Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020

Kikai (Japan) Ash explosion on 29 April 2020

Fuego (Guatemala) Ongoing ash explosions, block avalanches, and intermittent lava flows

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

Piton de la Fournaise (France) Fissure eruptions in February and April 2020 included lava fountains and flows

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020



Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — May 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Ash explosion on 29 April 2020

The Kikai caldera is located at the N end of Japan’s Ryukyu Islands and has been recently characterized by intermittent ash emissions and limited ashfall in nearby communities. On Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera, there was a single explosion with gas-and-steam and ash emissions on 2 November 2019, accompanied by nighttime incandescence (BGVN 45:02). This report covers volcanism from January 2020 through April 2020 with a single-day eruption occurring on 29 April based on reports from the Japan Meteorological Agency (JMA).

Since the last one-day eruption on 2 November 2019, volcanism at Kikai has been relatively low and primarily consisted of 107-170 earthquakes per month and intermittent white gas-and-steam emissions rising up to 1.3 km above the crater summit. Intermittent weak hotspots were observed at night in the summit in Sentinel-2 thermal satellite imagery and webcams, according to JMA (figures 14 and 15).

Figure (see Caption) Figure 14. Weak thermal hotspots (bright yellow-orange) were observed on 7 January (top) and 6 April 2020 (bottom) at Satsuma Iwo Jima (Kikai). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 15. Incandescence at night on 10 January 2020 was observed at Satsuma Iwo Jima (Kikai) in the Iodake crater with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, January 2nd year of Reiwa [2020]).

Weak incandescence continued in April 2020. JMA reported SO2 measurements during April were 400-2000 tons/day. A brief eruption in the Iodake crater on 29 April 2020 at 0609 generated a gray-white ash plume that rose 1 km above the crater (figure 16). No ashfall or ejecta was observed after the eruption on 29 April.

Figure (see Caption) Figure 16. The Iwanogami webcam captured a brief gray-white ash and steam plume rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 29 April 2020 at 0609 local time. The plume rose 1 km above the crater summit. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, April 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash explosions, block avalanches, and intermittent lava flows

Fuego is a stratovolcano in Guatemala that has been erupting since 2002 with historical eruptions that date back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 44:10) detailed activity that included multiple ash explosions, ash plumes, ashfall, active lava flows, and block avalanches. This report covers this continuing activity from October 2019 through March 2020 and consists of ash plumes, ashfall, incandescent ejecta, block avalanches, and lava flows. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity October 2019-March 2020. Daily activity persisted throughout October 2019-March 2020 (table 20) with multiple ash explosions recorded every hour, ash plumes that rose to a maximum of 4.8 km altitude each month drifting in multiple directions, incandescent ejecta reaching a 500 m above the crater resulting in block avalanches traveling down multiple drainages, and ashfall affecting communities in multiple directions. The highest rate of explosions occurred on 7 November with up to 25 per hour. Dominantly white fumaroles occurred frequently throughout this reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows that reached a maximum length of 1.2 km were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 128), but rarely in the Trinidad drainage. Thermal activity increased slightly in frequency and strength in late October and remained relatively consistent through mid-March as seen in the MIROVA analysis of MODIS satellite data (figure 129).

Table 20. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by avalanche blocks Villages reporting ashfall
Oct 2019 4.3-4.8 km 10-25 km, W-SW-S-NW Seca, Taniluyá, Ceniza, Trinidad, El Jute, Honda, and Las Lajas Panimaché I and II, Morelia, Santa Sofía, Porvenir, Finca Palo Verde, La Rochela, San Andrés Osuna, Sangre de Cristo, and San Pedro Yepocapa
Nov 2019 4.0-4.8 km 10-20 km, W-SW-S-NW Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa
Dec 2019 4.2-4.8 km 10-25 km, W-SW-S-SE-N-NE Seca, Taniluya, Ceniza, Trinidad, and Las Lajas Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, La Rochela, and San Andrés Osuna
Jan 2020 4.3-4.8 km 10-25 km, W-SW-S-N-NE-E Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, Ceilán
Feb 2020 4.3-4.8 km 8-25 km, W-SW-S-SE-E-NE-N-NW Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna
Mar 2020 4.3-4.8 km 10-23 km, W-SW-S-SE-N-NW Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda
Figure (see Caption) Figure 128. Sentinel-2 thermal satellite images of Fuego between 21 November 2019 and 20 March 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the crater summit. An ash plume can also be seen on 21 November 2019, accompanying the lava flow. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 129. Thermal activity at Fuego increased in frequency and strength (log radiative power) in late October 2019 and remained relatively consistent through February 2020. In early March, there is a small decrease in thermal power, followed by a short pulse of activity and another decline. Courtesy of MIROVA.

Activity during October-December 2019. Activity in October 2019 consisted of 6-20 ash explosions per hour; ash plumes rose to 4.8 km altitude, drifting up to 25 km in multiple directions, resulting in ashfall in Panimaché I and II (8 km SW), Morelia (9 km SW), San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, La Rochela and San Andrés Osuna. The Washington VAAC issued multiple aviation advisories for a total of nine days in October. Continuous white gas-and-steam plumes reached 4.1-4.4 km altitude drifting generally W. Weak SO2 emissions were infrequently observed in satellite imagery during October and January 2020 (figure 130) Incandescent ejecta was frequently observed rising 200-400 m above the summit, which generated block avalanches that traveled down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), El Jute, Honda, and Las Lajas (SE) drainages. During 3-7 October lahars descended the Ceniza, El Mineral, and Seca drainages, carrying tree branches, tree trunks, and blocks 1-3 m in diameter. During 6-8 and 13 October, active lava flows traveled up to 200 m down the Seca drainage.

Figure (see Caption) Figure 130. Weak SO2 emissions were observed rising from Fuego using the TROPOMI instrument on the Sentinel-5P satellite. Top left: 17 October 2019. Top right: 17 November 2019. Bottom left: 20 January 2020. Bottom right: 22 January 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During November 2019, the rate of explosions increased to 5-25 per hour, the latter of which occurred on 7 November. The explosions resulted in ash plumes that rose 4-4.8 km altitude, drifting 10-20 km in the W direction. Ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa. Multiple Washington VAAC notices were issued for 11 days in November. Continuous white gas-and-steam plumes rose up to 4.5 km altitude drifting generally W. Incandescent ejecta rose 100-500 m above the crater, generating block avalanches in Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza drainages. Lava flows were observed for a majority of the month into early December measuring 100-900 m long in the Seca and Ceniza drainages.

The number of explosions in December 2019 decreased compared to November, recording 8-19 per hour with incandescent ejecta rising 100-400 m above the crater. The explosions generated block avalanches that traveled in the Seca, Taniluya, Ceniza, Trinidad, and Las Lajas drainages throughout the month. Ash plumes continued to rise above the summit crater to 4.8 km drifting up to 25 km in multiple directions. The Washington VAAC issued multiple daily notices almost daily in December. A continuous lava flow observed during 6-15, 21-22, 24, and 26 November through 9 December measured 100-800 m long in the Seca and Ceniza drainages.

Activity during January-March 2020. Incandescent Strombolian explosions continued daily during January 2020, ejecting material up to 100-500 m above the crater. Ash plumes continued to rise to a maximum altitude of 4.8 km, resulting in ashfall in all directions affecting Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, and Ceilán. The Washington VAAC issued multiple notices for a total of 12 days during January. Block avalanches resulting from the Strombolian explosions traveled down the Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas drainages. An active lava flow in the Ceniza drainage measured 150-600 m long during 6-10 January.

During February 2020, INSIVUMEH reported a range of 4-16 explosions per hour, accompanied by incandescent material that rose 100-500 m above the crater (figure 131). Block avalanches traveled in the Santa Teresa, Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna drainages. Ash emissions from the explosions continued to rise 4.8 km altitude, drifting in multiple directions as far as 25 km and resulting in ashfall in the communities of Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna. Washington VAAC notices were issued almost daily during the month. Lava flows were active in the Ceniza drainage during 13-20, 23-24, and 26-27 February measuring as long as 1.2 km.

Figure (see Caption) Figure 131. Incandescent ejecta rose several hundred meters above the crater of Fuego on 6 February 2020, resulting in block avalanches down multiple drainages. Courtesy of Crelosa.

Daily explosions and incandescent ejecta continued through March 2020, with 8-17 explosions per hour that rose up to 500 m above the crater. Block avalanches from the explosions were observed in the Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, Santa Teresa, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia drainages. Accompanying ash plumes rose 4.8 km altitude, drifting in multiple directions mostly to the W as far as 23 km and resulting in ashfall in San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda. Multiple Washington VAAC notices were issued for a total of 15 days during March. Active lava flows were observed from 16-21 March in the Trinidad and Ceniza drainages measuring 400-1,200 m long and were accompanied by weak to moderate explosions. By 23 March, active lava flows were no longer observed.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Crelosa, 3ra. avenida. 8-66, Zona 14. Colonia El Campo, Guatemala Ciudad de Guatemala (URL: http://crelosa.com/, post at https://www.youtube.com/watch?v=1P4kWqxU2m0&feature=youtu.be).


Ebeko (Russia) — June 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

The current moderate explosive eruption of Ebeko has been ongoing since October 2016, with frequent ash explosions that have reached altitudes of 1.3-6 km (BGVN 42:08, 43:03, 43:06, 43:12, 44:12). Ashfall is common in Severo-Kurilsk, a town of about 2,500 residents 7 km ESE, where the Kamchatka Volcanic Eruptions Response Team (KVERT) monitor the volcano. During the reporting period, December 2019-May 2020, the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

During December 2019-May 2020, frequent explosions generated ash plumes that reached altitudes of 1.5-4.6 km (table 9); reports of ashfall in Severo-Kurilsk were common. Ash explosions in late April caused ashfall in Severo-Kurilsk during 25-30 April (figure 24), and the plume drifted 180 km SE on the 29th. There was also a higher level of activity during the second half of May (figure 25), when plumes drifted up to 80 km downwind.

Table 9. Summary of activity at Ebeko, December 2019-May 2020. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. In the plume distance column, only plumes that drifted more than 10 km are indicated. Dates based on UTC times. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-05 Dec 2019 3 -- NE, E Intermittent explosions.
06-13 Dec 2019 4 -- E Explosions all week. Ashfall in S-K on 10-12 Dec.
15-17 Dec 2019 3 -- E Explosions. Ashfall in S-K on 16-17 Dec.
22-24 Dec 2019 3 -- NE Explosions.
01-02 Jan 2020 3 30 km N N Explosions. TA over dome on 1 Jan.
03, 05, 09 Jan 2020 2.9 -- NE, SE Explosions. Ashfall in S-K on 8 Jan.
11, 13-14 Jan 2020 3 -- E Explosions. Ashfall in S-K.
19-20 Jan 2020 3 -- E Ashfall in S-K on 19 Jan.
24-31 Jan 2020 4 -- E Explosions.
01-07 Feb 2020 3 -- E, S Explosions all week.
12-13 Feb 2020 1.5 -- E Explosions. Ashfall in S-K.
18-19 Feb 2020 2.3 -- SE Explosions.
21, 25, 27 Feb 2020 2.9 -- S, SE, NE Explosions. Ashfall in S-K on 22 Feb.
01-02, 05 Mar 2020 2 -- S, E Explosions.
08 Mar 2020 2.5 -- NE Explosions.
13, 17 Mar 2020 2.5 -- NE, SE Bursts of gas, steam, and small amount of ash.
24-25 Mar 2020 2.5 -- NE, W Explosions.
29 Mar-02 Apr 2020 2.2 -- NE, E Explosions. Ashfall in S-K on 1 Apr. TA on 30-31 Mar.
04-05, 09 Apr 2020 1.5 -- NE Explosions. TA on 5 Apr.
13 Apr 2020 2.5 -- SE Explosions.
18, 20 Apr 2020 -- -- -- TA on 18, 20 Apr.
24 Apr-01 May 2020 3.5 180 km SE on 29 Apr E, SE Explosions all week. Ashfall in S-K on 25-30 Apr.
01-08 May 2020 2.6 -- E Explosions all week. Ashfall in S-K on 3-5 May. TA on 3 May.
08-15 May 2020 4 -- E Explosions. Ashfall in S-K on 8-12 May. TA during 12-14 May.
14-15, 19-21 May 2020 3.6 80 km SW, S, SE during 14, 20-21 May -- Explosions. TA on same days.
22-29 May 2020 4.6 60 km SE E, SE Explosions all week. Ashfall in S-K on 22, 24 May.
29-31 May 2020 4.5 -- E, S Explosions. TA on 30 May.
Figure (see Caption) Figure 24. Photo of ash explosion at Ebeko at 2110 UTC on 28 April 2020, as viewed from Severo-Kurilsk. Courtesy of KVERT (L. Kotenko).
Figure (see Caption) Figure 25. Satellite image of Ebeko from Sentinel-2 on 27 May 2020, showing a plume drifting SE. Image using natural color rendering (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Piton de la Fournaise (France) — May 2020 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Fissure eruptions in February and April 2020 included lava fountains and flows

Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Recent volcanism is characterized by multiple fissure eruptions, lava fountains, and lava flows (BGVN 44:11). The activity during this reporting period of November 2019-April 2020 is consistent with the previous eruption, including lava fountaining and lava flows. Information for this report comes from the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and various satellite data.

