginning mid-July 2018. This pattern is also consistent with the MODVOLC data (also based on MODIS satellite data). A total of 76 thermal anomaly pixels were recorded during the reporting period; of these, greater than 40 pixels were observed during July 2018 alone with 13 pixels reported in December 2018 (figure 33).

Figure (see Caption) Figure 32. Thermal anomalies identified at Bagana by the MIROVA system (log radiative power) for the year ending 8 February 2019. Courtesy of MIROVA.

Small sulfur dioxide (SO2) anomalies were detected by the AuraOMI instrument during this period, the highest being in the range of 1.5-1.8 Dobson Units (DU). Emissions in this range occurred during July 7, 21, and 28 July, and 3-5 and 19 December 2018.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA, a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) – MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Fuego (Guatemala) — April 2019 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Frequent explosive activity with ash plumes, avalanches, lava flows, and lahars from July 2018 through March 2019

Fuego is one of Guatemala's most active volcanoes, regularly producing ash plumes and incandescent ballistic ejecta, along with lava flows, avalanches, pyroclastic flows, and lahars down the ravines (barrancas) and rivers (figure 104). Frequent ash plumes have been recorded in recent years (figure 105). A major eruptive event occurred on 3-5 June that resulted in fatalities. Thermal data show an increase in activity from November 2018, that continued through the reporting period (figure 106). This report summarizes activity from July 2018 through March 2019 based on reports by Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) and the National Office of Disaster Management (CONRED), Washington Volcanic Ash Advisory Center (VAAC), satellite data.

Figure (see Caption) Figure 104. Map of Fuego showing the ravines, rivers, and communities. Map created in 2005 (see BGVN 30:08).
Figure (see Caption) Figure 105. Ash plume altitudes from 1999 through 2019 for Fuego as reported by the Washington VAAC. The gray vertical lines represent paroxysmal eruptions. Courtesy of Rudiger Escobar Wolf, Michigan Technological University.
Figure (see Caption) Figure 106. Log radiative power MIROVA plot of MODIS infrared data at Fuego for the year ending April 2019 showing increased activity since November 2018. Courtesy of MIROVA.

Gas emissions and avalanches characterized activity in early July 2018; an increase was reported on the 4th. Avalanches descended through the Cenizas, Las Lajas, and Santa Teresa ravines on the 6th. One explosion every two hours on 8 July produced ash plumes up to 4.3 km altitude (500 m above the crater) that dispersed towards the SW. Avalanches down the flanks accompanied this activity. On 10 July ash plumes rose to 4.2 and 5 km altitude dispersing to the SW, and ashfall was reported in Morelia and Panimache (figure 107). Avalanches continued on the 19-20 and 23-24 July and weak explosions on the 23-24 produced low ash plumes that dispersed to the N. Hot lahars containing blocks 2-3 m in diameter and tree trunks and branches were generated in the Taniluyá, Ceniza, El Jute, and Las Lajas ravines on 30 and 31 July, and 2 and 9 August.

Figure (see Caption) Figure 107. A moderate explosion produced an ash plume at Fuego on 10 July 2018. Photo courtesy of CONRED.

During August and September, weak to moderate explosions produced ash plumes that rose to 4.7 km altitude and incandescent material was ejected to 150 m above the crater, producing avalanches down the ravines. Additional hot lahars carrying boulders and tree branches occurred on 29 August-2 September and 21-27 September down the Honda (E), El Jute (SE), Las Lajas (SE), Cenizas (SSW), Taniluyá (SW), Seca (W), Santa Teresa (W), Niagara (W), Mineral, and Pantaleón (W) drainages.

An increase in activity occurred on 29 September with degassing pulses lasting 3-4 hours recorded and heard. Avalanches occurred on the flanks and weak-moderate explosions occurred at a rate of 10-15 per hour with ash plumes rising up to 4.7 km. Hot lahars traveled down the Seca, Santa Teresa, and Mineral ravines, transporting blocks up to 3 m in diameter along with tree trunks and branches. Similar lahars were generated in the Las Lajas ravine on 5, 8, and 9 October (figure 108). The lahars were hot and smelled of sulfur, and they carried blocks 1-3 m in diameter.

On 12 October activity increased and produced incandescent ejecta up to 100-200 m above the crater and out to 300 m away from the crater, avalanches in the ravines, and a lava flow with a length of 800-1,000 m, that had reached 1,500 m by the 13th. Ash plumes reached 4.8 km altitude and dispersed up to 12 km towards the S and SE. Explosions occurred at a rate of 8-10 per hour with shockwaves that were reported near the volcano. At 1640 a pyroclastic flow was generated down the Seca ravine (figure 109). Similar activity continued through the 13th, with ash plumes reaching 5 km and ashfall reported in communities including Panimache I, Morelia, Santa Sofia, Sangre de Cristo, El Porvenir, and Palo Verde Estate. This episode of increased activity continued for 32 hours. Lahars traveled down the Ceniza and Seca ravines, the Achiguate River, and the Mineral and Taniluyá ravines (both tributaries of the Pantaleón river). A 30-m-wide lahar with a depth of 2 m was reported on 16 October that carried blocks up to 2 m in diameter, tree trunks, and branches. More lahars descended the Las Lajas ravine on the 17-18, and 20 October. Explosions continued through to the end of October, with increased activity on 31 October.

Figure (see Caption) Figure 108. Seismograms and RSAM (Real-time Seismic Amplitude Measurement) graphs of activity at Fuego showing a change in signal indicative of lahars in the Las Lajas ravine on 8 and 9 October 2018 (red boxes and arrows). The change in seismic signal correlates with an increase in RSAM values. Courtesy of INSIVUMEH.
Figure (see Caption) Figure 109. A pyroclastic flow at Fuego traveling down the Seca ravine on 12 October 2018. Courtesy of CONRED.

Frequent activity continued into November with elevated activity reported on the 2 and 4-6 November. On 6 November ash plumes rose to 4.8 km altitude and traveled 20 km W and SW resulted in ashfall on communities including Panimache, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa. Constant explosions ejected incandescent material to 300 m above the crater. A lava flow 1-1.2 km long observed in the Ceniza ravine generated avalanches from the front of the flow, which continued through the 9th.

Activity increased again on 17 November, initiating the fifth eruptive phase of 2018. There were 10-15 explosions recorded per hour along with ash plumes up to 4.7 km that dispersed 10-15 km to the W and SW. Incandescent material was ejected up to 200-300 m above the crater, and avalanches were generated. A new lava flow reached 800 m down the Ceniza ravine. Ashfall was reported in Panimaché I, Morelia, Santa Sofia, El Porvenir, Sangre de Cristo, Palo Verde Estate, Yepocapa, and other communities.

The elevated activity continued through 18 November with 12-17 explosions per hour and a constant ash plume to 5 km altitude, dispersing to the W and SW for 20-25 km. Moderate avalanches traveled down the Ceniza, Taniluyá, and Seca ravines out to the vegetation line. Incandescent blocks were ejected up to 400 m above the crater. Ashfall was reported in communities including Panimaché I, Morelia, Santa Sofia, Sangre de Cristo, and Palo Verde Estate. Avalanches from the front of the lava flow traveled down the Taniluyá and Seca ravines.

Ash plumes rose to 7 km altitude on the 19th and dispersed 50-60 km towards the W, SW, and NE (figure 110). Incandescent ballistic ejecta reached 1 km above the crater and scattered to over 1 km from the crater (figure 111), with the explosions shaking houses over 15 km away to the W and SW, and avalanches moved down the Seca, Ceniza, Taniluyá, Las Lajas, and Honda ravines reaching the vegetation. Two new lava flows formed, extending to 300 m down the Seca and Santa Teresa ravines. Pyroclastic flows traveled down the Seca, Las Lajas, and Honda ravines. Ashfall due to the generation of pyroclastic flows was reported in Panimaché I and II, Santa Sofía, Sangre de Cristo, Palo Verde Estate, and in Alotenango and Antigua, Guatemala, to the NE. CONRED reported the evacuation of 3,925 people. INSIVUMEH reported that the eruption phase was over at 1800 on 19 November after 32 hours of increased activity.

Figure (see Caption) Figure 110. Eruption at Fuego on 19 November 2018 producing ash plumes and incandescent ejecta. Courtesy of European Pressphoto Agency via BBC News.
Figure (see Caption) Figure 111. Explosions at Fuego on 19 November 2018 generated ash plumes to 5.2 km altitude, incandescent blocks up to 1 km above the crater, and avalanches. Courtesy of CONRED.

Explosions continued through 20 November at a rate of 8-13 per hour, ejecting incandescent material up to 200 m above the crater and ash plumes to at least 4.6 km that drifted 20-25 km NW, W, and SW. Avalanches continued with some reaching the vegetation. Ashfall was reported in communities including Panimaché, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa.

Similar activity continued through to the end of November with explosions producing shockwaves felt out to 25 km; some explosions were heard in Guatemala City, 40 km ENE. Ash plumes rose to 5 km (figures 112 and 113) and dispersed 20 km W, S, and SW, and ash fell in communities including Panimaché, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, San Pedro Yepocapa, Alotenango, and San Miguel Dueñas. Explosions were recorded 10 to 18 per hour. Incandescent ejecta rose to 200 m above the crater and resulted in avalanches in the Las Lajas, Ceniza, El jute, Honda, Taniluyá, Trinidad, and Seca ravines with some reaching the vegetation line. Some avalanches entrained large blocks up to 3 m in diameter that produced ash plumes as they traveled down the ravines. Hot lahars were generated in the Seca, Santa Maria, and Mineral ravines, carrying blocks up to 3 m in diameter (figure 114).

Figure (see Caption) Figure 112. Explosions at Fuego generated ash plumes and caused avalanches in the Las Lajas, Trinidad, and Ceniza ravines on 22 November 2018. Courtesy of CONRED.
Figure (see Caption) Figure 113. Ash plume up to 5.5 km altitude at Fuego on 28 November 2018. Courtesy of CONRED.
Figure (see Caption) Figure 114. A lahar from Fuego traveling down the Mineral River in November 2018. Courtesy of CONRED.

During December white to light gray fumarolic plumes rose to a maximum height of 4.5 km. Ash plumes reached up to 5.2 km and dispersed to a maximum of 25 km S, SW, and W. There were 3-15 explosions recorded per hour with shockwaves, incandescent ejecta reaching 300 m above the crater, and avalanches down the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines. Ashfall was reported in communities including Panimaché I and II, Morelia, Santa Sofia, El Porvenir, Palo Verde Estate, Sangre de Cristo, Yepocapa, La Rochela, San Andrés Osuna, Ceylon, Alotenango, and San Pedro.

Similar activity continued through January 2019 with fumarolic plumes rising to a maximum of 4.4 km altitude, ash plumes reaching 4.8 km and dispersing over 15 km to the NE, WSW, and NW; 3-25 explosions per hour sent shockwaves and avalanches in multiple directions. Ashfall was reported in Panimaché, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa. Also in Alotenango, La Reunion, and El Porvenir, Alotenango.

An increase in activity began on 21 January with moderate to strong explosions producing ash plumes up to 5 km altitude that dispersed 12 km W and SW. The explosions were heard over 15 km away and shook windows and roofs out to 12 km away. Avalanches were triggered in multiple ravines. On 22 January there were 15-25 recorded explosions per hour, each lasting 2-3 minutes and producing ash plumes to 4.8 km and incandescent ejecta up to 300 m above the crater (figure 115).

Figure (see Caption) Figure 115. An ash plume rising during an explosive event at Fuego on 22 January 2019. Courtesy of CONRED.

Frequent explosions continued during February through to late-March, with a range of 8-18 per hour, producing ash plumes rising to 4.8 km (figure 116), and dispersing out to 15 km in multiple directions. Incandescent ejecta rose to 350 m above the crater and resulted in avalanches down multiple ravines. Ashfall was reported in communities including El Rodeo, El Zapote, Ceylon, La Roche-la, Panimache, Morelia, Santa Sofia, Sangre de Cristo, San Miguel Dueñas, Ciudad Vieja, and Alotenango, Verde Estate, San Pedro Yepocapa, La Rochelle, and San Andrés Osuna.

On 22 March there was an increase in the number and energy of explosions with 15-20 per hour. Accompanying ash plumes rose to 5 km altitude and dispersed 25-30 km S, W, SW, E, and SE, depositing ash in La Rochela, Ceylon, Osuna, Las Palmas, Siquinalá, and Santa Lucia Cotzumalguapa. Explosions were heard over 20 km from the volcano. Incandescent ejecta rose to 300 m above the crater and moderate to strong avalanches flowed down the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas and Honda ravines. Explosions increased to 14-32 events per hour by 31 March, continuing to produce ash plumes up to 5 km and depositing ash on nearby communities and causing avalanches down the flanks. A new lava flow reached 800 m down the Seca ravine.

Figure (see Caption) Figure 116. Examples of small ash plumes at Fuego on 21 February and 12 March 2019. Courtesy of William Chigna, CONRED (top) and CONRED (bottom).

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Rudiger Escobar Wolf, Michigan Technologicla University, 630 Dow Environmental Sciences, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: https://www.mtu.edu/geo/department/staff/wolf.html); William Chigna, CONRED (URL: https://twitter.com/william_chigna); BBC News (URL: https://www.bbc.com; https://www.bbc.com/news/world-latin-america-46261168?intlink_from_url=https://www.bbc.com/news/topics/c4n0j0d82l0t/guatemala-volcano&link_location=live-reporting-story); European Pressphoto Agency (URL: http://www.epa.eu/); Agence France-Presse (URL: http://www.afp.com/).


Stromboli (Italy) — March 2019 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Constant explosions from both crater areas during November 2018-February 2019

Nearly constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N Area) and a southern crater group (CS Area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the island. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at a location closer to the summit craters.

Eruptive activity from November 2018 to February 2019 was consistent in terms of explosion intensities and rates from both crater areas at the summit, and similar to activity of the past few years (table 5). In the North Crater area, both vents N1 and N2 emitted a mixture of coarse (lapilli and bombs) and fine (ash) ejecta; most explosions rose less than 80 m above the vents, some reached 150 m. Average explosion rates ranged from 4 to 21 per hour. In the CS crater area continuous degassing and occasional intense spattering were typical at vent C, vent S1 was a low-intensity incandescent jet throughout the period. Explosions from vent S2 produced 80-150 m high ejecta of ash, lapilli and bombs at average rates of 3-16 per hour. Thermal activity at Stromboli was actually higher during November 2018-February 2019 than it had been in previous months as recorded in the MIROVA Log Radiative Power data from MODIS infrared satellite information (figure 139).