Activity during November 2019-January 2020 was relatively low; no eruptive events were detected, according to OVPF. Edifice deformation resumed during the last week in December and continued through January. Seismicity significantly increased in early January, registering 258 shallow earthquakes from 1-16 January. During 17-31 January, the seismicity declined, averaging one earthquake per day.

Two eruptive events took place during February-April 2020. OVPF reported that the first occurred from 10 to 16 February on the E and SE flanks of the Dolomieu Crater. The second took place during 2-6 April. Both eruptive events began with a sharp increase in seismicity accompanied by edifice inflation, followed by a fissure eruption that resulted in lava fountains and lava flows (figure 193). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed the two eruptive events occurring during February-April 2020 (figure 194). Similarly, the MODVOLC algorithm reported 72 thermal signatures proximal to the summit crater from 12 February to 6 April. Both of these eruptive events were accompanied by SO2 emissions that were detected by the Sentinel-5P/TROPOMI instrument (figures 195 and 196).

Figure (see Caption) Figure 193. Location maps of the lava flows on the E flank at Piton de la Fournaise on 10-16 February 2020 (left) and 2-6 April 2020 (right) as derived from SAR satellite data. Courtesy of OVPF-IPGP, OPGC, LMV (Monthly bulletins of the Piton de la Fournaise Volcanological Observatory, February and April 2020).
Figure (see Caption) Figure 194. Two significant eruptive events at Piton de la Fournaise took place during February-April 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 195. Images of the SO2 emissions during the February 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Top left: 10 February 2020. Top right: 11 February 2020. Bottom left: 13 February 2020. Bottom right: 14 February 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 196. Images of the SO2 emissions during the April 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Left: 4 April 2020. Middle: 5 April 2020. Right: 6 April 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

On 10 February 2020 a seismic swarm was detected at 1027, followed by rapid deformation. At 1050, volcanic tremors were recorded, signaling the start of the eruption. Several fissures opened on the E flank of the Dolomieu Crater between the crater rim and at 2,000 m elevation, as observed by an overflight during 1300 and 1330. These fissures were at least 1 km long and produced lava fountains that rose up to 10 m high. Lava flows were also observed traveling E and S to 1,700 m elevation by 1315 (figures 197 and 198). The farthest flow traveled E to an elevation of 1,400 m. Satellite data from HOTVOLC platform (OPGC - University of Auvergne) was used to estimate the peak lava flow rate on 11 February at 10 m3/s. By 13 February only one lava flow that was traveling E below the Marco Crater remained active. OVPF also reported the formation of a cone, measuring 30 m tall, surrounded by three additional vents that produced lava fountains up to 15 m high. On 15 February the volcanic tremors began to decrease at 1400; by 16 February at 1412 the tremors stopped, indicating the end of the eruptive event.

Figure (see Caption) Figure 197. Photo of a lava flow and degassing at Piton de la Fournaise on 10 February 2020. Courtesy of OVPF-IPGP.
Figure (see Caption) Figure 198. Photos of the lava flows at Piton de la Fournaise taken during the February 2020 eruption by Richard Bouchet courtesy of AFP News Service.

Volcanism during the month of March 2020 consisted of low seismicity, including 21 shallow volcanic tremors and near the end of the month, edifice inflation was detected. A second eruptive event began on 2 April 2020, starting with an increase in seismicity during 0815-0851. Much of this seismicity was located on the SE part of the Dolomieu Crater. A fissure opened on the E flank, consistent with the fissures that were active during the February 2020 event. Seismicity continued to increase in intensity through 6 April located dominantly in the SE part of the Dolomieu Crater. An overflight on 5 April at 1030 showed lava fountains rising more than 50 m high accompanied by gas-and-steam plumes rising to 3-3.5 km altitude (figures 199 and 200). A lava flow advanced to an elevation of 360 m, roughly 2 km from the RN2 national road (figure 199). A significant amount of Pele’s hair and clusters of fine volcanic products were produced during the more intense phase of the eruption (5-6 April) and deposited at distances more than 10 km from the eruptive site (figure 201). It was also during this period that the SO2 emissions peaked (figure 196). The eruption stopped at 1330 after a sharp decrease in volcanic tremors.

Figure (see Caption) Figure 199. Photos of a lava flow (left) and lava fountains (right) at Piton de la Fournaise during the April 2020 eruption. Left: photo taken on 2 April 2020 at 1500. Right: photo taken on 5 April 2020 at 1030. Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).
Figure (see Caption) Figure 200. Photo of the lava fountains erupting from Piton de la Fournaise on 4 April 2020. Photo taken by Richard Bouchet courtesy of Geo Magazine via Jeannie Curtis.
Figure (see Caption) Figure 201. Photos of Pele’s hair deposited due to the April 2020 eruption at Piton de la Fournaise. Samples collected near the Gîte du volcan on 7 April 2020 (left) and a cluster of Pele’s hair found near the Foc-Foc car park on 9 April 2020 (right). Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); GEO Magazine (AFP story at URL: https://www.geo.fr/environnement/la-reunion-fin-deruption-au-piton-de-la-fournaise-200397); AFP (URL: https://twitter.com/AFP/status/1227140765106622464, Twitter: @AFP, https://twitter.com/AFP); Jeannie Curtis (Twitter: @VolcanoJeannie, https://twitter.com/VolcanoJeannie).


Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 42, Number 11 (November 2017)

Managing Editor: Edward Venzke

Fuego (Guatemala)

Five eruptive episodes and destructive lahars, January-June 2017

Karymsky (Russia)

Moderate ash explosions continue into September 2017

Kick 'em Jenny (Grenada)

Short eruption on 29 April 2017

Kilauea (United States)

Episode 61g lava flow continues with many breakouts; firehose enters the sea at Kamokuna ocean entry

Klyuchevskoy (Russia)

Eruption appears to have subsided after March 2017; ash plumes persist into October

Nishinoshima (Japan)

April-July 2017 episode creates additional landmass from two lava flows

Nyamuragira (DR Congo)

Thermal activity decreases and ends in May 2017

Nyiragongo (DR Congo)

Lava lake persists through October 2017

Reventador (Ecuador)

Ongoing ash emissions, block avalanches, and pyroclastic flows through December 2016

Suwanosejima (Japan)

Persistent ash plumes, explosions, and Strombolian activity during September 2015-December 2016



Fuego (Guatemala) — November 2017 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Five eruptive episodes and destructive lahars, January-June 2017

Guatemala's Volcán de Fuego was continuously active throughout 2016, and has been erupting since 2002. Historical observations of eruptions date back to 1531, and radiocarbon dates are confirmed back to 1580 BCE. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars. Daily explosions that generated ash plumes to within 1 km above the summit (less than 5 km altitude) were typical. In addition, there were 16 eruptive episodes that included Strombolian activity, lava flows, pyroclastic flows, and ash plumes rising above 5 km altitude (BGVN 42:10). Lahars flowed down several drainages during January-June, August, and September. Similar activity continued during January-June 2017 and included five eruptive episodes and numerous lahars. In addition to regular reports from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC) provides aviation alerts. Locations of many towns and drainages are listed in table 12 (BGVN 42:05).

Explosions with ash emissions continued daily at Fuego during January-June 2017; five episodes of increased activity generated higher ash plumes, lava flows, and pyroclastic flows (table 14). The first eruptive episode of the year occurred on 25-26 January, consisting of two lava flows and an 8.6-km-long pyroclastic flow. The next eruptive episode, during 24-25 February, also generated two lava flows and a 7-km-long pyroclastic flow. Numerous ash plumes during March rose to within 1 km of the summit, and incandescent blocks traveled more than 200 m from the crater, but no lava or pyroclastic flows were reported. Eruptive episode 3 began on 1 April and included three lava flows up to 2 km long, and an ash plume reported at 9.1 km altitude. Significant lahars affected four ravines near the end of the month. Pyroclastic flows affected five ravines during eruptive episode 4 during 4-5 May, along with two lava flows, 1.5 and 1.2 km long. The Washington VAAC reported an ash plume from this event at 12.2 km altitude. Major lahars occurred eight times during May, transporting blocks up to a meter in diameter down the major drainages. There were seven periods of increased activity during June. The period of activity during 5-6 June, designated Episode 5, generated two lava flows (2 and 3 km long) and a pyroclastic flow.

Table 14. Eruptive episodes at Fuego during January-June 2017. Data courtesy of INSIVUMEH and the Washington VAAC.

Dates Episode Max Ash Plume altitude Ash Plume drift Ash Plume max distance Ashfall report location Lava Flow drainages Lava Flow lengths Incandescence above crater Pyroclastic Flow Drainages
25-26 Jan 2017 1 5.5 km W, SW 30 km 30 km W, SW Ceniza, Trinidad 1,000 m 300 m Ceniza, 8.6 km
24-25 Feb 2017 2 7.6 km W, SW, NW, N, NE, E 25 km 20 km NE, E Santa Teresa, Las Lajas -- 300 m Trinidad, 7 km
1-2 Apr 2017 3 9.1 km NW, W, SW 30 km Sangre de Cristo, San Pedro Yepocapa, Santiago Atitlán, Chicacao, Mazatenango, and Retalhuleu. Las Lajas, Santa Teresa, Trinidad 2 km 300 m --
4-5 May 2017 4 6.0 km S, SW, W, NW 15 km More than 25 km Seca, Las Lahas 1.5 km, 1.2 km 200 m Seca, Ceniza, Trinidad, El Jute, and Las Lajas
5-6 Jun 2017 5 6 km W, SE, NW More than 20 km San Pedro Yepocapa, Morelia, Santa Sofia, Panimaché, El Porvenir and Sangre de Cristo Santa Teresa, Ceniza 3 km, 2 km 200 m Santa Teresa

Activity during January 2017. The last eruptive episode (16) of 2016, during 20-21 December, included Strombolian activity that produced three lava flows, a large pyroclastic flow, and ashfall in villages 10-12 km SW (BGVN 42:10). VAAC reports indicated ash emissions visible as far as 230 km SW during the episode. Intermittent ash emissions and thermal alerts were reported during the rest of December as well. Activity increased during January 2017, with ash falling mostly on the S and SW flanks. INSIVUMEH reported Vulcanian explosions on 3 and 4 January which contained abundant ash and sent plumes to 5 km above sea level that drifted NW, W, SW, and S (figure 60). Ashfall was reported in Sangre de Cristo, San Pedro Yepocapa, Santa Sofia, Morelia, Palo Verde Farm, Panimache I and II, La Rochelle, San Andrés Osuna, Siquinalá and Escuintla. Sounds and shockwaves were heard and felt 8 km from the volcano.

Figure 60. Ash emission at Fuego on 4 January 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, ENERO 2017).

The Washington VAAC reported ash emissions at 4.3 km altitude (500 m above the summit) on 1 January extending about 35 km W of the summit early in the day. A second plume rose to 5.5 km and drifted a similar distance SE. A third ash plume a few hours later was spotted at 4.6 km altitude drifting W. By late in the day on 3 January, a broken plume of gas and ash was visible in satellite imagery 300 km SW. A well-defined plume on 4 January extended 90 km SW at 4.9 km altitude. Emissions rose to 5.8 km altitude on 5 January. Daily ash plumes during 2-8 January rose to 4.3-5.8 km and generally drifted W or SW up to 50 km. They also reported intermittent ash emissions in satellite imagery on 11 January, and visible in the webcam on 22 January.

The first eruptive episode of the year began on 25 January 2017 with constant explosions generating an ash plume that rose to 4.5 km altitude and drifted W and SW. Incandescence was visible 200 m above the crater, a lava flow traveled 1,000 m down the Ceniza canyon, and block avalanches descended the Ceniza and Trinidad ravines. Ash emissions later reached 5.5 km altitude and drifted W and SW more than 30 km. Strombolian activity ejected material 300 m above the crater and sent bombs more than 300 m from the crater. A second lava flow traveled down the Trinidad ravine later in the day. The Washington VAAC reported ash emissions during 25-28 January 2017 that rose to 4.6-5.5 km altitude extending over 200 km W. During the early morning of 26 January, a pyroclastic flow descended 8.6 km down the Ceniza canyon. INSIVUMEH estimated the volume of the flow to be over 11,000,000 m3 (figure 61). Extensive new pyroclastic flow deposits were observed filling parts of the ravine. A light layer of ash covered the vegetation in La Rochela as a result of the pyroclastic flow. INSIVUMEH reported ashfall in San Pedro on 26 January.

Figure 61. A pyroclastic flow at Fuego traveled 8.6 km down the Ceniza canyon during the early hours of 26 January 2017, part of the first eruptive episode of the year. The volume of the flow was measured by INSIVUMEH scientists as over 11,000,000 m3. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, ENERO 2017).

Activity during February 2017. An increase in activity on 2 February resulted in weak and moderate explosions that lasted 5-10 minutes and generated ash plumes that rose to 4.5 km altitude. The plumes drifted 15 km W and ashfall was reported in San Pedro Yepocapa and Sangre de Cristo. During 31 January-4 February the Washington VAAC noted several ash emissions (figure 62). They rose to altitudes ranging from 3.7-4.9 km and drifted S and W. Ash was visible 180 km SW on 2 February.

Figure 62. Ash emission at Fuego on 3 February 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, FEBRERO 2017).