Table 5. Summary of activity levels at Stromboli, November 2018-February 2019. Low intensity activity indicates ejecta rising less than 80 m and medium intensity is ejecta rising less than 150 m. Data courtesy of INGV.

Month N Area Activity CS Area Activity
Nov 2018 Low- to medium-intensity explosions at both N1 and N2, lapilli and bombs mixed with ash, explosion rates of 6-16 per hour. Continuous degassing at C; intense spattering on 26 Nov. Low- to medium-intensity incandescent jetting at S1. Low- to medium-intensity explosions at S2 with a mix of coarse and fine ejecta and explosion rates of 3-18 per hour.
Dec 2018 Low- to medium-intensity explosions at both N1 and N2, coarse and fine ejecta, explosion rates of 4-21 per hour. Three days of intense spattering at N2. Continuous degassing at C; intense spattering 1-2 Dec. Low- to medium-intensity incandescent jets at S1, low and medium-intensity explosions of coarse and fine material at S2. Average explosion raters were 10-18 per hour at the beginning of the month, 3-4 per hour during last week.
Jan 2019 Low- to medium-intensity explosions at N1, coarse ejecta. Low- to medium-intensity and spattering at N2, coarse and fine ejecta. Explosion rates of 9-16 per hour. Continuous degassing and low-intensity explosions of coarse ejecta at C. Low-intensity incandescent jets at S1. Low- and medium-intensity explosions of coarse and fine ejecta at S2.
Feb 2019 Medium-intensity explosions with coarse ejecta at N1. Low-intensity explosions with fine ash at N2. Explosion rates of 4-11 per hour. Continuous degassing and low-intensity explosions with coarse and fine ejecta at C and S2. Low intensity incandescent jets at S1. Explosion rates of 2-13 per hour.
Figure (see Caption) Figure 139.Thermal activity at Stromboli increased during November 2018-February 2019 compared with the preceding several months as recorded in the MIROVA project log radiative power data taken from MODIS thermal satellite information. Courtesy of MIROVA.

Activity at the N area was very consistent during November 2018 (figure 140). Explosions of low-intensity (less than 80 m high) to medium-intensity (less than 150 m high) occurred at both the N1 and N2 vents and produced coarse material (lapilli and bombs) mixed with ash, at rates averaging 6-16 explosions per hour. In the SC area continuous degassing was reported from vent C with a brief period of intense spattering on 26 November. At vent S1 low- to medium-intensity incandescent jetting was reported. At vent S2, low- and medium-intensity explosive activity produced a mixture of coarse and fine (ash) material at a frequency of 3-18 events per hour.

Figure (see Caption) Figure 140. The Terrazza Craterica at Stromboli on 12 November 2018 as viewed by the thermal camera placed on the Pizzo sopra la Fossa, showing the two main crater areas and the active vents within each area that are discussed in the text. Heights above the crater terrace, as indicators of intensity of the explosions, are shown divided into three intervals of low (basso), medium (media), and high (alta). Courtesy of INGV (Report 46/2018, Stromboli, Bollettino Settimanale 05/11/2018 - 11/11/2018, data emissione 13/11/2018).

Similar activity continued during December at both crater areas, although there were brief periods of more intense activity. Low- to medium-intensity explosions at both N area vents produced a mixture of coarse and fine-grained material at rates averaging 4-21 per hour. During 6-7 December ejecta from the N vents fell onto the upper part of the Sciara del Fuoco and rolled down the gullies to the coast, producing tongues of debris (figure 141). An explosion at N1 on 12 December produced a change in the structure of the crater area. During 10-16 December the ejecta from the N area landed outside the crater on the Sciara del Fuoco. Intense spattering was observed from N2 on 18, 22, and 31 December. In the CS area, continuous degassing took place at vent C, along with a brief period of intense spattering on 1-2 December. Low to medium intensity incandescent jets persisted at S1 along with low-and medium-intensity explosions of coarse and fine-grained material at vent S2. Rates of explosion at the CS area were higher at the beginning of December (10-18 per hour) and lower during the last week of the month (3-4 per hour).

Figure (see Caption) Figure 141. Images from the Q 400 thermal camera at Stromboli taken on 6 December 2018 showed the accumulation of pyroclastic material in several gullies on the upper part of the Sciara del Fuoco following an explosion at vent N2 at 1520 UTC. The images illustrate the rapid cooling of the pyroclastic material in the subsequent two hours. Courtesy of INGV (Report 50/2018, Stromboli, Bollettino Settimanale, 03/12/2018 - 09/12/2018, data emissione 11/12/2018).

Explosive intensity was low (ejecta less than 80 m high) at vent N1 at the beginning of January 2019 and increased to medium (ejecta less than 150 m high) during the second half of the month, producing coarse ejecta of lapilli and bombs. Intensity at vent N2 was low to medium throughout the month with both coarse- and fine-grained material ejected. Explosions from N2 sent large blocks onto the Sciara del Fuoco several times throughout the month and usually was accompanied by intense spattering. Explosion rates varied, with averages of 9 to 16 per hour, throughout the month in the N area. In the CS area continuous degassing occurred at vent C, and low-intensity explosions of coarse-grained material were reported during the second half of the month. Low-intensity incandescent jets at S1 along with low- and medium-intensity explosions of coarse and fine-grained material at S2 persisted throughout the month.

A helicopter overflight of Stromboli on 8 January 2019 allowed for detailed visual and thermal observations of activity and of the morphology of the vents at the summit (figure 142). Vent C had two small hornitos, and a small scoria cone was present in vent S1, while a larger crater was apparent at S2. In the N crater area vent N2 had a large scoria cone that faced the Sciara del Fuoco to the north; three narrow gullies were visible at the base of the cone (figure 143). Vent S1 was a large crater containing three small vents aligned in a NW-SE trend; INGV scientists concluded the vents formed as a result of the 12 December 2018 explosion. Thermal images showed relatively low temperatures at all fumaroles compared with earlier visits.

Figure (see Caption) Figure 142. Thermal images from Stromboli taken during the overflight of 8 January 2019 showed the morphological structure of the individual vents of the N and CS crater areas. Courtesy of INGV (Report 03/2019, Stromboli, Bollettino Settimanale, 07/01/2019 - 13/01/2019, (data emissione 15/01/2019).
Figure (see Caption) Figure 143. An image taken at Stromboli during the overflight of 8 January 2019 shows the morphological structure of the summit Terrazza Craterica with three gullies at the base of the scoria cone of vent N2. The top thermal image (inset a) shows that the fumaroles in the upper part of the Sciara del Fuoco have low temperatures. Courtesy of INGV (Report 03/2019, Stromboli, Bollettino Settimanale, 07/01/2019 - 13/01/2019, data emissione 15/01/2019).

Activity during February 2019 declined slightly from the previous few months. Explosions at vent N1 were of medium-intensity and produced coarse material (lapilli and bombs). At N2, low-intensity explosions produced fine ash. Average explosion rates in the N area ranged from 4-11 per hour. At the CS area, continuous degassing and low-intensity explosions produced coarse and fine-grained material from vents C and S2 while low-intensity incandescent jets were active at S1. The explosion rates at the CS area averaged 2-13 per hour.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Krakatau (Indonesia) — March 2019 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 813 m

All times are local (unless otherwise noted)


Ash plumes, ballistic ejecta, and lava extrusion during October-December; partial collapse and tsunami in late December; Surtseyan activity in December-January 2019

Krakatau volcano, between Java in Sumatra in the Sunda Straight of Indonesia, is known for its catastrophic collapse in 1883 that produce far-reaching pyroclastic flows, ashfall, and tsunami. The pre-1883 edifice had grown within an even older collapse caldera that formed around 535 CE, resulting in a 7-km-wide caldera and the three surrounding islands of Verlaten, Lang, and Rakata (figure 55). Eruptions that began in late December 1927 (figures 56 and 57) built the Anak Krakatau cone above sea level (Sudradjat, 1982; Simkin and Fiske, 1983). Frequent smaller eruptions since that time, over 40 short episodes consisting of ash plumes, incandescent blocks and bombs, and lava flows, constructed an island reaching 338 m elevation.

Figure (see Caption) Figure 55. The three islands of Verlaten, Lang, and Rakata formed during a collapse event around 535 CE. Another collapse event occurred in 1883, producing widespread ashfall, pyroclastic flows, and triggering a tsunami. Through many smaller eruptions since then, Anak Krakatau has since grown in the center of the caldera. Sentinel-2 natural color (bands 4, 3, 2) satellite image acquired on 16 November 2018, courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Photo sequence (made from a film) at 6-second intervals from the early phase of activity on 24 January 1928 that built the active Anak Krakatau cone above the ocean surface. Plume height reached about 1 km. View is from about 4.5 km away at a beach on Verlaten Island looking SE towards Rakata Island in the right background. Photos by Charles E. Stehn (Netherlands Indies Volcanological Survey) from the E.G. Zies Collection, Smithsonian Institution.
Figure (see Caption) Figure 57. Submarine explosions in January 1928 built the active Anak Krakatau cone above the ocean surface. View is from about 600 m away looking E towards Lang Island in the background. Photos by Charles E. Stehn (Netherlands Indies Volcanological Survey) from the E.G. Zies Collection, Smithsonian Institution.

Historically there has been a lot of confusion about the name and preferred spelling of this volcano. Some have incorrectly made a distinction between the pre-1883 edifice being called "Krakatoa" and then using "Krakatau" for the current volcano. Anak Krakatau is the name of the active cone, but the overall volcano name is simply Krakatau. Simkin and Fiske (1983) explained as follows: "Krakatau was the accepted spelling for the volcano in 1883 and remains the accepted spelling in modern Indonesia. In the original manuscript copy submitted to the printers of the 1888 Royal Society Report, now in the archives of the Royal Society, this spelling has been systematically changed by a neat red line through the final 'au' and the replacement 'oa' entered above; a late policy change that, from some of the archived correspondence, saddened several contributors to the volume."

After 15 months of quiescence Krakatau began a new eruption phase on 21 June 2018, characterized by ash plumes, ballistic ejecta, Strombolian activity, and lava flows. Ash plumes reached 4.9 km and a lava flow traveled down the SE flank and entered the ocean. This report summarizes the activity from October 2018 to January 2019 based on reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), MAGMA Indonesia, the National Board for Disaster Management - Badan Nasional Penanggulangan Bencana (BNPB), the Darwin Volcanic Ash Advisory Center (VAAC), satellite data, and eye witness accounts.

Activity during October-21 December 2018. The eruption continued to eject incandescent ballistic ejecta, ash plumes, and lava flows in October through December 2018. On 22 December a partial collapse of Anak Krakatau began, dramatically changing the morphology of the island and triggering a deadly tsunami that impacted coastlines around the Sunda Straight. Following the collapse the vent was located below sea level and Surtseyan activity produced steam plumes, ash plumes, and volcanic lightning.

Sentinel-2 satellite images acquired through October show incandescence in the crater, lava flows on the SW flank, and incandescent material to the S to SE of the crater (figure 58). This correlates with eyewitness accounts of explosions ejecting incandescent ballistic ejecta, and Volcano Observatory Notice for Aviation (VONA) ash plume reports. The Darwin VAAC reported ash plumes to 1.5-2.4 km altitude that drifted in multiple directions during 17-19 October, but throughout most of October visual observations were limited due to fog. A video shared by Sutopo on 24 October shows ash emission and lava fountaining producing a lava flow that entered the ocean, resulting in a white plume. Video by Richard Roscoe of Photovolcanica shows explosions ejecting incandescent blocks onto the flanks and ash plumes accompanied by volcanic lightning on 25 October.

Figure (see Caption) Figure 58. Sentinel-2 thermal satellite images showing lava flows, incandescent avalanche deposits, and incandescence in the crater of Anak Krakatau during October 2018. Courtesy of Sentinel-2 hub playground.

Throughout November frequent ash plumes rose to 0.3-1.3 km altitude, with explosion durations spanning 29-212 seconds (figure 59). Observations by Øystein Lund Andersen describe explosions ejecting incandescent material with ash plumes and some associated lightning on 17 November (figure 60).

Figure (see Caption) Figure 59. Sentinel-2 satellite images showing ash plumes at Krakatau during 6-16 November 2018. Natural color (Bands 4, 3, 2) Sentinel-2 images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 60. Krakatau erupting an ash plume and incandescent material on 17 November 2018. Courtesy of Øystein Lund Andersen.

During 1-21 December intermittent explosions lasting 46-776 seconds produced ash plumes that rose up to 1 km altitude. Thermal signatures were sporadically detected by various satellite thermal infrared sensors during this time. On 22 December ash plumes reached 0.3-1.5 km through the day and continuous tremor was recorded.

Activity and events during 22-28 December 2018. The following events during the evening of the 22nd were recorded by Øystein Lund Andersen, who was photographing the eruption from the Anyer-Carita area in Java, approximately 47 km from Anak Krakatau. Starting at 1429 local time, incandescence and ash plumes were observed and the eruption could be heard as intermittent 'cannon-fire' sounds, sometimes shaking walls and windows. An increase in intensity was noted at around 1700, when the ash column increased in height and was accompanied by volcanic lightning, and eruption sounds became more frequent (figure 61). A white steam plume began to rise from the shore of the southern flank. After sunset incandescent ballistic blocks were observed impacting the flanks, with activity intensity peaking around 1830 with louder eruption sounds and a higher steam plume from the ocean (figure 62).

Figure (see Caption) Figure 61. Ash plumes at Krakatau from 1429 to 1739 on 22 December 2018. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 62. Krakatau ejecting incandescent blocks and ash during 1823-1859 on 22 December 2018. The top and middle images show the steam plume at the shore of the southern flank. Courtesy of Øystein Lund Andersen.

PVMBG recorded an eruption at 2103. When viewed at 2105 by Øystein Lund Andersen, a dark plume across the area blocked observations of Anak Krakatau and any incandescence (figure 63). At 2127-2128 the first tsunami wave hit the shore and traveled approximately 15 m inland (matching the BNPB determined time of 2127). At approximately 2131 the sound of the ocean ceased and was soon replaced by a rumbling sound and the second, larger tsunami wave impacted the area and traveled further inland, where it reached significant depths and caused extensive damage (figures 64 and 65). After the tsunami, eruption activity remained high and the eruption was heard again during intervals from 0300 through to early afternoon.