On the morning of 24 February, eruptive episode 2 began with explosions and ash plumes rising to 4.6 km altitude and drifting W and SW. Explosions were heard by nearby residents every few minutes, and by the evening two lava flows were observed in the Santa Teresa and Las Lajas ravines. Incandescence reached 300 m above the crater and fell more than 300 m from the crater on the flanks, generating block avalanches. By the next morning ash plumes were observed at 5 km altitude drifting more than 25 km NW, N, NE and E. A pyroclastic flow descended the Trinidad ravine on the morning of 25 February, and traveled about 7 km. Ash on the SE flank was reported in El Rodeo, El Zapote, La Réunion, Alotenango, and San Vicente Pacaya (figure 63). On 25 February, the Washington VAAC reported large areas of dissipating ash moving in multiple directions. Ash emissions at 5-5.2 km altitude were drifting 65 km NE, at 5.8 km altitude they were drifting 130 km NE and also SE, at 6.4 km they were moving S, and another simultaneous plume was observed at 7.6 km drifting 30 km SW.

Figure 63. Ash dispersion map of the 24-25 February 2015 eruption episode 2 at Fuego. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, FEBRERO 2017).

Activity during March 2017. Daily weak and moderate explosions characterized activity during March 2017. Incandescence rose to 250 m above the crater and generated bombs and block avalanches that traveled more than 200 m from the crater (figure 64), but no new lava or pyroclastic flows were reported. INSIVUMEH reported an average of 17 explosions per day during the month, which generated ash plumes that rose to 4.4-4.9 km. Block avalanches were observed in the lower part of the Las Lajas ravine. Ashfall was reported in San Pedro Yepocapa, Sangre de Cristo, Palo Verde, Santa Sofía, Morelia, and Panimaché I and II. Three to six explosions per hour were recorded on 9, 10, 27, 29, and 31 March. The Washington VAAC reported ash emissions during 8-10, and 13 March. Plumes were observed rising to 4.6 km and moving W, 4.9 km moving S and SE, and 5.8 km drifting 80 km SE during these days. Lahars were reported on 17 and 21 March in the Las Lajas, Santa Teresa, and Ceniza ravines. The road to the village of La Rochela was cut off for a few days by the lahar in the Ceniza ravine.

Figure 64. Explosions generated ash plumes and block avalanches often during March 2017 at Fuego, including on 26 March in the early morning when this webcam image was taken. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, MARZO 2017).

Activity during April 2017. Persistent degassing during April sent steam emissions to 4.1-4.5 km altitude that dispersed in almost every direction, due to numerous changes in wind direction throughout the month. Weak to moderate Strombolian explosions created ash plumes that rose to 4.2-5.0 km and drifted primarily W and SW. Incandescence from the explosions was visible primarily at night and in the early morning around 100-300 m above the crater. The explosions also generated block avalanches that traveled more than 300 km from the summit. There were two spikes in explosive activity during April. The first, on 1 April, led to eruptive episode 3. The second, on 21 April, was less intense. These periods averaged 5-7 explosions per hour with ash plumes rising to 4.6-4.9 km and drifting in various directions.

Eruptive episode 3 began around midday on 1 April 2017, with Strombolian explosions that produced ash plumes up to 5 km that drifted more than 30 km NW, W, and SW; it lasted for about 16 hours. Ash fell in Sangre de Cristo, San Pedro Yepocapa, Santiago Atitlán, Chicacao, Mazatenango, and Retalhuleu. Lava flows traveled down the Las Lajas, Santa Teresa and Trinidad ravines as far as 2 km. The eruption was categorized by INSIVUMEH as a VEI 2 event with moderate to strong Strombolian explosions. The Washington VAAC reported an ash plume on 1 April that rose to 6.4 km altitude. The densest part of the plume was moving NW with some material fanning out to the NNE. They later revised their report with information that a new emission had risen to 9.1 km altitude and drifted NE. Ash emissions continued the next day with plumes moving NNW at 5.5 km and NNE at 8.2 km; bright incandescence appeared at the summit along with elevated seismicity. By the end of 2 April, the higher plume was diffuse as it dissipated over the far western Caribbean of the coast of Belize and Yucatan.

The Washington VAAC reported an ash emission to 4.5 km altitude on 21 April that extended 30 km NE of the summit. Occasional puffs of ash continued throughout the day and rose to 4.9 km altitude later in the day. By the next day, a plume was visible at 4.6 km extending 80 km E; it was later reported at 4.9 km altitude. By 23 April a faint plume extended 90 km S before dissipating. INSIVUMEH also reported ashfall in Palo Verde Farm, Santa Sofía, Morelia, and Panimaché I and II other times during the month.

Significant lahars affected several ravines on 20, 23, and 24 April 2017. Rain, hail and snowfall caused a lahar in Ceniza Canyon on 20 April (figure 65). On 23 April, lahars flowed down the Santa Teresa, Trinidad, Ceniza and Las Lajas ravines after 160 mm of rainfall in three days. These ravines are tributaries of the larger Pantaleón, Achíguate, and Guacalate rivers. Another lahar on 24 April in Ceniza Canyon was audible more than 1 km from the ravine.

Figure 65. View of Fuego after an intense rain and hailstorm on 20 April 2017 that caused a lahar in Ceniza Canyon. Photo by Francisco Juarea, courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Abril 2017).

Activity during May 2017. Eruptive episode 4 began on 4 May 2017. A lava flow on the NE flank descended the Seca ravine for 1,500 m (figure 66). Explosions increased to 5-7 per hour, and were visible 200 m above the summit. Another lava flow descended 1.2 km down the Las Lajas ravine. Pyroclastic flows descended Barranca Seca, filling the channel and overflowing to the SE into Rio Mineral. They also affected Ceniza, Trinidad, El Jute, and Las Lajas canyons (figure 67) raising the imminent threat of lahars in these drainages. INSIVUMEH estimated that 14 million cubic meters of material was emplaced from the pyroclastic flows.

Figure 66. A lava flow descends the Barranca Seca at Fuego on 4 May 2017 during eruptive episode 4. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Mayo 2017).
Figure 67. Pyroclastic flows descend several drainages on the SE slope of Fuego on 5 May 2017 during eruptive episode 4, as viewed from la Finca la Reunión. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Mayo 2017).

INSIVUMEH reported ash emissions during this episode as high as 6 km altitude. The ash dispersed S, SW, W and NW, and ashfall was reported in communities more than 25 km from the crater (figure 68). Energy levels decreased after about 24 hours. INSIVUMEH characterized the event as a VEI 3 eruption. The Washington VAAC was unable to observe the activity in satellite imagery due to cloud cover until the morning of 5 May, when they reported ash plumes moving SW at about 4.6 km altitude and also ENE at 5.5 km altitude. They reported a new, much higher ash plume midday on 5 May at 12.2 km altitude that was drifting E at about 50 km per hour, in addition to the lower level emissions around 4.6 km that drifted SW which generated ashfall in the immediate vicinity of the volcano. The Washington VAAC reported another ash emission on 7 May that rose to 4.9 km altitude and drifted SW about 10 km from the summit. Another plume appeared in satellite imagery the next day moving SW at 4.6 km about 15 km from the summit. The Washington VAAC reported no additional plumes until 31 May when satellite imagery showed a plume with possible ash extending about 25 km NE from the summit at 4.9 km altitude. Ashfall was reported during the month in Morelia, La Rochela, Santa Sofia, Sangre de Cristo, Palo Verde farm, Panimache I and II, San Pedro Yepocapa and Escuintla.

Figure 68. Ashfall from eruptive episode 4 at Fuego during 4-5 May 2017 was reported in communities more than 25 km from the volcano, and dispersed S, SW, W, and NW. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Mayo 2017).

Moderate and strong lahars were recorded on six days in May (figure 69). Five took place in Seca barranca (13, 14, 19, 23, and 27 May), one in the Ceniza ravine (14 May), and two in Las Lajas canyon (both on 29 May). They transported very fine-grained material that had the consistency of wet concrete, and included blocks up to one meter in diameter.

Figure 69. A vehicle trapped in a lahar at Fuego in May 2017 surrounded by blocks as large as one meter in diameter. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Mayo 2017).

Activity during June 2017. Weak and moderate daily explosions continued at Fuego during June 2017. They generated ash plumes that drifted more than 12 km, incandescence and block avalanches, and ashfall more than 30 km NW, W, and SW. Numerous lahars were also reported. The 20-25 daily explosions generally sent ash plumes to 4.2-4.5 km altitude that drifted mostly W and SW. The incandescence from Strombolian explosions generally extended 150-200 m above the crater (figure 70). Ashfall from these events was reported in in Morelia, Santa Sofia, Sangre de Cristo, La Rochela, and Panimache I and II.

Figure 70. A Strombolian explosion on 30 June 2017 at Fuego reached 150-200 m above the crater and sent avalanche blocks down the flanks. This was typical behavior for the month of June. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Junio 2017).

There were seven periods of increased explosive activity during June 2017 (table 15), including eruptive episode 5. Many of the increases in energy levels were observed in the seismic record (figure 71) and reported by OVFGO (the Fuego Volcano Observatory). They noted an average of 5-8 explosions per hour during these events, and ash emissions rising to 4.6-4.9 km altitude, drifting W, SW, and S. None of the ash plumes reported by INSIVUMEH were observed by the Washington VAAC in satellite imagery due to weather clouds. The Washington VAAC did observe bright hotspots in shortwave imagery on 6 June.

Table 15. Periods of increased eruptive activity at Fuego during June 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Junio 2017).

Date Activity
1 Jun 2017 Ashfall in San Pedro Yepocapa; avalanche blocks descend more than 150 meters.
5 Jun 2017 Eruptive episode 5. Ashfall in San Pedro Yepocapa, Morelia, Santa Sofia, Panimaché, El Porvenir and Sangre de Cristo; lava flows 500 m down Barranca Santa Teresa.
12 Jun 2017 Ashfall in San Miguel Dueñas, Antigua Guatemala, and San Lucas Sacatepéquez.
13 Jun 2017 Ash dispersed NW and N more than 35 km.
13 Jun 2017 Ash dispersed NE and N more than 20 km.
14 Jun 2017 Ash dispersed more than 25 km NW and N.
16 Jun 2017 Ashfall in the villages of Panimache, Morelia, Santa Sofia and Santa Lucia Cotzumalguapa.
Figure 71. RSAM graph for Fuego during June 2017 shows spikes in seismic energy caused by eruptive episode 5 (red arrow), increases in explosive activity (yellow arrows), and several lahars (blue arrows). Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Junio 2017).

Eruptive episode 5 for 2017 began during the late afternoon of 5 June. Moderate and strong Strombolian explosions generated an ash plume that rose to 6 km altitude and drifted more than 20 km W, SE, and NW from the crater. Sounds as loud as a freight train were reported nearby, and vibrations were felt in communities around the volcano. Lava flowed 3 km down the Santa Teresa ravine and 2 km down Ceniza canyon. Volcanic bombs rose 200 m high, and fell more than 300 m from the summit crater. Pyroclastic flows descended the Santa Teresa canyon on the W flank.

Thirteen lahars were reported during June (table 16). They descended the Santa Teresa, Mineral, Trinidad, Ceniza, Las Lajas, and El Jute ravines, tributaries of the Pantaleón, Achíguate and Guacalate rivers. Overflows from the drainages damaged several roads and river crossings in the region.

Table 16. Lahars at Fuego during June 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE LA ACTIVIDAD DEL VOLCÁN DE FUEGO, Junio 2017).

Date Barranca (ravine)
1 Jun 2017 Santa Teresa
2 Jun 2017 Santa Teresa (twice)
4 Jun 2017 Santa Teresa
5 Jun 2017 Santa Teresa
7 Jun 2017 Santa Teresa, Mineral
9 Jun 2017 Las Lajas, El Jute
9 Jun 2017 Las Lajas, El Jute, Ceniza
10 Jun 2017 Ceniza
12 Jun 2017 Santa Teresa, Mineral, Ceniza
12 Jun 2017 Ceniza, Pantaleon
13 Jun 2017 Ceniza, Santa Teresa, Mineral
18 Jun 2017 El Jute, Trinidad

Satellite thermal data. The eruptive episodes reported by INSIVUMEH at Fuego during 2016 and the first half of 2017 are readily apparent in the MIROVA Log Radiative Power thermal data, and are also present going back at least to mid-2015 (figure 72). INSIVUMEH reported new lava flows and Strombolian activity each time (except for 2016 episode 8), which were the likely sources of the pulses of thermal activity. Details of the eruptive episodes for 2016 are discussed in BGVN 42:10 and 42:06.

Figure 72. MIROVA thermal anomaly graphs of MODIS infrared satellite data spanning 5 February 2015-19 September 2017 illustrating the recurring nature of eruptive episodes at Fuego. INSIVUMEH described 16 episodes during 2016, and five episodes during January-June 2017, shown as numbers over the red arrows. Episode 8 for 2016 is not shown; it was primarily a pyroclastic flow which did not generate the same thermal signal caused by lava flows during the other episodes. Courtesy of MIROVA.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Karymsky (Russia) — November 2017 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Moderate ash explosions continue into September 2017

Recent activity at Karymsky has consisted of ash explosions and thermal anomalies, often separated by several months of quiet (BGVN 40:09 and 42:08). No ash explosions occurred between the middle of October 2016 and the end of May 2017 (BGVN 42:08). This report covers activity from June through November 2017 using information compiled from the Kamchatka Volcanic Eruptions Response Team (KVERT), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

After months of quiet, KVERT reported that, based on Tokyo VAAC data, an ash explosion began at 0040 (local time) on 4 June 2017 (table 10). The Aviation Color Code (ACC) was raised from Green (lowest level on a four-color scale) to Orange (the second highest level). Subsequent ash explosions occurred on 8 June, 26 June and 18 July (figure 1).