Figure (see Caption) Figure 63. Krakatau is no longer visible at 2116 on 22 December 2018, minutes before the first tsunami wave arrived at west Java. A dark ash plume takes up much of the view. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 64. The second tsunami wave arriving at Anyer-Carita area of Java after the Krakatau collapse. This photo was taken at 2133 on 22 December 2018, courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 65. Photographs showing damage caused in the Anyer-Carita area of Java by the tsunami that was triggered by the partial collapse of Krakatau. From top to bottom, these images were taken approximately 40 m, 20 m, and 20 m from the shore on 23 December 2018. Courtesy of Øystein Lund Andersen.

Observations on 23 December reveal steam-rich ash plumes and base surge traveling along the water, indicative of the shallow-water Surtseyan eruption (figure 66). Ashfall was reported on the 26th in several regions including Cilegon, Anyer, and Serang. The first radar observations of Krakatau were on 24 December and showed a significant removal of material from the island (figure 67). At 0600 on the 27th the volcanic alert level was increased from II to III (on a scale of I-IV) and a VONA with Aviation Color Code Red reported an ash plume to approximately 7 km altitude that dispersed to the NE. When Anak Krakatau was visible, Surtseyan activity and plumes were observed through the end of December. On 28 December, plumes reached 200-3000 m. At 0418 the eruption paused and the first observation of the post-collapse edifice was made. The estimated removed volume (above sea level) was 150-180 million m3, leaving a remaining volume of 40-70 million m3. The summit of the pre-collapse cone was 338 m, while the highest point post-collapse was reduced to 110 m. Hundreds of thousands of lightning strokes were detected during 22-28 December with varying intensity (figure 68).

Figure (see Caption) Figure 66. Steam-rich plumes and underlying dark ash plumes from Surtseyan activity at Krakatau on 23 December 2018. Photos by Instagram user @didikh017 at Grand Cava Susi Air, via Sutopo.
Figure (see Caption) Figure 67. ALOS-2 satellite radar images showing Krakatau on 20 August 2018 and 24 December 2018. The later image shows that a large part of the cone of Anak Krakatau had collapsed. Courtesy of Geospatial Information Authority of Japan (GSI) via Sutopo.
Figure (see Caption) Figure 68. Lightning strokes during the eruption of Krakatau within a 20 km radius of the volcano for 30 minute intervals on 23, 25, 26, and 28 December 2018. Courtesy of Chris Vagasky.

Damage resulting from the 22 December tsunami. On the 29 December the damage reported by BNPB was 1,527 heavily damaged housing units, 70 with moderate damage, 181 with light damage, 78 damaged lodging and warung units, 434 damaged boats and ships and some damage to public facilities. Damage was recorded in the five regencies of Pandenglang, Serang, South Lampung, Pesawaran and Tanggamus. A BNPB report on 14 January gave the following figures: 437 fatalities, 10 people missing, 31,943 people injured, and 16,198 people evacuated (figure 69). The eruption and tsunami resulted in damage to the surrounding islands, with scouring on the Anak-Krakatau-facing slope of Rakata and damage to vegetation on Kecil island (figure 70 and 71).

Figure (see Caption) Figure 69. The impacts of the tsunami that was triggered by a partial collapse of Anak Krakatau from an update given on 14 January 2019. Translations are as follows. Korban Meninggal: victims; Korban hilang: missing; Korban luka-luka: injured; Mengungsi: evacuated. The color scale from green to red along the coastline indicates the breakdown of the human impacts by area. Courtesy of BNPB.
Figure (see Caption) Figure 70. Damage on Rakata Island from the Krakatau tsunami. This part of the island is facing Anak Krakatau and the scoured area was estimated to be 25 m high. Photographs taken on 10 January 2019 by James Reynolds.
Figure (see Caption) Figure 71. Damage to vegetation on Kecil island to the East of Krakatau, from the Krakatau December 2018 eruption. Photographs taken on 10 January 2019 by James Reynolds.

Activity during January 2019. Surtseyan activity continued into January 2019. Øystein Lund Andersen observed the eruption on 4-5 January. Activity on 4 January was near-continuous. The photographs show black cock's-tail jets that rose a few hundred meters before collapsing (figure 72), accompanied by white lateral base surge that spread from the vent across the ocean (figure 73), and white steam plumes that were visible from Anyer-Carita, West Java. In the evening the ash-and-steam plume was much higher (figure 74). It was also noted that older pumice had washed ashore at this location and a coating of sulfur was present along the beach and some of the water surface. Activity decreased again on the 5th (figure 75) with a VONA reporting an ash plume to 1.5 km towards the WSW. SO2 plumes were dispersed to the NE, E, and S during this time (figure 76).

Figure (see Caption) Figure 72. Black ash plumes and white steam plumes from the Surtseyan eruption at Krakatau on 4 January 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 73. An expanding base surge at Krakatau on 4 January 2019 at 0911. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 74. Ash-and-steam plumes at Krakatau at 1702-2250 on 4 January 2018. Lightning is illuminating the plume in the bottom image. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 75. Ash plumes at Krakatau on 5 January 2019 at 0935. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 76. Sulfur dioxide (SO2) emissions produced by Krakatau and drifting to the NE, E, and SE on 3-6 January 2018. Dates and times of the periods represented are listed at the top of each image. Courtesy of the NASA Space Goddard Flight Center.

During 5-9 January intermittent explosions lasting 20 seconds to 13 minutes produced ash plumes rising up to 1.2 km and dispersing E. From 11 to 19 January white plumes were observed up to 500 m. Observations were prevented due to fog during 20-31 January. MIROVA thermal data show elevated thermal anomalies from July through January, with a decrease in energy in November through January (figure 77). The radiative power detected in December-January was the lowest since June 2018.

Figure (see Caption) Figure 77. Log radiative power MIROVA plot of MODIS thermal infrared data for June 2018-January 2019. The peaks in energy correlate with observed lava flows. Courtesy of MIROVA.

Morphological changes to Anak Krakatau. Images taken before and after the collapse event show changes in the shoreline, destruction of vegetation, and removal of the cone (figure 78). A TerraSAR-X image acquired on 29 January shows that in the location where the cone and active vent was, a bay had formed, opening to the W (figure 79). These changes are also visible in Sentinel-2 satellite images, with the open bay visible through light cloud cover on 29 December (figure 80).

By 9 January a rim had formed, closing off the bay to the ocean and forming a circular crater lake. Photos by James Reynolds on 11 January show a new crater rim to the W of the vent, which was filled with water (figure 81). Steam and/or gas emissions were emanating from the surface in that area. The southern lava delta surface was covered with tephra, and part of the lava delta had been removed, leaving a smooth coastline. By the time these images were taken there was already extensive erosion of the fresh deposits around the island. Fresh material extended the coast in places and filled in bays to produce a more even shoreline.

Figure (see Caption) Figure 78. Krakatau on 5 August 2018 (top) and on 11 January 2019 showing the edifice after the collapse event. The two drone photographs show approximately the same area. Courtesy of Øystein Lund Andersen (top) and James Reynolds (bottom).
Figure (see Caption) Figure 79. TerraSAR-X radar images showing the morphological changes to Krakatau with the changes outlined in the bottom right image as follows. Red: 30 August 2018 (upper left image); blue: 29 December 2018 (upper right image); yellow: 9 January 2019 (lower left image). Part of the southern lava delta was removed and material was added to the SE and NE to N shoreline. In the 29 December image the cone has collapsed and in its place is an open bay, which had been closed by a new rim by the 9 January. Courtesy of BNPB, JAXA Japan Aerospace Exploration Agency, and Badan Informasi Geospasial (BIG).
Figure (see Caption) Figure 80. Sentinel-2 satellite images showing the changing morphology of Krakatau. The SW section is where the cone previously sat and collapsed in December 2018. In the upper right image the cone and southern lava delta are gone and there are changes to the coastline of the entire island. Natural color (bands 4, 3, 2) Sentinel-2 satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 81. Drone footage of the Krakatau crater and new crater rim taken on 11 January 2019. The island is coated in fresh tephra from the eruption and the orange is discolored water due to the eruption. The land between the crater lake and the ocean built up since the collapse and the hot deposits are still producing steam/gas. Courtesy of James Reynolds.
Figure (see Caption) Figure 82. An aerial view of Krakatau with the new crater on 13 January 2019. Courtesy of BNPB.

References. Simkin, T., and Fiske, R.S., 1983, Krakatau 1883: the volcanic eruption and its effects: Smithsonian Institution Press, Washington DC, 464 p. ISBN 0-87474-841-0.

Sudradjat (Sumartadipura), A., 1982. The morphological development of Anak Krakatau Volcano, Sunda Straight. Geologi Indonesia, 9(1):1-11.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ); Geospatial Information Authority of Japan (GSI), 1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan. (URL: http://www.gsi.go.jp/ENGLISH/index.html); Badan Informasi Geospasial (BIG), Jl. Raya Jakarta - Bogor KM. 46 Cibinong 16911, Indonesia. (URL: http://www.big.go.id/atlas-administrasi/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); JAXA | Japan Aerospace Exploration Agency, 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522 (URL: https://global.jaxa.jp/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/krakatau-volcano-witnessing-the-eruption-tsunami-22december2018/); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/channel/UCLKYsEXfI0PGXeKYL1KV7qA); Chris Vagasky, Vaisala Inc., Louisville, Colorado (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman).


Santa Maria (Guatemala) — March 2019 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions cause steam-and-ash plumes and block avalanches, November 2018-February 2019

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. The youngest of the four vents in the complex, Caliente, has been erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions of steam and ash also continued during November 2018-February 2019, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Activity at Santa Maria continued with little variation from previous months during November 2018-February 2019. Plumes of steam with minor magmatic gases rose continuously from the Caliente crater 100-500 m above the summit, generally drifting SW or SE before dissipating. In addition, daily explosions with varying amounts of ash rose to altitudes of around 2.8-3.5 km and usually extended 20-30 km before dissipating. Most of the plumes drifted SW or SE; minor ashfall occurred in the adjacent hills almost daily and was reported at the fincas located within 15 km in those directions several times each month. Continued growth of the Caliente lava dome resulted in daily block avalanches descending its flanks. The MIROVA plot of thermal energy during this time shows a consistent level of heat flow with minor variations throughout the period (figure 89).

Figure (see Caption) Figure 89. Persistent thermal activity was recorded at Santa Maria from 6 June 2018 through February 2019 as seen in the MIROVA plot of thermal energy derived from satellite thermal data. Daily explosions produced ash plumes and block avalanches that were responsible for the continued heat flow at the volcano. Courtesy of MIROVA.

During November 2018 steam plumes rose to altitudes of 2.8-3.2 km from Caliente summit, usually drifting SW, sometimes SE. Several ash-bearing explosions were reported daily, rising to 3-3.2 km altitude and also drifting SW or SE. The highest plume reported by INSIVUMEH rose to 3.4 km on 25 November and drifted SW. The Washington VAAC reported an ash emission on 9 November that rose to 4.3 km altitude and drifted W; it dissipated within a few hours about 35 km from the summit. On 11 November another plume rose to 4.9 km altitude and drifted NW. INSIVUMEH issued a special report on 2 November noting an increase in block avalanches on the S and SE flanks, many of which traveled from the crater dome to the base of the volcano. Nearly constant avalanche blocks descended the SE flank of the dome and occasionally traveled down the other flanks as well throughout the month. They reached the bottom of the cone again on 29 November. Ashfall was reported around the flanks more than once every week and at Finca Florida on 12 November. Finca San Jose reported ashfall on 11, 13, and 23 November, and Parcelamiento Monte Claro reported ashfall on 15, 24, 25, and 27 November.

Constant degassing from the Caliente dome during December 2018 formed white plumes of mostly steam that rose to 2.6-3.0 km altitude during the month. Weak explosions averaging 9-13 per day produced gray ash plumes that rose to 2.8-3.4 km altitude. The Washington VAAC reported an ash emission on 4 December that extended 25 km SW of the summit at 3.0 km altitude and dissipated quickly. Small ash plumes were visible in satellite imagery a few kilometers WNW on 8, 12, 30, and 31 December at 4.3 km altitude; they each dissipated within a few hours. Ashfall was reported in Finca Monte Claro on 1 and 4 December, and in San Marcos Palajunoj on 26 and 30 December along with Loma Linda. On 28 December ashfall on the E flank affected the communities of Las Marías, Calahuache, and El Nuevo Palmar. Block avalanches occurred daily, sending large blocks to the base of the volcano that often stirred up small plumes of ash in the vicinity (figure 90).

Figure (see Caption) Figure 90. Activity during December 2018 at Santa Maria included constant degassing of steam plumes, weak explosions with ash plumes, and block avalanches rolling down the flanks to the base of the cone. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Diciembre 2018).

Multiple explosions daily during January 2019 produced steam-and-ash plumes (figure 91). Constant degassing rising 10-500 m emerged from the SSE part of the Caliente dome, and ashfall, mainly on the W and SW rim of the cone, was a daily feature. Seismic station STG-3 detected 10-18 explosions per day that produced ash plumes, which rose to between 2.7 and 3.5 km altitude. The Washington VAAC noted a faint ash emission in satellite imagery on 1 January that was about 25 km W of the summit at 4.3 km altitude. A new emission appeared at the same altitude on 4 January about 15 km NW of the summit. A low-density emission around midday on 5 January produced an ash plume that drifted NNE at 4.6 km altitude. Ash plumes drifted W at 4.3 km altitude on 11 and 14 January for short periods of time before dissipating.

Figure (see Caption) Figure 91. Explosions during January produced numerous steam-and-ash plumes at the Santiaguito complex of Santa Maria. A moderate explosion on 31 January 2019 produced an ash plume that rose to about 3.1 km altitude (top). A thermal image and seismograph show another moderate explosion on 18 January 2019 that also rose nearly vertically from the summit of Caliente. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).

Ash drifted mainly towards the W, SW, and S, causing ashfall in the villages of San Marcos Palajunoj, Loma Linda, Monte Bello, El Patrocinio, La Florida, El Faro, Patzulín and a few others several times during the month. The main places where daily ashfall was reported were near the complex, in the hilly crop areas of the El Faro and San José Patzulín farms (figure 92). Blocks up to 3 m in diameter reached the base of the complex, stirring up ash plumes that settled on the immediate flanks. Juvenile material continued to appear at the summit of the dome during January; the dome had risen above the edge of the crater created by the explosions of 2016. Changes in the size and shape of the dome between 23 November 2018 and 13 January 2019 showed the addition of material on the E and SE side of the dome, as well as a new effusive flow that travelled 200-300 m down the E flank (figure 93).

Figure (see Caption) Figure 92. Near-daily ashfall affected the coffee plants at the El Faro and San José Patzulín farms (left) at Santiaguito during January 2019. Large avalanche blocks descending the flanks, seen here on 23 January 2018, often stirred up smaller ash plumes that settled out next to the cone. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).
Figure (see Caption) Figure 93. A comparison of the growth at the Caliente dome of the Santiaguito complex at Santa Maria between 23 November 2018 (top) and 13 January 2019 (bottom) shows the emergence of juvenile material and a 200-300 m long effusive flow that has moved slowly down the E flank. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).

Persistent steam rising 50-150 m above the crater was typical during February 2019 and accompanied weak and moderate explosions that averaged 12 per day throughout the month. White and gray ash plumes from the explosions rose to 2.8-3.3 km altitude; daily block avalanches usually reached the base of the dome (figure 94). Ashfall occurred around the complex, mainly on the W, SW, and NE flanks on a daily basis, but communities farther away were affected as well. The Washington VAAC reported an ash plume on 7 February in visible satellite imagery moving SW from the summit at 4.9 km altitude. The next day a new ash plume was located about 20 km W of the summit, dissipating rapidly, at 4.3 km altitude. Ashfall drifting SW affected Palajuno Monte Claro on 5, 9, 15, and 16 February. Ash drifting E and SE affected Calaguache, Las Marías and surrounding farms on 14 and 17 February, and fine-grained ash drifting SE was reported at finca San José on 21 February.

Figure (see Caption) Figure 94. Activity at the Caliente dome of the Santiaguito complex at Santa Maria included daily ash-and-steam explosions and block avalanches descending the sides of the dome in February 2019. A typical explosion on 2 February 2019 produced an ash plume that rose to about 3 km altitude and drifted SW (left). A block avalanche on 14 February descended the SE flank and stirred up small plumes of ash in the vicinity (right, top); the avalanche lasted for 88 seconds and registered with seismic frequencies between 3.46 and 7.64 Hz (right bottom). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 01 al 08 de febrero de 2019).

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Masaya (Nicaragua) — March 2019 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake persists with decreased thermal output, November 2018-February 2019

Nicaragua's Volcan Masaya has an intermittent lava lake that has attracted visitors since the time of the Spanish Conquistadores; tephrochronology has dated eruptions back several thousand years. The unusual basaltic caldera has had historical explosive eruptions in addition to lava flows and an actively circulating lava lake. An explosion in 2012 ejected ash to several hundred meters above the volcano, bombs as large as 60 cm fell around the crater, and ash fell to a thickness of 2 mm in some areas of the park. The reemergence of the lava lake inside Santiago crater was reported in December 2015. By late March 2016 the lava lake had grown and intensified enough to generate a significant thermal anomaly signature which has varied in strength but continued at a moderate level into early 2019. Information for this report, which covers the period from November 2018 through February 2019, is provided by the Instituto Nicareguense de Estudios Territoriales (INETER) and satellite -based imagery and thermal data.

The lava lake in Santiago Crater remained visible and active throughout November 2018 to February 2019 with little change from the previous few months (figure 70). Seismic amplitude RSAM values remained steady, oscillating between 10 and 40 RSAM units during the period.

Figure (see Caption) Figure 70. A small area of the lava lake inside Santiago Crater at Masaya was visible from the rim on 25 November 2018 (left) and 17 January 2019 (right). Left image courtesy of INETER webcam; right image courtesy of Alun Ebenezer.

Every few months INETER carries out SO2 measurements by making a transect using a mobile DOAS spectrometer that samples for gases downwind of the volcano. Transects were done on 9-10 October 2018, 21-24 January 2019, and 18-21 February 2019 (figure 71). Average values during the October transect were 1,454 tons per day, in January they were 1,007 tons per day, and in February they averaged 1,318 tons per day, all within a typical range of values for the last several months.

Figure (see Caption) Figure 71. INETER carries out periodic transects to measure SO2 from Masaya with a mobile DOAS spectrometer. Transects taken along the Ticuantepe-La Concepcion highway on 9-10 October 2018 (left) and 21-24 January 2019 (right) showed modest levels of SO2 emissions downwind of the summit. Courtesy of INETER (Boletín Sismos y Volcanes de Nicaragua. Octubre 2018 and Enero 2019).

During a visit by INETER technicians in early November 2018, the lens of the Mirador 1 webcam, that had water inside it and had been damaged by gases, was cleaned and repaired. During 21-24 January 2019 INETER made a site visit with scientists from the University of Johannes Gutenberg in Mainz, Germany, to measure halogen species in gas plumes, and to test different sampling techniques for volcanic gases, including through spectroscopic observations with DOAS equipment, in-situ gas sampling (MultiGAS, denuders, alkaline traps), and using a Quadcopter UAV (drone) sampling system.

Periodic measurements of CO2 from the El Comalito crater have been taken by INETER for many years. The most recent observations on 19 February 2019 indicated an emission rate of 46 +/- 3 tons per day of CO2, only slightly higher than the average value over 16 measurements between 2008 and 2019 (figure 72).

Figure (see Caption) Figure 72. CO2 measurements taken at Masaya on 19 February 2019 were very close to the average value measured during 2008-2019. Courtesy of INETER (Boletín Sismos y Volcanes de Nicaragua, Febrero 2019).

Satellite imagery (figure 73) and in-situ thermal measurements during November 2018-February 2019 indicated constant activity at the lava lake and no significant changes during the period. On 14 January 2019 temperatures were measured with the FLIR SC620 thermal camera, along with visual observations of the crater; abundant gas was noted, and no explosions from the lake were heard. The temperature at the lava lake was measured at 107°C, much cooler than the 340°C measured in September 2018 (figure 74).

Figure (see Caption) Figure 73. Sentinel-2 satellite imagery (geology, bands 12, 4, and 2) clearly indicated the presence of the active lava lake inside Santiago crater at Masaya during November 2018-February 2019. North is to the top, and the Santigo crater is just under 1 km in diameter for scale. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 74. Thermal measurements were made at Masaya on 14 January 2019 with a FLIR SC620 thermal camera that indicated temperatures over 200°C cooler than similar measurements made in September 2018.

Thermal anomaly data from satellite instruments also confirmed moderate levels of ongoing thermal activity. The MIROVA project plot indicated activity throughout the period (figure 75), and a plot of the number of MODVOLC thermal alerts by month since the lava lake first appeared in December 2015 suggests constant activity at a reduced thermal output level from the higher values in early 2017 (figure 76).

Figure (see Caption) Figure 75. Thermal anomalies remained constant at Masaya during November 2018-February 2019 as recorded by the MIROVA project. Courtesy of MIROVA.
Figure (see Caption) Figure 76. The number of MODVOLC thermal alerts each month at Masaya since the lava lake first reappeared in late 2015 reached its peak in early 2017 and declined to low but persistent levels by early 2018 where they have remained for a year. Data courtesy of MODVOLC.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Alun Ebenezer (Twitter: @AlunEbenezer, URL: https://twitter.com/AlunEbenezer).


Reventador (Ecuador) — March 2019 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Multiple daily explosions with ash plumes and incandescent blocks rolling down the flanks, October 2018-January 2019

The andesitic Volcán El Reventador lies well east of the main volcanic axis of the Cordillera Real in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. The eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Activity continued during October 2018-January 2019, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Multiple daily reports were issued from the Washington VAAC throughout the entire October 2018-January 2019 period. Plumes of ash and gas usually rose to altitudes of 4.3-6.1 km and drifted about 20 km in prevailing wind directions before either dissipating or being obscured by meteoric clouds. The average number of daily explosions reported by IG-EPN for the second half of 2018 was more than 20 per day (figure 104). The many explosions during the period originated from multiple vents within a large scarp that formed on the W flank in mid-April (BGVN 43:11, figure 95) (figure 105). Incandescent blocks were observed often in the IG webcams; they traveled 400-1,000 m down the flanks.

Figure (see Caption) Figure 104. The number of daily seismic events at El Reventador for 2018 indicated high activity during the first and last thirds of the year; more than 20 explosions per day were recorded many times during October-December 2018, the period covered in this report. LP seismic events are shown in orange, seismic tremor in pink, and seismic explosions with ash are shown in green. Courtesy of IG-EPN (Informe Anual del Volcán El Reventador – 2018, Quito, 29 de marzo del 2019).
Figure (see Caption) Figure 105. Images from IG's REBECA thermal camera showed the thermal activity from multiple different vents at different times during the year (see BGVN 43:11, figure 95 for vent locations). Courtesy if IG (Informe Anual del Volcán El Reventador – 2018, Quito, 29 de marzo del 2019).

Activity during October 2018-January 2019. During most days of October 2018 plumes of gas, steam, and ash rose over 1,000 m above the summit of Reventador, and most commonly drifted W or NW. Incandescence was observed on all nights that were not cloudy; incandescent blocks rolled 400-800 m down the flanks during half of the nights. During episodes of increased activity, ash plumes rose over 1,200 m (8, 10-11, 18-19 October) and incandescent blocks rolled down multiple flanks (figure 106).

Figure (see Caption) Figure 106. Ash emissions rose over 1,000 m above the summit of Reventador numerous times during October 2018, and large incandescent blocks traveled hundreds of meters down multiple flanks. The IG-EPN COPETE webcam that captured these images is located on the S caldera rim. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-282, 292, 295, 297).

Similar activity continued during November. IG reported 17 days of the month with steam, gas, and ash emissions rising more than 1,000 m above the summit. The other days were either cloudy or had emissions rising between 500 and 1,000 m. Incandescent blocks were usually observed on the S or SE flanks, generally travelling 400-600 m down the flanks. The Washington VAAC reported a discrete ash plume at 6.1 km altitude drifting WNW about 35 km from the summit on 15 November. The next day, intermittent puffs were noted moving W, and a bright hotspot at the summit was visible in satellite imagery. During the most intense activity of the month, incandescent blocks traveled 800 m down all the flanks (17-19 November) and ash plumes rose over 1,200 m (23 November) (figure 107).

Figure (see Caption) Figure 107. Ash plumes rose over 1,000 m above the summit on 17 days during November 2018 at Reventador, and incandescent blocks traveled 400-800 m down the flanks on many nights. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-306, 314, 318, 324).

Steam, gas, and ash plumes rose over 1,200 m above the summit on 1 December. The next day, there were reports of ashfall in San Rafael and Hosteria El Hotelito, where they reported an ash layer about 1 mm thick was deposited on vehicles during the night. Ash emissions exceeded 1,200 m above the summit on 5 and 6 December as well. Incandescent blocks traveled 800 m down all the flanks on 11, 22, 24, and 26 December, and reached 900 m on 21 December. Ash emissions rising 500 to over 1,000 m above the summit were a daily occurrence, and incandescent blocks descended 500 m or more down the flanks most days during the second half of the month (figure 108).

Figure (see Caption) Figure 108. Ash plumes that rose 500 to over 1,000 m were a daily occurrence at Reventador during December 2018. Incandescent blocks traveled as far as 900 m down the flanks as well. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-340, 351, 353, 354, 358, 359).

During the first few days of January 2019 the ash and steam plumes did not rise over 800 m, and incandescent blocks were noted 300-500 m down the S flank. An increase in activity on 6 January sent ash-and-gas plumes over 1,000 m, drifting W, and incandescent blocks 1,000 m down many flanks. For multiple days in the middle of the month the volcano was completely obscured by clouds; only occasional observations of plumes of ash and steam were made, incandescence seen at night through the clouds confirmed ongoing activity. The Washington VAAC reported continuous ash emissions moving SE extending more than 100 km on 12 January. A significant explosion late on 20 January sent incandescent blocks 800 m down the S flank; although it was mostly cloudy for much of the second half of January, brief glimpses of ash plumes rising over 1,000 m and incandescent blocks traveling up to 800 m down numerous flanks were made almost daily (figure 109).

Figure (see Caption) Figure 109. Even during the numerous cloudy days of January 2019, evidence of ash emissions and significant explosions at Reventador was captured in the Copete webcam located on the S rim of the caldera. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, number 2019-6, 21, 26, 27).

Visual evidence from the webcams supports significant thermal activity at Reventador. Atmospheric conditions are often cloudy and thus the thermal signature recorded by satellite instruments is frequently diminished. In spite of this, the MODVOLC thermal alert system recorded seven thermal alerts on three days in October, four alerts on two days in November, six alerts on two days in December and three alerts on three days in January 2019. In addition, the MIROVA system measured moderate levels of radiative power intermittently throughout the period; the most intense anomalies of 2018 were recorded on 15 October and 6 December (figure 110).

Figure (see Caption) Figure 110. Persistent thermal activity at Reventador was recorded by satellite instruments for the MIROVA system from 5 April 2018 through January 2019 in spite of frequent cloud cover over the volcano. The most intense anomalies of 2018 were recorded on 15 October and 6 December. Courtesy of MIROVA.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Kuchinoerabujima (Japan) — March 2019 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Weak explosions and ash plumes beginning 21 October 2018

Activity at Kuchinoerabujima is exemplified by interim explosions and periods of high seismicity. A weak explosion occurred on 3 August 2014, the first since 1980, and was followed by several others during 29 May-19 June 2015 (BGVN 42:03). This report describes events through February 2019. Information is based on monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Activity during 2016-2018. According to JMA, between July 2016 and August 2018, the volcano was relatively quiet. Deflation had occurred since January 2016. On 18 April 2018 the Alert Level was lowered from 3 to 2 (on a scale of 1-5). A low-temperature thermal anomaly persisted near the W fracture in Shindake crater. During January-March 2018, both the number of volcanic earthquakes (generally numerous and typically shallow) and sulfur dioxide flux remained slightly above baselines levels in August 2014 (60-500 tons/day compared tp generally less than 100 tons/day in August 2014).