Table 10. Summary by month of ash plumes and thermal anomalies reported for Karymsky during 2016. Details include UTC dates of thermal anomalies and ash plumes; and maximum plume altitude, and maximum distance of ash plume drift. Sources are KVERT and Tokyo VAAC for ash plume data, and KVERT for thermal data.

Month Thermal Anomalies (KVERT) Date of Ash Plumes Max Plume Altitude (km) Max Plume Distance (km)
Jun 2017 3-8, 10-12, 14-17, 23-24, 27-28 3-4, 8, 24, 26 6 165
Jul 2017 1-3. 7, 11-12, 18-20 10-11, 18, 20 1.7 170
Aug 2017 1,3,4,6-11 3-4, 7-9, 12-13 -- 400
Sep 2017 1,6, 8, 15-16, 23-25 19, 20, 23 7 100
Oct 2017 -- 3, 11-12, 14 -- 320
Nov 2017 -- -- -- --
Figure (see Caption) Figure 37. Aerial photo of an ash explosion at Karymsky on 18 July 2017. Courtesy of A. Belousov (IVS FEB RAS).

Toward the end of August, KVERT noted only gas-and-steam emissions, and the ACC was lowered to Yellow (the second lowest level on a four-color scale) on 30 August. This diminished activity continued until 20 September, when ash explosions at 0420 (local) prompted KVERT to raise the ACC back to Orange.

After 20 September, the volcano was either obscured by clouds or relatively quiet. After 11 October the moderate activity was associated with gas-steam emissions. On 19 October, the ACC was lowered to Yellow and then to Green (lowest level) on 26 October. Gas-and-steam activity continued through the end of November.

Thermal anomalies. Thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were not observed at Karymsky during the reporting period, except for a possible hotspot on 8 June 2017 that was slightly E of the craters. The MIROVA system detected at least nine days with low to moderate power hotspots in June, two in July, and one in August, all of which were within 3 km of the volcano. No hotspots were recorded September through November 2017.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Kick 'em Jenny (Grenada) — November 2017 Citation iconCite this Report

Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


Short eruption on 29 April 2017

A submarine volcano located about 8 km off the N coast of Grenada in the Lesser Antilles island arc, Kick 'em Jenny most recently had erupted during 23-24 July 2015 (BVGN 40:08), when two submarine explosions had been detected. This report covers a short-lived eruption on 29 April 2017 as reported by the Seismic Research Centre (SRC) at the University of the West Indies (UWI).

An advisory notice issued on 29 April 2017 by the Grenada National Disaster Management Agency (NaDMA) in collaboration with UWI-SRC reported increased seismicity associated with the volcano, including a high-amplitude signal lasting 25 seconds. The notice advised marine operators to strictly observe a 5-km maritime exclusion zone (figure 10). Another NaDMA notice on 3 May set the alert level at Yellow, indicating that all vessels should observe the 1.5 km exclusion zone, though as a precaution remaining outside the 5-km zone was recommended.

Figure (see Caption) Figure 10. Map showing the two maritime exclusion zones defined at Kick 'em Jenny, north of the island of Grenada. Courtesy of NaDMA.

As described by Latchman et al. (2017) in an SRC Open File report on 11 July 2017, subsequent eruptive activity on 29 April 2017 consisted of one event which lasted 14 minutes, followed by about an hour of tremor. The period of unrest began on 8 April with one earthquake. On the days following that first event, and prior to the eruption, there were 0-2 daily volcano-tectonic earthquakes, with 16 in all leading up to the eruption. The eruption was felt in northern Grenada and Martinique as an extended period of shaking, and very high-amplitude T-phases were recorded in Montserrat. There was no surface activity observed. After the eruption there was a sharp increase in the number of hybrid seismic events, with an additional 84 events up to 2 May, after which the activity ceased (figure 11).

Figure (see Caption) Figure 11. Seismicity associated with the 2017 period of unrest at Kick 'em Jenny plotted as a daily count during 1 April through 15 May (top) and as an hourly count during 24 April-1 May 2017 (bottom). From Latchman et al. (2017); courtesy of University of the West Indies, Seismic Research Centre.

According to UWI-SRC, the 2017 precursory seismicity was low level, the eruption occurred without intensification of the seismicity, and the post-eruption seismicity was relatively abundant, but short-lived. This volcanic episode came just 21 months after an episode consisting of two weeks of precursory seismicity, two hour-long eruptions on 23 and 24 July, and rapid decay of post-eruption seismicity.

Reference: Latchman J, Robertson R, Lynch L, Dondin F, Ramsingh C, Stewart R, Smith P, Stinton A, Edwards S, Ash C, Juman A, Joseph E, Nath N, Juman I, Ramsingh H, Madoo F, 2017, 2017/04/29 Eruption of Kick-'em Jenny Submarine Volcano: SRC Open File Report Kick-'em-Jenny, Grenada 201706_VOLC1, Seismic Research Centre, The University of the West Indies, St. Augustine, Trinidad, West Indies.

Geologic Background. Kick 'em Jenny, a historically active submarine volcano 8 km off the N shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred since 1939, when an eruption cloud rose 275 m above the sea. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

Information Contacts: Seismic Research Centre (SRC), The University of the West Indies (UWI), St. Augustine, Trinidad and Tobago, West Indies (URL: http://www.uwiseismic.com/); National Disaster Management Agency (NaDMA), Fort Frederick, Richmond Hill, St. George's, Grenada, West Indies (URL: http://nadma.gd/).


Kilauea (United States) — November 2017 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Episode 61g lava flow continues with many breakouts; firehose enters the sea at Kamokuna ocean entry

Hawaii's Kilauea volcano continues the long-term eruptive activity that began in 1983 with lava flows from the East Rift Zone (ERZ) and a convecting lava lake inside Halema'uma'u crater. The US Geological Survey's (USGS) Hawaii Volcano Observatory (HVO) has been monitoring and researching the volcano for over a century, since 1912. HVO quarterly reports of activity for January-June 2017, by HVO scientists Lil DeSmither, Tim Orr, and Matt Patrick, form the basis of this report. MODVOLC, MIROVA, and NASA Goddard Space Flight Center (GSFC) provided additional satellite information of thermal anomalies and SO2 plumes.

The lava lake level inside Halema'uma'u crater continued to rise and fall periodically during January-June 2017. The lava continued to circulate, and periodic rockfalls and veneer collapses caused small explosions within the lake. A few pieces of lapilli and minor ash landed at the Jagger Overlook. There were no major changes at the Pu'u 'O'o crater during the period; only minor fluctuations occurred in the lava pond lake level, and periodic rockfalls briefly disturbed the pond surface. There were, however, many surface breakouts along almost the entire length of the episode 61g lava flow from near the base of Pu'u 'O'o all the way to the Kamokuna ocean entry, about 12 km S. After the collapse of a large part of the delta at the Kamokuna ocean entry on 31 December 2016, lava continued to pour into the sea, and a new submarine delta began to grow. Instability of the sea cliff led to fractures and additional collapses during January and February. By the end of March, a small new delta was again visible above sea-level. It collapsed into the sea on 3 May, but another new delta quickly began to grow and reappeared by the end of the month. The "firehose" solidified and formed a ramp to the delta; surface flows caused thickening of the delta through the end of June.

Activity at Halema'uma'u. The lava lake inside 1-km-wide Halema'uma'u crater at Kilauea's summit was relatively quiet during the first half of 2017. It is located within the 200-m-wide "Overlook crater" at the SE edge of Halema'uma'u. The lava lake level rose and fell in reaction to typical summit pressure changes, as reflected in numerous deflation-inflation (DI) events. The rise and fall of the lake level generally took place over the course of several hours to days. At its highest level, the lake was 9 m below the floor of Halema?uma?u crater on 4 January 2017. Two weeks later, the lake dropped to its lowest level measured, 52.5 m, on 17 January. It was at a very similar height again, 52 m below the rim, on 23 June. There were two unusually large, fast drops in the lava lake level during June. The first, from 13 to 14 June, was a drop of 24 m in 24 hours. The second was a drop of 30 m over two days (21 to 23 June), which was the greatest single drop in lava level since mid-January.

The circulation pattern of the lava lake surface remained consistent, upwelling from the north end of the lake and migrating to the southern edge (and the southeast sink) where the crust descended. Short-lived spatter sources around the lake, generally caused by a disruption of the lake surface (e.g., rock falls), would temporarily (and sometimes only locally) redirect the lake surface towards the spatter source. Seismic tremor levels fluctuated along with spattering intensity. During much of the second quarter of 2017, spattering in the southeast sink was located inside of a large grotto with stalactites hanging from the roof.

The rockfalls and veneer collapses from January through June were not large enough to trigger any significant explosions, but there were several smaller events. The first, observed on 9 January at approximately 1320, occurred during Kona winds (stormy, rain-bearing winds that blow over the islands from the SW or SSW, in the opposite direction of the normal trade winds). It did not produce an explosive deposit or excessive amounts of tephra in the collection buckets near the Halema?uma?u Overlook and parking lot (500 m S of active lava lake), but did send ash and at least one 2-3 mm lapillus to the Jaggar Overlook and parking lot (about 1.8 km NW of the lava lake), and generated a composite seismic event. Composite events were also triggered on 14 January (2250) when a large piece of veneer collapsed off the northern crater wall, and on 16 January (1524) after a small rockfall from the southern inner edge of the Overlook crater (the smaller crater inside Halema?uma?u that contains the lava lake). On 23 March at 0036, a slice of the Overlook crater's southern ledge collapsed into the lake, triggering brief spattering and another composite event. On 26 May at 1114 HST, a piece of the northern Overlook crater wall collapsed into the lake (figure 281). This triggered a composite seismic event, lake surface agitation and spattering, and produced a dusting of ash on the cars in the HVO parking lot (at the Jaggar Overlook). Other veneer, grotto, and ledge failures often triggered brief spattering, localized subsidence of the crust, and composite seismic events.

Figure (see Caption) Figure 281. Webcam image from the HMcam on the rim of the Overlook crater at Kilauea on 26 May 2017 at 1116 HST, less than two minutes after a collapse, showing the agitated lava lake surface. A large chunk from the northern crater wall, directly above the active spattering, fell into the lake, which triggered spattering and a composite seismic event. The area of the wall that collapsed is discernible above the spatter by the newly exposed wall rock that is lighter in color. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for April - June 2017).

Activity at Pu'u 'O'o. There were no major changes in Pu'u 'O'o crater during the first half of 2017, and there was still an active lava pond in the West pit at the end of June (see figure 258, BGVN 41:08 for detailed crater map). The pond level appeared to be relatively steady, ranging from 19 to 21 m below the pit rim (849-851 m elevation), and the pond diameter ranged from 43 m in March to 47 m at the end of May. A time-lapse camera looking into the West pit lava pond, which was installed on 16 March, revealed a few rockfalls and collapses. The pond surface was completely disturbed on 18 April at 0809 HST and again on 20 May at 2304; overnight on 4-5 May a talus deposit appeared on the pit floor, suggesting rockfalls. On 31 May a ledge just above the West pit lava pond surface, representing the pond level from a few months prior, had a pile of rubble from a portion of the east wall collapsing.

Summary of episode 61g breakouts. Throughout the first half of 2017, there were many active surface breakouts along almost the entire length of the episode 61g flow field (figure 282). Near the 61g vent, a new breakout started on 22 January, which traveled along the southern margin of the flow field before it stopped on the morning of 9 February. The breakout that had started on 21 November 2016, also ended on 9 February, possibly because the system was starved of supply after a week and a half of deflation. A new breakout began on the upper part of Pulama Pali on 10 February that lasted through early April. Two breakouts appeared in the Royal Gardens subdivision on 15 February and 1 March, each lasting a few weeks. During the day of 5 March, a breakout began approximately 1.3 km downslope of the vent that remained weakly active on the upper flow field through the end of June. Two new breakouts started in mid-June that were also active through the end of the month.

Figure (see Caption) Figure 282. Map of the episode 61g flow field at Kilauea produced on 10 July 2017, showing the flow margin expansion (red) since 30 March 2017. During this time, the flow field expanded an additional 183 hectares from the previous 846 hectares (as of March 30), to a total of 1,029 hectares, increasing the flow field area by 22 percent. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for April - June 2017).

Details of episode 61g breakouts. On 10 February 2017 around 0710 a new breakout was reported on the steep part of Pulama Pali on the western flow field; by the next day pahoehoe surface flows were advancing across the coastal plain. Incandescence from the surface breakouts on the pali was only visible for the first few days, but the breakout continued to feed the surface flows on the coastal plain. By 14 February the flows had advanced approximately 2.3 km from the base of the pali (about 1.2 km from the coast), and by 25 February the flow was approximately 660 m from the ocean. These sluggish pahoehoe flows were largely outside the National Park boundary as they widened the eastern edge of the 61g flow margin. The flow advanced to within approximately 300 m of the road (500 m from the ocean) by 2 March. Breakouts then opened on the upper half of the coastal plain around 7 March, remaining weakly active through the end of March. On 8 April, tiny remnant surface flows from the breakout were found on the coastal plain. The spiny pahoehoe was 500 m out from the base of the pali and 2.8 km from the ocean, but the breakout was confirmed by thermal images to have ended by 10 April.