JMA reported that on 15 August 2018 a swarm of deep volcanic earthquakes was recorded, prompting an increase in the Alert Level to 4. The earthquake hypocenters were about 5 km deep, below the SW flanks of Shindake, and the maximum magnitude was 1.9. They occurred at about the same place as the swarm that occurred just before the May 2015 eruption. Sulfur dioxide emissions had increased since the beginning of August; they were 1,600, 1,000, and 1,200 tons/day on 11, 13, and 17 August, respectively. No surficial changes in gas emissions or thermal areas were observed during 16-20 August. On 29 August, JMA downgraded the Alert Level to 3, after no further SO2 flux increase had occurred in recent days and GNSS measurements had not changed.

A very weak explosion was recorded at 1831 on 21 October, with additional activity between 2110 on 21 October and 1350 on 22 October; plumes rose 200 m above the crater rim. During an overflight on 22 October, observers noted ash in the emissions, though no morphological changes to the crater nor ash deposits were seen. Based on satellite images and information from JMA, the Tokyo VAAC reported that during 24-28 October ash plumes rose to altitudes of 0.9-1.5 km and drifted in multiple directions. During a field observation on 28 October, JMA scientists did not observe any changes in the thermal anomalies at the crater.

JMA reported that during 31 October-5 November 2018, very small events released plumes that rose 500-1,200 m above the crater rim. On 6 November, crater incandescence began to be periodically visible. During 12-19 November, ash plumes rose as high as 1.2 km above the crater rim and, according to the Tokyo VAAC, drifted in multiple directions. Observers doing fieldwork on 14 and 15 November noted that thermal measurements in the crater had not changed. Intermittent explosions during 22-26 November generated plumes that rose as high as 2.1 km above the crater rim. During 28 November-3 December the plumes rose as high as 1.5 km above the rim.

JMA reported that at 1637 on 18 December an explosion produced an ash plume that rose 2 km and then disappeared into a weather cloud. The event ejected material that fell in the crater area, and generated a pyroclastic flow that traveled 1 km W and 500 m E of the crater. Another weak explosion occurred on 28 December, scattering large cinders up to 500 m from the crater.

The Tokyo VAAC did not issue any ash advisories for aviation until 21 October 2018, when it issued at least one report every day through 13 December. It also issued advisories on 18-20 and 28 December.

Activity during January-early February 2019. JMA reported that at 0919 local time on 17 January 2019 an explosion generated a pyroclastic flow that reached about 1.9 km NW and 1 km E of the crater. It was the strongest explosion since October 2018. In addition, "large cinders" fell about 1-1.8 km from the crater.

Tokyo VAAC ash advisories were issued on 1, 17, 20, and 29 January 2018. An explosion at 1713-1915 on 29 January produced an ash plume that rose 4 km above the crater rim and drifted E, along with a pyroclastic flow. Ash fell in parts of Yakushima. During 30 January-1 February and 3-5 February, white plumes rose as high as 600 m. On 2 February, an explosion at 1141-1300 generated a plume that rose 600 m. No additional activity during February was reported by JMA. The Alert Level remained at 3.

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 31, Number 01 (January 2006)

Managing Editor: Richard Wunderman

Ambae (Vanuatu)

Crater-lake photos and satellite temperatures data show ongoing activity

Augustine (United States)

January 2006 eruptions; pyroclastic flows, ash plumes, and aviation hazards

Barren Island (India)

November 2005-January 2006 ash emissions, lava flows, and pyroclastics

Cleveland (United States)

6 February 2006 eruption on remote, non-instrumented island

Galeras (Colombia)

Eruption begins on 24 November 2005 sending ash plumes into air

Karthala (Comoros)

Looking at the 2005 eruption's precursors, deposits, and human impact

Lamongan (Indonesia)

Above-background seismicity during 5-6 January 2005

Lopevi (Vanuatu)

Correction to previously published MODIS hotspot data

Nyamuragira (DR Congo)

To the N, swarms of long-period, along-rift earthquakes

Nyiragongo (DR Congo)

Continuous ash plumes and active lava lake

Santa Ana (El Salvador)

Post-eruption lahars but seismicity and SO2 fluxes both often low

Tanaga (United States)

Weak, moderate depth seismicity



Ambae (Vanuatu) — January 2006 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Crater-lake photos and satellite temperatures data show ongoing activity

As previously reported, a new eruption at Aoba began 27 November 2005 in one of the crater lakes (Lake Voui). The eruption formed a cinder cone in the lake (figures 23 and 24) that contained a crater with a small hot lake (BGVN 30:11 and 30:12).

Figure (see Caption) Figure 23. A view of Aoba's Lake Voui on 18 January 2006, showing the new island and its steaming internal lake. Courtesy Alain Bernard.
Figure (see Caption) Figure 24. Steam rising from the lake on the island in the middle of Aoba's Lake Voui, 18 January 2006. Courtesy Alain Bernard.

On 31 January a high, dark ash plume caused ashfall in the S part of the island. Small eruptions continued in February.

Alain Bernard recently processed a 26 January 2006 nighttime ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) image. Figure 25 shows the ASTER product called AST_04 (TIR?thermal infrared radiometer, 8.12-11.65 ?m wavelengths?band 10) unprocessed image of Aoba with Lakes Voui and Lakua. The TIR bands, with a spatial resolution of 90 m, give the ability to detect small thermal anomalies (a few degrees C), perform thermal mapping, and monitor temporal variations in the lake surface temperature. As shown in figure 26, Lake Voui's temperature in early January 2006 dropped by ~ 10°C to a mean of 25.4°C (down from 35.7°C one month earlier). Temperature differences between Voui and Lakua dropped to 4.3°C, reaching almost to the background levels observed in July 2005 (see plot "Temperature data from Lake Voui at Aoba, October 1998-December 2005 . . ."; BGVN 30:11). There is still a strong thermal anomaly of 46.1°C inside the new island (figure 13).

Figure (see Caption) Figure 25. A thermal image of Aoba's lakes Voui and Manaro Lakua (to the W and E, respectively) for 26 January 2006 at 1124 UTC (2224 local). The image results from the ASTER On-Demand L2 Brightness Temperature at the Sensor. This AST_04 product is the brightness temperature data as recorded by the satellite, not the temperature of the target at the ground level. To retrieve the actual surface temperature, one needs to correct for atmospheric effects (absorption of water vapor, etc.) that significantly alter the spectral radiance during the travel from the ground to the satellite. A new method for this correction, developed by Alain Bernard and called AST_SW (SW stands for "split window"), is explained on his ("multispectral") website. Courtesy of Alain Bernard.
Figure (see Caption) Figure 26. A plot of computed temperatures from 1 October 2005 to 1 February 2006 for Aoba's Lake Voui. The two different symbols distinguish processed MODIS and ASTER thermal data. A similar plot for an earlier period appeared in BGVN 30:11. Courtesy of Alain Bernard.

As of 11 February 2006 at 1011 hours (10 February 2006 at 2311 UTC), Alain Bernard reported that Lakes Voui and Lakua temperatures were, respectively, 27.2°C and 23.2°C (delta T = 4°C). The maximum temperature for the mud pool was ~ 57°C.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Alain Bernard, IAVCEI Commission on Volcanic Lakes, Université Libre de Bruxelles (ULB), CP160/02, avenue F.D. Roosevelt 50, Brussels, Belgium (URL: http://www.ulb.ac.be/sciences/cvl/aoba/Ambae1.html, http://www.ulb.ac.be/sciences/cvl/multispectral/multispectral2.htm); Esline Garaebiti, Department of Geology, Mines, and Water Resources (DGMWR), Port-Vila, Vanuatu.


Augustine (United States) — January 2006 Citation iconCite this Report

Augustine

United States

59.363°N, 153.43°W; summit elev. 1252 m

All times are local (unless otherwise noted)


January 2006 eruptions; pyroclastic flows, ash plumes, and aviation hazards

Following a period of increased seismicity at Augustine that began in May 2005, discrete seismic events on 9 and 11 December may have perturbed the hydrothermal system, initiating small steam explosions. On 12 December, a plume extended 75 km SE of the volcano, and its S and E flanks were dusted with ash (likely non-juvenile). Additional steam explosions took place later in the month, and the smell of sulfur was reported by residents in villages on the E side of Cook Inlet. The first major eruptions at Augustine occurred on 11 January 2006, when two discrete explosions produced an ash cloud that reached 9 km altitude (BGVN 30:12) and the Concern Color Code was raised to Red. Further eruptions occurred on 13, 14, and 17 January. After the eruption at 0758 on 17 January, seismicity diminished significantly and AVO lowered the color code from Red to Orange late on 18 January.

By the morning of 19 January seismicity remained fixed at lower levels; it decreased further on 20 January but was still above background. Periods of quiescence and low seismicity in the intervals between eruptive events are not unusual at Augustine, having occurred during the 1976 and 1986 eruptive episodes. During 23-26 January, satellite observations indicated the persistence of faint thermal anomalies and steaming continued at the summit.

Occasional intervals of increased seismicity were observed for the next few days. On 27 January 2006 an explosive eruption began at about 2000 and lasted for 9 minutes. AVO raised the color code from Orange to Red. According to the National Weather Service (NWS), an ash cloud reached a maximum altitude of around 9 km and drifted SE. Augustine erupted again at 2337 on 27 January 2006. This event lasted 1 minute and no ash was detected above 3 km. A third eruption occurred at 0204 on 28 January 2006 and lasted 2 minutes. Ash drifted SE at an altitude of about 8 km according to NWS. A fourth eruption occurred at 0742 on 28 January and lasted 3 minutes; the ash cloud drifted SE at a maximum altitude of 7.5 km.

Another explosive event began at 1430 on 28 January. Seismic activity continued and continuous ash emission was observed in AVO web camera images. NWS reported ash to 9 km altitude travelling SSW. Following this explosion, Augustine was in a state of continuous eruption accompanied by persistent ash emission until around 3 February.

Overflight observations on 29 January suggested that pyroclastic flows were being produced. NWS radar indicated that ash clouds from events at 1117 on 29 January, and 0325 and 0621 on 30 January, rose to 7.5 km altitude. Other than during these three events an ash-rich plume rose to about 4 km altitude. On 30 January, Alaska Airlines canceled all flights into and out of Anchorage because of the potential danger of ash. Flights resumed on 31 January.

On 1 February AVO lowered the Concern Color Code from Red to Orange. Although seismic data indicated sustained eruptive activity, ash clouds to altitudes greater than 4.5 km altitude had not been observed on NWS radar since 0621 on 30 January. Low-level explosions, pyroclastic flows, and production of ash continued (figure 26).

Figure (see Caption) Figure 26. A satellite image showing the Augustine eruption on 2 February 2006. On that day the Alaska Volcano Observatory reported a continuous ash plume accompanied by low-level explosions and pyroclastic flows of hot ash and rock fragments. This image was taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite. Augustine is partially outlined in this image, indicating a ground surface much hotter than its surroundings; the volcano's ash plume is pale gray-beige, barely darker than the nearby weather clouds. However, the weather clouds can be discerned from the ash by their distinct dot-like pattern. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC.

By 3 February seismic data indicated that low-level explosions, block-and-ash-flows, and sustained production of ash were continuing intermittently and had changed little in character or intensity since 1 February. Seismicity dropped significantly on the evening of 3 February. Observers on an overflight on 3 February saw a steam-rich, ash-poor plume emerge from the cloud tops and reach no higher than 2 km altitude. NWS reported no ash in satellite or radar data.

Observations by AVO scientists during visits on 8 February, as well as satellite and seismic data and other remote observations, indicated that a lava dome was present at the summit. Streams of gas, ash, and incandescent blocks were observed descending the upper NE flank on the evening of 7 February and early on the 8th, indicating that small-volume collapses of the lava dome were occurring and that the dome was actively growing. Seismicity remained at low levels, though still above background. Low-level ash plumes and occasional pyroclastic flows on the flanks continued. A persistent thermal signal was observed in satellite data. Incandescence was visible from Homer.

On 11 February, seismic data indicated that the new lava dome at Augustine's summit continued to grow. Seismic stations on the flanks of the volcano recorded rockfalls and pyroclastic flows associated with small-volume collapses of the lava dome. A plume composed of gas, steam, and small amounts of ash continued to be emitted from the summit, and low-level, dilute ash clouds were likely present in the vicinity of the volcano.

Just before midnight on 12-13 February a low-light camera operated by the University of Alaska Fairbanks captured a small hot avalanche down the north flank of the volcano. The event was also recorded on AVO's pressure sensor on Augustine Island. A light dusting of new ash on the E flank of the volcano may have been related to this avalanche event. Satellite data on 13 February showed a persistent thermal anomaly at the volcano's summit. Together, these data suggested that the lava dome continued to grow and underwent occasional, minor collapse events.

On 16 February, clear satellite views showed a strong thermal anomaly in the summit crater area. Seismometers continued to record rockfalls and small pyroclastic-flow signals indicative of occasional, minor collapses of the lava dome. Over 10-16 February, the number of these events declined steadily, suggesting that the rate of lava effusion was slowing. An observation flight on 16 February obtained good views of the summit: a new, steaming, blocky lava dome occupied the summit crater. The dome filled much of the crater and extended as a rubbly tongue 500-800 m down the upper N flank. Dark aprons of collapse debris, including large steaming blocks, extend downslope to the N. The rim of the summit crater was largely snow-free and mantled by thick, coarse, pyroclastic deposits, likely from the explosive events in January. The dome resulted from the largely non-explosive extrusion of degassed lava following the cessation of explosive activity on January 30.

By the end of this report period (22 February) unrest was continuing. Seismicity remained above background levels. Rockfalls and avalanches from the lava dome continued but appeared to be declining in frequency. Satellite images continued to show a persistent thermal anomaly. A plume composed of variable amounts of gas, steam, and small amounts of ash likely continued intermittently from Augustine's summit. Dome building eruptive activity may continue intermittently over the next several months.

Aviation hazard. Tina Neal (USGS-AVO) provided some thought-provoking insights into Augustine's aviation-ash issues. The following quote with minor modification is information she sent in a 14 February email message to the Volcanicclouds listserve, some follow up messages, and a review.