There were two breakouts that began near the top of Royal Gardens subdivision, on 15 February and 1 March 2017. The first started during the day, with glow visible in the R3cam at sundown. By 18 February the breakout was visible from the HPcam on the steep part of Pulama Pali, and remained active on the pali until the evening of 12 March. The 1 March breakout began higher upslope, with incandescence visible at sundown. This breakout slowly advanced and after a few days could not be seen from the webcam. Thermal images from 16 March indicated that the flow was no longer active.

During the day of 5 March 2017, a breakout began approximately 1.3 km downslope of the episode 61g vent (visible in the R3cam). By the middle of March, this was the most active breakout on the flow field, with surface activity expanding both sides of the flow field, and ranging between approximately 2 and 3.5 km from the vent. It was visible from the FEMA emergency road on 28 April on the upper pali. There was very little advancement over the next few weeks, until it reached the top of the steep part of the pali on 17 May. By 23 May, the sluggish pahoehoe flow front was approximately 400 m out from the base of the pali, and there were many small pahoehoe and aa channels on the steep pali face. Four days later (27 May), there were still breakouts on the pali, and the flow front had advanced another 100 m along the western margin of the 61g flow field. Satellite imagery from 2 June showed the breakout was still active, but by 13 June no activity was found on the coastal plain, and thermal imagery showed no active breakouts on 21 June. The 5 March breakout remained weakly active on the upper flow field (above the pali) through the end of June.

Two new breakouts started in June 2017, and remained active through the end of the month. The first started around 0600 HST on 13 June (figure 283), approximately 1.1 km from the episode 61g vent, located just upslope of the 5 March breakout point. These surface flows quickly became the most active along the 61g flow field. The second breakout originated from the upper pali (near the top of Royal Gardens subdivision) during the day of 26 June, and advanced down the pali east of the main flow field, reaching the base during the night of 4 July.

Figure (see Caption) Figure 283. The 13 June breakout point approximately 1.1 km from the 61g vent, along the tube system at Kilauea. The breakout uplifted (about 2 m) and cracked the older flow (center) as it pushed its way to the surface and oozed through the cracks in multiple locations around the central uplifted area. Photo by L. DeSmither on 21 June 2017. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for April - June 2017).

Activity at Kamokuna ocean entry. After the ten hectare (25 acre) delta and sea cliff collapse on 31 December 2016, the ocean entry consisted of a single vigorous lava stream (informally called "the firehose") entering directly into the ocean from the episode 61g lava tube; it was located 21 m above the water (figure 284). Interactions between the lava and sea water produced a single robust plume and sporadic littoral explosions that threw spatter up to roughly 30 m above the top of the sea cliff. Spatter from these explosions fell on the cliff adjacent to the ocean entry, and began to build a littoral cone that was first noticed on 28 January on the cliff's edge. The sea cliff in the immediate area and downwind of the ocean entry was blanketed in a layer of Pele's hair and Limu o Pele (Pele's seaweed) which fell from the plume and added to the ground cover as the firehose continued.

Figure (see Caption) Figure 284. Lava pours into the ocean at the Kamokuna ocean entry at Kilauea. Left: "The firehose" on 28 January 2017 exits the tube as a wide, thin sheet in this photo taken from the nearby observation point. Right: By 1 February, the lava stream changed to a cylindrical hose shape. Photos by M. Patrick, courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for January – March 2017).

A discolored water plume was visible at the ocean entry flanking an area of darker water directly out from the entry point, on either side. Thermal images taken in mid-March 2017 indicated that the discolored area was also heated, with the anomalous area extending out about one kilometer (figure 285).

Figure (see Caption) Figure 285. Photo and thermal images taken of the Kamokuna ocean entry at Kilauea during a 30 March 2017 overflight. Left: Photo of the ocean entry and distinct plumes of steam and discolored water (photo by L. DeSmither). Right: A thermal image showing the heated water plume with the small area of cool water directly in front of the ocean entry. The hot material spread horizontally along the base of the sea cliff directly in front of the ocean entry, is the newly forming delta. On the 61g flow field (upper right), two small breakouts are visible on the coastal plain near the base of Pulama Pali, and the 5 March breakout (top-center), is discernable on the upper flow field near Pu'u 'O'o. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for January - March 2017).

Many large ground cracks were noticed in the sea cliff inland from the entry after the 31 December 2016 Kamokuna delta collapse, including a set of en echelon cracks at the edge of the old sea cliff where over 1.6 hectares (about 4 acres) had collapsed. On a 25 January 2017 overflight, thermal images revealed a hot crack parallel to the sea cliff and a corresponding collapse pit on the trace of the lava tube, suggesting major instability. A few days later (28 January) the crack was measured at 30 cm wide, up to 220°C, was visibly very deep, and the seaward side of the crack was sloping slightly towards the ocean (figure 286). HVO scientists could also occasionally feel slow ground shaking at an observation point 240 m east of the ocean entry. When measured again (in the same spot) on 1 February, the crack was 75 cm wide. Upon further examination, grinding noises were coming from the crack and the seaward side of the crack was visibly swaying about 1 cm.

Figure (see Caption) Figure 286. Photos of the large ground crack near the Kamokuna ocean entry at Kilauea, with yellow arrows pointing out two distinctive flow edges for comparison. Left: A photo taken on 28 January 2017 (by M. Patrick), when the crack was measured at 30 cm wide (just above the lower arrow). Right: Photo taken on 2 February, after a large portion of the sea cliff collapsed into the ocean, the crack measured 100 cm (photo by T. Orr). Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for January - March 2017).

On the morning of 1 February around 0735, a small collapse of the sea cliff was reported near the firehose. The next day, the firehose was no longer visible from the observation point (possibly due to erosion of the sea cliff), but sporadic littoral explosions were still occurring. HVO personnel returned to the crack (which had begun steaming) for observations and to record video of the cliff oscillating. At 1255, about 30 seconds after the camera began to record, the seaward slab of the crack began to fall away. After the collapse only a small piece of the slab remained, and the crack measured 100 cm in width, 25 cm more than the previous day, most of which occurred during the collapse and in the few minutes following (figure 286). By 8 February, the remaining slab of cliff was gone, one piece collapsed at 1507 on 2 February, and the rest collapsed sometime between 6 and 8 February. The littoral cone that had been building on the edge of the cliff fell in with the collapse, but by 8 February, another had formed on the new sea cliff edge above the ocean entry.

During January, the firehose exited the tube as a thin broad sheet, but by the end of the month had changed into a cylindrical stream (figure 284). The output amount slowly began to wane, and on 8 March the ocean entry plume shut off for about 30 minutes between 1616 and 1646 with only a little puff of steam visible in between. The plume shut off briefly again several times on 18, 19, and 20 March for periods up to about 90 minutes in length.

From January through March 2017, the firehose continued with no sign of a delta forming, which suggested steep bathymetry below the ocean entry. By 22 March, the firehose was no longer visible from the public viewing area but incandescence was visible near the water surface, suggesting that the firehose was becoming encased in lava and a small delta was finally beginning to form. On 24 March, there were few, if any, littoral explosions, and the thick plume at the ocean entry made it impossible to see any signs of a delta, but time-lapse images verified the formation of one. There were many floating, steaming blocks in the water offshore of the entry. An overflight on 30 March showed a thick haze that was obscuring the small delta at the base of the cliff, where only brief tiny spots of incandescence could be seen near the water's surface. Images from a thermal camera indicated hot material from the delta extending approximately 60 m east along the cliffs base at the ocean entry.

By the end of March 2017, the firehose flow activity was no longer visible and a tiny new delta began to form. On 8 April, the delta was estimated to be extending roughly 25 m out from the base of the sea cliff (using cliff height for scale). A sparse field of dense angular blocks were deposited on 25 March between 0803 and 0808 HST on the sea cliff near the ocean entry, which covered an area of approximately 70 x 70 m (the largest block observed was 50 cm across).

During the first half of April the small delta was mostly obscured by the ocean entry plume. By the end of the month, the delta size was estimated to be 1.2 hectares (roughly 3 acres, using time-lapse images). On 3 May, nearly the entire delta collapsed between 0955 and 1000 HST, following a large steam plume and weak spattering from one of the cracks on the delta, along with delta subsidence in the preceding 20 minutes before the collapse. Many small pieces of the remnant delta fell off over the next few hours.

The delta quickly began to rebuild after the collapse, and on 23 May coast-parallel cracks were apparent on the new delta. The tubed-over firehose created a ramp-like feature near the cliff face where the 61g tube exited the older sea cliff (figure 287). This ramp was narrow at the point where the tube exits the cliff, and flared out as it reached the surface of the delta, insulating the 61g lava on its way to the delta. Near the top of the ramp there was an area of concentrated degassing, and evident cracks in the ramp revealed incandescence. On 16 June, surface flows on the delta covered a large portion of the surface, including the coast-parallel cracks so they were no longer visible.

Figure (see Caption) Figure 287. A view of the crusted over firehose ramp on 29 June 2017 at the Kamokuna ocean entry of Kilauea where the 61g lava tube exits the sea cliff and feeds the ocean entry from an established tube on the delta. On the west (left) side of the ramp, there are cracks in the crusted surface where delta surface flows likely originated that show incandescence beneath. Photo by L. DeSmither, courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for April - June 2017).

Time-lapse images from 25 June revealed that firehose activity returned briefly between 1139 and 1149 HST, and produced channelized surface flows that continued into the following day (when a skylight was visible on the delta). The delta had grown to approximately 2.4 hectares (6 acres) by 29 June (figure 288), and had also thickened significantly from the recent surface flows on the delta. Much of the delta surface was covered by the repeated surface flows, but there was still a coast-parallel crack visible on the western side.

Figure (see Caption) Figure 288. The lava delta at Kamokuna ocean entry at Kilauea on 23 May 2017 (left) and 13 July 2017 (right) showing the thickening of the delta near the cliff face caused by repeated small surface flows. These flows appear to have doubled the thickness of the delta and created a distinctly sloped surface from the base of the cliff to the sea. Photos by L. DeSmither, courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for April - June 2017).

Satellite thermal anomaly and SO2 data. Satellite thermal anomaly data for Kilauea can be closely correlated with ground-based observations by HVO scientists, thus providing validation of remote-sensing data. The MODVOLC thermal alert system captured distinct anomalies during January-June 2017 from Halema?uma?u Crater, Pu'u 'O'o Cone, the episode 61g flow, and the Kamokuna ocean entry (figure 289). The changes from month to month in the locations of the hotspots, especially the locations of the breakouts of episode 61g flow, are readily apparent in the MODVOLC images, and match the descriptions of these events provided by HVO scientists.

Figure (see Caption) Figure 289. Thermal alerts identified by the MODVOLC system by month at Kilauea, January-June 2017. The thermal anomaly signatures of the lava lakes at Halema'uma'u crater and Pu'u 'O'o crater persist throughout the period; while the changes in the locations of the thermal anomalies of the episode 61g flow and the Kamokuna ocean entry closely match ground observations by HVO staff, described in the text. Courtesy of HIGP - MODVOLC Thermal Alerts System .

The MIROVA thermal anomaly information, which plots Middle InfraRed Radiation from the MODIS data, also shows the locations and movements of the sources of heat at Kilauea over time (figure 290), and this information correlates closely with ground observations by HVO staff. Note that the MIROVA center point for relative distances described here is about 10.5 km (0.1°) E of the summit on the western Halema'uma'u crater rim. The anomaly locations at about 10 km distance correspond to both the lava pond at Pu'u 'O'o crater and the Halema'uma'u crater lava lake. Those about 20 km away correspond to the Kamokuna ocean entry. Anomalies that migrate over time between 10 and 20 km distance trace the movement of the episode 61g flow breakouts between Pu'u 'O'o and the Kamokuna ocean entry.

Figure (see Caption) Figure 290. The MIROVA thermal anomaly data for Kilauea tracks both radiative power and the distance of the radiative power from the assigned "summit" location (about 10.5 km E of the high point on the western Halema'uma'u crater rim). In this chart of the distance to the thermal anomalies during the year ending 17 August 2017, the variations in distance (y-axis) correspond closely to changes in the locations of the active lava flow sites. The Halema'uma'u and Pu'u 'O'o craters are located about 10 km away; the episode 61g flow field has anomalies that track between 10 and 20 km away; and the Kamokuna ocean entry is represented by the anomalies about 20 km distant. See additional discussion in the text. Courtesy of MIROVA.

Plumes of SO2 emissions visible in satellite data are common at Kilauea (figure 291). The normal trade winds send most emissions to the SW, but occasional "Kona" winds blow in the opposite direction and disperse SO2 to the NE from the summit. Large lava breakouts and activity at the summit crater can produce substantial SO2 plumes.

Figure (see Caption) Figure 291. Sulfur dioxide emissions data from the OMI instrument on the Aura satellite for selected days at Kilauea during January and March 2017. Top Left: uncommon "Kona winds" blowing from SW to NE over the island, opposite to the normal trade winds dispersed the SO2 plume to the NE on 5 January 2017. Top Right: The more common trade wind direction, to the SW, carried a typical size SO2 plume on 10 January 2017. Bottom: The significant breakout from episode 61g that began on 5 March likely produced the larger than normal SO2 plumes captured on 5 and 6 March 2017. Courtesy of NASA GSFC.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: http://so2.gsfc.nasa.gov/index.html).