"Volcanologists often rely upon pilot observations to provide the all-important visual confirmation and description of distant volcanic events. What we need to remember, however, is that it is quite difficult to get more than snippets of information in a PIREP [aviation pilot report]: Pilots and controllers are often extremely busy and controllers cannot ask more than very basic follow up questions. Air traffic communication protocols put a premium on succinct transmissions. I was lucky enough recently to hear this play out in real time during an Augustine eruption when I happened to be visiting the Anchorage Air Traffic Control facility and was allowed to plug in to monitor the sector around Augustine. While we should continue to encourage full and detailed PIREPs following the VAR [Volcanic Activity Report] format, we should not be terribly surprised when the return is not very complete. Similarly, follow up communications directly with the pilot, possible in some cases, are difficult and not the highest priority of Observatory staff.

"Thus far for the Augustine eruption, we do have documentation of impacts from the ash clouds and the distal fine ash and SO2 cloud from explosive events, largely taken from PIREPS passed to AVO by the FAA and the National Weather Service. In addition to these instances below, flight routes were moved in anticipation of possible ash cloud motion following several explosions, and flight cancellations did occur.

"[1.] On 14 January a jet aircraft about [80 km E] of Yakutat at FL310 [9.4 km altitude, at 59 deg. 30.65 min. N, 139 deg. 8.89 min. W; ~800 km from Augustine] skimmed through the top of the 'brown' cloud for about 10 minutes and reported smelling a 'dirty, musty odor.' The pilot climbed to FL330 and deviated to the NE around the cloud. [The plane was out of service for two days.] Borescope inspection upon landing showed no damage and no ash accumulation.[Later anaysis suggested the ash cloud encountered may have been a combination of 5 separate drifting ash clouds from 5 separate discrete events during 13-14 January.] "[2.] On the same day, another jet near the same location saw a brown haze layer about 2000 feet [610 m] thick and made a climbing turn to avoid it.

"[3. On] 31 January [there were reports of a] light sulfur smell from several aircraft over Anchorage.

"[4.] AVO received the followings email account about a possible encounter between a Cessna Cherokee and a distant ash cloud from Augustine on 30 January (we have yet to follow up for any further information and verification).

"I am traveling in the Bristol Bay Area and was in Togiak last night. Last night I started coughing and sneezing and on the flight to Dillingham this morning the pilot and I noticed volcanic ash in the air from ground level and according to the pilot up to 7,000 feet [2.1 km altitude]. The ash is very fine but is sticking to the wind screen of the aircraft. Along with the ash my eyes were stinging and I noticed a little burning in my nose. As we approached the Dillingham area and got out of the mountains the air quickly cleared. At this time it seems to only be in the mountains and according to the pilots in different places all the way to King Salmon. I do not know if you have received these reports yet."

In addition, Volcaniclouds discussions included this message from Ken Dean (Geophysical Institute-AVO). It provided some further discussion and references on past eruption-cloud behavior from Mt. Cleveland (1,250 km SW of Augustine).

". . . there was an incident on 22 February 2001 attributed to a volcanic cloud from the eruption of Cleveland Volcano on 19 Feb. 2001. A PIREP from a B747 near San Francisco [California] reported a strong (sulfur) smell and particles in the cabin. At first we thought this was an erroneous report since it was so far from the eruption and satellite date did not show anything in the region of the aircraft. However, when we ran the Puff dispersion model using re-analysis data, the simulated volcanic cloud encountered the aircraft at the time of the PIREP. This was a match in space, time and altitude. Note: Puff runs using predicted data were somewhat ambiguous regarding this encounter but the re-analysis data were much more definitive."

References. Dean, K.G., Dehn, J., Papp, K.R., Smith, S., Izbekov, P., Peterson, R., Kearney, C., and Steffke, A., 2004, Integrated satellite observations of the 2001 eruption of Mt. Cleveland: Alaska, J. Vol. Geophys. Res., v. 135, p. 63, doi10.1016/j.jvolgeores.2003.12.013.

Simpson, J.J., Hufford, G.L., Pieri, D., Servranckx, R., Berg, J.S., and Bauer, C., 2002, The February 2001 Eruption of Mount Cleveland, Alaska: Case Study of an Aviation Hazard: Weather and Forecasting, v. 17, p. 691-704.

Geologic Background. Augustine volcano, rising above Kamishak Bay in the southern Cook Inlet about 290 km SW of Anchorage, is the most active volcano of the eastern Aleutian arc. It consists of a complex of overlapping summit lava domes surrounded by an apron of volcaniclastic debris that descends to the sea on all sides. Few lava flows are exposed; the flanks consist mainly of debris-avalanche and pyroclastic-flow deposits formed by repeated collapse and regrowth of the volcano's summit. The latest episode of edifice collapse occurred during Augustine's largest historical eruption in 1883; subsequent dome growth has restored the volcano to a height comparable to that prior to 1883. The oldest dated volcanic rocks on Augustine are more than 40,000 years old. At least 11 large debris avalanches have reached the sea during the past 1800-2000 years, and five major pumiceous tephras have been erupted during this interval. Historical eruptions have typically consisted of explosive activity with emplacement of pumiceous pyroclastic-flow deposits followed by lava dome extrusion with associated block-and-ash flows.

Information Contacts: Anchorage VAAC, Alaska Aviation Weather Unit, National Weather Service, 6930 Sand Lake Road, Anchorage, AK 99502, USA (URL: http://aawu.arh.noaa.gov/vaac.php); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Jesse Allen, NASA Earth Observatory; Tina Neal, U.S. Geological Survey-Alaska Volcano Observatory; Ken Dean and Pavel E. Izbekov, Geophysical Institute, University of Alaska.


Barren Island (India) — January 2006 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


November 2005-January 2006 ash emissions, lava flows, and pyroclastics

Activity continued at Barren Island since the volcano's latest eruption that began 28 May 2005 (BGVN 30:05, 30:07, and 30:09). The MODVOLC Alerts Team web site has shown that the MODIS (moderate resolution imaging spectroradiometer) satellite recorded nearly daily thermal anomalies from 26 May 2005 (two days earlier than observed by other means). The thermal anomalies continued through 21 January 2006. In contrast, no thermal anomalies were recorded by satellites in the year prior to 26 May 2005.

D. Chandrasekharam of the Indian Institute of Technology and members of the Indian Coast Guard observed that since 4 November the volcano emitted large volumes of gas and ash emissions, and lava flows had reached the sea. Chandrasekharam stated that the early 2006 activity was more intense than when the eruption began in May 2005. The recent activity was preceded by about ten moderate earthquakes in the region, including M 4.8 and 4.5 events on 3 November.

During 12-15 November 2005, ash plumes emitted from Barren Island were visible on satellite imagery drifting predominantly SSW, but they were no longer visible on 16 November. Ash plumes were visible on satellite imagery on 19 and 20 December at a maximum height of ~ 3.7 km, and during 21-23 December at a maximum height of 4.6 km. Satellite imagery showed a thin ash plume from Barren Island extending WNW during 5-7 January 2006.

Two earthquakes occurred in January 2006. On the 6th, an M 5.4 event struck 137 km E of Barren Island, and on the 21st, an M 5.6 event struck 104 km NNW of the island.

To monitor the ongoing volcanism, a team from the Geological Survey of India, including M.M. Mukherjee, P.C. Bandopadhyay, Tapan Pal, and Sri Prasun Ghosh, approached aboard the Indian Coast Guard Ship C.S. GANGA DEVI during 12-13 January 2006. The party sailed to within 0.8 km of Barren Island and studied the nature of the eruption from shipboard. The eruption resembled fireworks projecting different colors over the crater and on the slope of the cone. Dense clusters of incandescent pyroclasts of various sizes ejected forcefully from the crater mouth "with ballistic trajectories." Apart from eruption from the main crater, a "glow of fire" from the N flank of the cone and thin layers of red hot materials on W slope were observed. The Darwin VAAC reported that ash plumes from Barren Island during 26-27 January rose to ~ 3 km.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: D. Chandrasekharam, Indian Institute of Technology, Department of Earth Sciences, Bombay 400076, India (URL: http://www.geos.iitb.ac.in/index.php/dc); Dhanapati Haldar, Presidency College, Kolkata, 4/3K/2 Ho-Chi-Min Sarani, Shakuntala Park, Biren Roy Road (West), Kolkata-700 061, India; Geological Survey of India, 27 Jawaharlal Nehru road, Kolkata 700 016, India (URL: https://www.gsi.gov.in/); Indian Coast Guard, National Stadium Complex, New Delhi 110 001, India (URL: http://indiancoastguard.nic.in/indiancoastguard/); Darwin Volcanic Ash Advisory Center (URL: http://www.bom.gov.au/info/vaac/); MODVOLC Alerts Team, Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawaii at Manoa, 1680 East-West Road, Post 602, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Cleveland (United States) — January 2006 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


6 February 2006 eruption on remote, non-instrumented island

According to the Alaska Volcano Observatory (AVO), Mount Cleveland, a volcano on an uninhabited island in the central Aleutian chain, erupted at 0757 on 6 February 2006, sending a cloud of ash to 6.7 km (22,000 ft) altitude. Officials at AVO issued a Code Red warning for the volcano because the ash cloud was near a level where it could interfere with jet traffic, said Chris Waythomas, a U.S. Geological Survey geologist. There were no reports of falling ash. The nearest community is Nikolski, a tiny Aleut village of 31 people 73 km E of the volcano.

Cleveland's last major eruptive period was in March 2001 when three explosions occurred and the volcano produced significant ash plumes (BGVN 26:04). Discussion of that episode was renewed briefly at the end of the Augustine report in this issue (BGVN 31:01). That discussion (and cited references) noted that the ash cloud from a Cleveland eruption on 19 February 2001 had a modeled path that carried the cloud S, passing over Northern California. Two days after the eruption, aviators flying near San Francisco, California, smelled sulfurous gases, presumably from the Cleveland eruption. There were also minor ash emissions from July to October 2005 (BGVN 30:09).

AVO downgraded the level of concern color code for Cleveland from Red to Orange on 7 February 2006 at 1655 hours. No new ash emissions or thermal anomalies have been detected in clear to partly cloudy satellite views from the morning of 8 February. AVO noted that Cleveland does not have a real-time seismic network and therefore it is unable to monitor seismic changes.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Galeras (Colombia) — January 2006 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Eruption begins on 24 November 2005 sending ash plumes into air

Galeras was last reported on in BGVN 30:09, covering the period from July 2004 to mid-October 2005. During July through October 2004, eruptions generated ash and gas plumes that caused ashfall in surrounding areas. On 21 November 2004 Galeras erupted explosively. During January - September 2005, low-level relatively shallow seismicity and small gas-and-ash emissions continued. Occasional steam plumes were visible from Pasto in October 2005. Seismicity fluctuated and some instrumentally measured deformation continued.

During the first week of November 2005, low-level seismicity included several tornillo earthquakes (long-period seismic events related to pressurized fluid flow at shallow depth). Small amounts of deformation were recorded at the volcano. During 9-14 November, a large number of tornillo earthquakes were reported by Instituto Colombiano de Geología y Minería (INGEOMINAS). The earthquakes were similar to those that occurred before eruptions in 1992-93. Activity during October suggested that the volume of magma beneath the volcano was greater than that inferred to have been present during the 1992-93 eruptions. Due to increased activity, the Alert Level was raised to 2 (probable eruption in days or weeks) on 14 November.

According to news reports, on 14 November local authorities recommended an evacuation of as many as 9,000 people living in towns near the volcano, including Pasto (to the E), La Florida (to the N), and Nariño (to the N). Heightened seismicity continued during 16-22 November. According to news articles, only ~ 1,000 residents had actually left as of 18 November.

On 24 November at 0246 seismic signals indicated the beginning of an eruption. Ash fell in the towns of Fontibon, San Cayetano, Postobon, and in north Pasto. Around this time, INGEOMINAS raised the Alert Level to 1 (eruption imminent or occurring). The Washington VAAC observed a small puff of ash NE of the volcano at ~ 4.6 km altitude. Activity decreased by the next day, so the Alert Level was reduced to 2. Thousands of people had been evacuated during the week prior to the eruption.

Due to a decrease in activity, on 28 November INGEOMINAS reduced the Alert Level to 3. Low levels of seismicity and deformation were continuing. Although poor weather conditions obscured the volcano most of the time, steam and gas emissions were photographed on 2 December coming from several locations on the active cone, including the main crater. The plume rose 1 km above the summit on 3 December.

Through 12 December, seismicity indicated fluids moving within the volcano, small changes in deformation occurred, and gas rose to a height of ~ 500 m. Based on information from the US Geological Survey, the Washington VAAC reported that a pilot observed an ash plume from Galeras on 23 December at an altitude of ~ 7.3 km and drifting W.

During 23 December to 2 January 2006 there were emissions of gas and small amounts of ash. On 23 December four ash plumes rose to ~ 3 km altitude and drifted to Consacá. A cluster of 33 volcano-tectonic earthquakes, reaching a maximum M 1.2, occurred beneath the volcano's crater during 29-30 December. The SO2 flux varied between 300 and 1,500 metric tons per day (t/d).

Gas emissions with small amounts of ash, and heightened seismicity, continued through 9 January. The SO2 flux at the volcano varied between 490 and 1,500 t/d. A lava dome was visible in the main crater during an overflight on 13 January. Around this time, there was an increase in the amount of seismicity and deformation. The Washington VAAC reported that a pilot observed an ash plume on 23 December at an altitude of ~ 7.3 km and drifting W.

During 23 January to 6 February, the lava dome in the main crater continued to grow; seismicity associated with the movement of fluids continued, with an average of 200 small earthquakes per day, and slight deformation was recorded. SO2 flux of about 300 t/d was measured. Strong degassing occurred in several sectors of the active cone and around the lava dome. Steam rose to 900 m above the volcano. During a field visit on 8 February, scientists found pyroclastic-flow deposits high on the SE flank.

The rate of seismicity the week of 13-20 February averaged 190 small earthquakes per day, while the SO2 flux was about 200 metric tons per day. Steam rose to ~ 1.1 km above the volcano on 19 February and incandescence was visible at parts of the lava dome. The volume of the dome in the main crater was approximately 1.5 times larger than when it was first observed on 13 January. Seismicity increased to an average of 280 small earthquakes per day during 20-27 February. SO2 flux also rose, to about 600 t/d. On 26 February a cluster of earthquakes included an M 4.8 volcano-tectonic earthquake followed by 35 smaller earthquakes. Slight deformation was recorded at the volcano. Steam and gas rose to ~ 700 m above the volcano. Galeras remained at Alert Level 3 through February 2006.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Diego Gomez Martinez, Observatorio Vulcanológico y Sismológico de Pasto (OVSP), INGEOMINAS, Carrera 31, 1807 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html; Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); El Pais (URL: http://elpais-cali.terra.com.co/paisonline/).


Karthala (Comoros) — January 2006 Citation iconCite this Report

Karthala

Comoros

11.75°S, 43.38°E; summit elev. 2361 m

All times are local (unless otherwise noted)


Looking at the 2005 eruption's precursors, deposits, and human impact

After the 11 July 1991 phreatic eruption, 14 years of quiescence at Karthala was disrupted in 2005 by two strong explosive events. These events, occurring on 16 April 2005 (BGVN 30:04) and 24 November 2005 (BGVN 30:11), resulted in deposits of fine ash scattered over a large part of the island. This report presents some further observations and analyses of the November event by scientists from the Comoros and Reunion.

Seismic precursors. The seismicity on figure 16 delineates four periods during 2005: (1) From the beginning of the year until the 16 April explosive event, an interval characterized by significant seismicity. (2) From the 16 April event until just prior to the 25-26 August seismic crisis, an interval with relatively low seismicity (only 102 events recorded in 116 days). (3) An interval from 26 August to 23 November that began during the 25-26 August seismic crisis when 190 events occurred. Moderate seismicity following the seismic crisis ramped up after 27 October until the 24 November eruption. This period was characterized by a total of 1,063 seismic events, an average of 12 earthquakes per day. (4) From the 24 November eruption until the end of the year, an interval of relatively low seismicity similar to the second period. The 24 November earthquake swarm began at 1902, dropped significantly at 1950, and restarted at 2021 with sustained tremor.

Figure (see Caption) Figure 16. Cumulative distribution of earthquakes registered at Karthala during the year 2005. Courtesy of KVO.

The investigators noted that the seismic crisis of 25-26 August 2005 marked the beginning of the new eruptive cycle. It preceded the November 2005 eruption, but was much more subdued than the build up before the eruptions in April 2005 and July 1991 (BGVN 16:06 and 16:08). Earthquakes were located by KVO using Sismalp (the French Alps Seismic Network). Uniquely, for the November 2005 seismic crisis, the hypocenters were 500-1,000 m shallower than those of April 2005. This could be attributed to shallower magma storage for the last eruption.

Activity during 24 November-5 December 2005. The beginning of the 24 November eruption was visible from Moroni (the capital city of the Comoro Islands) with lightning, rumblings, and a large dark plume at the summit. Ash first fell on the E coast of the island around 2300 on 24 November and the tremor intensity significantly dropped. On the W part of the island, ash started to fall on 25 November at 0500 with very strong intensity. Evacuation became very difficult, schools remained closed, and some people used masks to breathe. Ashfall was so intense that the authorities required the inhabitants to remain in their homes. The United Nations Office for the Coordination of Humanitarian Affairs (OCHA) reported that, according to the local authorities, ~ 2,000 people fled from their villages in the region of Bambao in the central part of the island, and sought refuge in less exposed areas, such as Mitsamiouli, Mboudé, and Oichili.

At 0700 on 25 November the sky was darkened by ash (figures 17 and 18). Part of the population fled towards the N of the island. It was only around 0900 that the sky partially cleared; however, ash continued to fall with decreasing intensity during the day. Ash deposits covered three-quarters of the island. The international airport located in the N part of the island remained free of ash deposits. The Toulouse Volcanic Ash Advisory Center issued an advisory to limit risks for air traffic; however, the eruption did not halt airport operations. Satellite imagery on 25 November revealed an ash cloud reaching ~ 11.6 km altitude.

Figure (see Caption) Figure 17. An ash plume from Karthala at 1000 on 25 November 2005 led to ash-draped surfaces and heavily filtered sunlight in the capital, Moroni (population variously estimated at 20,000-63,000 residents, located 13 km NW of the summit). Ashfall was very heavy until 1200, then decreased throughout the rest of the day. Courtesy of Hamid Soulé, KVO.
Figure (see Caption) Figure 18. Downtown Moroni as it appeared at 1000 on 25 November 2005 after the eruption of Karthala. Courtesy of Dominique Meyer-Bisch, Embassy of France in Comoros Islands.

During 25 November, about 30 seismic events were recorded by KVO, causing concern about the possibility of a crack or fissure opening on Karthala's flank, as occurred in April 1977 (SEAN 02:03). During the night, red glow at the summit was clearly visible from the coast.

On 26 November, a field excursion found a lava lake in the Chahalé crater (figure 19). Prior to the eruption that crater's floor had been covered by a water lake some tens of meters deep. In contrast to the crusted-over lava lake of April 2005 (BGVN 30:04), in November it was almost entirely liquid, with a very large fountain in its center. By 30 November the lava lake had solidified over ~ 80 % of its surface (figure 20). On 5 December it was almost entirely solid, with only two small spatter cones active (figure 21).

Figure (see Caption) Figure 19. On 26 November 2005 investigators ascended Karthala and observed a molten-surfaced lava lake inside Chahalé crater. The lake was about 60-80 m in diameter. Many parts of the lake had a molten surface covered by a chilled skin, although some large blocks of cooler material also lay scattered in the lake. This picture was taken looking down from the crater's N edge. Courtesy of Christophe Roche, French school teacher in Moroni.
Figure (see Caption) Figure 20. On 30 November 2005 a field excursion allowed investigators to observe the ongoing solidification of the lava lake inside Karthala's Chahalé crater. The only incandescence plainly visible appears in the lake's central area. This picture was taken looking from the crater's NW edge. Courtesy of François Sauvestre, KVO.
Figure (see Caption) Figure 21. A Karthala excursion on 5 December 2005 allowed scientists to observe an almost entirely solidified lava lake. Two small (5-m high) spatter cones had developed over the area previously hosting the most intense incandescence, and some small zones adjacent to them still remained incandescent. The cones stopped being active on 8 December. This picture was taken looking from the NW edge of the crater. Courtesy of François Martel-Asselin.

Eruptive products. The landscape at the summit illustrated the style and intensity of the eruption. Measurements of ash deposit thickness were difficult to make. Along the coast ash deposits were between a few millimeters and a few tens of millimeters thick. On the W side of the caldera, ~ 1.5 km from the crater, 70 cm of ash deposits were measured at the same location where 40 cm of ash had fallen in April 2005, an increase of 30 cm in thickness. Closer to the crater, the thicknesses were not measured because they were greater than 1.5 m.

Field work revealed that on the edge of the caldera, ballistic blocks had fallen from the phreatomagmatic phase at the beginning of the eruption. Closer to the central crater the density of volcanic debris increased strongly. In an area covered by several tens of centimeters of ash, blocks impacted the ground leaving an amazing number of craters on the surface (figure 22). Distinctive tephra deposits, presumably related to lava fountains were identifiable everywhere around the central crater (figure 23). These juvenile deposits spread 500 m N from the central crater, whereas they extended only 100 m or less to the S. Products of this magmatic phase were clearly erupted or carried by wind to the N, and they must have ascended higher than 300 m, the depth of the Chahalé pit crater. On 8 December 2005 at about 1000 (15 days after the eruption), both seismic and explosive activity stopped.

Figure (see Caption) Figure 22. Bomb impact craters on the N and E sides of Karthala's summit convey a surprising intensity of ballistic bombardment. This picture was taken from the summit (E side of Chahalé crater) looking to the N. Courtesy of Philippe Crozet.
Figure (see Caption) Figure 23. An area around Karthala's summit was covered by tephra deposits. The approximately 2-m high vegetation that remained after the eruption of April 2005 was reduced to about 1-m high in this later, though undated, photo. A 1-m-thick layer of tephra was measured 700 m from the eruptive center. This picture was taken on the W part of the caldera looking NW. Courtesy of François Martel-Asselin.

Human impact. This eruption was more explosive and longer than the two preceding eruptions in spite of weaker seismicity, and a significant quantity of ash fell in water cisterns. According to OCHA, there were about 118,000 people living in 75 villages that were affected by the cistern contamination. Wind continued to raise large quantities of ash that again fell on the dwellings and into cisterns. In contrast to the April 2005 eruption, no coastal residents reported smelling sulfurous odors. After the end of the eruption, few long period earthquakes were recorded.

Geologic Background. The southernmost and largest of the two shield volcanoes forming Grand Comore Island (also known as Ngazidja Island), Karthala contains a 3 x 4 km summit caldera generated by repeated collapse. Elongated rift zones extend to the NNW and SE from the summit of the Hawaiian-style basaltic shield, which has an asymmetrical profile that is steeper to the S. The lower SE rift zone forms the Massif du Badjini, a peninsula at the SE tip of the island. Historical eruptions have modified the morphology of the compound, irregular summit caldera. More than twenty eruptions have been recorded since the 19th century from the summit caldera and vents on the N and S flanks. Many lava flows have reached the sea on both sides of the island. An 1860 lava flow from the summit caldera traveled ~13 km to the NW, reaching the W coast to the N of the capital city of Moroni.

Information Contacts: Nicolas Villeneuve, Centre de Recherches d'études Géographiques de l'Université de La Réunion (CREGUR), Université de La Réunion, BP 7151, 15 Avenue, René Cassin, 97715 Saint-Denis, Réunion, France; Anthony Finizola and Patrick Bachèlery, Laboratoire des Sciences de la Terre de l'Universite de la Reunion (LSTUR), Université de La Réunion, BP 7151, 15 Avenue, René Cassin, 97715 Saint-Denis, Réunion, France; Francois Sauvestre and Hamid Soulé, Centre National de Documentation et de Recherche Scientifique (CNDRS), Place France, BP 169, Moroni, République Fédérale Islamique des Comores (URL: http://volcano.ipgp.jussieu.fr/karthala/stationkar.html); Karthala Volcano Observatory (KVO), Centre National de Documentation et de la Recherche Scientifique des Comores, BP 169, Moroni, République Fédérale Islamique des Comores.


Lamongan (Indonesia) — January 2006 Citation iconCite this Report

Lamongan

Indonesia

7.979°S, 113.342°E; summit elev. 1651 m

All times are local (unless otherwise noted)


Above-background seismicity during 5-6 January 2005

Elevated seismicity occurred at Lamongan on 5-6 January 2005. From 1200 to 0700 on 5 January, 22 events occurred with Modified Mercali Intensity (MMI) of 1. At each of three times (0331, 0447, and 0524) observers noted an event of MMI 3. During this period, instruments detected continuous tremor with an amplitude of 3 to 15 mm. On 5 January there were 282 local tectonic earthquakes and 53 volcanic A-type earthquakes. The volcano alert level was raised to 2.

On 6 January 2005, 107 volcanic A-type earthquakes were recorded. Local tectonic earthquakes over the two day period occurred 159 times, of which 10 of them were events had Modified Mercali Intensity (MMI) of 1-3.

Geologic Background. Lamongan, a small stratovolcano located between the massive Tengger and Iyang-Argapura volcanic complexes, is surrounded by numerous maars and cinder cones. The currently active cone has been constructed 650 m SW of Gunung Tarub, the volcano's high point. As many as 27 maars with diameters from 150 to 700 m, some containing crater lakes, surround the volcano, along with about 60 cinder cones and spatter cones. Lake-filled maars, including Ranu Pakis, Ranu Klakah, and Ranu Bedali, are located on the E and W flanks; dry maars are predominately located on the N flanks. None of the maars has erupted during historical time, although several of the youthful maars cut drainage channels from Gunung Tarub. The volcano was very active from the time of its first historical eruption in 1799 through the end of the 19th century, producing frequent explosive eruptions and lava flows from vents on the western side ranging from the summit to about 450 m elevation.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Lopevi (Vanuatu) — January 2006 Citation iconCite this Report

Lopevi

Vanuatu

16.507°S, 168.346°E; summit elev. 1413 m

All times are local (unless otherwise noted)


Correction to previously published MODIS hotspot data

An error occurred in the March 2005 issue of BGVN (30:03). The table [now deleted online] had listed MODVOLC thermal anomalies, but it mistakenly included those for both Lopevi and Ambrym. The corrected table for Lopevi thermal anomalies only is provided here (table 1).

Table 1. MODVOLC thermal anomalies as observed from the MODIS satellite for Lopevi volcano for the period July 2003 to March 2005. The fourth column shows radiance in watts per square meter, per steradian, per micron (W m-2 sr-1 µm-1) in MODIS band 21 (central wavelength of 3.959 µm). Courtesy of the Hawai'i Institute of Geophysics and Planetology.

Date Time (UTC) Sensor Spectral radiance
28 Sep 2004 1410 Aqua 0.937
28 Sep 2004 1410 Aqua 1.052
30 Jan 2005 1130 Terra 0.710
05 Feb 2005 1355 Aqua 0.983
05 Feb 2005 1355 Aqua 1.426

Geologic Background. The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

Information Contacts: MODVOLC Alerts Team, Hawai'i Institute of Geophysics and Planetology (HIGP), University of Hawaii and Manoa, 168 East-West Road, Post 602, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nyamuragira (DR Congo) — January 2006 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


To the N, swarms of long-period, along-rift earthquakes

Nyamuragira last erupted during May 2004; weak but steady ash emissions continued until 1 June 2004, when satellite imagery indicated that the eruption had ceased (BGVN 29:05). The volcano, whose name is sometimes written as Nyamlagira and Nyamulagira, was the scene of several seismic swarms in middle and late 2005.

On 6 July 2005, the Goma Volcano Observatory (GVO) reported that a significant seismic crisis had occurred at Nyamuragira in late June 2005. The crisis consisted of swarms of mainly long-period earthquakes, which increased in number daily and peaked on 26 and 27 June. Most of the events occurred within a 10 km radius around Nyamuragira's summit caldera and were aligned roughly N-S. The depths of the earthquakes ranged from 0 to 30 km, with two main areas of concentration; one between 15 and 25 km deep, and the other between 0 and 4 km. Based on precursory activity before previous historical eruptions at Nyamuragira, GVO reported that a new eruption might occur in the next 2-4 months. They stressed that an eruption would not threaten the city of Goma or other inhabited areas.

Beginning on 23 October 2005, GVO again recorded heightened seismic activity along the East African Rift and around the Virunga volcanoes when a swarm of long-period earthquakes occurred N of Nyamuragira. More than 140 events were recorded at a station 19 km E of the volcano. On 27 October at 1500, another swarm of long-period earthquakes began beneath the same area. More than 300 events were recorded until at least 28 October. At 2010 on that day, a M 4.5 tectonic earthquake occurred N of Lake Tanganika, followed by several aftershocks. The Alert Level for the nearby city of Goma remained at Yellow.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Baluku Bajope and Kasereka Mahinda, Observatoire Volcanologique de Goma, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/vaac/); TOMS Volcanic Emissions Group, NASA Goddard Space Flight Center, Code 613.3, Greenbelt, MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).


Nyiragongo (DR Congo) — January 2006 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Continuous ash plumes and active lava lake

During May and June 2004, eruptions of Nyiragongo produced ash plumes that rose to a maximum of 6 km altitude (BGVN 29:06). According to the Toulouse VAAC, eruptions continued through July, producing plumes to a maximum of 5.5 km altitude. On 7 and 28 September 2004, short-lived plumes that may have contained ash were visible on satellite imagery. The Alert Level for the nearby city of Goma remained at Yellow.

An eruption on 3 November 2004 produced a thin W-drifting plume to 3.6-4.9 km altitude that was visible on satellite imagery. On 22 November a narrow SW-drifting plume was discerned on satellite imagery at 5 km altitude. A narrow plume was seen again on satellite imagery on 23 November at 1130, although no ash was identifiable.

The Goma Volcano Observatory (GVO) reported that during 10-17 November 2004 continuous volcanic tremor was recorded at all seismic stations around Nyiragongo. Visual observation on 12 and 13 November revealed that the lava lake surface had widened considerably, with strong lava fountains. Numerous Pele's hair and scoriae were seen on the cone's S, W, and N sides. A gas plume and incandescence were visible above the volcano. All fractures that opened during the 2002 eruption on the S flank had widened slightly and showed minor temperature increases.

During 18-29 November 2004, continuous banded tremor at high amplitudes occurred beneath the volcano, but the amplitudes seemed to be lower than during 9-18 November. Visual observations on 25-26 November revealed a slight decrease in the level of the lava lake, although strong lava fountains and a high flux of lava and gases continued. Pele's hair, scoriae, a gas plume, and incandescence were still present. Measurements of the fractures on the slopes showed that they remained stable.

The Toulouse VAAC reported faint SO2 plumes from Nyiragongo visible on satellite imagery on 8 and 10 December. During 29 November to 12 December, volcanic activity remained at relatively high levels. Nearly continuous high-amplitude tremor was recorded at all seismic stations on the volcano. Observations of the crater area on 9 and 10 December revealed that the level of the lava lake remained stable compared to previous visits and that strong lava fountaining was present. Pele's hair and scoriae fell in the area around the volcano, gas plumes rose above the volcano, and strong incandescence was visible at night.

In May 2005 a visiting group from Société de Volcanologie Genève (SVG) estimated that the lava lake was approximately 200 x 150 m across. They observed lava fountaining in the lake to tens of meters high (figure 33).

Figure (see Caption) Figure 33. This photo presents Nyiragongo's lava lake in a view from a point on the second platform, which lies ~250 m below the summit. The inner pit with the new lava lake formed after the 2002 lateral eruption. The exact date when the photo was taken in January 2006 is unknown. Photo copyright Marc Caillet and provided courtesy of Pierre Vetsch, SVG.

On 7 September 2005, high-resolution satellite imagery showed a thin plume emitted from Nyiragongo. The plume was not confirmed by other data. Another thin plume visible on satellite imagery on 10 October; it was not confirmed by SO2 data.

As of 28 October 2005 Nyiragongo remained very active, but stable, with a large active lava lake in the crater. A gas plume was emitted and incandescence was visible at night from several tens of kilometers away. On 7 and 13 November thin plumes from Nyiragongo that may have contained some ash were observed on satellite imagery.

In January 2006 a group from Stromboli Online undertook an expedition to Nyiragongo and photographed the lava lake (figure 34).

Figure (see Caption) Figure 34. This photo of Nyiragongo's lava lake was taken from the Belvedere (Bastion) on the crater's W rim. The lake is ~ 300 m wide and its surface sat ~585 m below the rim. The second platform cuts across the bottom foreground. The exact date when the photo was taken in January 2006 is unknown. Photo courtesy of Marco Fulle.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Baluku Bajope and Kasereka Mahinda, Observatoire Volcanologique de Goma, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; J?rg Alean, Roberto Carniel, and Marco Fulle, Stromboli Online, Rheinstrasse 6, CH-8193 Eglisau, Switzerland (URL: http://www.swisseduc.ch/stromboli/); Pierre Vetsch and Marc Caillet, Société de Volcanologie Genève (SVG), PO Box 6423, CH-1211 Geneva 6, Switzerland (URL: http://www.volcan.ch/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/vaac/).


Santa Ana (El Salvador) — January 2006 Citation iconCite this Report

Santa Ana

El Salvador

13.853°N, 89.63°W; summit elev. 2381 m

All times are local (unless otherwise noted)


Post-eruption lahars but seismicity and SO2 fluxes both often low

Previous comments regarding terminal phases of the 1 October 2005 eruption (BGVN 30:09) included: . "Following the eruption of 1 October, small explosions, degassing, and low-to-moderate seismicity occurred at Santa Ana during 5-11 October . . .. During an aerial inspection of the volcano on 11 October, no changes were observed at the crater."

Carlos Pullinger (Servicio Nacional de Estudios Territoriales, SNET) later noted that "The 1 October eruption only lasted about 1 hour. After that we had some small activity, probably associated [with] degassing on Sunday evening [2 October] and at about the same time the continuous rains produced the first of a series of lahars that affected the communities close to the shore of Coatepeque lake. During the rest of the week it was very difficult to know what was going on because of continuous rains and cloudy conditions."

Pullinger further noted that some eye witnesses said that they had observed a column on 2 October. SNET registered strong and continuous tremor during approximately 1900-2400 (local time) on 2 October. Much of this activity coincided with rain-induced lahars. Over 300 mm of rain fell on the volcano that day. Using both witness reports and seismicity, SNET inferred that on 2 October the volcano possibly generated strong degassing or even geyser-type activity. However, there was no confirmation of ashfall deposits from these or other post-1 October events. The same type of seismicity continued intermittently until 5 October, but with much less intensity than on 2 October. SNET could not tell if there was any volcanic activity related to these events, or if it was mainly lahars. After the 5th continuous tremor was not recorded.

Post-eruption behavior. SNET reported that, in general, following Santa Ana's 1 October 2005 eruption, seismicity was relatively stable and there were generally low-level gas emissions (figure 4).

Figure (see Caption) Figure 4. A graph showing Santa Ana's SO2 flux (vertical bars) and average daily seismic amplitude (RSAM, solid line) during 15 August-31 December 2005. The eruption of 1 October 2005 is indicated with an arrow. Courtesy of SNET.

Storms on 12 October 2005 caused lahars that traveled E towards Lake Coatepeque (see ASTER image of the region in BGVN 30:09). On 22 October, a lahar was reactivated in the Potrero Arriba area, NE of the volcano. During 22-25 October, the volcano was subjected to increased tremor and a slight increase in seismicity associated with gas emissions. On 28 October volcanic activity appeared to increase slightly and sulfur-dioxide emission rates during 28 and 29 October averaged 257 metric tons per day. The Alert Level within a 5-km radius around the volcano's central crater was at Red, the highest level.

During the month of November 2005 seismicity, volcanic activity, and gas emissions all remained for the most part at relatively low levels. There were slight increases on 13, 17, and 26 November; but the 17 November increase was attributed to noise from strong winds. On 26 November only slight changes were noted in the color of the lagoon in the crater's interior, but gas emissions rose to ~ 300 m above the volcano. Small earthquakes occurred during November 2005, inferred to be associated with the fracturing of rocks and gas pulses. Sulfur-dioxide emissions were low during the first part of November, with 100 to 200 metric tons recorded daily, and during the latter part of November, with between 100 and ~ 1,500 metric tons recorded daily.

During December 2005, seismicity was above background levels. Observations of Santa Ana's crater on 28 December revealed that there were continuous emissions of steam and gas from the lagoon and fumaroles located within the crater (figure 5). Gas rose 200-500 m above the crater and drifted SW (figure 6). Small earthquakes occurred, but gas emissions rose to over ~ 2,500 tons per day (figure 4). The Alert Level remained at Red, the highest level, within a 5-km radius around the volcano's summit crater.

Figure (see Caption) Figure 5. A photo taken from the crater rim at Santa Ana showing steam and gas emissions from both the lagoon and fumaroles located within the crater. Courtesy of SNET.
Figure (see Caption) Figure 6. A photo of Santa Ana showing the 28 December 2005 gas emission that rose 200-500 m above the crater rim. Courtesy of SNET.

From 30 December 2005 to early January 2006, seismic and steam emissions were moderate at Santa Ana. Seismicity was slightly above normal levels with small earthquakes occurring, which were interpreted as being associated with gas pulses. Low-level emissions of steam and gas from the lagoon and fumaroles within the crater remained the same as in December 2005. Gas rose 200-500 m above the crater and drifted SW. The sulfur-dioxide flux ranged between 180 and 1,476 metric tons per day. The Alert Level remained at Red, the highest level, within a 5-km radius around the volcano's summit crater.

Background. Santa Ana, El Salvador's highest volcano, is a massive, 2,381-m-high andesitic-to-basaltic stratovolcano that rises immediately W of Coatepeque caldera. Collapse of the volcano during the late Pleistocene produced a voluminous debris avalanche that swept into the Pacific Ocean, forming the Acajutla Peninsula. Reconstruction of the volcano subsequently filled most of the collapse scarp. The broad summit of the volcano is cut by several crescentic craters, and a series of parasitic vents and cones have formed along a 20-km-long fissure system that extends from near the town of Chalchuapa NNW of the volcano to the San Marcelino and Cerro la Olla cinder cones on the SE flank. Historical activity, largely consisting of small-to-moderate explosive eruptions from both summit and flank vents, has been documented since the 16th century. The San Marcelino cinder cone on the SE flank produced a lava flow in 1722 that traveled 13 km to the E.

Geologic Background. Santa Ana, El Salvador's highest volcano, is a massive, dominantly andesitic-to-trachyandesitic stratovolcano that rises immediately W of Coatepeque caldera. Collapse of Santa Ana (also known as Ilamatepec) during the late Pleistocene produced a voluminous debris avalanche that swept into the Pacific Ocean, forming the Acajutla Peninsula. Reconstruction of the volcano subsequently filled most of the collapse scarp. The broad summit is cut by several crescentic craters, and a series of parasitic vents and cones have formed along a 20-km-long fissure system that extends from near the town of Chalchuapa NNW of the volcano to the San Marcelino and Cerro la Olla cinder cones on the SE flank. Historical activity, largely consisting of small-to-moderate explosive eruptions from both summit and flank vents, has been documented since the 16th century. The San Marcelino cinder cone on the SE flank produced a lava flow in 1722 that traveled 13 km E.

Information Contacts: Servicio Nacional de Estudios Territoriales (SNET), Alameda Roosevelt y 55 Avenida Norte, Edificio Torre El Salvador, Quinta Planta, San Salvador, El Salvador (URL: http://www.snet.gob.sv/)


Tanaga (United States) — January 2006 Citation iconCite this Report

Tanaga

United States

51.885°N, 178.146°W; summit elev. 1806 m

All times are local (unless otherwise noted)


Weak, moderate depth seismicity

The Alaska Volcano Observatory (AVO) detected an increase in seismic activity beneath Tanaga beginning on 1 October 2005, with 15-68 earthquakes occurring daily. Previously, less than one earthquake had occurred per month since the seismic network was installed in 2003. The earthquakes were centered roughly 2 km NE of the summit at depths of 10-20 km below sea level. The largest event was M 1.7, with most earthquakes at M 0.5-1.5. Tanaga was at Concern Color Code Green on 5 October.

During 5-7 October, there was a marked increase in the rate of seismicity. The located earthquakes ranged in magnitude from 0.5 to 1.9 and ranged in depth from 6 to 12 km beneath the summit. In response, AVO raised the Concern Color Code to Yellow on 7 October. AVO reported that while the seismic activity represented a significant increase in rate, the size, depth, and character of the events were not indicative of imminent eruptive activity.

Elevated seismic activity below the young vents continued through 28 October 2005, although the rate of small earthquakes decreased slightly from the previous week. The activity that began on 1 October was at the highest level recorded since the seismic network was installed in 2003, so the Concern Color Code remained at Yellow. An unusual seismic signal on 17 October that persisted for several minutes may have been a landslide or small phreatic explosion, but satellite images detected no airborne ash. Beginning on 24 October, AVO observed weak, nearly continuous volcanic tremor in the vicinity of Takawangha volcano of the Tanaga volcano cluster. This was the first recorded tremor of this type. The daily number of small earthquakes continued to diminish from its peak in early October, but stayed above background levels.

AVO reported on 25 November 2005 that for several weeks seismicity beneath young volcanic vents on Tanaga Island decreased significantly from levels recorded in early October. Satellite images showed no anomalous temperatures or evidence of ash emissions. AVO reported that, based on the decrease in earthquake counts and frequency of tremor episodes, the likelihood of an eruption had diminished. Therefore, AVO downgraded the Concern Color Code to Green. According to AVO, the most recent eruptive activity at Tanaga was a lava flow observed in 1914.

Geologic Background. Tanaga volcano, the second largest volcanic center of the central Aleutians, is the central and highest of three youthful stratovolcanoes oriented along a roughly E-W line at the NW tip of Tanaga Island. Ridges to the east and south represent the rim of an arcuate caldera formed by collapse of an ancestral edifice during the Pleistocene. Most Holocene eruptions originated from Tanaga volcano itself, which consists of two large cones, the western of which is the highest, constructed within a caldera whose 400-m-high rim is prominent to the SE. At the westernmost end of the complex is conical Sajaka, a double cone that may be the youngest of the three volcanoes. Sajaka One volcano collapsed during the late Holocene, producing a debris avalanche that swept into the sea, after which the Sajaka Two cone was constructed within the collapse scarp.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).