Klyuchevskoy (Russia) — November 2017 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Eruption appears to have subsided after March 2017; ash plumes persist into October

The eruption of Klyuchevskoy that began in late August 2015 continued with fluctuating activity through March 2017 (BGVN 42:04) (figure 20). Although lava effusion ended in early November 2016, explosive activity was observed through March 2017 (BGVN 42:04). Similar eruptive activity continued through October 2017 as reported here, exhibiting moderate to strong ash explosions. The Kamchatkan Volcanic Eruption Response Team (KVERT) is responsible for monitoring this volcano, and is the primary source of information. Times are in UTC (local time is UTC + 12 hours).

Figure (see Caption) Figure 20. Ash plume rising from the summit crater of Klyuchevskoy on 30 March 2017. Courtesy of Yu. Demyanchuk (IVS FEB RAS, KVERT).

KVERT reported that weak to moderate ash explosions and thermal anomalies occurred throughout March-October 2017 (table 17). The last time ash was reported during the period of this report was on 7 September 2017. The volcano is often obscured by clouds that prevent plumes from being detected in satellite imagery. However, excellent clear views from space were obtained on 10 June (figure 21) and 17 August 2017 (figures 22 and 23) that showed typical ash plumes. Ground-based observers also noted erupting ash plumes, some not identified in satellite imagery, including one on 8 October 2017 (figure 24).

Table 17. Summary of ash plumes and Aviation Color Codes at Klyuchevskoi from March through mid-October 2017. Data courtesy of KVERT.

Dates Ash plume altitude Ash plume drift Aviation Color Code (ACC)
02 Mar 2017 8-9 km 110 km NW and NE Raised to Orange
08 Mar 2017 5.5 km 20 km NW Orange
16 Mar 2017 -- -- Lowered to Yellow
24 Mar 2017 -- -- Lowered to Green
28 Mar 2017 5-6 km 108 km ENE Raised to Yellow
29 Mar 2017 7.5 km 75 km SW Raised to Orange
01-04 Apr 2017 5-6 km 400 km various directions Lowered to Yellow
21-28 Apr 2017 -- 125 km SW Orange
5-6, 10-11 May 2017 -- 270 km SE and NW Orange
17 May 2017 6 km 180 km N and NE Orange
01-02 Jun 2017 6 km 400 km SSE Orange
02-09 Jun 2017 5 km 325 km NE, SE, and SW Orange
09-16 Jun 2017 6-7 km 580 km SW and SE Orange
16-17, 22 Jun 2017 6-7 km 300 km E and W Orange
24, 26 Jun 2017 5-6 km 112 km S and SE Orange
01-03, 05-06 Jul 2017 5 km 160 km SE, E, and SW Orange
08, 12-13 Jul 2017 5 km 50 km SE Orange
19-20 Jul 2017 -- 300 km SW, SE, E, and NE Orange
22-27 Jul 2017 -- 120 km E and NE Orange
02-03 Aug 2017 -- 65 km SW and 250 km ESE Orange
11-12, 15-17 Aug 2017 -- 315 km E and NW Orange
19 Aug 2017 6 km 140 km NW, 270 km SE, 90 km NE Orange
20 Aug 2017 -- 200 km NW Orange
21 Aug 2017 -- 480 km NW Orange
22 Aug 2017 -- 110 km NW, W, and SW Orange
23 Aug 2017 -- 220 km NW Orange
24-25, 30 Aug 2017 6 km 550 km various directions Lowered to Yellow
07 Sep 2017 6 km 50 km NE Orange
Figure (see Caption) Figure 21. A brown ash plume can be seen rising from Klyuchevskoy on 10 June 2017 in this image taken from space looking NE. The tall peak adjacent to Klyuchevskoy and to the S is Kamen; adjacent and just S of that is Bezymianny. The snow-covered mass to the NW contains Ushkovsky volcano. South of the Klyuchevskoy-Kamen pair is the snow-covered active volcano Tolbachik, east of which are the snow-free Zimina (to the north) and Udina volcanos. Courtesy of NASA Johnson Space Center (photo ISS052-E-896).
Figure (see Caption) Figure 22. The Operational Land Imager (OLI) on Landsat 8 satellite captured this image of a volcanic ash plume streaming W from Klyuchevskoy on 19 August 2017. The plume is brown; clouds are white. Note that there is also a smaller white plume extending SW from Bezymianny, about 10 km S. An enlarged image of the "Detail" area is shown in the next figure. Courtesy of NASA Earth Observatory; image by J. Stevens, using Landsat data from the U.S. Geological Survey.
Figure (see Caption) Figure 23. Detail from an Operational Land Imager (OLI) on Landsat 8 image of Klyuchevskoy erupting on 19 August 2017. The ash plume is rising about 6 km above the summit. Courtesy of NASA Earth Observatory; image by J. Stevens, using Landsat data from the U.S. Geological Survey.
Figure (see Caption) Figure 24. Ash plume rising from the summit crater of Klyuchevskoy on 8 October 2017. Courtesy of I. Borisov (IVS FEB RAS).

Thermal alerts in the MODVOLC system ended on 2 November 2016, corresponding to the end of lava effusion reported by KVERT (BGVN 42:04). The number of MIROVA thermal anomalies decreased significantly in early November 2016 as well (figure 25), then gradually declined further over the next few months.

Figure (see Caption) Figure 25. MODIS thermal anomalies identified in the MIROVA system, plotted as log radiative power for the year ending 24 October 2017. Courtesy of MIROVA.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/).


Nishinoshima (Japan) — November 2017 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


April-July 2017 episode creates additional landmass from two lava flows

Japan's Nishinoshima volcano erupted above sea level in November 2013 for the first time in 40 years. Between then and November 2015 the island grew from 0.29 to 2.63 km2 as a result of numerous lava flows erupting from vents around a central pyroclastic cone (BGVN 41:09). Eruptive activity ended in November 2015, and no additional activity was observed during 2016. A new eruption that included ash emissions and lava flows began in April 2017, and continued until mid-August 2017. Two major lobes of lava emerged from the central crater of the pyroclastic cone and flowed SW and W, expanding the size of the island to about 2.2 km in the E-W dimension and 1.9 km in the N-S dimension, a total area of about 3 km2.

Information comes primarily from monthly reports provided by the Japan Meteorological Agency (JMA) and reports and photographs taken by the Japan Coast Guard (JCG), which monitors the volcano due to its remote location in the Pacific Ocean, approximately 940 km S of Tokyo along the Izu-Bonin arc. Satellite thermal data (MODIS) also provides valuable information about the active heat flow at the volcano.

Changes during November 2013-October 2015. Nishinoshima grew about twelve times in area between 6 November 2013 and 11 October 2015, after nearly two years of constant eruptive activity (figure 39). JCG presented a map in November 2015 showing the areas added to Nishinoshima between November 2013 and November 2015 (figure 40). The Ocean Information Division of JMA conducted a seabed topographic survey in a 4-km radius around the island between 22 June and 9 July 2015 that revealed the new submarine topography (figure 41).

Figure (see Caption) Figure 39. Nishinoshima grew about twelve times in area between 6 November 2013 and 11 October 2015. The Operational Land Imager (OLI) on Landsat 8 captured these images of the old and new island on those two dates. The top image shows the area on 6 November 2013, two weeks before the eruption started. The second image was acquired on 11 October 2015, after nearly two years of constant eruptive activity. In both images, pale areas just offshore likely reveal volcanic gases bubbling up from submerged vents or sediments disturbed by the eruption. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 40. Changes in the shape and size of Nishinoshima between 21 November 2013 and 17 November 2015. Black dots outline areas above sea level prior to 21 November 2013. The sets of three numbers in the legend represent dates as follows '25' is 2013, '26' is 2014 and '27' is 2015. These numbers are followed by month and day. For example 26..12..25 is 25 December 2014. The total area of the island is shown after each date. The red outline shows the outer edge of land as of 17 November 2015. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 20 November 2015).
Figure (see Caption) Figure 41. The Ocean Information Division of JMA conducted a seabed bathymetric survey in a 4-km radius around Nishinoshima between 22 June and 9 July 2015 that revealed the new submarine topography after almost two years of eruption. The dashed blue line shows the area above sea level prior to November 2013. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 20 October 2015).

Activity during October-December 2015. The JCG visited Nishinoshima on 13 October, 17 November, and 22 December 2015 (BGVN 41:09). Explosions with ash plumes (figures 42 and 43) and active lava flows from a hornito on the flank (figures 44 and 45) were observed on 13 October. On 17 November they observed crater-like depressions on the N flank of the pyroclastic cone (figure 46).

Figure (see Caption) Figure 42. Ash explosion from the pyroclastic cone at Nishinoshima on 13 October 2015. Japanese text means "crater". Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 16 October 2015).
Figure (see Caption) Figure 43. Plumes of discolored water surround Nishinoshima while an explosion emits ash from the pyroclastic cone on 13 October 2015. Japanese text means "discolored water area". Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 16 October 2015).
Figure (see Caption) Figure 44. Lava flowed from a hornito on the NE flank of the pyroclastic cone (arrow at left, "lava flow outlet") at Nishinoshima on 13 October 2015. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 16 October 2015).
Figure (see Caption) Figure 45. Thermal imagery revealed lava flowing N and W from the hornito on the NE side of the pyroclastic cone at Nishinoshima on 13 October 2015. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 16 October 2015).
Figure (see Caption) Figure 46. Crater depressions appeared on the N side of the pyroclastic cone at Nishinoshima on 17 November 2015. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 20 November 2015).

By the time of their visit on 22 December, there were no further signs of activity from the pyroclastic cone (figure 47), and a comparison of thermal imagery between 17 November and 22 December (figure 48) showed a dramatic decline in heat flow. Aerial photography of the island that day revealed the extent of the new island compared with the pre-November 2013 landmass (figure 49).

Figure (see Caption) Figure 47. The pyroclastic cone and summit crater at Nishinoshima were quiet when observed by the JCG on 22 December 2015. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 25 December 2015).
Figure (see Caption) Figure 48. A comparison of thermal imagery from 22 December 2015 (left) and 17 November 2015 (right) reveals a decrease in heat flow at Nishinoshima from both the summit crater and the hornito on the SW flank. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 25 December 2015).
Figure (see Caption) Figure 49. Composite of aerial photographs of Nishinoshima on 22 December 2015. Green and yellow outlines show areas that were above sea level on 21 November 2013 for comparison. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 25 December 2015).

Activity during 2016. The Japan Coast Guard continued with monthly observations during 2016, with visits on 19 January, 3 February, 5 March, 14 April, 20 May, 7 June, 19 July, 18 August, 15 September, and 6 October 2016. Only weak fumarolic activity was observed during the February visit (figure 50). Thermal measurements consistently remained at or below 100°C during the year; plumes of light brown to yellowish-green discolored water generally extended 200-400 m away from the coastline, suggesting continued submarine hydrothermal activity. The discolored water extended 1,000 m off the N coast during the 5 March visit. Dense steam filled the summit crater of the pyroclastic cone on 14 April (figure 51). During their 20 May visit, JCG noted a slight increase in size of the beach areas around the shoreline; this increase continued for several months, likely a result of fresh lava flows breaking down into sand from the wave action. During May and June, small amounts of magmatic gas were visible rising a few tens of meters above the summit crater.

Figure (see Caption) Figure 50. Weak fumarolic activity from the S side of the crater rim was the only notable activity observed at Nishinoshima during a visit by JCG on 3 February 2016. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 5 February 2016).
Figure (see Caption) Figure 51. Steam emanated from the summit crater of the pyroclastic cone at Nishinoshima during a visit by the Japan Coast Guard on 14 April 2016. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 19 April 2016).

On 17 August, JMA cancelled the maritime volcano warning (preventing vessels from approaching within 1.5 km), as a result of the decreased activity. Professor Kenji Nogami of the Tokyo Institute of Volcanic Fluid Research Center noted an increase in the discolored water area, extending about 1,000 m on the S side of the island during the JCG overflight on 15 September. JCG conducted a new submarine survey of the area during 22 October-10 November 2016 to provide data for new maritime charts. No additional reports were issued until a new eruptive episode was observed on 20 April 2017.

While the Japan Coast Guard did not observe volcanic activity during 2016, the MIROVA data suggests that low levels of heat flow were intermittent throughout the year, with slight increases during May-June, July-August, and September-October 2016 (figure 52). The heat flow recorded by MIROVA during 2016 was about an order of magnitude less that that during the period with active lava flows in September-November 2015.

Figure (see Caption) Figure 52. MIROVA Radiative Power thermal anomaly graph for Nishinoshima from 16 August 2015 through 15 November 2017. Data is from the MODIS satellite instrument. Active lava flows were observed by the JCG through mid-November 2015 (top graph). Only minor fumarolic activity was intermittently observed during 2016. Renewed lava flows and Strombolian activity were again observed beginning on 21 April 2017 (bottom graph). Courtesy of MIROVA.

Activity during April-October 2017. The JCG observed renewed eruptive activity when they visited Nishinoshima on 20 April 2017. They confirmed the existence of a new lava flow from the summit crater of the pyroclastic cone on 21 April. They also observed a gray ash plume 500 m wide rising 1,000 m above the crater, Strombolian explosions at intervals of tens of seconds, and molten lava within the crater. A new lava flow appeared on the N side of the cone, although it had not yet reached the ocean. By the time of the next overflight on 27 April, JCG confirmed that the lava flow had reach the ocean on the W and SW coast of the island (figure 53), and a new pyroclastic cone had formed within the summit crater. Strong MODVOLC multi-pixel thermal alerts first appeared on 18 April, and persisted with no more than a few day's break until early August 2017. The Tokyo VAAC reported an ash plume on 20 April at 2.4 km altitude drifting W, but it was not identifiable in satellite data.

Figure (see Caption) Figure 53. New lava flows (outlined in white) reach the ocean on the W and SW coast of Nishinoshima on 27 April 2017. Ash emissions rose from the summit crater, and steam plumes emerged from the numerous places where the lava entered the sea. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 28 April 2017).

Strombolian explosions were observed every 40-60 seconds during an overflight on 2 May 2017. They emerged from the new pyroclastic cone at the center of the summit crater. Ash plumes rose 500 m and drifted SW. Two vents on the N side of the crater produced lava that flowed to the ocean on the SW coast of the island (figure 54). Areas of new lava extended about 170 m W and 180 m SW into the ocean. Continued ash emissions were drifting N from the island on 24 May, and lava continued flowing into the sea along the SW shore.

Figure (see Caption) Figure 54. A thermal image of Nishinoshima taken on 2 May 2017 reveals an active lava flow emerging from the N flank of the crater and flowing SW into the ocean. Two vents are identified with the white arrows. The red arrow identifies the pyroclastic cone within the summit crater. The new areas of lava extended about 170 m W and 180 m SW into the ocean. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 10 May 2017).

During the next overflight on 6 June, JCG confirmed a new lava flow emerging from the W flank of the pyroclastic cone and flowing to the sea (figure 55). In late June 2017, JMA published a new bathymetric map of Nishinoshima and surrounding waters as of October 2016. JCG noted that explosions continued at 30-second intervals during their 29 June overflight. Ash plumes rose to about 200 m above the crater rim, and lava was entering the sea on the W side of the island (figure 56). The new lava flows now extended into the sea about 330 m to the W and 310 m to the SW (figure 57).

Figure (see Caption) Figure 55. A thermal image of lava flowing into the ocean on the W side of Nishinoshima captured during a JCG overflight on 6 June 2017. A new lava flow (red arrow) flows W from the crater to the sea while the lobes of the existing flow continue to extend into the ocean. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 9 June 2017).
Figure (see Caption) Figure 56. A thermal image of Nishinoshima taken on 29 June 2017 reveals lava entering the sea on the W side of the island, and a new vent with fresh lava on the S side of the pyroclastic cone (white circle). Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 5 July 2017).
Figure (see Caption) Figure 57. Two lobes of fresh lava flows extend S and SW from Nishinoshima on 29 June 2017 as ash emissions rise from the central crater. Lava is actively flowing into the sea on the W side of the W lobe, but is no longer active on the SW lobe. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 5 July 2017).

The Tokyo VAAC reported multiple ash emissions during June. An eruption generated an ash plume on 8 June that rose to 1.2 km altitude and drifted SW. Emissions were observed in satellite imagery for the next 24 hours before dissipating. Another ash plume on 26 June was reported drifting NE at 3 km altitude. Ash seen on 30 June was reported drifting W at 2.1 km altitude for most of the day before dissipating. The Tokyo VAAC reported a possible eruption on 2 July that sent an E-drifting ash plume to 1.5 km altitude. It was later reported at 3 km altitude before dissipating. Ash and bombs were observed exploding from the central crater during the 11 July 2017 JCG overflight. Lava was also still entering the sea on the W side of the island (figure 58).

Figure (see Caption) Figure 58. Strombolian explosions and lava entering the sea were captured in this thermal image taken from the W side of Nishinoshima on 11 July 2017. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 14 July 2017).

The JCG visited the island on 11 and 24 August 2017. They did not witness any eruptive activity, but diffuse steam plumes were seen rising from the crater rim. They also noted steam plumes from lava that was still entering the sea on the W side of the island on 11 August, but not during the 24 August flyover. Aerial photos taken that day showed the extent of new land formed since late April (figure 59). Additional flyovers by JCG on 15 September and 7 October confirmed a lack of active lava flows, and only minor steam plumes were reported rising from the crater rim. The last MODVOLC thermal alert appeared on 5 August. The MIROVA thermal anomaly signals that had abruptly reappeared in late April gradually tapered off throughout August, confirming a decrease in the heat flow as the lava flows cooled (figure 52).

Figure (see Caption) Figure 59. Composite of aerial photos taken on 24 August 2017 showing the increased landmass at Nishinoshima from the new lava flows that erupted between 18 April and 11 August. The green outline shows the area of the old (pre-Nov 2013) Nishinoshima still visible on 24 August. The blue outline represents the shoreline prior to the eruption of 18 April. The yellow outline shows the shoreline as of 29 June 2017, and the red outline shows the area outline as of 24 August 2017. Courtesy of Japan Coast Guard (Status of volcanic activity at Nishinoshima, 29 August 2017).

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG), Policy Evaluation and Public Relations Office, 100-8918, 2-1-3 Kasumigaseki, Chiyoda-ku, Tokyo, Telephone, 03-3591-6361 (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Nyamuragira (DR Congo) — November 2017 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Thermal activity decreases and ends in May 2017

The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo is part of the western branch of the East African Rift System. Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 54, BGVN 40:01). A large lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions have been observed since that time, the most recent during November 2011-March 2012 on the NE flank. This was followed by a period of degassing with SO2-rich plumes, but no observed thermal activity, from April 2012 through April 2014. Lava fountains at the central crater in July 2014 signaled the return of a lava lake, which was confirmed in November 2014. The lake lasted through April 2016 when its thermal signal abruptly disappeared (see figure 62, BGVN 42:06).

Thermal activity suggesting reappearance of the lava lake began again in early November 2016, and strengthened in both frequency and magnitude into early January 2017, continuing with a strong signal through April 2017 before tapering off during May 2017. No further activity was reported through November 2017. Ground-based observations are scarce due to the unstable political climate, but occasional information is available from the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), geoscientists who study Nyamuragira, and travelers who visit the site. The most consistent data comes from satellite: thermal data from the MODIS instrument processed by the MODVOLC and MIROVA systems, SO2 data from the AURA instrument on NASA's OMI satellite, and NASA Earth Observatory images from a variety of satellites.

Thermal MODIS data indicated that a renewed period of activity began in late November 2016 after a period of quiescence since mid-May 2016. The first MODVOLC alert pixels appeared on 27 November. They were intermittent during December, but increased significantly during January-April 2017, with 30-50 alert pixels each month. They stopped abruptly on 2 May 2017. The MIROVA thermal anomaly graph shows a similar pattern of increasing thermal values from January through April 2017, with both the frequency and intensity tapering off during May 2017 (figure 69). No thermal anomalies were reported within 5 km of the summit from June through November 2017.

Figure (see Caption) Figure 69. Thermal anomalies at Nyamuragira for the year ending on 27 November 2017 show a pattern of increasing frequency and intensity from January through April, with values tapering off during May, and no further heat flow activity within 5 km of the summit after the last week of May 2017. Courtesy of MIROVA.

During the period from December 2016 to April 2017 thermal anomalies were relatively high, but there were no reported SO2 anomalies from the OMI satellite instrument. This is in contrast with the period from April 2014-April 2016 when both SO2 values and thermal anomaly values were high. Very little ground-based data is available to confirm the eruptive activity of 2017. A photograph from an Instagram user of an image reported as Nyamuragira on 26 January 2017 shows the lava lake at the bottom of the summit crater (figure 70). Bubbling lava from the crater was photographed by Charley Kasereka on 11 March 2017 (see figure 66, BGVN 42:06). An image captured in May 2017 shows steam at the summit crater and lava flows around the caldera, with Nyiragongo in the background (figure 71). A photograph posted 16 September 2017 shows volcanologist Dario Tedesco on the crater rim surrounded by plumes of steam (figure 72).

Figure (see Caption) Figure 70. Photo of the active lava lake in the summit crater of Nyamuragira on 26 January 2017. Courtesy of Tim Best Direct (posted on Instagram).
Figure (see Caption) Figure 71. Sunset at Nyamuragira on 21 May 2017 appeared to show fresh steaming lava in the area between the pit crater and the caldera rim, with a possible new overflow of the rim in the foreground. The image is looking SE and shows the larger Nyiragongo with a steam plume rising from the summit crater in the background. Courtesy of Tropic Air Kenya (posted on Instagram).
Figure (see Caption) Figure 72. Thick steam plumes rise from the crater of Nyamuragira as volcanologist Dario Tedesco collects samples in this photo posted on 18 September 2017. Courtesy of Vincent Tremeau (posted on Instagram).

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Observatoire Volcanologique de Goma (OVG), Goma, North Kivu, DR Congo (URL: https://www.facebook.com/Observatoire-Volcanologique-de-Goma-OVG-180016145663568/); Virunga Volcanoes, managed by a Belgian-Luxembourgian (BeLux) scientific consortium mainly coordinated by the Royal Museum for Central Africa, the European Center for Geodynamics and Seismology and the National Museum of Natural History of Luxembourg (URL: http://www.virunga-volcanoes.org/); Vincent Tremeau, Instagram user vtremeau (URL: https://www.instagram.com/p/BZMGqX5Bhwl/); Charly Kasereka, Instagram user charlykasereka (URL: https://www.instagram.com/charlykasereka/); Tropic Air Kenya, Instagram user tropicairkenya (URL: https://www.instagram.com/p/BUXbNzjlh4Q/); Tim Best Direct, Instagram user timbestdirect (URL: https://www.instagram.com/p/BPvUgL9BfaX/).


Nyiragongo (DR Congo) — November 2017 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake persists through October 2017

The lava lake in Nyiragongo's main crater has been observed since 1971, and might have been present even before then. There is no regular ground monitoring of the volcano, but occasional field visits by scientific teams and tourist expeditions provide some information about its activity. Two teams of scientists that visited the volcano during March 2016 provided observations of a new vent (BGVN 42:01). This report describes activity during January-October 2017.

Volcano Discovery reported that on 6 June 2017 a team visited the summit (figure 62) and stayed for three days. They noted that the surface of the lava lake (about 220 m across was continuously in motion as exploding gas bubbles created small degassing fountains that recycled the cold black crust back into the incandescent liquid lava. Strong degassing also occurred from the edges of the lava lake, the 2016 hornito, and along the southern fracture zone.

Figure (see Caption) Figure 62. Photo of the summit caldera at Nyiragongo showing its terraces and lava lake in early June 2016. Courtesy of Ingrid Smet.
Figure (see Caption) Figure 63. Photo of the lava lake surface at Nyiragongo, early June 2017. The thin black crust is continuously broken apart by heat and degassing from the underlying liquid lava, creating the fractured surface. Courtesy of Ingrid Smet.

According to a news account (Metro) that cited a statement issued by the Goma Volcanic Observatory, Nyiragongo and nearby Nyamulagira volcanoes experienced intense seismic activity in their respective craters around 17-18 October 2017, before decreasing. Consistent with the presence of the active lava lake, thermal anomalies in satellite-based MODIS data identified by the MODVOLC and MIROVA systems were recorded almost daily during the reporting period.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Observatoire Volcanologique de Goma (OVG), Goma, North Kivu, DR Congo (URL: https://www.facebook.com/Observatoire-Volcanologique-de-Goma-OVG-180016145663568/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Metro, Mass Transit Media, Gallery Ravenstein 4, 1000 Brussels, Belgium (URL: https://fr.metrotime.be/).


Reventador (Ecuador) — November 2017 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Ongoing ash emissions, block avalanches, and pyroclastic flows through December 2016

The andesitic Volcán El Reventador lies well east of the main volcanic axis of the Cordillera Real in Ecuador and has historical observations of eruptions with numerous lava flows and explosive events going back to the 16th century. The largest historical eruption took place in November 2002 and generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. Eruptive activity has been continuous since 2008. From January-April 2016, monthly eruptive activity included ash plumes, pyroclastic flows, and ejected incandescent blocks (BGVN 42:07), along with a lava flow observed in January. Similar ongoing activity during May-December 2016 is described below with information provided by the Instituto Geofisico-Escuela Politecnicia Nacional (IG-EPN) of Ecuador, and the Washington Volcanic Ash Advisory Center (VAAC).

Ash emissions and incandescent blocks traveling down all the flanks of Reventador persisted throughout May-December 2016 (table 8, figure 56). Ash emissions averaged 12 or 13 per month, although they were only observed during clear days. Emission heights were generally less than 1,000 m above the 3,210-m-high summit, but they were reported at 2 km above the summit once in May, several times in November, and once in December. Incandescent blocks were mostly reported traveling 800-1,500 m down the flanks, although larger events during September sent them as far as 2.2 km. Pyroclastic flows were much less common, reported three times in May, twice in September, and twice in December. A single lava flow was noted in November 2016.

Table 8. Number of eruptive events at Reventador during May-December 2016. Reported events include ash emissions, observations of incandescent blocks traveling down the flanks, and pyroclastic flows. The number of clear days per month during which these observations were made is shown in the right hand column. Information from IG daily reports.

Month Ash Emissions Incandescent Blocks Pyroclastic Flows Clear Days
May 2016 10 12 3 22
Jun 2016 5 9 0 13
Jul 2016 14 7 0 22
Aug 2016 13 7 0 23
Sep 2016 11 19 2 25
Oct 2016 10 14 0 26
Nov 2016 18 11 0 27
Dec 2016 20 4 2 23
Figure (see Caption) Figure 56. Chart showing numbers of emission events per month at Reventador, May-December 2016. Reported events include ash emissions (blue), incandescent blocks rolling down the flanks (orange) and pyroclastic flows (gray). Data from IG daily reports. Numbers include observations on clear days only, not every day of the month. Number of clear days per month are shown in table 8.

Thermal anomalies recorded by the MIROVA system at Reventador showed that the nature of the ongoing eruptive activity during May-December 2016 included significant sources of heat (figure 57). Moderate to high heat levels of thermal anomalies were recorded numerous times every month during the period.

Figure (see Caption) Figure 57. Thermal anomalies were persistent at Reventador for the year ending 29 March 2017. Activity was variable, but power output remained largely in the moderate to high value range with anomalies reported every week. Courtesy of MIROVA.

Incandescent blocks descended the flanks on 12 days during May 2016, typically to distances between 1-1.5 km; the NE, S, and SE flanks were most affected. IG reported ash emissions during ten days of the month, rising 300-1,500 m above the summit crater, except for a 2,000-m-high plume reported on 25 May. The prevailing winds sent the plumes to the NW or SW. The Washington VAAC observed ash emissions in satellite imagery at 4.6 km altitude (1 km above the summit) on 27 May extending 10 km WNW from the summit. On 30 May, they observed ash emissions extending both N and S at 7 km altitude. Pyroclastic flows descended the flanks three times; 1.5 km down the SE flank on 18 May, 1 km down the SE flank on 24 May, and 2 km down the SW flank on 25 May.

During fieldwork from 8 to 10 June 2016, IG staff working near the base of Reventador witnessed persistent activity, noting a 2-km-high ash plume on 9 June (figure 58) and audible sounds. They also reported evidence of recent pyroclastic flows visible primarily on the N and S flanks, and fine gray ash covering vegetation within the E and NE sides of the summit caldera (figure 59).

Figure (see Caption) Figure 58. Photo showing Reventador erupting on 9 June 2016, along with the coincident seismic and spectral signals from the eruption. The 2-km-high plume was dense with ash. View from the SW flank. Photo by G. Viracucha, courtesy of IG (Actividad superficial del Volcan el Reventador, 24 Junio 2016).
Figure (see Caption) Figure 59. Vegetation covered with fine gray ash inside the summit caldera at Reventador during 8-10 June 2016. Photo by G. Viracucha, courtesy of IG-EPN (Actividad superficial del Volcan el Reventador, 24 Junio 2016).

The weather during June 2016 prevented visual observations of activity during 17 days of the month. Even so, IG reported nine observations of incandescent blocks travelling 800-1,500 m down most of the flanks, and five observations of ash emissions, most of them rising only a few hundred meters above the summit. The Washington VAAC reported an ash emission at 6.7 km altitude (3.5 km above the summit) visible in clear satellite imagery on 5 June. It was drifting W about 75 km from the summit. They also noted a small emission of possible ash at 4.9 km altitude drifting W the next day. IG reported a plume on 10 June at 1,500 m above the summit drifting NW.

Persistent activity during July and August 2016 included 14 and 13 reports of ash emissions, respectively, and 6 and 7 reports of incandescent blocks from the summit. The ash emissions ranged from 300-800 m above the summit in July and 100-1,000 m above the summit during August. The incandescent blocks traveled down all the flanks at various times to distances up to 1,000 m from the summit. The Washington VAAC reported that satellite imagery on 16 July showed a possible ash cloud centered 30 km W of the summit at 4.6 km altitude. On 8 August they observed an ash emission in multi-spectral imagery moving WNW extending about 35 km from the summit at 6.1 km altitude. Another plume the next day was picked up in multi-spectral imagery at 5.2 km altitude the same distance from the summit.

Activity generating incandescent blocks down the flanks increased during September 2016, and was reported on 19 days. Most reports indicated blocks travelling 1,000 m down several different flanks. Larger events during 19-20 September sent blocks 2,000-2,200 m down the SW and SE flanks. Ash emissions were reported ten times by IG during the month, with plume heights ranging from 200 to 1,200 m above the summit. The Washington VAAC only reported a single ash emission rising to 4.3 km altitude and drifting SE on 8 September. Two pyroclastic flows traveled down the SE flank; on 14 September one traveled 1,800 m, and on 19 September one traveled 1,500 m.

During October 2016, there were 10 ash emission events and 14 incandescent block events; during November, there were 18 ash events and 11 incandescent block events. Ash plume heights above the crater during October were all under 1,000 m, but several rose as high as 2 km during 12-17 November. The Washington VAAC reported an ash emission at 3.9 km altitude on 20 October moving WNW about 25 km from the summit. They also observed a hotpot in satellite imagery the same day. On 31 October, they observed two diffuse ash emissions extending 30 km NW from the summit at 5.8 km altitude. A lava flow extended 300 m down the SE flank on 26 November.

Ash emissions were reported by IG on 20 days during December, the most for this reporting period. Plume heights ranged from 400 to 2,000 m above the summit crater, usually drifting W or NW. Incandescent blocks were only reported four times. Except for 13 December when they traveled 1,500 m down the SSW flank, they traveled 800 m down various flanks. The ash emission reported by the Washington VAAC on 9 December was moving SW near 6.1 km altitude. Other VAAC reports during December indicated only puffs of gas with minor volcanic ash noted in the webcam. Pyroclastic flows were reported on 9 and 26 December.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: http://so2.gsfc.nasa.gov/index.html).


Suwanosejima (Japan) — November 2017 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Persistent ash plumes, explosions, and Strombolian activity during September 2015-December 2016

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian eruptions, and ash deposits. Continuous activity since October 2004 has consisted generally of multiple ash plumes most months rising a few hundred meters above the summit to altitudes between 1 and 2 km, and tens of reported explosions. Activity between January and September 2015 included small eruptions in July and August that produced ash plumes rising to 3-4 km altitude. Increased activity beginning in August 2015 included incandescence at the crater and increased explosive activity with incandescence in September; 89 explosions occurred that month, and ash fell in the village 4 km SSW (BGVN 42:01). Eruptive activity for the period of September 2015-December 2016 included intermittent explosions, ash plumes up to 4.3 km altitude, ashfall within a 5-km radius, and Strombolian activity. Information is provided primarily by the Japan Meteorological Agency (JMA), and the Tokyo Volcanic Ash Advisory Center (VAAC).

Activity during September-December 2015. Numerous explosions were reported by the JMA during 24-30 September. The Tokyo VAAC reported a plume at 2.1 km altitude extending SE on 24 September; subsequent reports noted there were no observations of ash emissions or plumes in satellite data during that time, and no further VAAC reports were issued after 30 September (until January 2016).

JMA reported that explosions at the Otake crater on 2, 13, and 31 October 2015 produced gray-and-white emissions and rose a maximum of 800 m above the summit (at ~800 m elevation). Explosions occurred on 1 and 20 November as well; the plume rose 1 km above the crater rim on 1 November. Ashfall was confirmed in the small village 4 km SSW after both events. There were no explosions reported during December 2015; only steam emissions rose 600 m above the summit crater, and rumbling was heard on 12 December from the nearby settlement. Incandescence was visible with a thermal camera at night during September-December 2015.

Activity during 2016. According to JMA, explosions and intermittent emissions occurred during most months of 2016 (table 12). Ashfall in the village 4 km SSW of the summit was reported during January-April, July-August, and October-November. Steam-and-ash plume heights ranged from 800 to 2,700 m above the crater rim. The number of monthly seismic events was low in January (25), increasing to a maximum of 1,195 in April. It dropped below 200 by July, and below 100 during November and December. Incandescence at night was reported often every month. An overflight on 31 May 2016 revealed a steam plume rising 400 m above Otake crater (figure 20). Strombolian activity on 15 September and 23 November 2016 ejected incandescent blocks onto the crater rim (figure 21). An ash emission on 25 November sent gray and white ash and steam 1,800 m above the crater rim (figure 22). Incandescent blocks from an explosion were also observed on 17 December.

Table 12. Activity at Suwanosejima during 2016 reported by JMA. Times are local.

Month No. of explosions Emission events Max plume height (m above crater) Dates of ashfall in village 4 km SSW No. of seismic events Other activity detail
Jan 2016 1 Yes, small -- 22, 23 25 Occasional incandescence at night; explosion at 2114 on 6 Jan.
Feb 2016 0 Occasional small 800 m 22 64 Occasional incandescence at night.
Mar 2016 13   1,700 m 7, 20, 21 170 Incandescence at night; shockwaves felt 20-21 Mar.
Apr 2016 14 -- 1,700 m 11, 15, 18, 19 1,195 Incandescence at night; occasional rumbling; seismicity increased 24-26 Apr.
May 2016 5 Steam plumes 1,200 m None 396 Incandescence at night; overflight (figure 20); steam plume 400 m above crater on 31 May drifted NE.
Jun 2016 0 Occasional 1,900m None 606 Incandescence at night.
Jul 2016 0 Occasional 1,900 m 23 142 Incandescence at night.
Aug 2016 26 -- 2,700 m on 12 and 28 1, 2 171 Incandescence at night; tephra around crater on 12 and 28 Aug; infrasound on 13, 14 Aug; rumbling on 25 Aug.
Sep 2016 1 3 Ash to 1,900 m on 17, steam to 2,400 m on 5 None 106 Incandescence almost every day; Strombolian activity and explosion at 2305 on 15 Sep (figure 21).
Oct 2016 0 Occasional 1,200 m 6, 30 102 Incandescence almost every day.
Nov 2016 11 Occasional ash emissions 1,800 m 5, 6, 26, 29 56 Constant incandescence; Strombolian explosion at 2325 on 23 Nov sent blocks around crater (figure 22).
Dec 2016 7 Occasional ash emissions 2,500 m at 1356 on 13 None 33 Incandescence at night; large explosion at 2020 on 13 Dec; incandescent blocks on 17 Dec.
Figure (see Caption) Figure 20. Aerial photos of Otake crater at Suwanosejima on 31 May 2016. Upper image is the close-up view outlined in red below. Courtesy of JMA (Volcanic activity commentary on Suwanosejima, May 2016).
Figure (see Caption) Figure 21. Strombolian activity and explosion at Suwanosejima on 15 September 2016 sent a large incandescent block outside the crater rim (center left). Courtesy of JMA "Paris tree" webcam (Volcanic activity commentary on Suwanosejima, September 2016).
Figure (see Caption) Figure 22. Explosive activity at Suwanosejima during November 2016 produced Strombolian activity and ash emissions. A Strombolian explosion on 23 November (top photo) sent incandescent blocks around the crater rim (left center, viewed by the JMA "Nogi" webcam). An ash emission on 25 November (bottom photo) sent ash and steam 1,800 m above the crater rim (viewed by the JMA "Campsite" webcam). Courtesy of JMA (Volcanic activity commentary on Suwanosejima, November 2016).

The Tokyo VAAC also reported information about ash plumes and explosions during 2016 (table 13). Explosions were reported during every month of 2016 except February, and ranged from two in January to 19 in August. Most plume heights were lower than 2.7 km altitude. Exceptions included: an explosion on 1 August produced an ash plume that rose to 3.4 km altitude and drifted S; a plume rose to 3 km on 29 November and also drifted S; and the largest of the year, an ash plume that rose to 4.3 km altitude and drifted E, on 13 December (figure 23).

MODVOLC thermal alerts were reported on 20 April, 4 May (3), and 17 May 2016.

Table 13. Summary of activity reported at Suwanosejima during 2016 by the Tokyo VAAC. Time in UTC.

Month Explosion Count Explosion Days Plume Heights Drift Directions
Jan 2016 2 4, 6 1.5 km SE
Feb 2016 0 -- -- --
Mar 2016 14 2 (2), 4, 6, 7 (2), 10, 21, 22 (2), 23, 26 (2), 30 1.2-2.4 km SE, W, N
Apr 2016 13 5, 10, 14 (2), 15, 17 (2), 18, 19 (3), 20, 21 1-2.4 km E, W, SE, S, N
May 2016 5 3 (2), 4 (2), 18 1.5-2.1 km E, SE, W
Jun 2016 4 13 (3), 14 1.8-2.7 km E
Jul 2016 4 18 (2), 22, 31 1.5-2.7 km NE, E, N, NW, W
Aug 2016 19 1 (3), 10 (3), 11, 12, 14 (2), 17, 25, 26 (2), 27 (2), 28 (2), 31 1.0-3.4 km SW, SE, W, NW
Sep 2016 2 15, 16 2.7 km W
Oct 2016 5 6 (2), 25 (2), 26 1.5-1.8 km E, S, NE
Nov 2016 18 5, 6, 8, 10 (2), 11 (3), 12 (2), 16, 17, 19, 20, 23, 25 (2), 29 1.2-2.1, 3.0 km on 29 E, SW, SE, S, W
Dec 2016 4 13 (2), 16, 17 4.3 on 13, 1.8 km NE, SE, SW, W
Figure (see Caption) Figure 23. The largest ash explosion of 2016 at Suwanosejima (viewed from the JMA "Parquet" webcam) occurred on 13 December 2016 and sent a plume to 4.3 km altitude (3,500 m above the crater rim). Courtesy of JMA (Volcanic activity commentary on Suwanosejima, December 2016).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports