Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Agung (Indonesia) Three eruptive events reported in April, May, and December 2022

Tengger Caldera (Indonesia) Minor ash emission in December 2023; persistent weak thermal anomaly in the Bromo crater

Saunders (United Kingdom) Persistent thermal anomalies from the summit crater lava lake during February 2023-January 2024

Shishaldin (United States) New eruption with significant Strombolian explosions, ash plumes, and ashfall

Ioto (Japan) New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Purace (Colombia) Gas-and-ash emission on 16 November 2023

Suwanosejima (Japan) Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Etna (Italy) Strombolian explosions, lava fountains, and lava flows during July-August 2023

Aira (Japan) Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Nishinoshima (Japan) Gray emissions during October 2023

Kilauea (United States) Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Tinakula (Solomon Islands) Continued lava flows and thermal activity during June through November 2023



Agung (Indonesia) — January 2024 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Three eruptive events reported in April, May, and December 2022

Mount Agung, located on the E end of the island of Bali, Indonesia, rises above the SE rim of the Batur caldera. The summit area extends 1.5 km E-W, with the highest point on the W and a steep-walled 800-m-wide crater on the E. Recorded eruptions date back to the early 19th century. A large and deadly explosive and effusive eruption occurred during 1963-64, which was characterized by voluminous ashfall, pyroclastic flows, and lahars that caused extensive damage and many fatalities. More recent activity was documented during November 2017-June 2019 that consisted of multiple explosions, significant ash plumes, lava flows at the summit crater, and incandescent ejecta. This report covers activity reported during April-May 2022 and December 2022 based on data from the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during 2022 was relatively low and mainly consisted of a few ash plumes during April-May and December. An ash plume on 3 April rising to 3.7 km altitude (700 m above the summit) and drifting N was reported in a Darwin VAAC notice based on a ground report, with ash seen in HIMAWARI-8 visible imagery. Another ash plume was reported at 1120 on 27 May that rose to 5.5 km altitude (2.5 m above the summit); the plume was not visible in satellite or webcam images due to weather clouds. An eruption was reported based on seismic data at 0840 on 13 December, with an estimated plume altitude of 3.7 km; however, no ash was seen using satellite imagery in clear conditions before weather clouds obscured the summit.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE rim of the Batur caldera, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Tengger Caldera (Indonesia) — February 2024 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Minor ash emission in December 2023; persistent weak thermal anomaly in the Bromo crater

Tengger Caldera, located at the N end of a volcanic massif in Indonesia’s East Java, consists of five overlapping stratovolcanoes. The youngest and only active cone in the 16-km-wide caldera is Bromo, which typically produces gas-and-steam plumes, occasional ash plumes and explosions, and weak thermal signals (BGVN 44:05, 47:01). This report covers activity during January 2022-December 2023, consisting of mostly white gas-and-steam emissions and persistent weak thermal anomalies. Information was provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and satellite imagery. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay at least 1 km from the crater.

Activity was generally low during the reporting period, similar to that in 2021. According to almost daily images from MAGMA Indonesia (a platform developed by PVMBG), white emissions and plumes rose from 50 to 900 m above the main crater during this period (figure 24). During several days in March and June 2022, white plumes reached heights of 1-1.2 km above the crater.

Figure (see Caption) Figure 24. Webcam image showing a gas-and-steam plume from the Bromo cone in the Tengger Caldera on 2 April 2023. Courtesy of MAGMA Indonesia.

After an increase in activity at 2114 on 3 February 2023, a PVMBG team that was sent to observe white emissions rising as high as 300 m during 9-12 February and heard rumbling noises. A sulfur dioxide odor was also strong near the crater and measurements indicated that levels were above the healthy (non-hazardous) threshold of 5 parts per million; differential optical absorption spectroscopy (DOAS) measurements indicated an average flux of 190 metric tons per day on 11 February. Incandescence originating from a large fumarole in the NNW part of the crater was visible at night. The team observed that vegetation on the E caldera wall was yellow and withered. The seismic network recorded continuous tremor and deep and shallow volcanic earthquakes.

According to a PVMBG press release, activity increased on 13 December 2023 with white, gray, and brown emissions rising as high as 900 m above Bromo’s crater rim and drifting in multiple directions (figure 25). The report noted that tremor was continuous and was accompanied in December by three volcanic earthquakes. Deformation data indicated inflation in December. There was no observable difference in the persistent thermal anomaly in the crater between 11 and 16 December 2023.

Figure (see Caption) Figure 25. Webcam image showing a dark plume that rose 900 m above the summit of the Bromo cone in the Tengger Caldera on 13 December 2023. Courtesy of MAGMA Indonesia.

All clear views of the Bromo crater throughout this time, using Sentinel-2 infrared satellite images, showed a weak persistent thermal anomaly; none of the anomalies were strong enough to cause MODVOLC Thermal Alerts. A fire in the SE part of the caldera in early September 2023 resulted in a brief period of strong thermal anomalies.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Saunders (United Kingdom) — February 2024 Citation iconCite this Report

Saunders

United Kingdom

57.8°S, 26.483°W; summit elev. 843 m

All times are local (unless otherwise noted)


Persistent thermal anomalies from the summit crater lava lake during February 2023-January 2024

Saunders is one of eleven islands that comprise the South Sandwich Islands in the South Atlantic. The active Mount Michael volcano has been in almost continuous eruption since November 2014 (BGVN 48:02). Recent activity has resulted in intermittent thermal anomalies and gas-and-steam emissions (BGVN 47:03, 48:02). Visits are infrequent due to its remote location, and cloud cover often prevents satellite observations. Satellite thermal imagery and visual observation of incandescence during a research expedition in 2019 (BGVN 28:02 and 44:08) and a finding confirmed by a National Geographic Society research team that summited Michael in November 2022 reported the presence of a lava lake.

Although nearly constant cloud cover during February 2023 through January 2024 greatly limited satellite observations, thermal anomalies from the lava lake in the summit crater were detected on clear days, especially around 20-23 August 2023. Anomalies similar to previous years (eg. BGVN 48:02) were seen in both MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS instruments and in Sentinel 2 infrared imagery. The only notable sulfur dioxide plume detected near Saunders was on 25 September 2023, with the TROPOMI instrument aboard the Sentinel-5P satellite.

Geologic Background. Saunders Island consists of a large central volcanic edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Analysis of satellite imagery available since 1989 (Gray et al., 2019; MODVOLC) suggests frequent eruptive activity (when weather conditions allow), volcanic clouds, steam plumes, and thermal anomalies indicative of a persistent, or at least frequently active, lava lake in the summit crater. Due to this observational bias, there has been a presumption when defining eruptive periods that activity has been ongoing unless there is no evidence for at least 10 months.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser (URL: https://dataspace.copernicus.eu/browser).


Shishaldin (United States) — December 2023 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


New eruption with significant Strombolian explosions, ash plumes, and ashfall

Shishaldin is located on the eastern half of Unimak Island, one of the Aleutian Islands. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. The previous eruption ended in May 2020 and was characterized by intermittent thermal activity, increased seismicity and surface temperatures, ash plumes, and ash deposits (BGVN 45:06). This report covers a new eruption during July through November 2023, which consisted of significant explosions, ash plumes, ashfall, and lava fountaining. Information comes from daily, weekly, and special reports from the Alaska Volcano Observatory (AVO) and various satellite data. AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

AVO reported that intermittent tremor and low-frequency earthquakes had gradually become more regular and consistent during 10-13 July. Strongly elevated surface temperatures at the summit were identified in satellite images during 10-13 July. On 11 July AVO raised the Aviation Color Code (ACC) to Yellow (the second color on a four-color scale) and Volcano Alert Level (VAL) to Advisory (the second level on a four-level scale) at 1439. Later in the day on 11 July summit crater incandescence was observed in webcam images. Observations of the summit suggested that lava was likely present at the crater, which prompted AVO to raise the ACC to Orange (the second highest color on a four-color scale) and the VAL to Watch (the second highest level on a four-level scale). The US Coast Guard conducted an overflight on 12 July and confirmed that lava was erupting from the summit. That same day, sulfur dioxide emissions were detected in satellite images.

A significant explosion began at 0109 on 14 July that produced an ash plume that rose to 9-12 km altitude and drifted S over the Pacific Ocean (figure 43). Webcam images and photos taken around 0700 from a ship SW off Unimak Island showed small lahar deposits, which were the result of the interaction of hot pyroclastic material and snow and ice on the flanks. There was also ashfall on the SW and N flanks. A smaller explosion at 0710 generated an ash plume that rose to 4.5 km altitude. Webcam images and pilot reports showed continued low-level ash emissions during the morning, rising to less than 4.6 km altitude; those emissions included a small ash plume near the summit around 1030 resulting from a small explosion.

Figure (see Caption) Figure 43. Photo of a strong ash plume that rose to 9-12 km altitude on the morning of 14 July 2023. Lahar deposits were visible on the SW flank (white arrows). Photo has been color corrected. Courtesy of Christopher Waythomas, AVO.

Seismic tremor amplitude began increasing at around 1700 on 15 July; strongly elevated surface temperatures were also reported. An ash plume rose to 4.6 km altitude and drifted SSE at 2100, based on a satellite image. A continuous ash plume during 2150 through 2330 rose to 5 km altitude and extended 125 km S. At 2357 AVO raised the ACC to Red (the highest color on a four-color scale) and the VAL to Warning (the highest level on a four-level scale), noting that seismicity remained elevated for more than six hours and explosion signals were frequently detected by regional infrasound (pressure sensor) networks. Explosions generated an ash plume that rose to 4.9 km altitude and drifted as far as 500 km SE. Activity throughout the night declined and by 0735 the ACC was lowered to Orange and the VAL to Watch. High-resolution satellite images taken on 16 July showed pyroclastic deposits extending as far as 3 km from the vent; these deposits generated lahars that extended further down the drainages on the flanks. Ash deposits were mainly observed on the SSE flank and extended to the shore of Unimak Island. During 16-17 July lava continued to erupt at the summit, which caused strongly elevated surface temperatures that were visible in satellite imagery.

Lava effusion increased at 0100 on 18 July, as noted in elevated surface temperatures identified in satellite data, increasing seismic tremor, and activity detected on regional infrasound arrays. A significant ash plume at 0700 rose to 7 km altitude and continued until 0830, eventually reaching 9.1 km altitude and drifting SSE (figure 44). As a result, the ACC was raised to Red and the VAL to Warning. By 0930 the main plume detached, but residual low-level ash emissions continued for several hours, remaining below 3 km altitude and drifting S. The eruption gradually declined and by 1208 the ACC was lowered to Orange and the VAL was lowered to Watch. High-resolution satellite images showed ash deposits on the SW flank and pyroclastic deposits on the N, E, and S flanks, extending as far as 3 km from the vent; lahars triggered by the eruption extended farther down the flanks (figure 45). Lava continued to erupt from the summit crater on 19 July.

Figure (see Caption) Figure 44. Photo of an ash-rich plume rising above Shishaldin to 9.1 km altitude on 18 July 2023 that drifted SE. View is from the N of the volcano and Isanotski volcano is visible on the left-hand side of the image. Photo has been color corrected. Courtesy of Chris Barnes, AVO.
Figure (see Caption) Figure 45. Near-infrared false-color satellite image of Shishaldin taken on 18 July 2023 showing ash deposits on the N, E, and S flanks extending as far as 3 km from the vent due to recent eruption events. Courtesy of Matthew Loewen, AVO.

Elevated surface temperatures were detected in satellite images during 19-25 July, despite occasional weather cloud cover, which was consistent with increased lava effusion. During 22-23 July satellite observations acquired after the eruption from 18 July showed pyroclastic flow and lahar deposits extending as far as 3 km down the N, NW, and NE flanks and as far as 1.5 km down the S and SE flanks. Ash deposits covered the SW and NE flanks. No lava flows were observed outside the crater. On 22 July a sulfur dioxide plume was detected in satellite data midday that had an estimated mass of 10 kt. In a special notice issued at 1653 on 22 July AVO noted that eruptive activity had intensified over the previous six hours, which was characterized by an hours-long steady increase in seismic tremor, intermittent infrasound signals consistent with small explosions, and an increase in surface temperatures that were visible in satellite data. Pilots first reported low-level ash plumes at around 1900. At 2320 an ash plume had risen to 9 km altitude based on additional pilot reports and satellite images. The ACC was increased to Red and the VAL to Warning at 2343. Satellite images indicated growth of a significantly higher ash plume that rose to 11 km altitude continued until 0030 and drifted NE. During the early morning hours of 23 July ash plumes had declined to 4.6 k altitude. Seismic tremor peaked at 0030 on 23 July and began to rapidly decline at 0109; active ash emissions were no longer visible in satellite data by 0130. The ACC was lowered to Orange and the VAL to Watch at 0418; bursts of increased seismicity were recorded throughout the morning, but seismicity generally remained at low levels. Elevated surface temperatures were visible in satellite data until about 0600. On 24 July pilots reported seeing vigorous gas-and-steam plumes rising to about 3 km altitude; the plumes may have contained minor amounts of ash.

During 24-25 July low level seismicity and volcanic tremor were detected at low levels following the previous explosion on 23 July. Strongly elevated surface temperatures were observed at the summit crater in satellite data. Around 2200 on 25 July seismicity began to increase, followed by infrasound signals of explosions after 0200 on 26 July. An ash plume rose to 3 km altitude at 0500 and drifted ENE, along with an associated sulfur dioxide plume that drifted NE and had an estimated mass of 22 kt. Diffuse ash emissions were visible in satellite data and rose to 6.1-7.6 km altitude and extended 125 km from the volcano starting around 1130. These ash events were preceded by about seven hours of seismic tremor, infrasound detections of explosions, and five hours of increased surface temperatures visible in satellite data. Activity began to decline around 1327, which included low-frequency earthquakes and decreased volcanic tremor, and infrasound data no longer detected significant explosions. Surface temperatures remained elevated through the end of the month.

Seismicity, volcanic tremor, and ash emissions remained at low levels during early August. Satellite images on 1 August showed that some slumping had occurred on the E crater wall due to the recent explosive activity. Elevated surface temperatures continued, which was consistent with cooling lava. On 2 August small explosive events were detected, consistent with low-level Strombolian activity. Some episodes of volcanic tremor were reported, which reflected low-level ash emissions. Those ash emissions rose to less than 3 km altitude and drifted as far as 92.6 km N. Pilots that were located N of the volcano observed an ash plume that rose to 2.7 km altitude. Seismicity began to increase in intensity around 0900 on 3 August. Seismicity continued to increase throughout the day and through the night with strongly elevated surface temperatures, which suggested that lava was active at the surface.

An ash cloud that rose to 7.6-7.9 km altitude and drifted 60-75 km NE was visible in a satellite image at 0520 on 4 August. Pilots saw and reported the plume at 0836 (figure 46). By 0900 the plume had risen to 9.1 km altitude and extended over 100 km NE. AVO raised the ACC to Red and the VAL to Warning as a result. Seismic tremor levels peaked at 1400 and then sharply declined at 1500 to slightly elevated levels; the plume was sustained during the period of high tremor and drifted N and NE. The ACC was lowered to Orange and the VAL to Watch at 2055. During 5-14 August seismicity remained low and surface temperatures were elevated based on satellite data due to cooling lava. On 9 August a small lava flow was observed that extended from the crater rim to the upper NE flank. It had advanced to 55 m in length and appeared in satellite imagery on 11 August. Occasional gas-and-steam plumes were noted in webcam images. At 1827 AVO noted that seismic tremor had steadily increased during the afternoon and erupting lava was visible at the summit in satellite images.

Figure (see Caption) Figure 46. Photo showing an ash plume rising above Shishaldin during the morning of 4 August 2023 taken by a passing aircraft. The view is from the N showing a higher gas-rich plume and a lower gray ash-rich plume and dark tephra deposits on the volcano’s flank. Photo has been color corrected. Courtesy of Chris Barnes, AVO.

Strong explosion signals were detected at 0200 on 15 August. An ash cloud that was visible in satellite data extended 100 km NE and may have risen as high as 11 km altitude around 0240. By 0335 satellite images showed the ash cloud rising to 7.6 km altitude and drifting NE. Significant seismicity and explosions were detected by the local AVO seismic and infrasound networks, and volcanic lightning was detected by the World Wide Lightning Location Network (WWLLN). A sulfur dioxide plume associated with the eruption drifted over the S Bering Sea and parts of Alaska and western Canada. Seismicity was significantly elevated during the eruption but had declined by 1322. A pilot reported that ash emissions continued, rising as high as 4.9 km altitude. Elevated surface temperatures detected in satellite data were caused by hot, eruptive material (pyroclastic debris and lava) that accumulated around the summit. Eruptive activity declined by 16 August and the associated sulfur dioxide plume had mostly dissipated; remnants continued to be identified in satellite images at least through 18 August. Surface temperatures remained elevated based on satellite images, indicating hot material on the upper parts of the volcano. Small explosions were detected in infrasound data on the morning of 19 August and were consistent with pilot reports of small, short-lived ash plumes that rose to about 4.3 km altitude. Low-level explosive activity was reported during 20-24 August, according to seismic and infrasound data, and weather clouds sometimes prevented views. Elevated surface temperatures were observed in satellite images, which indicated continued hot material on the upper parts of the volcano.

Seismic tremor began to increase at around 0300 on 25 August and was followed by elevated surface temperatures identified in satellite images, consistent with erupting lava. Small explosions were recorded in infrasound data. The ACC was raised to Red and the VAL to Warning at 1204 after a pilot reported an ash plume that rose to 9.1 km altitude. Seismicity peaked at 1630 and began to rapidly decline at around 1730. Ash plumes rose as high as 10 km altitude and drifted as far as 400 km NE. By 2020 the ash plumes had declined to 6.4 km altitude and continued to drift NE. Ash emissions were visible in satellite data until 0000 on 26 August and seismicity was at low levels. AVO lowered the ACC to Orange and the VAL to Watch at 0030. Minor explosive activity within the summit crater was detected during 26-28 August and strongly elevated surface temperatures were still visible in satellite imagery through the rest of the month. An AVO field crew working on Unimak Island observed a mass flow that descended the upper flanks beginning around 1720 on 27 August. The flow produced a short-lived ash cloud that rose to 4.5 km altitude and rapidly dissipated. The mass flow was likely caused by the collapse of spatter that accumulated on the summit crater rim.

Similar variable explosive activity was reported in September, although weather observations sometimes prevented observations. A moderate resolution satellite image from the afternoon of 1 September showed gas-and-steam emissions filling the summit crater and obscuring views of the vent. In addition, hot deposits from the previous 25-26 August explosive event were visible on the NE flank near the summit, based on a 1 September satellite image. On 2 and 4 September seismic and infrasound data showed signals of small, repetitive explosions. Variable gas-and-steam emissions from the summit were visible but there was no evidence of ash. Possible summit crater incandescence was visible in nighttime webcam images during 3-4 September.

Seismicity began to gradually increase at around 0300 on 5 September and activity escalated at around 0830. A pilot reported an ash plume that rose to 7.6 km altitude at 0842 and continued to rise as high as possibly 9.7 km altitude and drifted SSE based on satellite images (figure 47). The ACC was raised to Red and the VAL to Warning at 0900. In addition to strong tremor and sustained explosions, the eruption produced volcanic lightning that was detected by the WWLLN. Around 1100 seismicity decreased and satellite data confirmed that the altitude of the ash emissions had declined to 7.6 km altitude. By 1200 the lower-altitude portion of the ash plume had drifted 125 km E. Significant ash emissions ended by 1330 based on webcam images. The ACC was lowered to Orange and the VAL to Watch at 1440. Satellite images showed extensive pyroclastic debris flows on most of the flanks that extended 1.2-3.3 km from the crater rim.

Figure (see Caption) Figure 47. Webcam image taken from the S of Shishaldin showing a vertical ash plume on 5 September 2023. Courtesy of AVO.

During 6-13 September elevated surface temperatures continued to be observed in satellite data, seismicity remained elevated with weak but steady tremor, and small, low-frequency earthquakes and small explosions were reported, except on 12 September. On 6 September a low-level ash plume rose to 1.5-1.8 km altitude and drifted SSE. Occasional small and diffuse gas-and-steam emissions at the summit were visible in webcam images. Around 1800 on 13 September seismic tremor amplitudes began to increase, and small explosions were detected in seismic and infrasound data. Incandescent lava at the summit was seen in a webcam image taken at 0134 on 14 September during a period of elevated tremor. No ash emissions were reported during the period of elevated seismicity. Lava fountaining began around 0200, based on webcam images. Satellite-based radar observations showed that the lava fountaining activity led to the growth of a cone in the summit crater, which refilled most of the crater. By 0730 seismicity significantly declined and remained at low levels.

Seismic tremor began to increase around 0900 on 15 September and rapidly intensified. An explosive eruption began at around 1710, which prompted AVO to raise the ACC to Red and the VAL to Warning. Within about 30 minutes ash plumes drifted E below a weather cloud at 8.2 km altitude. The National Weather Service estimated that an ash-rich plume rose as high as 12.8 km altitude and produced volcanic lightning. The upper part of the ash plume detached from the vent around 1830 and drifted E, and was observed over the Gulf of Alaska. Around the same time, seismicity dramatically decreased. Trace ashfall was reported in the community of False Pass (38 km ENE) between 1800-2030 and also in King Cove and nearby marine waters. Activity declined at around 1830 although seismicity remained elevated, ash emissions, and ashfall continued until 2100. Lightning was again detected beginning around 1930, which suggested that ash emissions continued. Ongoing explosions were detected in infrasound data, at a lower level than during the most energetic phase of this event. Lightning was last detected at 2048. By 2124 the intensity of the eruption had decreased, and ash emissions were likely rising to less than 6.7 km altitude. Seismicity returned to pre-eruption levels. On 16 September the ACC was lowered to Orange and the VAL to Watch at 1244; the sulfur dioxide plume that was emitted from the previous eruption event was still visible over the northern Pacific Ocean. Elevated surface temperatures, gas-and-steam emissions from the vent, and new, small lahars were reported on the upper flanks based on satellite and webcam images. Minor deposits were reported on the flanks which were likely the result of collapse of previously accumulated lava near the summit crater.

Elevated seismicity with tremor, small earthquakes, and elevated surface temperatures were detected during 17-23 September. Minor gas-and-steam emissions were visible in webcam images. On 20 September small volcanic debris flows were reported on the upper flanks. On 21 September a small ash deposit was observed on the upper flanks extending to the NE based on webcam images. Seismic tremor increased significantly during 22-23 September. Regional infrasound sensors suggested that low-level eruptive activity was occurring within the summit crater by around 1800 on 23 September. Even though seismicity was at high levels, strongly elevated surface temperatures indicating lava at the surface were absent and no ash emissions were detected; weather clouds at 0.6-4.6 km altitude obscured views. At 0025 on 24 September AVO noted that seismicity continued at high levels and nearly continuous small infrasound signals began, likely from low-level eruptive activity. Strongly elevated surface temperatures were identified in satellite images by 0900 and persisted throughout the day; the higher temperatures along with infrasound and seismic data were consistent with lava erupting at the summit. Around 1700 similarly elevated surface temperatures were detected from the summit in satellite data, which suggested that more vigorous lava fountaining had started. Starting around 1800 low-level ash emissions rose to altitudes less than 4.6 km altitude and quickly dissipated.

Beginning at midnight on 25 September, a series of seismic signals consistent with volcanic flows were recorded on the N side of the volcano. A change in seismicity and infrasound signals occurred around 0535 and at 0540 a significant ash cloud formed and quickly reached 14 km altitude and drifted E along the Alaska Peninsula. The cloud generated at least 150 lightning strokes with thunder that could be heard by people in False Pass. Seismicity rapidly declined to near background levels around 0600. AVO increased the ACC to Red and the VAL to Warning at 0602. The ash cloud detached from the volcano at around 0700, rose to 11.6 km altitude, and drifted ESE. Trace to minor amounts of ashfall were reported by the communities of False Pass, King Cove, Cold Bay, and Sand Point around 0700. Ash emissions continued at lower altitudes of 6-7.6 km altitude at 0820. Small explosions at the vent area continued to be detected in infrasound data and likely represented low-level eruptive activity near the vent. Due to the significant decrease in seismicity and ash emissions the ACC was lowered to Orange and the VAL to Watch at 1234. Radar data showed significant collapses of the crater that occurred on 25 September. Satellite data also showed significant hot, degassing pyroclastic and lahar deposits on all flanks, including more extensive flows on the ENE and WSW sections below two new collapse scarps. Following the significant activity during 24-25 September, only low-level activity was observed. Seismicity decreased notably near the end of the strong activity on 25 September and continued to decrease through the end of the month, though tremor and small earthquakes were still reported. No explosive activity was detected in infrasound data through 2 October. Gas-and-steam emissions rose to 3.7 km altitude, as reported by pilots and seen in satellite images. Satellite data from 26 September showed that significant collapses had occurred at the summit crater and hot, steaming deposits from pyroclastic flows and lahars were present on all the flanks, particularly to the ENE and WSW. A small ash cloud was visible in webcam images on 27 September, likely from a collapse at the summit cone. High elevated surface temperatures were observed in satellite imagery during 27-28 September, which were likely the result of hot deposits on the flanks erupted on 25 September. Minor steaming at the summit crater and from an area on the upper flanks was visible in webcam images on 28 September.

During October, explosion events continued between periods of low activity. Seismicity significantly increased starting at around 2100 on 2 October; around the same time satellite images showed an increase in surface temperatures consistent with lava fountaining. Small, hot avalanches of rock and lava descended an unspecified flank. In addition, a distinct increase in infrasound, seismicity, and lightning detections was followed by an ash plume that rose to 12.2 km altitude and drifted S and E at 0520 on 3 October, based on satellite images. Nighttime webcam images showed incandescence due to lava fountaining at the summit and pyroclastic flows descending the NE flank. AVO reported that a notable explosive eruption started at 0547 and lasted until 0900 on 3 October, which prompted a rise in the ACC to Red and the VAL to Warning. Subsequent ash plumes rose to 6-7.6 km altitude by 0931. At 1036 the ACC was lowered back to Orange and the VAL to Watch since both seismic and infrasound data quieted substantially and were slightly above background levels. Gas-and-steam emissions were observed at the summit, based on webcam images. Trace amounts of ashfall were observed in Cold Bay. Resuspended ash was present at several kilometers altitude near the volcano. During the afternoon, low-level ash plumes were visible at the flanks, which appeared to be largely generated by rock avalanches off the summit crater following the explosive activity. These ash plumes rose to 3 km altitude and drifted W. Trace amounts of ashfall were reported by observers in Cold Bay and Unalaska and flights to these communities were disrupted by the ash cloud. Satellite images taken after the eruption showed evidence of pyroclastic flows and lahar deposits in drainages 2 km down the SW flank and about 3.2 km down the NE flank, and continued erosion of the crater rim. Small explosion craters at the end of the pyroclastic flows on the NE flank were noted for the first time, which may have resulted from gas-and-steam explosions when hot deposits interact with underlying ice.

During 4 October seismicity, including frequent small earthquakes, remained elevated, but was gradually declining. Ash plumes were produced for over eight hours until around 1400 that rose to below 3.7 km altitude. These ash plumes were primarily generated off the sides of the volcano where hot rock avalanches from the crater rim had entered drainages to the SW and NE. Two explosion craters were observed at the base of the NE deposits about 3.2 km from the crater rim. Webcam images showed the explosion craters were a source of persistent ash emissions; occasional collapse events also generated ash. Seismicity remained elevated with sulfur dioxide emissions that had a daily average of more than 1,000 tons per day, and frequent small earthquakes through the end of the month. Frequent elevated surface temperatures were identified in satellite images and gas-and-steam plumes were observed in webcam images, although weather conditions occasionally prevented clear views of the summit. Emissions were robust during 14-16 October and were likely generated by the interaction of hot material and snow and ice. During the afternoon of 21 October a strong gas-and-steam plume rose to 3-4.6 km altitude and extended 40 km WSW, based on satellite images and reports from pilots. On 31 October the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Activity in November was characterized by elevated seismicity with ongoing seismic tremor and small, low-frequency earthquakes, elevated surface temperatures, and gas-and-steam emissions. There was an increase in seismic and infrasound tremor amplitudes starting at 1940 on 2 November. As a result, the ACC was again raised to Orange and the VAL was increased to Watch, although ash was not identified in satellite data. An ash cloud rose to 6.1 km altitude and drifted W according to satellite data at 2000. By 0831 on 3 November ash emissions were no longer visible in satellite images. On 6 and 9 November air pressure sensors detected signals consistent with small explosions. Small explosions were detected in infrasound data consistent with weak Strombolian activity on 19 and 21 November. Seismicity started to decrease on 21 November. On 25 November gas-and-steam emissions were emitted from the vent as well as from a scarp on the NE side of the volcano near the summit. A gas-and-steam plume extended about 50 km SSE and was observed in satellite and webcam images on 26 November. On 28 November small explosions were observed in seismic and local infrasound data and gas-and-steam emissions were visible from the summit and from the upper NE collapse scarp based on webcam images. Possible small explosions were observed in infrasound data on 30 November. Weakly elevated surface temperatures and a persistent gas-and-steam plume from the summit and collapse scarps on the upper flanks. A passing aircraft reported the gas-and-steam plume rose to 3-3.4 km altitude on 30 November, but no significant ash emissions were detected.

Satellite data. MODIS thermal anomaly data provided through MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a strong pulse of thermal activity beginning in July 2023 that continued through November 2023 (figure 48). This strong activity was due to Strombolian explosions and lava fountaining events at the summit crater. According to data from MODVOLC thermal alerts, a total of 101 hotspots were detected near the summit crater in July (11-14, 16-19, 23-24 and 26), August (4, 25-26, and 29), September (5, 12, and 17), and October (3, 4, and 8). Infrared satellite data showed large lava flows descending primarily the northern and SE flanks during the reporting period (figure 49). Sulfur dioxide plumes often exceeded two Dobson Units (DUs) and drifted in different directions throughout the reporting period, based on satellite data from the TROPOMI instrument on the Sentinel-5P satellite (figure 50).

Figure (see Caption) Figure 48. Graph of Landsat 8 and 9 OLI thermal data from 1 June 2024 showing a strong surge in thermal activity during July through November 2023. During mid-October, the intensity of the hotspots gradually declined. Courtesy of MIROVA.
Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) satellite images show several strong lava flows (bright yellow-orange) affecting the northern and SE flanks of Shishaldin on 18 July 2023 (top left), 4 June 2023 (top right), 26 September 2023 (bottom left), and 3 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 50. Strong sulfur dioxide plumes were detected at Shishaldin and drifted in different directions on 15 August 2023 (top left), 5 September 2023 (top right), 25 September 2023 (bottom left), and 6 October 2023 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The symmetrical glacier-covered Shishaldin in the Aleutian Islands is the westernmost of three large stratovolcanoes in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." Constructed atop an older glacially dissected edifice, it is largely basaltic in composition. Remnants of an older edifice are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is covered by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. A steam plume often rises from the summit crater.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ioto (Japan) — January 2024 Citation iconCite this Report

Ioto

Japan

24.751°N, 141.289°E; summit elev. 169 m

All times are local (unless otherwise noted)


New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Ioto (Iwo-jima), located about 1,200 km S of Tokyo, lies within a 9-km-wide submarine caldera along the Izu-Bonin-Mariana volcanic arc. Previous eruptions date back to 1889 and have consisted of dominantly phreatic explosions, pumice deposits during 2001, and discolored water. A submarine eruption during July through December 2022 was characterized by discolored water, pumice deposits, and gas emissions (BGVN 48:01). This report covers a new eruption during October through December 2023, which consisted of explosions, black ejecta, discolored water, and floating pumice, based on information from the Japan Meteorological Association (JMA), the Japan Coast Guard (JCG), and satellite data.

JMA reported that an eruption had been occurring offshore of Okinahama on the SE side of the island since 21 October, which was characterized by volcanic tremor, according to the Japan Maritime Self-Defense Force (JMSDF) Iwo Jima Air Base (figure 22). According to an 18 October satellite image a plume of discolored water at the site of this new eruption extended NE (figure 23). During an overflight conducted on 30 October, a vent was identified about 1 km off the coast of Okinahama. Observers recorded explosions every few minutes that ejected dark material about 20 m above the ocean and as high as 150 m. Ejecta from the vent formed a black-colored island about 100 m in diameter, according to observations conducted from the air by the Earthquake Research Institute of the University of Tokyo in cooperation with the Mainichi newspaper (figure 24). Occasionally, large boulders measuring more than several meters in size were also ejected. Observations from the Advanced Land Observing Satellite Daichi-2 and Sentinel-2 satellite images also confirmed the formation of this island (figure 23). Brown discolored water and floating pumice were present surrounding the island.

Figure (see Caption) Figure 22. Map of Ioto showing the locations of recorded eruptions from 1889 through December 2023. The most recent eruption occurred during October through December 2023 and is highlighted in red just off the SE coast of the island and E of the 2001 eruption site. A single eruption highlighted in green was detected just off the NE coast of the island on 18 November 2023. From Ukawa et al. (2002), modified by JMA.
Figure (see Caption) Figure 23. Satellite images showing the formation of the new island formation (white arrow) off the SE (Okinahama) coast of Ioto on 18 October 2023 (top left), 27 November 2023 (top right), 2 December 2023 (bottom left), and 12 December 2023 (bottom right). Discolored water was visible surrounding the new island. By December, much of the island had been eroded. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 24. Photo showing an eruption off the SE (Okinahama) coast of Ioto around 1230 on 30 October 2023. A column of water containing black ejecta is shown, which forms a new island. Occasionally, huge boulders more than several meters in size were ejected with the jet. Dark brown discolored water surrounded the new island. Photo has been color corrected and was taken from the S by the Earthquake Research Institute, University of Tokyo in cooperation of Mainichi newspaper. Courtesy of JMA.

The eruption continued during November. During an overflight on 3 November observers photographed the island and noted that material was ejected 169 m high, according to a news source. Explosions gradually became shorter, and, by the 3rd, they occurred every few seconds; dark and incandescent material were ejected about 800 m above the vent. On 4 November eruptions were accompanied by explosive sounds. Floating, brown-colored pumice was present in the water surrounding the island. There was a brief increase in the number of volcanic earthquakes during 8-14 November and 24-25 November. The eruption temporarily paused during 9-11 November and by 12 November eruptions resumed to the W of the island. On 10 November dark brown-to-dark yellow-green discolored water and a small amount of black floating material was observed (figure 25). A small eruption was reported on 18 November off the NE coast of the island, accompanied by white gas-and-steam plumes (figure 23). Another pause was recorded during 17-19 November, which then resumed on 20 November and continued erupting intermittently. According to a field survey conducted by the National Institute for Disaster Prevention Science and Technology on 19 November, a 30-m diameter crater was visible on the NE coast where landslides, hot water, and gray volcanic ash containing clay have occurred and been distributed previously. Erupted blocks about 10 cm in diameter were distributed about 90-120 m from the crater. JCG made observations during an overflight on 23 November and reported a phreatomagmatic eruption. Explosions at the main vent generated dark gas-and-ash plumes that rose to 200 m altitude and ejected large blocks that landed on the island and in the ocean (figure 26). Discolored water also surrounded the island. The size of the new island had grown to 450 m N-S x 200 m E-W by 23 November, according to JCG.

Figure (see Caption) Figure 25. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 10 November showing discolored water and a small amount of black floating material were visible surrounding the island. Photo has been color corrected. Photographed by JCG courtesy of JMA.
Figure (see Caption) Figure 26. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 23 November showing a phreatomagmatic eruption that ejected intermittent pulses of ash and dark material that rose to 200 m altitude. Photo has been color corrected. Photographed by JCG courtesy of JMA.

The eruption continued through 11 December, followed by a brief pause in activity, which then resumed on 31 December, according to JMA. Intermittent explosions produced 100-m-high black plumes at intervals of several minutes to 30 minutes during 1-10 December. Overflights were conducted on 4 and 15 December and reported that the water surrounding the new island was discolored to dark brown-to-dark yellow-green (figure 27). No floating material was reported during this time. In comparison to the observations made on 23 November, the new land had extended N and part of it had eroded away. In addition, analysis by the Geospatial Information Authority of Japan using SAR data from Daichi-2 also confirmed that the area of the new island continued to decrease between 4 and 15 December. Ejected material combined with wave erosion transformed the island into a “J” shape, 500-m-long and with the curved part about 200 m offshore of Ioto. The island was covered with brown ash and blocks, and the surrounding water was discolored to greenish-brown and contained an area of floating pumice. JCG reported from an overflight on 4 December that volcanic ash-like material found around the S vent on the NE part of the island was newly deposited since 10 November (figure 28). By 15 December the N part of the “J” shaped island had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands (figure 27).

Figure (see Caption) Figure 27. Photos of the new island formed off the SE (Okinahama) coast of Ioto on 4 December 2023 (left) and 15 December 2023 (right). No gas-and-ash emissions or lava flows were observed on the new land. Additionally, dark brown-to-dark yellow-green discolored water was observed surrounding the new land. During 4 and 15 December, the island had eroded to where the N part of the “J” shape had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 28. Photo of new volcanic ash-deposits (yellow dashed lines) near the S vent on the NE coast of Ioto taken by JCG on 4 December 2023. White gas-and-steam emissions were also visible (white arrow). Photo has been color corrected. Courtesy of JMA.

References. Ukawa, M., Fujita, E., Kobayashi, T., 2002, Recent volcanic activity of Iwo Jima and the 2001 eruption, Monthly Chikyu, Extra No. 39, 157-164.

Geologic Background. Ioto, in the Volcano Islands of Japan, lies within a 9-km-wide submarine caldera. The volcano is also known as Ogasawara-Iojima to distinguish it from several other "Sulfur Island" volcanoes in Japan. The triangular, low-elevation, 8-km-long island narrows toward its SW tip and has produced trachyandesitic and trachytic rocks that are more alkalic than those of other volcanoes in this arc. The island has undergone uplift for at least the past 700 years, accompanying resurgent doming of the caldera; a shoreline landed upon by Captain Cook's surveying crew in 1779 is now 40 m above sea level. The Motoyama plateau on the NE half of the island consists of submarine tuffs overlain by coral deposits and forms the island's high point. Many fumaroles are oriented along a NE-SW zone cutting through Motoyama. Numerous recorded phreatic eruptions, many from vents on the W and NW sides of the island, have accompanied the uplift.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo22-2.htm); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Asahi, 5-3-2, Tsukiji, Chuo Ward, Tokyo, 104-8011, Japan (URL: https://www.asahi.com/ajw/articles/15048458).


Purace (Colombia) — December 2023 Citation iconCite this Report

Purace

Colombia

2.3095°N, 76.3948°W; summit elev. 4650 m

All times are local (unless otherwise noted)


Gas-and-ash emission on 16 November 2023

Puracé, located in Colombia, is a stratovolcano that contains a 500-m-wide summit crater. It is part of the Los Coconucos volcanic chain that is a NW-SE trending group of seven cones and craters. The most recent eruption occurred during March 2022 that was characterized by frequent seismicity and gas-and-steam emissions (BGVN 47:06). This report covers a brief eruption during November 2023 based on monthly reports from the Popayán Observatory, part of the Servicio Geologico Colombiano (SGC).

Activity during November 2022 through November 2023 primarily consisted of seismicity: VT-type events, LP-type events, HB-type events, and TR-type events (table 4). Maximum sulfur dioxide values were measured weekly and ranged from 259-5,854 tons per day (t/d) during November 2022 through April 2023. White gas-and-steam emissions were also occasionally reported.

SGC issued a report on 25 October that noted a significant increase in the number of earthquakes associated with rock fracturing. These earthquakes were located SE of the crater between Puracé and Piocollo at depths of 1-4 km. There were no reported variations in sulfur dioxide values, but SGC noted high carbon dioxide values, compared to those recorded in the first half of 2023.

SGC reported that at 1929 on 16 November the seismic network detected a signal that was possibly associated with a gas-and-ash emission, though it was not confirmed in webcam images due to limited visibility. On 17 November an observer confirmed ash deposits on the N flank. Webcam images showed an increase in degassing both inside the crater and from the NW flank, rising 700 m above the crater.

Table 4. Seismicity at Puracé during November 2022-November 2023. Volcano-tectonic (VT), long-period (LP), hybrid (HB), and tremor (TR) events are reported each month. Courtesy of SGC.

Month Volcano-tectonic Long-period Hybrid Tremor
Nov 2022 429 2,023 5 831
Dec 2022 423 1,390 9 834
Jan 2023 719 1,622 0 957
Feb 2023 598 1,701 2 1,124
Mar 2023 331 2,408 147 607
Apr 2023 614 4,427 33 148
May 2023 620 3,717 170 109
Jun 2023 467 3,293 86 148
Jul 2023 1,116 5,809 183 542
Aug 2023 692 2,927 94 321
Sep 2023 887 1,505 82 848
Oct 2023 2,373 2,949 135 692
Nov 2023 1,212 2,302 69 293

Geologic Background. Puracé is an active andesitic volcano with a 600-m-diameter summit crater at the NW end of the Los Coconucos Volcanic Chain. This volcanic complex includes nine composite and five monogenetic volcanoes, extending from the Puracé crater more than 6 km SE to the summit of Pan de Azúcar stratovolcano. The dacitic massif which the complex is built on extends about 13 km NW-SE and 10 km NE-SW. Frequent small to moderate explosive eruptions reported since 1816 CE have modified the morphology of the summit crater, with the largest eruptions in 1849, 1869, and 1885.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes).


Suwanosejima (Japan) — December 2023 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Suwanosejima is an 8-km-long island that consists of a stratovolcano and two active summit craters, located in the northern Ryukyu Islands, Japan. Volcanism over the past century has been characterized by Strombolian explosions, ash plumes, and ashfall. The current eruption began in October 2004 and has more recently consisted of frequent eruption plumes, explosions, and incandescent ejecta (BGVN 48:07). This report covers similar activity of ash plumes, explosions, and crater incandescence during July through October 2023 using monthly reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity during the reporting period was relatively low; only one low-power thermal anomaly was detected during mid-July and one during early August, based on a MIROVA (Middle InfraRed Observation of Volcanic Activity) Log Radiative Power graph of the MODIS thermal anomaly data. On two clear weather days, a thermal anomaly was visible in infrared satellite images (figure 81).

Figure (see Caption) Figure 81. Infrared (bands B12, B11, B4) satellite imagery showing a thermal anomaly (bright yellow-orange) at the Otake crater of Suwanosejima on 23 September 2023 (left) and 18 October 2023 (right). Courtesy of Copernicus Browser.

Low-level activity was reported at the Otake crater during July and no explosions were detected. Eruption plumes rose as high as 1.8 km above the crater. On 13 July an ash plume rose 1.7 km above the crater rim, based on a webcam image. During the night of the 28th crater incandescence was visible in a webcam image. An eruptive event reported on 31 July produced an eruption plume that rose 2.1 km above the crater. Seismicity consisted of 11 volcanic earthquakes on the W flank, the number of which had decreased compared to June (28) and 68 volcanic earthquakes near the Otake crater, which had decreased from 722 in the previous month. According to observations conducted by the University of Tokyo Graduate School of Science, Kyoto University Disaster Prevention Research Institute, Toshima Village, and JMA, the amount of sulfur dioxide emissions released during the month was 400-800 tons per day (t/d).

Eruptive activity in the Otake crater continued during August and no explosions were reported. An eruptive event produced a plume that rose 1 km above the crater at 1447 on 12 August. Subsequent eruptive events were recorded at 0911 on 16 August, at 1303 on 20 August, and at 0317 on 21 August, which produced ash plumes that rose 1-1.1 km above the crater and drifted SE, SW, and W. On 22 August an ash plume was captured in a webcam image rising 1.4 km above the crater (figure 82). Multiple eruptive events were detected on 25 August at 0544, 0742, 0824, 1424, and 1704, which generated ash plumes that rose 1.1-1.2 km above the crater and drifted NE, W, and SW. On 28 August a small amount of ashfall was observed as far as 1.5 km from the crater. There were 17 volcanic earthquakes recorded on the W flank of the volcano and 79 recorded at the Otake crater during the month. The amount of sulfur dioxide emissions released during the month was 400-800 t/d.

Figure (see Caption) Figure 82. Webcam image of an ash plume rising 1.4 km above Suwanosejima’s Otake crater rim on 22 August 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, August 2023).

Activity continued at the Otake crater during September. Occasionally, nighttime crater incandescence was observed in webcam images and ashfall was reported. An eruptive event at 1949 on 4 September produced an ash plume that rose 1 km above the crater and drifted SW. On 9 September several eruption events were detected at 0221, 0301, and 0333, which produced ash plumes that rose 1.1-1.4 km above the crater rim and drifted W; continuous ash emissions during 0404-0740 rose to a maximum height of 2 km above the crater rim (figure 83). More eruptive events were reported at 1437 on 10 September, at 0319 on 11 September, and at 0511 and 1228 on 15 September, which generated ash plumes that rose 1-1.8 km above the crater. During 25, 27, and 30 September, ash plumes rose as high as 1.3 km above the crater rim. JMA reported that large blocks were ejected as far as 300 m from the center of the crater. There were 18 volcanic earthquakes detected beneath the W flank and 82 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide released during the month ranged from 600 to 1,600 t/d.

Figure (see Caption) Figure 83. Webcam image of an ash plume rising 2 km above Suwanosejima’s Otake crater rim on 9 September 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, September 2023).

Activity during early-to-mid-October consisted of occasional explosions, a total number of 13, and ash plumes that rose as high as 1.9 km above the Otake crater rim on 29 October (figure 84). These explosions are the first to have occurred since June 2023. Continuous ash emissions were reported during 0510-0555 on 1 October. Explosions were recorded at 0304, 2141, and 2359 on 2 October, at 0112 on 3 October, and at 1326 on 6 October, which produced ash plumes that rose as high as 1 km above the crater rim and drifted SW and W. An explosion was noted at 0428 on 3 October, but emission details were unknown. A total of eight explosions were recorded by the seismic network at 1522 on 14 October, at 0337, 0433, 0555, 1008, and 1539 on 15 October, and at 0454 and 0517 on 16 October. Ash plumes from these explosions rose as high as 900 m above the crater and drifted SE. Eruptive events during 25-27 and 29-30 October generated plumes that rose as high as 1.9 km above the crater and drifted SE, S, and SW. Ash was deposited in Toshima village (3.5 km SSW). Eruptive activity occasionally ejected large volcanic blocks as far as 600 m from the crater. Nighttime crater incandescence was visible in webcams. Intermittent ashfall was reported as far as 1.5 km from the crater. There were 43 volcanic earthquakes detected on the W flank during the month, and 184 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide emitted ranged between 400 and 900 t/d.

Figure (see Caption) Figure 84. Webcam image of an ash plume rising 1.9 km above Suwanosejima’s Otake crater on 29 October 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, October 2023).

Geologic Background. The 8-km-long island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two active summit craters. The summit is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. One of Japan's most frequently active volcanoes, it was in a state of intermittent Strombolian activity from Otake, the NE summit crater, between 1949 and 1996, after which periods of inactivity lengthened. The largest recorded eruption took place in 1813-14, when thick scoria deposits covered residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed, forming a large debris avalanche and creating an open collapse scarp extending to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Etna (Italy) — December 2023 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Strombolian explosions, lava fountains, and lava flows during July-August 2023

Etna, located on the Italian island of Sicily, has had documented eruptions dating back to 1500 BCE. Activity typically originates from multiple cones at the summit, where several craters have formed and evolved. The currently active craters are Northeast Crater (NEC), Voragine (VOR), and Bocca Nuova (BN), and the Southeast Crater (SEC); VOR and BN were previously referred to as the “Central Crater”. The original Southeast crater formed in 1978, and a second eruptive site that opened on its SE flank in 2011 was named the New Southeast Crater (NSEC). Another eruptive site between the SEC and NSEC developed during early 2017 and was referred to as the "cono della sella" (saddle cone). The current eruption period began in November 2022 and has been characterized by intermittent Strombolian activity, lava flows, and ash plumes (BGVN 48:08). This report updates activity during July through October 2023, which includes primarily gas-and-steam emissions; during July and August Strombolian explosions, lava fountains, and lava flows were reported, based on weekly and special reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV) and satellite data.

Variable fumarolic degassing was reported at all summit craters (BN, VOR, NEC, and SEC) throughout the entire reporting period (table 15). The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data showed frequent low-to-moderate power thermal anomalies during the reporting period (figure 399). During mid-August there was a pulse in activity that showed an increase in the power of the anomalies due to Strombolian activity, lava fountains, and lava flows. Infrared satellite imagery captured strong thermal anomalies at the central and southeast summit crater areas (figure 400). Accompanying thermal activity were occasional sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) recorded by the TROPOMI instrument on the Sentinel-5P satellite (figure 401).

Table 15. Summary of activity at the four primary crater areas at the summit of Etna during July-October 2023. Information is from INGV weekly reports.

Month Bocca Nuova (BN) Voragine (VOR) Northeast Crater (NEC) Southeast Crater (SEC)
Jul 2023 Continuous degassing. No observations. Weak gas emissions. Continuous degassing. Sporadic and weak-to-moderate ash emissions. Strombolian explosions.
Aug 2023 Continuous degassing. No observations. No observations. Continuous degassing. Occasional ash emissions. Strombolian activity, lava fountaining, and lava flows.
Sep 2023 Variable degassing. Crater incandescence. Weak fumarolic activity. Weak fumarolic activity. Variable degassing.
Oct 2023 Continuous degassing. Weak fumarolic activity. Weak fumarolic activity. Continuous degassing.
Figure (see Caption) Figure 399. Frequent thermal activity at Etna varied in strength during July through October 2023, as shown on this MIROVA plot (Log Radiative Power). There was a spike in power during mid-August, which reflected an increase in Strombolian activity. Courtesy of MIROVA.
Figure (see Caption) Figure 400. Infrared (bands B12, B11, B4) satellite images showing strong thermal anomalies at Etna’s central and Southeast crater areas on 21 July 2023 (top left), 27 August 2023 (top right), 19 September 2023 (bottom left), and 29 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 401. Sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) rose above Etna on 14 July 2023 (top left), 14 August 2023 (top right), 2 September 2023 (bottom left), and 7 October 2023 (bottom right). These plumes drifted NE, S, SE, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during July and August was relatively low and mainly consisted of degassing at the summit craters, particularly at SEC and BN. Cloudy weather prevented clear views of the summit during early July. During the night of 2 July some crater incandescence was visible at SEC. Explosive activity resumed at SEC during 9-10 July, which was characterized by sporadic and weak ash emissions that rapidly dispersed in the summit area (figure 402). INGV reported moderate Strombolian activity began at 2034 on 14 July and was confined to the inside of the crater and fed by a vent located in the E part of SEC. An ash emission was detected at 2037. A new vent opened on 15 July in the SE part of BN and began to produce continuous gas-and-steam emissions. During an inspection carried out on 28 July pulsating degassing, along with audible booms, were reported at two active vents in BN. Vigorous gas-and-steam emissions intermittently generated rings. On rare occasions, fine, reddish ash was emitted from BN1 and resuspended by the gas-and-steam emissions.

Figure (see Caption) Figure 402. Webcam image taken by the Monta Cagliato camera showing an ash emission rising above Etna’s Southeast Crater (SEC) on 10 July 2023. Photo has been color corrected. Courtesy of INGV (Report 28/2023, ETNA, Bollettino Settimanale, 03/07/2023 - 09/07/2023).

Around 2000 on 13 August INGV reported a sudden increase in volcanic tremor amplitude. Significant infrasonic activity coincided with the tremor increase. Incandescent flashes were visible through the cloud cover in webcam images of SEC (figure 403). Strombolian activity at SEC began to gradually intensify starting at 2040 as seismicity continued to increase. The Aviation Color Code (ACC) was raised to Yellow (the second lowest-level on a four-color scale) at 2126 and then to Orange (the second highest-level on a four-color scale) at 2129 due to above-background activity. The activity rapidly transitioned from Strombolian activity to lava fountains around 2333 that rose 300-400 m above the crater (figure 403). Activity was initially focused on the E vent of the crater, but then the vent located above the S flank of the cone also became active. A lava flow from this vent traveled SW into the drainage created on 10 February 2022, overlapping with previous flows from 10 and 21 February 2022 and 21 May 2023, moving between Monte Barbagallo and Monte Frumento Supino (figure 404). The lava flow was 350 m long, oriented NNE-SSW, and descended to an elevation of 2.8 km. Flows covered an area of 300,000 m2 and had an estimated volume of 900,000 m3. The ACC was raised to Red at 2241 based on strong explosive activity and ashfall in Rifugio Sapienza-Piano Vetore at 1.7 km elevation on the S flank. INGV reported that pyroclastic flows accompanied this activity.

Figure (see Caption) Figure 403. Webcam images of the lava fountaining event at Etna during 13-14 August 2023 taken by the Milos (EMV) camera. Images show the start of the event with increasing incandescence (a-b), varying intensity in activity (c-e), lava fountaining and pyroclastic flows (f-g), and a strong ash plume (g). Courtesy of INGV (Report 33/2023, ETNA, Bollettino Settimanale, 08/08/2023 - 14/08/2023).
Figure (see Caption) Figure 404. Map of the new lava flow (yellow) and vent (red) at SEC (CSE) of Etna on 13 August 2023. The background image is a shaded model of the terrain of the summit area obtained by processing Skysat images acquired during on 18 August. The full extent of the lava flow was unable to be determined due to the presence of ash clouds. The lava flow extended more than 350 m to the SSW and reached an elevation of 2.8 km and was located W of Mt. Frumento Supino. CSE = Southeast Crater; CNE = Northeast Crater; BN = Bocca Nuova; VOR = Voragine. Courtesy of INGV (Report 34/2023, ETNA, Bollettino Settimanale, 14/08/2023 - 20/08/2023).

Activity peaked between 0240 and 0330 on 14 August, when roughly 5-6 vents erupted lava fountains from the E to SW flank of SEC. The easternmost vents produced lava fountains that ejected material strongly to the E, which caused heavy fallout of incandescent pyroclastic material on the underlying flank, triggering small pyroclastic flows. This event was also accompanied by lightning both in the ash column and in the ash clouds that were generated by the pyroclastic flows. A fracture characterized by a series of collapse craters (pit craters) opened on the upper SW flank of SEC. An ash cloud rose a few kilometers above the crater and drifted S, causing ash and lapilli falls in Rifugio Sapienza and expanding toward Nicolosi, Mascalucia, Catania, and up to Syracuse. Ashfall resulted in operational problems at the Catania airport (50 km S), which lasted from 0238 until 2000. By 0420 the volcanic tremor amplitude values declined to background levels. After 0500 activity sharply decreased, although the ash cloud remained for several hours and drifted S. By late morning, activity had completely stopped. The ACC was lowered to Orange as volcanic ash was confined to the summit area. Sporadic, minor ash emissions continued throughout the day. At 1415 the ACC was lowered to Yellow and then to Green at 1417.

During the night of 14-15 August only occasional flashes were observed, which were more intense during avalanches of material inside the eruptive vents. Small explosions were detected at SEC at 2346 on 14 August and at 0900 on 26 August that each produced ash clouds which rapidly dispersed into the atmosphere (figure 405). According to a webcam image, an explosive event detected at 2344 at SEC generated a modest ash cloud that was rapidly dispersed by winds. The ACC was raised to Yellow at 2355 on 14 August due to increasing unrest and was lowered to Green at 0954 on 15 August.

Figure (see Caption) Figure 405. Webcam image of an ash plume rising above Etna’s SEC at 0902 (local time) on 26 August taken by the Montagnola EMOV camera. Photo has been color corrected. Courtesy of INGV (Report 35/2023, ETNA, Bollettino Settimanale, 21/08/2023 - 27/08/2023).

Activity during September and October was relatively low and mainly characterized by variable degassing from BN and SEC. Intense, continuous, and pulsating degassing was accompanied by roaring sounds and flashes of incandescence at BN both from BN1 and the new pit crater that formed during late July (figure 406). The degassing from the new pit crater sometimes emitted vapor rings. Cloudy weather during 6-8 September prevented observations of the summit craters .

Figure (see Caption) Figure 406. Webcam image (top) showing degassing from Etna’s Bocca Nuova (BN) crater accompanied by nighttime crater incandescence at 0300 (local time) on 2 September 2023 by the Piedimonte Etneo (EPVH) camera and a photo of incandescence at BN1 and the new pit crater (bottom) taken by an observatory scientist from the E rim of BN during a survey on 2 September 2023. Courtesy of INGV (Report 36/2023, ETNA, Bollettino Settimanale, 28/08/2023 - 03/09/2023).

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Aira (Japan) — December 2023 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Aira caldera, located in the northern half of Kagoshima Bay, Japan, contains the post-caldera Sakurajima volcano. Eruptions typically originate from the Minamidake crater, and since the 8th century, ash deposits have been recorded in the city of Kagoshima (10 km W), one of Kyushu’s largest cities. The Minamidake summit cone and crater has had persistent activity since 1955; the Showa crater on the E flank has also been intermittently active since 2006. The current eruption period began during March 2017 and has recently been characterized by intermittent explosions, eruption plumes, and ashfall (BGVN 48:07). This report updates activity during July through October 2023 and describes explosive events, ash plumes, nighttime crater incandescence, and ashfall, according to monthly activity reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity remained at low levels during this reporting period, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) system (figure 149). There was a slight increase in the number of anomalies during September through October. Occasional thermal anomalies were visible in infrared satellite images mainly at the Minamidake crater (Vent A is located to the left and Vent B is located to the right) (figure 150).

Table 30. Number of monthly explosive events, days of ashfall, area of ash covered, and sulfur dioxide emissions from Sakurajima’s Minamidake crater at Aira during July-October 2023. Note that smaller ash events are not listed. Ashfall days were measured at Kagoshima Local Meteorological Observatory and ashfall amounts represent material covering all the Kagoshima Prefecture. Data courtesy of JMA monthly reports.

Month Explosive events Days of ashfall Ashfall amount (g/m2) SO2 emissions (tons/day)
Jul 2023 3 0 0 1,600-3,200
Aug 2023 3 10 7 1,800-3,300
Sep 2023 3 7 3 1,600-2,300
Oct 2023 33 8 61 2,200-4,200
Figure (see Caption) Figure 149. Thermal activity at Sakurajima in the Aira caldera was relatively low during July through October 2023, based on this MIROVA graph (Log Radiative Power). There was an increase in the number of detected anomalies during September through October. Courtesy of MIROVA.
Figure (see Caption) Figure 150. Infrared (bands B12, B11, B4) satellite images show a persistently strong thermal anomaly (bright yellow-orange) at the Minamidake crater at Aira’s Sakurajima volcano on 28 September 2023 (top left), 3 October 2023 (top right), 23 October 2023 (bottom left), and 28 October 2023 (bottom right). Vent A is located to the left and Vent B is to the right of Vent A; both vents are part of the Minamidake crater. Courtesy of Copernicus Browser.

JMA reported that during July, there were eight eruptions, three of which were explosion events in the Showa crater. Large blocks were ejected as far as 600 m from the Showa crater. Very small eruptions were occasionally reported at the Minamidake crater. Nighttime incandescence was observed in both the Showa and Minamidake crater. Explosions were reported on 16 July at 2314 and on 17 July at 1224 and at 1232 (figure 151). Resulting eruption plumes rose 700-2,500 m above the crater and drifted N. On 23 July the number of volcanic earthquakes on the SW flank of the volcano increased. A strong Mw 3.1 volcanic earthquake was detected at 1054 on 26 July. The number of earthquakes recorded throughout the month was 545, which markedly increased from 73 in June. No ashfall was observed at the Kagoshima Regional Meteorological Observatory during July. According to a field survey conducted during the month, the daily amount of sulfur dioxide emissions was 1,600-3,200 tons per day (t/d).

Figure (see Caption) Figure 151. Webcam image showing a strong, gray ash plume that rose 2.5 km above the crater rim of Aira’s Showa crater at 1232 on 17 July 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, July 2023).

There were three eruptions reported at the Minamidake crater during August, each of which were explosive. The explosions occurred on 9 August at 0345, on 13 August at 2205, and on 31 August at 0640, which generated ash plumes that rose 800-2,000 m above the crater and drifted W. There were two eruptions detected at Showa crater; on 4 August at 2150 ejecta traveled 800 m from the Showa crater and associated eruption plumes rose 2.3 km above the crater. The explosion at 2205 on 13 August generated an ash plume that rose 2 km above the crater and was accompanied by large blocks that were ejected 600 m from the Minamidake crater (figure 152). Nighttime crater incandescence was visible in a high-sensitivity surveillance camera at both craters. Seismicity consisted of 163 volcanic earthquakes, 84 of which were detected on the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 7 g/m2 of ashfall over the course of 10 days during the month. According to a field survey, the daily amount of sulfur dioxide emitted was 1,800-3,300 t/d.

Figure (see Caption) Figure 152. Webcam image showing an eruption plume rising 2 km above the Minamidake crater at Aira at 2209 on 13 August 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, August 2023).

During September, four eruptions were reported, three of which were explosion events. These events occurred at 1512 on 9 September, at 0018 on 11 September, and at 2211 on 13 September. Resulting ash plumes generally rose 800-1,100 m above the crater. An explosion produced an ash plume at 2211 on 13 September that rose as high as 1.7 km above the crater. Large volcanic blocks were ejected 600 m from the Minamidake crater. Smaller eruptions were occasionally observed at the Showa crater. Nighttime crater incandescence was visible at the Minamidake crater. Seismicity was characterized by 68 volcanic earthquakes, 28 of which were detected beneath the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 3 g/m2 of ashfall over the course of seven days during the month. A field survey reported that the daily amount of sulfur dioxide emitted was 1,600-2,300 t/d.

Eruptive activity during October consisted of 69 eruptions, 33 of which were described as explosive. These explosions occurred during 4 and 11-21 October and generated ash plumes that rose 500-3,600 m above the crater and drifted S, E, SE, and N. On 19 October at 1648 an explosion generated an ash plume that rose 3.6 km above the crater (figure 153). No eruptions were reported in the Showa crater; white gas-and-steam emissions rose 100 m above the crater from a vent on the N flank. Nighttime incandescence was observed at the Minamidake crater. On 24 October an eruption was reported from 0346 through 0430, which included an ash plume that rose 3.4 km above the crater. Ejected blocks traveled 1.2 km from the Minamidake crater. Following this eruption, small amounts of ashfall were observed from Arimura (4.5 km SE) and a varying amount in Kurokami (4 km E) (figure 154). The number of recorded volcanic earthquakes during the month was 190, of which 14 were located beneath the SW flank. Approximately 61 g/m2 of ashfall was reported over eight days of the month. According to a field survey, the daily amount of sulfur dioxide emitted was 2,200-4,200 t/d.

Figure (see Caption) Figure 153. Webcam image showing an ash plume rising 3.6 km above the Minamidake crater at Aira at 1648 on 19 October 2023. Photo has been color corrected. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).
Figure (see Caption) Figure 154. Photo showing ashfall (light gray) in Kurokami-cho, Sakurajima on 24 October 2023 taken at 1148 following an eruption at Aira earlier that day. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — November 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Gray emissions during October 2023

Nishinoshima is a small island in the Ogasawara Arc, about 1,000 km S of Tokyo, Japan. It contains prominent submarine peaks to the S, W, and NE. Recorded eruptions date back to 1973, with the current eruption period beginning in October 2022. Eruption plumes and fumarolic activity characterize recent activity (BGVN 48:10). This report covers the end of the eruption for September through October 2023, based on information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports, and satellite data.

No eruptive activity was reported during September 2023, although JMA noted that the surface temperature was slightly elevated compared to the surrounding area since early March 2023. The Japan Coast Guard (JCG) conducted an overflight on 20 September and reported white gas-and-steam plumes rising 3 km above the central crater of the pyroclastic cone, as well as multiple white gas-and-steam emissions emanating from the N, E, and S flanks of the crater to the coastline. In addition, dark reddish brown-to-green discolored water was distributed around almost the entire circumference of the island.

Similar low-level activity was reported during October. Multiple white gas-and-steam emissions rose from the N, E, and S flanks of the central crater of the pyroclastic cone and along the coastline; these emissions were more intense compared to the previous overflight observations. Dark reddish brown-to-green discolored water remained visible around the circumference of the island. On 4 October aerial observations by JCG showed a small eruption consisting of continuous gas-and-steam emissions emanating from the central crater, with gray emissions rising to 1.5 km altitude (figure 129). According to observations from the marine weather observation vessel Keifu Maru on 26 October, white gas-and-steam emissions persisted from the center of the pyroclastic cone, as well as from the NW, SW, and SE coasts of the island for about five minutes. Slightly discolored water was visible up to about 1 km.

Figure (see Caption) Figure 129. Aerial photos of gray emissions rising from the central crater of Nishinoshima’s pyroclastic cone to an altitude of 1.5 km on 4 October 2023 taken at 1434 (left) and 1436 (right). Several white gas-and-steam emissions also rose from the N, E, and S flanks of the central crater. Both photos have been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, October, 2023).

Frequent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during September (figure 130). Occasional anomalies were detected during October, and fewer during November through December. A thermal anomaly was visible in the crater using infrared satellite imagery on 6, 8, 11, 16, 18, 21, and 23 September and 8, 13, 21, 26, and 28 October (figure 131).

Figure (see Caption) Figure 130. Low-to-moderate power thermal anomalies were detected at Nishinoshima during September through December 2023, showing a decrease in the frequency of anomalies after September, according to this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 131. Infrared (bands B12, B11, B4) satellite images showing a strong thermal anomaly at the crater of Nishinoshima on 21 September 2023 (left) and 13 October 2023 (right). A strong gas-and-steam plume accompanied the thermal activity, extending NW. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kilauea (United States) — October 2023 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Kīlauea is on the island of Hawai’i and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).

The current eruption period started during September 2021 and has been characterized by low-level lava effusions in the active Halema’uma’u lava lake (BGVN 48:01). This report covers three notable eruption periods during February, June, and September 2023 consisting of lava fountaining, lava flows, and spatter during January through September 2023 using information from daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).

Activity during January 2023. Small earthquake swarms were recorded on 2 January 2023; increased seismicity and changes in the pattern of deformation were noted on the morning of 5 January. At around 1500 both the rate of deformation and seismicity drastically increased, which suggested magma movement toward the surface. HVO raised the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale) and the Aviation Color Code (ACC) to Orange (the second highest color on a four-color scale) at 1520.

Multiple lava fountains and lava effusions from vents in the central eastern portion of the Halema’uma’u crater began on 5 January around 0434; activity was confined to the eastern half of the crater and within the basin of the western half of the crater, which was the focus of the eruption in 2021-2022 (figure 525). Incandescence was visible in webcam images at 1634 on 5 January, prompting HVO to raise the VAL to Warning (the highest level on a four-level scale) and the ACC to Red (the highest color on a four-color scale). Lava fountains initially rose as high as 50 m above the vent at the onset of the eruption (figure 526) but then declined to a more consistent 5-6 m height in the proceeding days. By 1930 that same day, lava had covered most of the crater floor (an area of about 1,200,000 m2) and the lava lake had a depth of 10 m. A higher-elevation island that formed during the initial phase of the December 2020 eruption remained exposed, appearing darker in images, along with a ring of older lava around the lava lake that was active prior to December 2022. Overnight during 5-6 January the lava fountains continued to rise 5 m high, and the lava effusion rate had slowed.

Figure (see Caption) Figure 525. A reference map of Kīlauea showing activity on 6 January 2023, based on measurements taken from the crater rim at approximately 0900. Multiple eruptive vents (orange color) are on the E floor of Halema’uma’u crater effusing into a lava lake (red color). Lava from these vents flowed laterally across the crater floorcovering an area of 880,000 m2. The full extent of new lava from this eruption (red and pink colors) is approximately 1,120,000 m2. An elevated part of the lake (yellow color) that is higher in elevation compared to the rest of the crater floor was not covered in lava flows. Courtesy of USGS, HVO.
Figure (see Caption) Figure 526. Image of the initial lava fountain at the onset of Kīlauea’s eruption on 5 January 2023 from a newly opened vent in the Halema’uma’u crater at 0449. This lava fountain rose as high as 50 m and ejected lava across the crater floor. Courtesy of USGS, HVO.

On 6 January at 0815 HVO lowered the VAL to Watch and the ACC to Orange due to the declining effusion rates. Sulfur dioxide emission rates ranged from 3,000-12,500 tonnes per day (t/d), the highest value of which was recorded on 6 January. Lava continued to erupt from the vents during 6-8 January, although the footprint of the active area had shrunk; a similar progression has been commonly observed during the early stages of recent eruptions at Halema’uma’u. On 9 January HVO reported one dominant lava fountain rising 6-7 m high in the E half of the crater. Lava flows built up the margins of the lake, causing the lake to be perched. On 10 January the eastern lava lake had an area of approximately 120,000 m2 that increased to 250,000 m2 by 17 January. During 13-31 January several small overflows occurred along the margins of the E lake. A smaller area of lava was active within the basin in the W half of the crater that had been the focus of activity during 2021-2022. On 19 January just after 0200 a small ooze-out was observed on the crater’s W edge.

Activity during February 2023. Activity continued in the E part of Halema’uma’u crater, as well as in a smaller basin in the W part of the 2021-2022 lava lake (figure 527). The E lava lake contained a single lava fountain and frequent overflows. HVO reported that during the morning of 1 February the large E lava lake began to cool and crust over in the center of the lake; two smaller areas of lava were observed on the N and S sides by the afternoon. The dominant lava fountain located in the S part of the lava lake paused for roughly 45 minutes at 2315 and resumed by midnight, rising 1-2 m. At 0100 on 2 February lava from the S part was effusing across the entire E lava lake area, covering the crusted over portion in the center of the lake and continuing across the majority of the previously measured 250,000 m2 by 0400. A small lava pond near the E lake produced an overflow around 0716 on 2 February. On 3 February some lava crust began to form against the N and E levees, which defined the 250,000 m2 eastern lava lake. The small S lava fountain remained active, rising 1-6 m high during 3-9 February; around 0400 on 5 February occasional bursts doubled the height of the lava fountain.

Figure (see Caption) Figure 527. An aerial visual and thermal image taken of Kīlauea’s Halema’uma’u crater on 2 February 2023. The largest lava lake is in the E part of the crater, although lava has also filled areas that were previously active in the W part of the crater. The colors of the map indicate temperature, with blues indicative of cooler temperatures and reds indicative of warmer temperatures. Courtesy of USGS, HVO.

A large breakout occurred overnight during 2100 on 4 February to 0900 on 5 February on the N part of the crater floor, equal to or slightly larger in size than the E lava lake. A second, smaller lava fountain appeared in the same area of the E lava lake between 0300 and 0700 on 5 February and was temporarily active. This large breakout continued until 7 February. A small, brief breakout was reported in the S of the E lava lake around midnight on 7 February. In the W lake, as well as the smaller lava pond in the central portion of the crater floor, contained several overflows during 7-10 February and intermittent fountaining. Activity at the S small lava pond and the small S lava fountain within the E lake declined during 9-10 February. The lava pond in the central portion of the crater floor had nearly continuous, expansive flows during 10-13 February; channels from the small central lava pond seemed to flow into the larger E lake. During 13-18 February a small lava fountain was observed in the small lava pond in the central portion of the crater floor. Continuous overflows persisted during this time.

Activity in the eastern and central lakes began to decline in the late afternoon of 17 February. By 18 February HVO reported that the lava effusions had significantly declined, and that the eastern and central lakes were no longer erupting. The W lake in the basin remained active but at a greatly reduced level that continued to decline. HVO reported that this decrease in activity is attributed to notable deflationary tilt that began early on the morning of 17 February and lasted until early 19 February. By 19 February the W lake was mostly crusted over although some weak lava flows remained, which continued through 28 February. The sulfur dioxide emission rates ranged 250-2,800 t/d, the highest value of which was recorded on 6 February.

Activity during March 2023. The summit eruption at Halema’uma’u crater continued at greatly reduced levels compared to the previous two months. The E and central vents stopped effusing lava, and the W lava lake remained active with weak lava flows; the lake was mostly crusted over, although slowly circulating lava intermittently overturned the crust. By 6 March the lava lake in the W basin had stopped because the entire surface was crusted over. The only apparent surface eruptive activity during 5-6 March was minor ooze-outs of lava onto the crater floor, which had stopped by 7 March. Several hornitos on the crater floor still glowed through 12 March according to overnight webcam images, but they did not erupt any lava. A small ooze-out of lava was observed just after 1830 in the W lava lake on 8 March, which diminished overnight. The sulfur dioxide emission rate ranged from 155-321 t/d on 21 March. The VAL was lowered to Advisory, and the ACC was lowered to Yellow (the second lowest on a four-color scale) on 23 March due to a pause in the eruption since 7 March.

Activity during April-May 2023. The eruption at Halema’uma’u crater was paused; no lava effusions were visible on the crater floor. Sulfur dioxide emission rates ranged from 75-185 t/d, the highest of which was measured on 22 April. During May and June summit seismicity was elevated compared to seismicity that preceded the activity during January.

Activity during June 2023. Earthquake activity and changes in the patterns of ground deformation beneath the summit began during the evening of 6 June. The data indicated magma movement toward the surface, prompting HVO to raise the VAL to Watch and the ACC to Orange. At about 0444 on 7 June incandescence in Halema’uma’u crater was visible in webcam images, indicating that a new eruption had begun. HVO raised the VAL to Warning and the ACC to Red (the highest color on a four-color scale). Lava flowed from fissures that had opened on the crater floor. Multiple minor lava fountains were active in the central E portion of the Halema’uma’u crater, and one vent opened on the W wall of the caldera (figure 528). The eruptive vent on the SW wall of the crater continued to effuse into the lava lake in the far SW part of the crater (figure 529). The largest lava fountain consistently rose 15 m high; during the early phase of the eruption, fountain bursts rose as high as 60 m. Lava flows inundated much of the crater floor and added about 6 m depth of new lava within a few hours, covering approximately 10,000 m2. By 0800 on 7 June lava filled the crater floor to a depth of about 10 m. During 0800-0900 the sulfur dioxide emission rate was about 65,000 t/d. Residents of Pahala (30 km downwind of the summit) reported minor deposits of fine, gritty ash and Pele’s hair. A small spatter cone had formed at the vent on the SW wall by midday, and lava from the cone was flowing into the active lava lake. Fountain heights had decreased from the onset of the eruption and were 4-9 m high by 1600, with occasional higher bursts. Inflation switched to deflation and summit earthquake activity greatly diminished shortly after the eruption onset.

Figure (see Caption) Figure 528. Photo of renewed activity at Kīlauea’s Halema’uma’u crater that began at 0444 on 7 June 2023. Lava flows cover the crater floor and there are several active source vents exhibiting lava fountaining. Courtesy of USGS, HVO.
Figure (see Caption) Figure 529. Photo of a lava fountain on the SW wall of Kīlauea’s Halema’uma’u crater on 7 June 2023. By midday a small cone structure had been built up. The fissure was intermittently obscured by gas-and-steam plumes. Courtesy of USGS, HVO.

At 0837 on 8 June HVO lowered the VAL to Watch and the ACC to Orange because the initial high effusion rates had declined, and no infrastructure was threatened. The surface of the lava lake had dropped by about 2 m, likely due to gas loss by the morning of 8 June. The drop left a wall of cooled lava around the margins of the crater floor. Lava fountain heights decreased during 8-9 June but continued to rise to 10 m high. Active lava and vents covered much of the W half of Halema’uma’u crater in a broad, horseshoe-shape around a central, uplifted area (figure 530). The preliminary average effusion rate for the first 24 hours of the eruption was about 150 cubic meters per second, though the estimate did not account for vesiculated lava and variations in crater floor topography. The effusion rate during the very earliest phases of the eruption appeared significantly higher than the previous three summit eruptions based on the rapid coverage of the entire crater floor. An active lava lake, also referred to as the “western lava lake” was centered within the uplifted area and was fed by a vent in the NE corner. Two small active lava lakes were located just SE from the W lava lake and in the E portion of the crater floor.

Figure (see Caption) Figure 530. A compilation of thermal images taken of Kīlauea’s Halema’uma’u crater on 7 June 2023 (top left), 8 June 2023 (top right), 12 June 2023 (bottom left), and 16 June 2023 (bottom right). The initial high effusion rates that consisted of numerous lava fountains and lava flows that covered the entire crater floor began to decline and stabilize. A smaller area of active lava was detected in the SW part of the crater by 12 June. The colors of the thermal map represent temperature, with blue colors indicative of cooler temperatures and red colors indicative of warmer temperatures. Courtesy of USGS, HVO.

During 8-9 June the lava in the central lava lake had a thickness of approximately 1.5 m, based on measurements from a laser rangefinder. During 9-12 June the height of the lava fountains decreased to 9 m high. HVO reported that the previously active lava lake in the E part of the crater appeared stagnant during 10-11 June. The surface of the W lake rose approximately 1 m overnight during 11-12 June, likely due to the construction of a levee around it. Only a few small fountains were active during 12-13 June; the extent of the active lava had retreated so that all activity was concentrated in the SW and central parts of Halema’uma’u crater. Intermittent spattering from the vent on the SW wall was visible in overnight webcam images during 13-18 June. On the morning of 14 June a weak lava effusion originated from near the western eruptive vent, but by 15 June there were no signs of continued activity. HVO reported that other eruptive vents in the SW lava lake had stopped during this time, following several days of waning activity; lava filled the lake by about 0.5 m. Lava circulation continued in the central lake and no active lava was reported in the northern or eastern parts of the crater. Around 0800 on 15 June the top of the SW wall spatter cone collapsed, which was followed by renewed and constant spattering from the top vent and a change in activity from the base vent; several new lava flows effused from the top of the cone, as well as from the pre-existing tube-fed flow from its base. Accumulation of lava on the floor resulted in a drop of the central basin relative to the crater floor, allowing several overflows from the SW lava lake to cascade into the basin during the night of 15 June into the morning of 16 June.

Renewed lava fountaining was reported at the eruptive vent on the SW side of the crater during 16-19 June, which effused lava into the far SW part of the crater. This activity was described as vigorous during midday on 16 June; a group of observatory geologists estimated that the lava was consistently ejected at least 10 m high, with some spatter ejected even higher and farther. Deposits from the fountain further heightened and widened the spatter cone built around the original eruptive vent in the lower section of the crater wall. Multiple lava flows from the base of the cone were fed into the SW lava lake and onto the southwestern-most block from the 2018 collapse within Halema’uma’u on 17 June (figure 531); by 18 June they focused into a single flow feeding into the SW lava lake. On the morning of 19 June a second lava flow from the base of the eruptive cone advanced into the SW lava lake.

Figure (see Caption) Figure 531. Nighttime photo of the upwelling area at the base of the spatter cone at Kīlauea’s Halema’uma’u crater on 17 June 2023. This upwelling feeds a lava flow that spreads out to the E of the spatter cone. Courtesy of M. Cappos, USGS.

Around 1600 on 19 June there was a rapid decline in lava fountaining and effusion at the eruptive vent on the SW side of the crater; vent activity had been vigorous up to that point (figure 532). Circulation in the lava lake also slowed, and the lava lake surface dropped by several meters. Overnight webcam images showed some previously eruptive lava still flowing onto the crater floor, which continued until those flows began to cool. By 21 June no lava was erupting in Halema’uma’u crater. Overnight webcam images during 29-30 June showed some incandescence from previously erupted lava flows as they continued to cool. Seismicity in the crater declined to low levels. Sulfur dioxide emission rates ranged 160-21,000 t/d throughout the month, the highest measurement of which was recorded on 8 June. On 30 June the VAL was lowered to Advisory (the second level on a four-level scale) and the ACC was lowered to Yellow. Gradual inflation was detected at summit tiltmeters during 19-30 June.

Figure (see Caption) Figure 532. Photos showing vigorous lava fountaining and lava flows at Kīlauea’s Halema’uma’u crater at the SW wall eruptive vent on 18 June 2023 at 1330 (left). The eruption stopped abruptly around 1600 on 19 June 2023 and no more lava effusions were visible, as seen from the SW wall eruptive vent at 1830 on 19 June 2023 (right). Courtesy of M. Patrick, USGS.

Activity during July-August 2023. During July, the eruption paused; no lava was erupting in Halema’uma’u crater. Nighttime webcam images showed some incandescence from previously erupted lava as it continued to cool on the crater floor. During the week of 14 August HVO reported that the rate in seismicity increased, with 467 earthquakes of Mw 3.2 and smaller occurring. Sulfur dioxide emission rates remained low, ranging from 75-86 t/d, the highest of which was recorded on 10 and 15 August. On 15 August beginning at 0730 and lasting for several hours, a swarm of approximately 50 earthquakes were detected at a depth of 2-3 km below the surface and about 2 km long directly S of Halema’uma’u crater. HVO reported that this was likely due to magma movement in the S caldera region. During 0130-0500 and 1700-2100 on 21 August two small earthquake swarms of approximately 20 and 25 earthquakes, respectively, occurred at the same location and at similar depths. Another swarm of 50 earthquakes were recorded during 0430-0830 on 23 August. Elevated seismicity continued in the S area through the end of the month.

Activity during September 2023. Elevated seismicity persisted in the S summit with occasional small, brief seismic swarms. Sulfur dioxide measurements were relatively low and were 70 t/d on 8 September. About 150 earthquakes occurred during 9-10 September, and tiltmeter and Global Positioning System (GPS) data showed inflation in the S portion of the crater.

At 0252 on 10 September HVO raised the VAL to Watch and the ACC to Orange due to increased earthquake activity and changes in ground deformation that indicated magma moving toward the surface. At 1515 the summit eruption resumed in the E part of the caldera based on field reports and webcam images. Fissures opened on the crater floor and produced multiple minor lava fountains and flows (figure 533). The VAL and ACC were raised to Warning and Red, respectively. Gas-and-steam plumes rose from the fissures and drifted downwind. A line of eruptive vents stretched approximately 1.4 km from the E part of the crater into the E wall of the down dropped block by 1900. The lava fountains at the onset of the eruption had an estimated 50 m height, which later rose 20-25 m high. Lava erupted from fissures on the down dropped block and expanded W toward Halema’uma’u crater. Data from a laser rangefinder recorded about 2.5 m thick of new lava added to the W part of the crater. Sulfur dioxide emissions were elevated in the eruptive area during 1600-1500 on 10 September, measuring at least 100,000 t/d.

Figure (see Caption) Figure 533. Photo of resumed lava fountain activity at Kīlauea’s Halema’uma’u crater on 10 September 2023. The main lava fountain rises approximately 50 m high and is on the E crater margin. Courtesy of USGS, HVO.

At 0810 on 11 September HVO lowered the VAL and ACC back to Watch and Orange due to the style of eruption and the fissure location had stabilized. The initial extremely high effusion rates had declined (but remained at high levels) and no infrastructure was threatened. An eruption plume, mainly comprised of sulfur dioxide and particulates, rose as high as 3 km altitude. Several lava fountains were active on the W side of the down dropped block during 11-15 September, while the easternmost vents on the down dropped block and the westernmost vents in the crater became inactive on 11 September (figure 534). The remaining vents spanned approximately 750 m and trended roughly E-W. The fed channelized lava effusions flowed N and W into Halema’uma’u. The E rim of the crater was buried by new lava flows; pahoehoe lava flows covered most of the crater floor except areas of higher elevation in the SW part of the crater. The W part of the crater filled about 5 m since the start of the eruption, according to data from a laser rangefinder during 11-12 September. Lava fountaining continued, rising as high as 15 m by the morning of 12 September. During the morning of 13 September active lava flows were moving on the N and E parts of the crater. The area N of the eruptive vents that had active lava on its surface became perched and was about 3 m higher than the surrounding ground surface. By the morning of 14 September active lava was flowing on the W part of the down dropped block and the NE parts of the crater. The distances of the active flows progressively decreased. Spatter had accumulated on the S (downwind) side of the vents, forming ramparts about 20 m high.

Figure (see Caption) Figure 534. Photo of a strong lava fountain in the E part of Kīlauea’s Halema’uma’u crater taken on the morning of 11 September 2023. The lava fountains rise as high as 10-15 m. Courtesy of J. Schmith, USGS.

Vigorous spattering was restricted to the westernmost large spatter cone with fountains rising 10-15 m high. Minor spattering occurred within the cone to the E of the main cone, but HVO noted that the fountains remained mostly below the rim of the cone. Lava continued to effuse from these cones and likely from several others as well, traveled N and W, confined to the W part of the down-dropped block and the NE parts of Halema’uma’u. Numerous ooze-outs of lava were visible over other parts of the crater floor at night. Laser range-finder measurements taken of the W part of the crater during 14-15 September showed that lava filled the crater by 10 m since the start of the eruption. Sulfur dioxide emissions remained elevated after the onset of the eruption, ranging 20,000-190,000 t/d during the eruption activity, the highest of which occurred on 10 September.

Field crews observed the eruptive activity on 15 September; they reported a notable decrease or stop in activity at several vents. Webcam images showed little to no fountaining since 0700 on 16 September, though intermittent spattering continued from the westernmost large cone throughout the night of 15-16 September. Thermal images showed that lava continued to flow onto the crater floor. On 16 September HVO reported that the eruption stopped around 1200 and that there was no observable activity anywhere overnight or on the morning of 17 September. HVO field crews reported that active lava was no longer flowing onto Halema’uma’u crater floor and was restricted to a ponded area N of the vents on the down dropped block. They reported that spattering stopped around 1115 on 16 September. Nighttime webcam images showed some incandescence on the crater floor as lava continued to cool. Field observations supported by geophysical data showed that eruptive tremor in the summit region decreased over 15-16 September and returned to pre-eruption levels by 1700 on 16 September. Sulfur dioxide emissions were measured at a rate of 800 t/d on 16 September while the eruption was waning, and 200 t/d on 17 September, which were markedly lower compared to measurements taken the previous week of 20,000-190,000 t/d.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Tinakula (Solomon Islands) — December 2023 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Continued lava flows and thermal activity during June through November 2023

Tinakula is a remote 3.5 km-wide island in the Solomon Islands, located 640 km ESE of the capital, Honiara. The current eruption period began in December 2018 and has more recently been characterized by intermittent lava flows and thermal activity (BGVN 48:06). This report covers similar activity during June through November 2023 using satellite data.

During clear weather days (20 July, 23 September, 23 October, and 12 November), infrared satellite imagery showed lava flows that mainly affected the W side of the island and were sometimes accompanied by gas-and-steam emissions (figure 54). The flow appeared more intense during July and September compared to October and November. According to the MODVOLC thermal alerts, there were a total of eight anomalies detected on 19 and 21 July, 28 and 30 October, and 16 November. Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) detected a small cluster of thermal activity occurring during late July, followed by two anomalies during August, two during September, five during October, and five during November (figure 55).

Figure (see Caption) Figure 54. Infrared (bands B12, B11, B4) satellite images showed lava flows mainly affecting the W flank of Tinakula on 20 July 2023 (top left), 23 September 2023 (top right), 23 October 2023 (bottom left), and 12 November 2023 (bottom right). Some gas-and-steam emissions accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 55. Low-power thermal anomalies were sometimes detected at Tinakula during July through November 2023, as shown on this MIROVA plot (Log Radiative Power). A small cluster of thermal anomalies were detected during late July. Then, only two anomalies were detected during August, two during September, five during October, and five during November. Courtesy of MIROVA.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. It has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The Mendana cone is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Recorded eruptions have frequently originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 15, Number 03 (March 1990)

Anatahan (United States)

Felt earthquakes and increased thermal activity

Bamus (Papua New Guinea)

Strong earthquake swarm, then somewhat decreased seismicity

Callaqui (Chile)

Steam jetting from fumaroles

Colima (Mexico)

Fumarolic activity and SW flank rockfall avalanches; Seismic net expanded

Deception Island (Antarctica)

More than 1,000 seismic events recorded in one month

Erebus (Antarctica)

Occasional Strombolian explosions from two small lava lakes; stronger SO2emission

Etna (Italy)

Lava fountains and flow then strong block ejection from Southeast Crater

Fuego (Guatemala)

Continuous gas emission; summit morphology appears unchanged since 1980

Galeras (Colombia)

Small phreatic ash emissions with spasmodic tremor and long-period seismicity

Guagua Pichincha (Ecuador)

Phreatic explosions and tremor after 10 days of A-type shocks

Irruputuncu (Chile-Bolivia)

Eruption reported by press but geologist observes only fumarolic activity

Kama'ehuakanaloa (United States)

Strong earthquake swarm, suggesting magma movement

Karymsky (Russia)

Slight thermal activity

Kick 'em Jenny (Grenada)

Strong T-phase signals suggest submarine eruption, but no activity detected at the surface

Kilauea (United States)

Eruption stops briefly then resumes after seismic swarm; lava destroys house

Klyuchevskoy (Russia)

Strong summit tephra eruption; basaltic lava from SE flank vent

Langila (Papua New Guinea)

Glow; gas emission; rumbling

Lascar (Chile)

20 February eruption ejected about 10-30% of the lava dome in crystal-rich fragments

Lengai, Ol Doinyo (Tanzania)

Airphotos suggest continued production of small lava flows on crater floor

Llaima (Chile)

Small explosion ejects incandescent column; strong seismicity

Long Valley (United States)

Continued earthquake swarm in caldera's S moat

Lonquimay (Chile)

Eruption ends after 13 months; continued fumarolic activity and small-scale collapse

Manam (Papua New Guinea)

Vapor emission; seismicity remains low

Moutohora Island (New Zealand)

CO2-rich gases from thermal area

Olca-Paruma (Chile-Bolivia)

Fumarolic activity and minor seismicity

Pacaya (Guatemala)

Continued weak Strombolian explosions; low SO2 flux

Rabaul (Papua New Guinea)

Seismicity remains relatively low; minor deflation

Raoul Island (New Zealand)

Increased microseismicity but no changes in thermal activity

Redoubt (United States)

Moderate explosions and dome extrusion; rootless phreatic explosion as eruptions interact with glaciers

Ruapehu (New Zealand)

Phreatic explosions stop; increased tremor

Ruiz, Nevado del (Colombia)

Minor ash emission; seismicity remains low

Rumble III (New Zealand)

Submarine summit bathymetry; bubble plumes in water column

Santa Maria (Guatemala)

Viscous lava extrusion continues; rapid erosion of N flank

Sheveluch (Russia)

100-m explosion vent in center of lava dome; minor fumarolic activity

Ulawun (Papua New Guinea)

Thick vapor emission; weak seismicity

Vulcano (Italy)

High-temperature fumaroles; gas chemistry; small seismic swarms

Waesche (Antarctica)

No signs of recent activity

Whakaari/White Island (New Zealand)

Strong submarine hydrothermal activity at the Calypso Vents

Whakaari/White Island (New Zealand)

Minor ash emission; seismicity and thermal activity decline; deflation

Zhupanovsky (Russia)

Four vigorous fumaroles



Anatahan (United States) — March 1990 Citation iconCite this Report

Anatahan

United States

16.35°N, 145.67°E; summit elev. 790 m

All times are local (unless otherwise noted)


Felt earthquakes and increased thermal activity

Shallow earthquakes that began 30 March (table 1) were felt and heard on Anatahan Island, and associated with an apparent increase in thermal activity from the younger E cone's crater lake. Felt seismicity remained frequent through 1 April. Observations limited to early morning and around noon yielded reports of 9 shocks, each lasting 5-7 seconds, 31 March-1 April. No felt events were reported 2-4 April. A helicopter overflight on 1 April revealed that the crater lake had become turbulent and had changed from its usual dirty green color to a bluish gray or whitish blue. Fumarolic activity had increased and a rotten egg smell was noted. A new landslide was visible on the SW wall of the active crater. The 23 residents of the island were evacuated 4 April, and had not returned as of mid-April.

Table 1. Earthquakes near Anatahan recorded by WWSSN stations, 30 March-1 April 1990. All events were shallow, but preliminary data did not allow precise depth determinations. Courtesy of the NEIC.

Date Time Magnitude Distance / Direction
30 Mar 1990 0016 5.2 mb 65 km NE
30 Mar 1990 0036 4.7 mb 70 km NE
30 Mar 1990 1254 5.2 mb 75 km ENE
30 Mar 1990 1743 5.0 mb 75 km ENE
30 Mar 1990 1827 4.6 mb 65 km NNE
30 Mar 1990 2136 4.5 mb 70 km NNE
31 Mar 1990 1635 4.6 mb 85 km NNW

Geologic Background. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of a large stratovolcano with a 2.3 x 5 km compound summit caldera. The larger western portion of the caldera is 2.3 x 3 km wide, and its western rim forms the island's high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern portion of the caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. A submarine cone, named NE Anatahan, rises to within 460 m of the sea surface on the NE flank, and numerous other submarine vents are found on the NE-to-SE flanks. Sparseness of vegetation on the most recent lava flows had indicated that they were of Holocene age, but the first historical eruption did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera.

Information Contacts: N. Banks and J. Ewert, CVO; NEIC.


Bamus (Papua New Guinea) — March 1990 Citation iconCite this Report

Bamus

Papua New Guinea

5.2°S, 151.23°E; summit elev. 2248 m

All times are local (unless otherwise noted)


Strong earthquake swarm, then somewhat decreased seismicity

"Seismicity. . . continued throughout March, although at a milder level after the 5th. Following intense February seismicity that involved 83 earthquakes of ML >=4.0, eight of ML >=5.0, and one of ML >=6.0, activity was strong again 3-5 March. More than 720 earthquakes (two of ML = 5.0-5.1 and 10 of ML >=4.5) were recorded before seismicity decreased to 20-50 events/day of small-moderate magnitude. The energy released by the February-March seismicity was relatively large, 1.22 x 1021 ergs (figure 1).

Figure (see Caption) Figure 1. Daily number of earthquakes (bars) and cumulative energy release (circles) near Bamus, February-March 1990. Magnitudes (ML) of larger events are given over earthquake count bars. Courtesy of RVO.

"An inspection of the Bamus area was carried out on 6 March. Rockfalls had occurred at many places on the volcano and in the limestone ranges to the S. However, no change was observed in the temperatures of the solfataric areas on the summit tholoid (which remained at <=15°C).

"Temporary seismograph networks were operated in the area 13-16 February and 6-8 March. Earthquake locations defined a broad 15-km-long seismic zone trending NNE that extended from the Nakanai Mountains to the S flank of Bamus (figure 2). Within this zone was a concentration of locations trending ENE near the S foot of Bamus. Earthquake focal depths ranged from 0 to 23 km.

Figure (see Caption) Figure 2. Epicenters of seismic events at Bamus, 13-16 February and 6-8 March 1990. Courtesy of RVO.

"Cross-sections . . . (figure 3) suggest that the main cluster of earthquakes defines an ENE-trending near-vertical fault. This orientation is consistent with the structural pattern evident in the Miocene limestone immediately S of, and underlying, Bamus.

Figure (see Caption) Figure 3. Focal depths of seismic events near Bamus during 13-16 February and 6-8 March 1990 projected along lines A-B (top) and A-C (bottom). Horizontal scale (and thus vertical exaggeration) changes from A-B to A-C. Courtesy of RVO.

"The cause of this seismicity remains uncertain. Its ongoing fluctuating character, and the fact that its swarms include but do not occur in response to larger earthquakes, could be consistent with magmatic injection. On the other hand, ML 5-6 earthquakes are uncommon for magmatic events. Analysis of the magnitude/frequency distribution of the earthquakes shows that the 'b' value is ~1, which is indicative of tectonic earthquake sequences. The seismicity was continuing in early April and was being monitored primarily by the permananent seismograph at Ulawun."

Geologic Background. Symmetrical Bamus volcano, also referred to locally as the South Son, is located SW of Ulawun volcano, known as the Father. The andesitic stratovolcano is covered in rainforest and contains a breached summit crater filled with a lava dome. There is a cone on the southern flank, and a prominent 1.5-km-wide crater with two small adjacent cones halfway up the SE flank. Young pyroclastic-flow deposits are found on the flanks, and residents describe an eruption that took place during the late 19th century.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Callaqui (Chile) — March 1990 Citation iconCite this Report

Callaqui

Chile

37.92°S, 71.45°W; summit elev. 3164 m

All times are local (unless otherwise noted)


Steam jetting from fumaroles

Steam jets from that rose 300-400 m from fumaroles on the SE flank, 200 m below the summit, were observed during dry weather at about noon on 9 and 16 March.

Geologic Background. The late-Pleistocene to Holocene Callaqui stratovolcano has a profile of an overturned canoe, due to its construction along an 11-km-long, SW-NE fissure above a 1.2-0.3 million year old Pleistocene edifice. The ice-capped, basaltic andesite volcano contains well-preserved cones and lava flows, which have traveled up to 14 km. Small craters 100-500 m in diameter are primarily found along a fissure extending down the SW flank. Intense solfataric activity occurs at the southern portion of the summit; in 1966 and 1978, red glow was observed in fumarolic areas (Moreno 1985, pers. comm.). Periods of intense fumarolic activity have dominated; few historical eruptions are known. An explosive eruption was reported in 1751, there were uncertain accounts of eruptions in 1864 and 1937, and a small phreatic ash emission was noted in 1980.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; H. Moreno, Univ de Chile.


Colima (Mexico) — March 1990 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Fumarolic activity and SW flank rockfall avalanches; Seismic net expanded

A group from CICBAS (Universidad de Colima) and CONMAR (Oregon State Univ) visited the volcano 15-17 February. Since their last visit, in May 1989, rockfall avalanches have occurred preferentially on the SW flank. Fumarolic activity persisted throughout their visit, forming a dense gray cloud. Poor weather conditions limited additional observations.

The geologists emplaced geoceivers for satellite communication, to determine geodetic positions of sites near the volcano for installation of two new telemetering seismographs. On 15 December 1989, the CICBAS seismology group had installed the 4th telemetric station of the Red Sismológica Telemétrica de Colima, 7 km from the volcano (at la Yerbabuena, site EZV6 on figure 6).

Geologic Background. The Colima complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide scarp, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent recorded eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Guillermo Castellanos, Gilberto Ornelas-Arciniega, C. Ariel Ramírez-Vazquez, G.A. Reyes-Dávila, and Hector Tamez, CICBAS, Universidad de Colima.


Deception Island (Antarctica) — March 1990 Citation iconCite this Report

Deception Island

Antarctica

62.9567°S, 60.6367°W; summit elev. 602 m

All times are local (unless otherwise noted)


More than 1,000 seismic events recorded in one month

"Spanish scientists visited Deception Island in December 1989 and January-February 1990. A geophysical station is located on the island and the Spanish oceanographic vessel Las Palmas operated in the area. Geological, tectonic, and geophysical features on and near the island were investigated. A regional, higher precision GPS geodetic network spans the Deception section of the Bransfield Rift.

"During the 1989-90 field season, an array of six digital seismic stations was installed on Deception Island. More than 1,000 events (0.5-2.1 mb) were digitally recorded. The major shocks were located in de Neptune Bowels (S of the island). The distribution of events shows a good correlation with tectonic features on and near the island (figure 2). A low seismic velocity, high-attenuation body was inferred under the NE sector of the island. A negative magnetic anomaly (-4,900 nT) is located in the same area.

Figure (see Caption) Figure 2. Distribution of seismic events (circles) recorded by the Spanish Antarctic Program seismic array (triangles) on Deception Island, 20 January-20 February 1990.

"Chemical compositions of samples from fumaroles and thermal springs suggest a thermal anomaly related to an underlying magma body. Gas geothermometry shows a formation temperature >250°C, with an outflow temperature of about 100°C. The phreatomagmatic character of the recent episodes is hypothesized as the result of a magma intrusion into shallow and confined water-saturated layers.

"A permanent seismic station monitoring the seismic activity in the area has been established at Spain's Juan Carlos I facility (35 km from Deception)."

Geologic Background. Ring-shaped Deception Island, at the SW end of the South Shetland Islands, NE of Graham Land Peninsula, was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides an entrance to a natural harbor within the 8.5 x 10 km caldera that was utilized as an Antarctic whaling station. Numerous vents along ring fractures circling the low 14-km-wide island have been reported active for more than 200 years. Maars line the shores of 190-m-deep Port Foster caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions during the past 8,700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.

Information Contacts: R. Ortiz, Museo Nacional de Ciencias Naturales, Spain; Rafael Soto, Real Instituto y Observatorio de la Armada, Spain.


Erebus (Antarctica) — March 1990 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Occasional Strombolian explosions from two small lava lakes; stronger SO2emission

Scientists visited the summit of Mt. Erebus several times from mid-November 1989 through mid-January 1990. Activity was at a low level compared to that of the early 1980s. Anorthoclase phonolite lava in the summit inner crater was mainly confined to two small convecting lakes; one circular and about 20 m in diameter, and the other irregular and ~20 m long. This was the largest area of convecting lava seen at Mt. Erebus since late 1984, when eruptions buried an older, larger, lava lake system. Three hornitos were actively degassing around the lava lakes, and small fumaroles were present within the inner crater.

From mid-November to mid-December, infrequent small Strombolian explosions ejected bombs to a few tens of meters from the lava lakes. A small gas bubble burst was observed in one of the hornitos. In mid-December, an increase in the frequency and size of small Strombolian eruptions was recorded by Victoria University's remote video camera mounted on the crater rim 220 m above the lava lakes. Images transmitted to Scott base, 35 km from the volcano, showed bombs being ejected to more than 100 m height.

SO2 emission, monitored by COSPEC, has increased substantially over the previous 5 years, commonly exceeding 100 t/d. This increase was consistent with previous observations suggesting that the surface area of the lava lakes correlates with SO2 emission rates.

Geologic Background. Mount Erebus overlooks the McMurdo research station on Ross Island and is the largest of three major volcanoes forming the roughly triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. A persistent lava-lake, with minor explosions punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but nearly continuous activity has probably been occurring for much longer.

Information Contacts: P. Kyle and W. McIntosh, New Mexico Institute of Mining and Technology; R. Dibble, Victoria Univ.


Etna (Italy) — March 1990 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Lava fountains and flow then strong block ejection from Southeast Crater

Summit activity. (S. Calvari, M. Coltelli, O. Consoli, M. Pompilio, and V. Scribano.) February activity was characterized by a single strong eruptive episode at Southeast Crater. Summit-area craters generally remained quiet through the rest of February and March. The 1-2 February eruptive episode was similar to several in January. A gradual increase in Strombolian explosions was followed by lava fountaining, and lava flowed over the crater's E rim for 5 hours beginning at 2200 on 1 February. The flow turned toward the Valle del Bove, advancing to ~ 2,000 m altitude, near the terminus of the mid-January flow. During the morning of 2 February, discontinuous Strombolian activity was followed by ejection of scoria that seldom reached a few tens of meters from the rim. Activity changed at about 1330 to energetic, discontinuous explosions that generated rumbling heard at a considerable distance. Blocks more than a meter across fell within a few hundred meters of the crater; much of the slightly vesicular ash was non-juvenile. Similar activity continued until about midnight. After the eruptive episode, the crater was completely obstructed, without any gas emission, until 27 February, when sporadic ejection of dark tephra began from two vents on the crater floor. February activity at other summit-area craters was limited to vapor emission from floors and walls. Emissions were particularly strong from Northeast Crater, where the active vent's walls were strongly incandescent.

Degassing was continuous at the summit craters in March but was not accompanied by Strombolian activity. Degassing occurred from an elliptical vent on the W floor of La Voragine accompanied by sporadic rumbling. Gas was also emitted from two sites on the SE and NW floor of Bocca Nuova. Weak fumarolic activity, from collapse steps that have formed along concentric fractures in Southeast Crater, was strongest from the center of the crater. Degassing also continued in Northeast Crater. On 29 and 30 March, sporadic tephra ejection and incandescence were observed, apparently from a sudden rise in the magma column.

Seismic activity. (E. Privitera, C. Cardaci, O. Cocina, V. Longo, A. Montaldo, M. Patanè, A. Pellegrino, and S. Spampinato.) Volcanic tremor amplitude began a progressive increase on 1 February at 1239, probably associated with increased Strombolian activity at Southeast Crater. Amplitudes peaked at 1940 that day, and at 0048 the next morning as activity was changing from Strombolian to lava fountaining. Other substantial increases in tremor amplitude occurred at 0600-1100, 1855, and 1935. The first of two sequences of discrete earthquakes on 2 February began at 0352. Eight of the events, centered at ~15 km depth on the volcano's N sector, were larger than M 1, the strongest at M 2.6 between 0424 and 0619. The second series of shocks started at 1321, with the two largest events (M 2.8) at 1322 and 1337. Hypocenters were on the Valle del Bove at <1 km depth. From 3 February until the end of the month, seismic activity was at very low levels, with little variation in tremor amplitude or the number of low-frequency shocks. Nine fracturing events exceeded M 1, with a maximum magnitude of 2.5.

Seismic activity in March was characterized by a significant increase in the number of fracturing events. Swarms on 16 and 18 March totaled 124 shocks (M>=1) and brought the month's recorded earthquakes to 153, ~ 3 times as many as in January and February. The 16 March swarm began at 0530 and continued until 0050 the next day. Of the 107 shocks stronger than M 1, 28 were of M>=2 and three of M>=3. The bulk of the most energetic events originated from the central to W part of the edifice at 10-20 km depth, although one (at 1052) was located just NNW of the central crater at ~5 km depth. The strongest shock of the 18 March sequence, which included 17 events, occurred on the SW flank (a few kilometers S of Monte Nero) at ~10-15 km depth. An M 3.3 earthquake on 22 March at 1159 was ~15 km deep, roughly 6 km SSW of the summit (just S of Monte Vetore). The March seismicity was not accompanied by changes in volcanic tremor amplitude, which remained low throughout the month. The number and amplitude of low-frequency events showed little change after 3 February. A new seismic station (PZF) was installed on the lower NW flank (near Maletto), replacing station RCC, stolen in August 1989. With the new site, IIV's Etna network numbers 8 stations.

Ground deformation. (A. Bonaccorso, O. Campisi, G. Falzone, B. Puglisi, and R. Velardita.) Two tilt stations (SPC and CDV) operated during February, both on the S side of the volcano. Data from station SPC generally remained within resolution limits through February and March. A weak anomaly was recorded on the tangential component 18-20 February, then tangential data returned to the normal range. Radial values from recently installed station CDV remained within resolution limits through February, while tangential data began a (negative) excursion on 18 February that totalled 5 µrad by the end of the month. All instruments from this station were stolen on 1 March. Reoccupation of sites that form a triangle along the fracture zone between 1,800 and 1,500 m altitude on the S-SE flank (between benchmarks Bocche 1792, Serra Pizzuta Calvarina, and Mt. Stempato) did not show significant deformation since the previous measurements on 19 January.

Summit SO2 flux. (T. Caltabiano and R. Romano.) Rates of SO2 emission during Southeast Crater's eruptive episode on 2 February were three times mean values. Measurements 7, 14, and 21 February showed considerable variation. The five March measurements yielded SO2 flux of 2,500-14,000 t/d, increasing at the end of the month.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Santacroce, IIV.


Fuego (Guatemala) — March 1990 Citation iconCite this Report

Fuego

Guatemala

14.4748°N, 90.8806°W; summit elev. 3799 m

All times are local (unless otherwise noted)


Continuous gas emission; summit morphology appears unchanged since 1980

Overflights of Fuego were made on 15 and 16 February by volcanologists from INSIVUMEH and Michigan Tech. The following is from their report.

"Continuous gas emission was observed, with no evidence of any magma at the surface. The geometry of the summit crater and its surroundings (which influences the paths of pyroclastic flows during eruptive activity) was unchanged since 1980. COSPEC measurements of SO2 emission rates were made from the air, yielding 265 ± 33 t/d on 15 February and 120 ± 30 t/d on 16 February (3 and 8 determinations respectively). These rates are very similar to the 100 t/d measured in February 1980 and much less than the rates measured in February 1978 (660-1,700 t/d) when Fuego was actively erupting (Stoiber et al., 1983; reference under Santiaguito)."

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Otoniel Matías and Rodolfo Morales, Sección de Volcanología, INSIVUMEH; W.I. Rose, Jimmy Diehl, Robert Andres, Michael Conway, and Gordon Keating, Michigan Technological Univ, USA.


Galeras (Colombia) — March 1990 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Small phreatic ash emissions with spasmodic tremor and long-period seismicity

Small phreatic ash emissions continued in March, accompanied by spasmodic tremor and long-period seismicity (table 2). Incandescence was mainly observed in the W part of the crater. The number of low-frequency earthquakes increased 47% relative to February values, with an 86% increase in seismic energy release. However, the number of high-frequency events decreased 38% from February and energy release declined 28% (figures 17 and 18). Most earthquakes were centered in two zones under, W of, and S of the summit (figure 19). SO2 emissions measured on 15 and 22 March by COSPEC were at low-moderate levels, ranging from 630 to 1,380 t/d.

Table 2. Phreatic ash emissions and associated seismicity at Galeras, March 1990. Courtesy of INGEOMINAS.

Date Time Seismic Signal
09 Mar 1990 0233 Spasmodic tremor
11 Mar 1990 1448 Spasmodic tremor
11 Mar 1990 1618 Spasmodic tremor
11 Mar 1990 1652 Long-period
11 Mar 1990 2036 Spasmodic tremor
17 Mar 1990 1817 Long-period
17 Mar 1990 1921 Spasmodic tremor
18 Mar 1990 0631 Spasmodic tremor
27 Mar 1990 0609 Long-period
27 Mar 1990 1552 Spasmodic tremor
28 Mar 1990 1359 Spasmodic tremor
29 Mar 1990 0948 Spasmodic tremor
Figure (see Caption) Figure 17. Number of seismic events at Galeras, February 1989-March 1990. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 18. Daily energy release of high-frequency (dashed line) and low-frequency (solid line) seismicity at Galeras, March 1990. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 19. Epicenters of 67 seismic events at Galeras, March 1990. Courtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP.


Guagua Pichincha (Ecuador) — March 1990 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Phreatic explosions and tremor after 10 days of A-type shocks

After 15 months of quiet, phreatic activity began on 16 April at 0221. The activity was confined to the phreatic crater formed in 1981-82, on the NE side of the 600-m-diameter dome that occupies most of the caldera floor. Activity began with spasmodic harmonic tremor of small to intermediate amplitude, accompanied by strong fumarolic emissions generating a vapor column that rose at least 800 m. Several explosions were heard and recorded by seismographs 1.5 km and (very weakly) 9 km from the crater. Seven new fumaroles were observed within the 1981 crater, but by 17 April had joined to form a single fumarole 4 m in diameter. Non-juvenile material, rocks, and mud were thrown outward to 250 m from the vent, forming a layer 4 cm thick. The explosions enlarged the 1981 crater by ~20 m.

Precursory activity began with a M 2.3 earthquake on 5 April and a M 2.2 shock on 13 April. Only a few small events, both A- and B-type, were detected during subsequent days. The tremor had a typical frequency of 1.7 Hz on 15-17 April. Periods of tremor lasted as much as 3 hours, separated by intervals of low-amplitude tremor or quiescence. Intermittent explosions were also recorded, always associated with tremor. Only a few very small B-type events have been recorded since the onset of phreatic activity. Fumarolic waters remained at their normal temperature of 87°C.

Given the shallow character of the activity, geologists believed that it was partly related to the previous week's increased precipitation. Stepped-up monitoring and re-deployment of the Instituto Geofísico's seismic net (dismantled following the 1988 activity) were begun 16-17 April, and tilt stations and EDM lines were being resurveyed. The Instituto's hazard map and previously planned preparedness exercises for a hypothetical eruption of Guagua Pichincha were helping civil defense authorities to prepare for the possibility of increased activity.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately W of Ecuador's capital city, Quito. A lava dome grew at the head of a 6-km-wide scarp formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the lava dome. Many minor eruptions have been recorded since the mid-1500's; the largest took place in 1660, when ash fell over a 1,000 km radius and accumulated to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity.

Information Contacts: M. Hall, Instituto Geofísico de la Escuela Politécnica Nacional.


Irruputuncu (Chile-Bolivia) — March 1990 Citation iconCite this Report

Irruputuncu

Chile-Bolivia

20.73°S, 68.55°W; summit elev. 5163 m

All times are local (unless otherwise noted)


Eruption reported by press but geologist observes only fumarolic activity

December press reports in Bolivia of an eruption . . .[located 25 km NNW of Olca Volcano] remain unconfirmed, and attempts by Bolivian geologists to fly over the volcano in January were stymied by poor weather. State oil company (ENAP) geologist Patricio Sepulveda reported only normal fumarolic activity at Irruputuncu on 25 March.

Geologic Background. Irruputuncu is a small stratovolcano that straddles the Chile/Bolivia border. It is the youngest and most southerly of a NE-SW-trending chain of volcanoes. It was constructed within the collapse scarp of a Holocene debris avalanche whose deposit extends to the SW. Subsequent eruptions filled much of this scarp and produced thick, viscous lava flows down the W flank. The summit complex contains two craters, the southernmost of which is fumarolically active. The first unambiguous historical eruption took place in November 1995, when phreatic explosions produced dark ash clouds.

Information Contacts: J. Naranjo, SERNAGEOMIN.


Kama'ehuakanaloa (United States) — March 1990 Citation iconCite this Report

Kama'ehuakanaloa

United States

18.92°N, 155.27°W; summit elev. -975 m

All times are local (unless otherwise noted)


Strong earthquake swarm, suggesting magma movement

A vigorous earthquake swarm occurred off the S flank of Hawaii 11-19 March 1990 (figure 4). More than 300 events were registered, about 15 of M 3-4, and some of M >4. Seismologists associated many of the events, including the larger ones, with processes at Lōʻihi Seamount. No acoustic signals (T-waves) were reported.

Figure (see Caption) Figure 4. Portion of a seismogram recorded during Lōʻihi's 11 March 1990 earthquake swarm, by a station (AHU) 45 km from the epicentral area. Courtesy of R. Koyanagi.

Further Reference. Malahoff, A., 1987, Geology of the summit of Lōʻihi submarine volcano, in Decker, R.W., Wright, T.L., and Stauffer, P.H., eds., Volcanism in Hawaii: USGS Professional Paper 1350, p. 133-144.

Geologic Background. The Kama’ehuakanaloa seamount, previously known as Loihi, lies about 35 km off the SE coast of the island of Hawaii. This youngest volcano of the Hawaiian chain has an elongated morphology dominated by two curving rift zones extending north and south of the summit. The summit region contains a caldera about 3 x 4 km and exhibits numerous lava cones, the highest of which is about 975 m below the ocean surface. The summit platform also includes two well-defined pit craters, sediment-free glassy lava, and low-temperature hydrothermal venting. An arcuate chain of small cones on the western edge of the summit extends north and south of the pit craters and merges into the crests prominent rift zones. Seismicity indicates a magmatic system distinct from that of Kilauea. During 1996 a new pit crater formed at the summit, and lava flows were erupted. Continued volcanism is expected to eventually build a new island; time estimates for the summit to reach the ocean surface range from roughly 10,000 to 100,000 years.

Information Contacts: P. Okubo and R. Koyanagi, USGS Hawaiian Volcano Observatory.


Karymsky (Russia) — March 1990 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Slight thermal activity

The volcano was generally quiet during a 2 February overflight (figure 1). Pre-existing thermal areas were visible in the S and SW parts of the crater, although the vent was snow-covered. Slightly warm zones were also noted on the upper S flank.

Figure (see Caption) Figure 1. Summit crater of Karymsky, looking roughly SW on 2 February 1990. Courtesy of B. Ivanov.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: B. Ivanov, IV.


Kick 'em Jenny (Grenada) — March 1990 Citation iconCite this Report

Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


Strong T-phase signals suggest submarine eruption, but no activity detected at the surface

Seismic stations... began to record very strong acoustic (T-phase) signals, probably associated with an eruption of the... Kick-'em-Jenny... on 26 March at 1112. Overflights of the area during the period of vigorous seismicity did not reveal any water discoloration or other surface changes above the volcano, which had a summit depth of about 160 m in 1982.

Thirteen distinct seismic bursts, lasting up to 19 minutes, were recorded 26-27 March on instruments operated by the Seismic Research Unit, Univ of the West Indies. The IPGP's Mt. Pelée seismic network on Martinique, 250 km NNE of Kick-'em-Jenny, recorded strong T-waves on 26 March at 1117:22, 1502:30, 1723, and 2034 (the latter felt by residents of NW Martinique), and on 27 March at 0035:40 and 0424:25. T-waves reached IPGP's Soufrière de Guadeloupe net, 450 km N of Kick-'em-Jenny, on 26 March at 1118. The initial activity saturated the Grenada seismograph and the largest burst of seismicity, at about 1721 on 26 March, was felt on northern Grenada. After a single 14-minute episode that started at 0103 on 28 March, seismicity stopped on all but the Grenada instrument, which continued to record occasional low-frequency (0.5-2 Hz) signals for periods of about 30 seconds to more than 3 hours. The latest reported low-frequency episode occurred on 5 April between about 0500 and 0800.

Geologic Background. Kick 'em Jenny, an active submarine volcano 8 km off the N shore of Grenada, rises 1,300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous eruptions have occurred since 1939, mostly documented by acoustic signals. Prior to the 1939 eruption, when an eruption cloud rose 275 m above the ocean and was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Recent eruptions have modified the morphology of the summit crater.

Information Contacts: W. Ambeh, K. Rowley, L. Lynch, and L. Pollard, UWI; A. Redhead, Office of the Prime Minister, Grenada; J.P. Viode and G. Boudon, Observatoire Volcanologique de la Montagne Pelée, Martinique; C. Antenor and M. Feuillard, Observatoire de la Soufrière, Guadeloupe; J.L. Cheminée, N. Girardin, and A. Hirn, IPGP Observatoires Volcanologiques, France.


Kilauea (United States) — March 1990 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Eruption stops briefly then resumes after seismic swarm; lava destroys house

Lava flows . . . remained active during the first half of March. The main (Quarry) and low-volume (Roberts) flows continued to enter the ocean, while a third (Keone) flow advanced slowly to within 600 m of a highway at 30 m elevation (figure 66). Activity was periodically observed at Pu`u `O`o. Crusted lava in Kupaianaha pond averaged 30 m below the rim and only overturned a few times/day, in contrast to vigorous past activity. On the 19th, the eruption stopped and the lava pond roofed over. Small collapse pits were found in the lava pond's crust the next day. Only residual lava from the Quarry and Roberts lava tubes drained into the ocean on the 21st.

Activity resumed on the night of the 21st, with glow reported from the East rift zone. By the next day, active lava was visible in Pu`u `O`o, had risen to 20 m below the rim at Kupaianaha, and had reoccupied the tube system to 550 m elevation. Surface lava breakouts at 550 and 600 m elevation fed two flows. Lava followed the course of the January 1990 flow between the December 1986 and 1977 aa flows, and by the end of the month had reached 200 m elevation. Lava also followed the course of the Keone flow, to within 500 m of the intersection of highways 130 and 137. Kupaianaha pond remained active through 23 March when it again began to roof over ~30 m below the rim, and by the 26th, only small pahoehoe lobes were periodically active around the pond's margins.

Seismic signals . . . marked the eruption's changes. From early to mid-March, sporadic gas pistoning was recorded, manifested as background volcanic tremor decreasing to an essentially quiet state for several minutes, generally ending with a sharp burst of energy followed by continued background tremor. This activity subsided after 17 March, succeeded by a marked increase in tremor and, on the afternoon of 18 March, brief summit deflation.

At Kīlauea's summit, swarms of long-period tremor events occurred from late 16 March through midday 18 March and from the evening of 19 March through the early morning of the 21st (figure 67). A swarm of short-period microearthquakes began later that morning and continued until early 22 March. Five hours after the onset of the summit swarm, and several hours before eruptive activity resumed, a sudden increase in earthquakes occurred in the upper East rift zone between the summit and the active craters. The hypocenters were in two areas: near Makaopuhi (roughly midway between the summit caldera rim and Kupaianaha) and Pauahi (~5 km uprift from Makaopuhi). The swarm continued until the morning of 25 March.

Figure (see Caption) Figure 67. Preliminary locations of earthquakes in the Hawaii Island region, including Kīlauea and Lōʻihi, 1-26 March 1990. Courtesy of R. Koyanagi.

After lava returned to Kupaianaha on 22 March, variations in seismicity became less obvious. Tremor near Pu`u `O`o increased gradually and was relatively steady from the 24th until the end of the month.

Addendum: Eruptive activity declined on 5 April [see also 15:4], but had resumed by the night of the 6th. Lava entered Kalapana Gardens subdivision on 3 April, and within three weeks had destroyed a dozen houses.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: C. Heliker, P. Okubo, and R. Koyanagi, HVO; AP.


Klyuchevskoy (Russia) — March 1990 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strong summit tephra eruption; basaltic lava from SE flank vent

During an overflight by geologists on 2 February, vigorous ash emission fed a large eruption column that rose to ~5 km height and had a basal diameter of ~400-600 m (figure 3). Individual ash bursts were visible at the base of the column, although ash emission appeared to be continuous. A new vent was noted at 4,500 m elev on the NE slope of the Apakhonchich valley, on the upper SE flank. Vapor jets 200-300 m high were distinctly visible above this vent. A subsidiary vent downslope (at 3,970 m elev) fed basaltic lava flows. An ash plume extended 60-80 km E. The ashfall area on 2 February was ~1,600 km2.

Figure (see Caption) Figure 3. Tephra cloud from Kliuchevskoi's summit crater on 2 February 1990, in photograph looking roughly E. Arrow 1 indicates the new vent at 4,600 m elev on the SE flank, arrow 2 the effusive vent at 3,970 m elev. Courtesy of B. Ivanov.

Images from the NOAA 10 and 11 polar orbiting satellites showed several plumes from Kliuchevskoi. On 22 February at 1548, a thin plume extended ~80 km SE. A plume was next visible on 10 March at 0956. Although obscured by weather clouds a short distance ENE of the volcano, it formed a distinct cold area on the infrared image, indicating that it was at relatively high altitude. On 12 March at 0335, a very thin plume stretched 15-20 km NE from the Kliuchevskoi area, and on 15 March at 0942, a small diffuse plume extended S from the volcano. A thin plume extended 250 km NE on 3 April at 0903. Weather clouds . . . may have obscured additional eruptive activity.

Geologic Background. Klyuchevskoy is the highest and most active volcano on the Kamchatka Peninsula. Since its origin about 6,000 years ago, this symmetrical, basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during approximately the past 3,000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 and 3,600 m elevation. Eruptions recorded since the late 17th century have resulted in frequent changes to the morphology of the 700-m-wide summit crater. These eruptions over the past 400 years have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: B. Ivanov, IV; W. Gould, NOAA/NESDIS.


Langila (Papua New Guinea) — March 1990 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Glow; gas emission; rumbling

"Activity consisted of weak to moderate white-grey emissions from Crater 2. Weak, steady, red glow was observed 1-4 and 25-31 March. Rumbling noises were heard on the 28th and 29th. Crater 3 remained quiet throughout the month. Seismicity was at a low level."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Lascar (Chile) — March 1990 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


20 February eruption ejected about 10-30% of the lava dome in crystal-rich fragments

After the 20 February eruption, Lascar returned to its normal fumarolic activity with the generation of mainly white plumes that rise 300-500 m above the rim of the active central crater. Between 20 and 24 March, geologists from the SERNAGEOMIN and several British universities observed the volcano from the ground and from the active crater's rim, reached on the 23rd from the N slope and on the 24th from the S slope. The following is from their report.

"Examination of photographs taken by J.R. Gerneck (Chile Hunt Oil) during the 20 February eruption revealed three discrete plumes. The first, white in color, consisted mainly of steam, and was overtaken by two smaller, grayish, higher velocity clouds. Geologists interpreted this sequence as an initial steam explosion related to the partial destruction of the dome that fills the bottom of the active crater, followed by phreatomagmatic eruptions. The eruption products, primarily fragments of the dome, occurred as shattered, dark, dense blocks of porphyritic pyroxene andesite, ranging to white, semi-vesicular, largely disaggregated blocks of similar composition, with thin, darker, quenched rims. The blocks were composed of plagioclase, clinopyroxene, and orthopyroxene phenocrysts, small amounts of magnetite, and scarce reacted olivine and hornblende crystals in a glassy groundmass. They are enriched in crystals compared to bombs from the 1986 eruption, with larger phenocrysts (up to 2 mm), and a larger proportion of pyroxene. No olivine or hornblende were found in the 1986 bombs, which included occasional xenoliths of partially molten granite. The 20 February blocks were distributed almost symmetrically in a radius of 4 km around the crater, associated with asymmetrical impact craters, elongate parallel to block trajectories. The number of blocks increased dramatically close to the vent where they covered 70-90% of the surface. No fresh ash was observed close to the volcano.

"Preliminary calculations, based on the volume of ejecta and the size of the plume, indicate that between 10 and 30% of the dome was erupted on 20 February. This estimate is supported by 5 March airphotos of the interior of the crater and by observations made from the crater rim, where a large part of the dome can still be observed in the bottom of the crater. The dome has apparently continued deflating since our last observation in November 1989 (14:11). A hole appeared to be present in its center, produced by collapse into the vent. Fumaroles were located around the dome, along ring fractures as observed in April 1989. Gas was still venting at extremely high velocity, creating the same jet-like noise reported in November. The strongest fumaroles were on the dome's NE and SW edges. A strong smell of HCl and SO2 was recorded from the N rim. Deposits of yellow sulfur are visible associated with the fumaroles. Temperatures were measured (by Clive Oppenheimer) using an infrared radiometer (after dark, to eliminate the effects of sunlight). The fumaroles were observed to be glowing red hot and bright spots were seen over the dome. Preliminary data show the largest fumarole to have a temperature of 700-800°C, while the surface of the dome had an average temperature of 100-200°."

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg, SERNAGEOMIN, Santiago; S. Matthews, Univ College London; C. Oppenheimer, Open Univ; S. Sparks and M. Stasiuk, Univ of Bristol.


Ol Doinyo Lengai (Tanzania) — March 1990 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Airphotos suggest continued production of small lava flows on crater floor

Airphotos taken between 16 and 18 October 1989 by Geoff Price and 7 March 1990 by Lester Eshelman suggest that no large-volume lava flows have been extruded since June 1989. Only minor changes appear to have occurred to cones in the crater since . . . 24 June-1 July and 22-25 November 1988.

During the October 1989 overflight, clouds partially obscured the crater floor, which appeared pale gray, with a slightly darker lava flow (F13), previously seen June-August 1989, near the W wall (figure 14). Cones and vents on the crater floor had changed little since June-August 1989. A vent (T12) seen in September 1989 was no longer visible at the base of the E crater wall. A new vent (T13) had been added to the old complex (T5/T9) which now appeared as several closely spaced cones joined at the base. A possible small hornito (H6) was observed between T5/T9 and T8. The width of the overflow across the former saddle (M2M1) had not changed, but the area of lava S of the saddle may have increased slightly, particularly on the W side of the southern depression.

Figure (see Caption) Figure 14. View of the N crater and southern depression at Ol Doinyo Lengai, looking roughly S between 16 and 18 October, 1989. Traced from a photograph by Geoff Price; courtesy of C. Nyamweru.

On 7 March 1990, bright sunshine and clear visibility revealed small lava flows of varying colors on the crater floor. However, none were dark gray or black, suggesting that they were of different ages and probably more than a few days (but at most a few weeks) old. No new vents were recognized, and the area of lava in the southern depression had not increased. Flow F13 was white, but had been partially covered by younger brown flows from the W side of T5/T9T13 (figure 15). Many flows of different colors were seen on its W and N slopes, including a narrow white tongue of lava (roughly 4-5 m long and 50 cm wide) stretching from the vent down the flank of the cone complex. Similar features were observed forming on T4/T7 in 1988. Several dark grooves extending from the slopes of T5/T9 appear to be narrow channels formed when a lava flow built levees, restricting it to a narrow stream. The formation of similar features was observed . . . in June and November 1988.

Figure (see Caption) Figure 15. View of the N crater and southern depression at Ol Doinyo Lengai, looking roughly S on 7 March 1990. Traced from a photograph by L. Eshelman; courtesy of C. Nyamweru.

Notes on individual vents and cones are as follows: T5/T9/T13: Probable center of activity since October 1989, with emission of small thin flows from very small vents, mostly on its W slopes. The top has merged into a single broad cone with several dark patches indicating cracks or vents near the top. T4/T7: Brown and buff colors dominate. Small black patches at the top of two mounds on the E side indicate vents still open. No sign of new material extruded from these vents. Generally smooth and weathered. Lava production from T4/T7 was last reported in November 1988 (13:12). T8: Brown and buff colors dominate. Top of pinnacle appears slightly less steep. No sign of new material. Lava spattering was seen in November 1988, but only gas emission has been observed since then. T10: Gray; part of ridge that joined this cone to the E crater wall may have collapsed. Bubbling lava was seen near T10 in May 1989 (14:06). T11: Pale gray; center of cone is flat and inactive. Possible collapse at N edge. No recent lava emission was apparent and none has been reported since November 1988.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, Kenyatta Univ.


Llaima (Chile) — March 1990 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Small explosion ejects incandescent column; strong seismicity

A small explosion on 25 February, followed by the ejection of a glowing column from the main crater, was reported by Conguillio National Park administrator Omar Toledo. He added that small sediment-laden streams of water had flowed down the E flank at times when thawing does not normally occur. Field observations by geologists 5-18 March revealed occasional increases in fumarolic activity from the main crater. On 10 March, vigorous 40-60-second puffs of gas were emitted every minute during the early evening. After a summit climb, Conguillio National Park rangers reported that intense fumarolic activity produced grayish gases and a strong sulfur odor. Rockslides occurred every 1-2 hours on the NE flank.

A portable seismograph was operated 19-22 March at the volcano's W foot (in Los Paraguas National Park) by Jaime Campos and Bertrad Delovis, Dept de Geofísica, Univ de Chile. Intense volcanic earthquakes and tremor were recorded. Another portable seismograph will be installed at the NE foot (near Conguillio Lake) by Univ de la Frontera scientists.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: H. Moreno, Univ de Chile; J. Naranjo, SERNAGEOMIN, Santiago.


Long Valley (United States) — March 1990 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Continued earthquake swarm in caldera's S moat

Earthquake swarm activity in the caldera's S moat continued through March. A swarm of >300 events of magnitude greater than or equal to 2.8 occurred 3 March, followed by smaller swarms on 9, 18, 28, and 30 March. The swarm on the 30th included more than 100 events, all of which were smaller than M 2. Only a few isolated events occurred beneath Mammoth Mountain. Two-color geodimeter measurements indicate that extension across the S moat and resurgent dome continued through March at the 5 ppm/year rate that began in late September.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS Menlo Park.


Lonquimay (Chile) — March 1990 Citation iconCite this Report

Lonquimay

Chile

38.379°S, 71.586°W; summit elev. 2832 m

All times are local (unless otherwise noted)


Eruption ends after 13 months; continued fumarolic activity and small-scale collapse

The following is a report from José A. Naranjo and Hugo Moreno R. Most field observations were made in collaboration with R.S.J. Sparks and Mark Stasiuk, Bristol Univ, and Clive Oppenheimer, Open Univ.

"Field evidence suggests that the eruption from Navidad Cone ended between 22 and 25 January 1990, after 13 months of activity. Explosions with pyroclastic ejections stopped between 29 December and 10 January. José Córdoba, a teacher from Malalcahuello, observed and photographed one of the last explosions, on 27 December at 1930-2000. Strong explosions ejected bombs, and white clouds consisting mainly of water vapor rose as much as 600 m above the crater. He also observed two small landslides that originated from the cone's flank (above the vent), followed by white steam clouds that rose along the scar left on the N flank (see below). These collapses may represent the early stages of the slumping observed on 20 January.

"Chlorine gases and minor water vapor fumaroles remained along concentric fractures within the main crater 3-17 March. Compared with previous observations on 21 November and 20 January, the innermost annular fractures exhibited clear evidence of collapse, leaving scarps 1.5-2 m high (figure 16). Fumes from the outermost fractures near the crater rim yielded temperatures of 86°C.

Figure (see Caption) Figure 16. View N across the crater of Navidad scoria cone, Lonquimay volcano, from the highest (S) part of the rim. 21 November 1989 (top): Concentric fractures had formed on the W side of the innermost nested crater; intense water vapor fumaroles aligned with them, and a strong steam jet was emitted from a glowing vent on the inner wall. 20 January 1990 (middle): Vapor emission had ceased and collapse had occurred along the eastern inner wall, the southern fractures, and around the N wall-vent. A funnel-shaped crater about 120 m in diameter had clearly widened by collapse since November. 5 March 1990 (bottom): Only dry gases were emitted along the annular fractures, while no fumes were visible at the main crater vents. Fractures had widened on the S part of the cone, and collapse scars appeared on the E part. Sketched from photographs by J.A. Naranjo.

"By March, the source vent was completely covered by talus from the unstable flank material above it. Discontinuous slumping of this debris left a funnel-shaped scar about 90 m high and 30 m deep, with walls that project upward through the crater's inner concentric fractures. The channel was enlarged by successive collapses that were up to 30 m deep and 25 m wide near the vent.

"The lava surface remained almost completely covered by a 1-3-m-thick mantle of debris transported on it. Former arched transverse debris ridges were disturbed and a gash of fresher lava was formed along the debris mantle's front axis. The top parts of most ridges showed higher temperatures (up to 390°C at 30 cm depth) than the almost cool gullies between them. After 20 January, the debris-covered lava advanced 120 m before it stopped flowing. This smooth surface texture conspicuously contrasted with the spiny, jagged surface presented by the blocky/aa lava immediately downstream.

"The fumaroles aligned with the central vent and the flow to the ENE showed decreased activity when compared to April 1989, although their temperatures remained at 190° and 250-300°C, 600 and 300 m from Navidad Cone respectively.

"On 17 March, a 948°C thermocouple measurement was obtained ~7 m below the lava surface, 1.5-2 km downstream from the source vent. The main lobe in the Lolco River valley had not advanced since 20 November 1989, although it showed a front thickness that had increased slightly, from 45-50 m in November to 55-60 m in March."

Geologic Background. Lonquimay is a small, flat-topped, symmetrical stratovolcano of late-Pleistocene to dominantly Holocene age immediately SE of Tolguaca volcano. A glacier fills its summit crater and flows down the S flank. It is dominantly andesitic, but basalt and dacite are also found. The prominent NE-SW Cordón Fissural Oriental fissure zone cuts across the entire volcano. A series of NE-flank vents and scoria cones were built along an E-W fissure, some of which have been the source of voluminous lava flows, including those during 1887-90 and 1988-90, that extended out to 10 km.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; H. Moreno, Univ de Chile.


Manam (Papua New Guinea) — March 1990 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Vapor emission; seismicity remains low

"Activity remained at a low level in March. The summit was obscured for long periods (4-9 and 11-23 March), but when weather cleared, emissions of white vapour in weak to moderate amounts were observed from both craters. Seismicity remained low, with daily totals of volcanic earthquakes ranging from 900 to 1,200. No significant changes were noted in seismic amplitudes and ground deformation."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Moutohora Island (New Zealand) — March 1990 Citation iconCite this Report

Moutohora Island

New Zealand

37.855°S, 176.974°E; summit elev. 352 m

All times are local (unless otherwise noted)


CO2-rich gases from thermal area

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov.

"...Thermal activity manifests itself largely in areas of hydrothermally altered, steaming ground. The major thermal feature is a vigorously boiling pool near sea level in Sulphur Bay (Ramsay and Hayward, 1971). As indicated by the occurrence of bubble zones (Glasby, 1971), submarine thermal activity extends well SW of the island.

"During both the 1988 and 1990 cruises of the RV Vulkanolog, gas and water samples were collected from the main pool. The waters are essentially acid sulfate (4,000 mg/kg; Cl, 20 mg/kg), steam-heated, initially non-saline groundwater. Compositions of 1988 gases are compared in table 1 with those of 1974 samples from Sulphur Bay spring and the seafloor at 34 m depth (Lyon and others, 1977).

Table 1. Chemical composition of gases collected from vents on and near Whale Island (in mmol/mol of dry gas), March 1974 (Lyon and others, 1977) and during the September 1988 cruise of the RV Vulkanolog.

Vent Seafloor (34 m depth) Island (pool)
Date 10 Sep 1974 10 Sep 1974 10 Sep 1974 10 Mar 1988 10 Mar 1988
C 15 15 99 99 99
CO2 734 680 967 935 937
H2S -- -- -- 12.5 12.2
He -- -- -- 0.0028 0.0010
Ne -- -- -- 0.00004 0.00006
Ar 1.2 0.8 0.07 0.04 0.03
H2 0.1 0.3 3.2 11.2 9.7
O2 14.1 7.5 <0.01 <0.03 <0.03
N2 131 119 11 13 11
CH4 120 193 18 28 30

"All gases reflect a hydrothermal origin, and their major component is CO2. The seafloor gases are contaminated with air, probably after sampling. Their higher CH4 and lower H2 contents suggest longer residence at lower temperatures compared to the island samples. The composition of the latter has remained essentially unchanged over the last 14 years."

References. Glasby, G.P., 1971, Direct observation of columnar scattering associated with geothermal gas bubbling in the Bay of Plenty, New Zealand: New Zealand Journal of Marine and Freshwater Research, v. 5, p. 483-496.

Lyon, G.L., Giggenbach, W.F., Singleton, R.J., and Glasby, G.P., 1977, Isotopic and Chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand: New Zealand Department of Scientific and Industrial Research Bulletin, v. 218, p. 65-67.

Ramsay, W.R.H., and Hayward, B.W., 1971, Geology of Whale Island: Tane, v. 17, p. 9-32.

Geologic Background. Moutohora (Whale) Island forms the summit of a largely submerged Pleistocene dacitic-andesitic complex volcano that lies 11 km offshore from Whakatane in the Bay of Plenty. The 2.5-km-long island includes a central dome complex flanked, by East Dome and Pa Hill lava dome, which forms the NW tip of the island. Acid hot springs, steaming ground, and fumaroles are present on the island. The central cone and east dome are both older than the roughly 42,000 before present (BP) Rotoehu Tephra, and Pa Hill dome is overlain by the 9,000 years BP Rotoma Ash, but may be considerably older. It was included in the Catalog of Active Volcanoes of the World (Nairn and Cole, 1975) based on its thermal activity.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Olca-Paruma (Chile-Bolivia) — March 1990 Citation iconCite this Report

Olca-Paruma

Chile-Bolivia

20.939°S, 68.413°W; summit elev. 5705 m

All times are local (unless otherwise noted)


Fumarolic activity and minor seismicity

Fumarolic activity, accompanied by low-intensity seismicity, was described by policemen from Ujina, 15 km SW of Olca, on 13 November 1989. Minor seismicity associated with Olca was noted in mid-March 1990 by state oil company (ENAP) geologist Patricio Sepulveda.

Geologic Background. A 15-km-long E-W ridge forming the border between Chile and Bolivia is comprised of several stratovolcanoes with Holocene lava flows. Andesitic-dacitic lava flows extend as far as 5 km N from the active crater of Volcán Olca and to the north and west from vents farther to the west. Olca is flanked on the west by Cerro Michincha and on the east by Volcán Paruma, which is immediately west of the higher pre-Holocene Cerro Paruma volcano. Volcán Paruma has been the source of conspicuous fresh lava flows, one of which extends 7 km SE, and has displayed persistent fumarolic activity. The only reported historical activity from the complex was a flank eruption of unspecified character between 1865 and 1867, which SERNAGEOMIN notes is based on unconfirmed records.

Information Contacts: J. Naranjo, SERNAGEOMIN.


Pacaya (Guatemala) — March 1990 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Continued weak Strombolian explosions; low SO2 flux

Volcanologists from INSIVUMEH and Michigan Tech visited Pacaya on 13, 14, 17, 18, and 28 February and 1, 2, 3, and 4 March, and flew over the volcano on 16 February. The following is from their report.

"Activity at Pacaya continued at a low level, consisting of brief (10-60 second), weak (ejecta typically thrown 2-100 m), Strombolian explosions with reposes of <1 to several minutes. All activity was from a small cone, 6 m high and 8 m wide at its rim, within MacKenney crater. The explosions were accompanied by gas emission (with jet-like noise) and often by fine ash clouds.

"On 17 February, during activity that was typical of the observation period, 78 COSPEC scans were made from a ground observation site 1.25 km from MacKenney crater (at Cerro Chino). Pacaya was emitting SO2 at an average rate of 30 t/d, with the measured range varying between 3 and 130 t/d. Higher fluxes were directly associated with observed small explosions. The new SO2 observations at Pacaya were much lower than values measured several times from 1972 until 1980 (Stoiber et al., 1983; reference under Santiaguito), which were generally between 250 and 1,500 t/d."

Geologic Background. Eruptions from Pacaya are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the older Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1,500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate scarp inside which the modern Pacaya volcano (Mackenney cone) grew. The NW-flank Cerro Chino crater was last active in the 19th century. During the past several decades, activity has consisted of frequent Strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and covered the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit.

Information Contacts: Otoniel Matias and Rodolfo Morales, Sección de Volcanología, INSIVUMEH; W.I. Rose, Jimmy Diehl, Robert Andres, Michael Conway, and Gordon Keating, Michigan Technological Univ.


Rabaul (Papua New Guinea) — March 1990 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Seismicity remains relatively low; minor deflation

"Activity remained at a low level in March. A total of 265 caldera earthquakes was recorded. Daily earthquake totals ranged from 0 to 24, with the highest daily total recorded in a small Greet Harbour swarm on 18 March that included two felt events (ML 2.8 and 2.6). During the month, seismicity was broadly distributed within the caldera seismic zone. Levelling measurements on 26 March indicated deflation of 2 mm at the S tip of Matupit Island since previous measurements on 20 February."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Raoul Island (New Zealand) — March 1990 Citation iconCite this Report

Raoul Island

New Zealand

29.27°S, 177.92°W; summit elev. 516 m

All times are local (unless otherwise noted)


Increased microseismicity but no changes in thermal activity

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov. The island was visited on 30 January 1990.

"A considerable increase in microseismic activity to ~180 events/day, starting at the beginning of January 1990, was recorded by the Raoul Island seismic station. A similar swarm of minor shocks (Adams and Dibble, 1967) and an increase in hydrothermal activity (Healy et al., 1965) preceded the 1964 eruption. There were, however, no significant changes in the appearance and emission rate of thermal fluids from the main area of geothermal discharge along the W shore of Green Lake since the last visit of RV Vulkanolog in March 1988. Water and steam samples were collected in 1988 and 1990. The compositions of the 1988 samples are compared in table 1 with those reported by Weissberg and Sarbutt (1966) for samples collected shortly after the 1964 eruption. Gas compositions point to an essentially hydrothermal origin with insignificant contributions from high-temperature magmatic gases. Heavy seas prevented landing on Curtis Island, the other island in the Kermadecs showing thermal activity."

Table 1. Chemical composition (in mmol/mol of dry gas) of steam samples collected from the main fumarolic vents on Raoul Island in December 1964 (shortly after the 1964 eruption; Weissberg and Sarbutt, 1966) and during the March 1988 cruise of the RV Vulkanolog.

Dry Gas (mmol/mol) 08 Dec 1964 10 Mar 1988
  Sample 1 Sample 2 Sample 1 Sample 2
C 100 83 96 96
CO2 855 912 984 969
H2S 12.2 -- 0.9 0.9
He -- -- 0.005 --
Ne -- -- 0.00008 --
Ar -- -- 0.07 0.28
H2 -- 0.7 0.3 0.2
O2 19.2 7.3 <0.1 5.0
N2 113 78 14 25
CH4 0.50 1.70 0.11 0.07

References. Adams, R.D., and Dibble, R.R., 1967, Seismological studies of the Raoul Island eruption, 1964: New Zealand Journal of Geology and Geophysics, v. 10, p. 1,348-1,361.

Weissberg, B.G., and Sarbutt, J., 1966, Chemistry of the hydrothermal waters of the volcanic eruption on Raoul Island, November 1964: New Zealand Journal of Science; v. 9, p. 426-432.

Geologic Background. Anvil-shaped Raoul Island is the largest and northernmost of the Kermadec Islands. During the past several thousand years volcanism has been dominated by dacitic explosive eruptions. Two Holocene calderas exist, the older of which cuts the center the island and is about 2.5 x 3.5 km wide. Denham caldera, formed during a major dacitic explosive eruption about 2200 years ago, truncated the W side of the island and is 6.5 x 4 km wide. Its long axis is parallel to the tectonic fabric of the Havre Trough that lies W of the volcanic arc. Historical eruptions during the 19th and 20th centuries have sometimes occurred simultaneously from both calderas, and have consisted of small-to-moderate phreatic eruptions, some of which formed ephemeral islands in Denham caldera. An unnamed submarine cone, one of several located along a fissure on the lower NNE flank, has also erupted during historical time, and satellitic vents are concentrated along two parallel NNE-trending lineaments.

Information Contacts: I. Nairn, P. Otway, B. Scott, and C. Wood, NZGS Rotorua; W. Giggenbach, DSIR Chemistry, Petone.


Redoubt (United States) — March 1990 Citation iconCite this Report

Redoubt

United States

60.485°N, 152.742°W; summit elev. 3108 m

All times are local (unless otherwise noted)


Moderate explosions and dome extrusion; rootless phreatic explosion as eruptions interact with glaciers

Quoted material is from the AVO staff. Information about the 4, 9, and 14 March explosive episodes supplements the initial reports in 15:02.

"Lava dome growth disrupted by moderate explosions and gravitational collapse continued. Since 15 February, explosive episodes have occurred at average intervals of 3-9 days (table 1). Explosive episodes were associated with pyroclastic flows and surges that triggered floods and lahars in the Drift River valley, which drains the volcano's N flank (figure 8). Seismicity remained centered on Redoubt from the surface to a depth of about 10 km, but earthquakes of M >= 2.0 have not occurred since 9 March. The summit seismometer that was damaged during the 15 February event was removed in March and three new seismometers were placed on the volcano's summit and flanks. COSPEC measurements began on 20 March; data are collected as weather permits. SO2 emission rates have ranged from 1,600 to 6,000 t/d."

Figure (see Caption) Figure 8. Sketch map of the Drift River valley and related drainages on the NE flank of Redoubt. The Drift River oil facility is between the mouth of the Drift River and Rust Slough. Courtesy of AVO.

Since early January, deposition in the Drift River's main channel has diverted significant amounts of flood water and debris into Rust Slough, S of the Drift River oil facility. An L-shaped 4-m-high levee upstream from the oil facility was designed to protect it from Drift River floods, but neither levees nor topography protect its S side. Beginning on 4 March, deposition in Rust Slough has diverted floodwater farther southward into Cannery Creek, just upstream of the Drift River facility. None of the subsequent floods associated with March-mid April explosive episodes have affected the oil facility.

Explosive episode, 4 March. "An explosive event that occurred at 2039 was recorded for 8 minutes at the Spurr station (a regional seismometer about 100 km NNE of Redoubt that has been operating since the onset of the eruption). By 2110, an ash plume was reported to an altitude of 12 km; the plume moved N20°E and ashfall occurred 225 km away. Moderate flooding occurred in the Drift River. A new diversion upstream of the Drift River oil facility caused much of the flow to be diverted S of the facility (from Rust Slough into Cannery Creek).

Explosive episode, 9 March. "An explosive event occurred at 0951 and was recorded for 10 minutes at the Spurr station. Tephra fell primarily W of the volcano; Port Alsworth, 95 km SW of the volcano, received a light dusting from the southern margin of the plume. Floodwater reached the Drift River oil facility about 2 3/4 hours after the onset of the event.

Explosive episode, 14 March. "Explosive activity that began at 0947 was recorded for 14 minutes at the Spurr station. Tephra fell E of the volcano; the Drift River oil facility reported heavy ashfall from 1057 to 1247. Oil facility crews were evacuated because of the heavy ashfall. Traces of ash were reported on the Kenai Peninsula and in the Anchorage area." Satellite images (figure 9) showed the plume moving ENE. The temperature at the top of the dense portion of the plume was -40°C at 1030, corresponding to an altitude of about 7 km. Winds were relatively light, and by 1230, the plume extended less than 150 km N and about 100 km E of the volcano.

Figure (see Caption) Figure 9. Image from the NOAA 10 polar orbiting satellite, 14 March at 1054, about an hour after the onset of the eruptive episode. An elongate plume extends ENE of Redoubt. Courtesy of G. Stephens.

"Moderate flooding occurred in the lower Drift River valley. Peak flow velocity was about 6 m/sec. The flood reached the oil facility about 2 1/4 hours after the onset of the explosive episode. The flood carried numerous ice blocks and hot angular dome rocks 16 km from the glacier, where peak discharge was estimated at 1200 m3/sec.

"On 15 March, after a vigorous 2.5-minute seismic event was recorded at all seismic stations, an AVO field crew was warned about a possible explosion. They reported no changes in steam plume activity and did not hear any noises. However, 20 minutes later, they noted an approximate doubling of the Drift River's discharge 4 km downstream from the glacier. The increased discharge was accompanied by large quantities of cobble-sized ice.

"A small dome in the summit area was observed by field crews on 16, 18, 20, and 21 March. The dome appeared to be growing slowly between observations.

Explosive episode, 23 March. "Seismicity indicating the onset of explosive activity began at 0404 and was recorded for 8 minutes at the Spurr station. Seismic activity at the summit stations had increased around 0000 on 22 March and had stayed at elevated levels for most of the day. Seismic activity then decreased several hours before the 23 March explosive episode. A plume was reported to 10.5 km but appeared to be mostly steam. Light ashfall was observed W of the mountain, but ash did not fall on any community. Discharge increased in the Drift River."

An image from the NOAA 11 polar orbiting satellite at 0430 (figure 10), 26 minutes after the onset of the explosive episode, showed a plume extending WNW from the volcano. The top of the dense portion of the plume had a temperature of -39°C, yielding an altitude estimate of slightly less than 9 km based on the radiosonde temperature/altitude profile over Anchorage 1.5 hours earlier. The plume continued to move rapidly WNW, and by 1430, 10.5 hours after the explosion, its center was about 850 km from the volcano.

Figure (see Caption) Figure 10. Image from the NOAA 11 polar orbiting satellite, 23 March at 0430, about 30 minutes after the start of the eruptive episode. The nearly circular plume is just WNW of Redoubt. Courtesy of G. Stephens.

"Pyroclastic flow deposits covered the lower Canyon (below 825 m) and the upper piedmont area (above 500 m) of the Drift glacier. The deposits were generally hot, dry, and friable; where they rested on snow, the basal part of thick deposits, and those less than 50 cm thick, were wet and warm to the touch. Pyroclastic deposits were still hot (325°C) when measured on 26 March.

"Views into the crater on 23 March were largely obscured by steam but much of the dome appeared missing from the summit area. Poor weather obscured observations of the summit area from 26 March until 6 April.

Explosive episode, 29 March. "Seismic activity indicated that an explosive event began at 1033 and was recorded for 7 minutes at the Spurr station. An increase in discharge of the Drift River was reported, reaching the oil facility by 1307. Pilots reported a plume, consisting chiefly of steam, to 15 km. Tephra fallout appears to have been similar to that of 4 March; light ashfall was reported to 225 km N-NE of the volcano.

"Poor weather prevented ground observations or views of the glacier. Deposits from a debris flow or hyperconcentrated flow were observed in the upper valley and flooding appeared similar to 23 March. No hot debris or ice blocks were observed in the upper valley.

Explosive episode, 6 April. "Seismicity increased throughout the morning of 6 April. An explosive event began at 1723 and was recorded for 7-8 minutes at the Spurr station. Seismicity declined after the explosive event. An ash plume was reported to 9 km; wind shear caused the lower part of the plume to drift NW and the upper part to drift E. The ash plume reached the W coast of the Kenai Peninsula by 1808, but only light ashfall was reported in Kenai during the evening.

"Pyroclastic flow deposits overlay the glacier down to about the 610 m level. A debris flow of dome-rock material and ice boulders flowed onto the Drift River valley, and peak flow velocity was estimated at 22 m/s. Peak discharge attenuated quickly downvalley.

Dome growth and hydrologic events 7-13 April. "A dome was first observed in the summit area on 7 April. This dome appeared to be larger when observed on 10 and 13 April and was greatly oversteepened on the N face.

"On 7 April, discharge near the E canyon mouth of the Drift River glacier fluctuated by 30-50% several times during a 1/2-hour observation period. A flood of ice blocks up to 1 m across caused a 4-fold discharge increase in one of the large glacier canyons. Repeated increases in discharge were noted over a 15-minute observation period. An iceslide blocked the entire width of the canyon bottom upstream of the increased discharge area. Episodic release through a tunnel at the base of the ice jam may explain the surges observed at the canyon mouth.

"On 10 April a rootless phreatic eruption was noted on the Drift Glacier at the 890 m level, causing a vigorous ash and steam plume to rise 1,000 m. A series of explosions migrated N and S of this area along a glacier bed stream, producing an elongate crater perhaps 300 m long. Numerous small pyroclastic flows emanated from the explosion area and formed a small pyroclastic flow fan that dammed the main water flow from the dome area for about an hour. Failure of the dam caused a flood with an estimated discharge of 10 m3/s.

Explosive event, 15 April. "A moderate explosive event occurred at 1440 and lasted about 8 minutes at the Spurr station. The ash plume reached elevations between 9 and 12 km and the plume moved N-NW. There were no clearly identifiable seismic precursors. Seismic activity before and after the event appeared unchanged." [See also 15:04].

Geologic Background. Redoubt is a glacier-covered stratovolcano with a breached summit crater in Lake Clark National Park about 170 km SW of Anchorage. Next to Mount Spurr, Redoubt has been the most active Holocene volcano in the upper Cook Inlet. The volcano was constructed beginning about 890,000 years ago over Mesozoic granitic rocks of the Alaska-Aleutian Range batholith. Collapse of the summit 13,000-10,500 years ago produced a major debris avalanche that reached Cook Inlet. Holocene activity has included the emplacement of a large debris avalanche and clay-rich lahars that dammed Lake Crescent on the south side and reached Cook Inlet about 3,500 years ago. Eruptions during the past few centuries have affected only the Drift River drainage on the north. Historical eruptions have originated from a vent at the north end of the 1.8-km-wide breached summit crater. The 1989-90 eruption had severe economic impact on the Cook Inlet region and affected air traffic far beyond the volcano.

Information Contacts: AVO Staff; SAB.


Ruapehu (New Zealand) — March 1990 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Phreatic explosions stop; increased tremor

Phreatic eruptions had apparently stopped by 1 February. A possible eruption cloud was reported on 19 March, but a field inspection that day revealed only steam rising from the lake surface. There was no evidence of recent surging associated with small eruptions. Crater Lake was battleship gray with yellow and gray sulfur slicks. No convection was observed over the main vent, and only faint upwelling could be detected over the N vents. The lake temperature had cooled to 34.1°C from 46.5°C on 6 February. A sizeable lake had formed in an area of ice collapse in the valley draining Crater Lake to the S. Since 1 February, the lake had grown from ~60 ± 15 m to 100 ± 30 m. Sudden release of the lake could cause flooding in the Whangaehu River.

Volcanic tremor gradually declined in February, nearing background levels by 8 March. Continuous tremor with fairly uniform amplitude changed to bursts of tremor alternating with periods of quiet, similar to small volcanic earthquakes. On 8 March, tremor increased to high levels and broadened its frequency range, with 1 and 1.5 Hz tremor in addition to the usual 2 Hz signal. Tremor remained strong for 2-3 days before declining to more moderate amplitude. During the period of strongest activity, 6-hour energy release reached 400-1,400 x 104 joules, exceeding levels that accompanied the January 1982 eruptions, but less than in September 1982, when there were no eruptions and declining lake temperature. Tremor increased again on 16 March, almost to the level of 8 March, but by the 22nd had decreased to moderate-strong amplitude. EDM measurements on four lines across the N portion of the crater detected only small (<7mm) changes since the 1 February survey.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.

Information Contacts: P. Otway, DSIR Wairakei.


Nevado del Ruiz (Colombia) — March 1990 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Minor ash emission; seismicity remains low

The number of earthquakes and seismic energy release remained low in March. Located events were centered W and SW of the crater. The strongest recorded earthquake (M 2.1) occurred 21 March. Only a few short pulses of low-energy tremor were recorded, except for a high-energy episode on 12 March at 2301, associated with a small ash emission. Five COSPEC measurements yielded an average SO2 flux of 1,540 t/d, similar to the previous month. Deformation measurements showed no significant changes.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Rumble III (New Zealand) — March 1990 Citation iconCite this Report

Rumble III

New Zealand

35.745°S, 178.478°E; summit elev. -220 m

All times are local (unless otherwise noted)


Submarine summit bathymetry; bubble plumes in water column

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov.

"Considerable uncertainty remains about the minimum depth to the summit of Rumble III seamount. Early bathymetric measurements place it at 117 m depth (Kibblewhite and Denham, 1967), while later data and surveys by the RV Vulkanolog in March 1988 suggest a depth of 200 m. A special effort was therefore made to locate its highest point and to determine its depth.

"From echograms, it appears that the uncertainty may largely be due to the production of gas-rich, probably volcanic fluids from the summit area (Kibblewhite, 1966). Close inspection of the echograms shows that reflections above 200 m are probably caused by a plume of expanding bubbles, as they are invariably Separated from the solid reflector (the true summit) by a non-reflecting zone. There, the bubbles are either too small or the prevailing pressures keep the gases in solution.

"In contrast to March 1988, when echograms suggested that some of the bubble swarms reached the surface and gas bubbles were observed from the RV Vulkanolog, in January 1990 the plumes terminated at 150-120 m depth and no bubbles were observed at the surface. The disappearance of bubbles at depths <120 m is likely to be due to re-dissolution of soluble, probably volcanic gases (CO2 and SO2). The decrease in extent of the bubble zones may reflect a decrease in the production rate of thermal fluids and, therefore, of volcanic activity. There were no obvious signs of volcanic activity in either March 1988 or January 1990.

"Several large samples of ferro-magnesian, basaltic pillow lavas were dredged from the slopes of the seamount at depths of 400-1,200 m."

References. Kibblewhite, A.C., 1966, The acoustic detection and location of an underwater volcano: New Zealand Journal of Science, v. 9, p. 178-199.

Kibblewhite, A.C. and Denham, R.N., 1967, The Bathymetry and total magnetic field of the south Kermadec Ridge seamounts: New Zealand Journal of Science, v. 10, p. 52-69.

Geologic Background. Rumble III seamount, the largest of the Rumbles group of submarine volcanoes along the South Kermadec Ridge, rises 2,300 m from the seafloor to within about 200 m of the surface. Collapse of the edifice produced a scarp open to the west and a large debris-avalanche deposit. Fresh-looking andesitic rocks have been dredged from the summit and basaltic lava from its flanks. It has been the source of several submarine eruptions detected by hydrophone signals.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Santa Maria (Guatemala) — March 1990 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Viscous lava extrusion continues; rapid erosion of N flank

Santiaguito was visited by volcanologists from INSIVUMEH, Michigan Tech, and Arizona State 20-26 February. The following is from their report.

"Eruptive activity was still focused on Caliente vent, capped by a cone-shaped exogenous domal mass of lava that feeds a viscous flow directed toward the SSW. The flow extended about 500 m, dropping about 250 m in elevation below the top of the vent (about 2,500 m above sea level) and terminating on a talus slope at the angle of repose. Rockfalls were frequent, resulting in ash clouds. The frequency of vertical ash eruptions from Caliente vent was only a few/day. The rate of SO2 emission was measured on 22 February at 48 ± 15 t/d, with a range of 21-76 t/d (24 determinations). This emission rate was slightly less than the average of about 100 t/d (range 40-1,600 t/d) determined in July 1976, when there were many more vertical ash eruptions that had higher values, but was identical to the emission rates measured then between eruptions (Stoiber and others, 1983; especially Table 29.4).

"Figure 12 shows the pattern of Santiaguito's activity from June 1988 until 10 January 1990, five weeks before the dates of the most recent field surveys, as revealed from interpretation of telemetered seismic data by INSIVUMEH. The data demonstrate a good correlation between the frequency of avalanche events and vertical explosions. They also demonstrate that the February field observation dates represented a time of very few vertical explosions compared to the past year's record.

Figure (see Caption) Figure 12. Mean daily number of explosions (crosses) and avalanches (squares) during 2-week periods at Santiaguito, as interpreted from telemetered data by INSIVUMEH, June 1988-January 1990. The 19 June 1989 eruption is marked by an arrow.

"Significant changes have occurred on the N side of Santiaguito since July 1989 (figure 13). The El Monje dome, mostly extruded between 1947 and 1952, had developed a talus slope on its N side that was stabilized and had developed a strong moss coating that prevented rockfalls. This slope allowed access to the summit of Santiaguito throughout a long period (1964-88) and also to the 1902 crater of Santa María. Deep barrancas (canyons) have formed on the N side of the El Monje dome, cutting steep barriers into the talus slopes. These have coalesced at the edge of the talus slope, forming a large barranca between Santiaguito and Santa María that feeds an enormous amount of material into the (Isla) area farther W, and caused another deep barranca to form at the end of the Loma trail. The barrancas on the El Monje dome have deepened and migrated headward until they intersect the top of the dome. They could reflect fracturing of the El Monje dome, perhaps the weakest of three dome units that buttress the N side of the Caliente Vent. If viewed in this way the new barrancas could forecast the site of new dome extrusion from a lateral vent. The increased sediment load from this barranca system is likely to affect the Río Concepción and the Río Tambor to the south when the next rainy season arrives in April or May.

Figure (see Caption) Figure 13. Simplified geologic map of Santiaguito Dome, 1922-February 1990. Streams near Santiaguito are approximately located. Unit dates, such as Rc (1922-90), represent periods of discontinuous activity at each vent. Patterned areas represent very recent activity: Rl - area of active laharic and stream deposition, and very high aggradation rates; Rd - area of recently initiated extensive mass wasting indicating inflation of the El Monje vent area and potential reactivation of the vent; Rc (v pattern) - active block lava flows on Caliente's summit, with very common (hourly) collapse of the broad toe resulting in hot rock avalanches; Rc (dotted pattern) - extent of the 1986-88 block lava flow from Caliente.

"Fieldwork was also directed at examination of the areas affected by the 19 July 1989 eruption (figure 14). The outline of a distinct blast zone, marked by tree blowdown, was mapped. A collapse scarp facing the blast zone was observed. This shows conclusively that partial domal collapse accompanied the 19 July 1989 eruption (14:07)."

Figure (see Caption) Figure 14. Map of Santiaguito and vicinity, showing the zones affected by the 1929, 1973, and 1989 pyroclastic flows. The 1989 and April 1973 deposits have similar areas but different sources. Modified from Rose, 1987.

Reference. Stoiber, R.E., Malinconico, L.L. Jr., and Williams, S.N., 1983, Use of the correlation spectrometer at volcanoes, in Tazieff, H. and Sabroux, J.C., eds., Forecasting Volcanic Events; Elsevier, Amsterdam, p. 425-444.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: O. Matías and R. Morales, INSIVUMEH; W.I. Rose, J. Diehl, R. Andres, F.M. Conway, and G. Keating, Michigan Technological Univ; J. Fink and S. Anderson, Arizona State Univ.


Sheveluch (Russia) — March 1990 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


100-m explosion vent in center of lava dome; minor fumarolic activity

During a 2 February overflight, an explosion vent more than 100 m in diameter was observed in the center of the [extrusive] hornblende andesite lava dome (figure 1). Minor fumarolic activity was occurring.

Figure (see Caption) Figure 1. Crater and lava dome at Shiveluch, looking roughly N on 2 February 1990, showing explosion vents. Courtesy of B.V. Ivanov.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: B. Ivanov, IV.


Ulawun (Papua New Guinea) — March 1990 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Thick vapor emission; weak seismicity

"Activity remained at a low level in March. Summit crater emissions consisted of thick white vapour. Seismicity was low throughout the month."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Vulcano (Italy) — March 1990 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


High-temperature fumaroles; gas chemistry; small seismic swarms

Fumarolic activity at Vulcano remained at a very high level in 1989. The temperature of a fumarole (F5) on the crater rim (figure 6) has remained stable at 310 ± 5°C; more than 90 samples have been collected since July 1987. In contrast, a fumarole (FF) inside the crater showed very high temperatures, reaching a maximum of 550°C in August-September 1989, 100° hotter than in 1988. February 1990 temperatures were 515° and 312° at FF and F5 respectively.

Figure (see Caption) Figure 6. Map of Vulcano, showing locations of F5 and FF fumaroles.

Major chemical species (H2O, CO2, H2S, and SO2) showed large variations in concentration (figure 7). 3He/4He ratios were very high for all crater fumaroles (~60% mantle-derived He), remaining stable during 1989 at ~ 7.5-8.0 x 10-6. The 13C/12C ratio followed a similar trend to that of CO2, with very wide oscillations from about d13C 0.00 to -2.20+. Geologists noted that the chemical and isotopic trends suggest mixing of different sources.

Figure (see Caption) Figure 7. Variations in concentrations of H2O (top), CO2, (center) and SO2 and H2S (bottom) at Vulcano's fumarole F5, 1987-90. Courtesy of OV.

Seismic activity was monitored by a permanent network installed by IIV, and a digital mobile seismic network operated by OV since 1987. Seismicity was at a low level and characterized by low-energy earthquakes occurring in swarm sequences. On the basis of their wave shapes and spectral characteristics, the earthquakes were divided into "Volcano-tectonic" and "Volcanic" events (figure 8) using the classification of Latter (1981). Volcano-tectonic earthquakes outside the Fossa cone and around the island showed clear P and S phases, high frequency contents, and represented the most energetic events (M < 1.6). Volcanic-type events showed very regular wave trains that were sometimes sharply monochromatic, and were characterized by low dominant frequencies and an absence of clearly identifiable phases. Their energy reached 1011-1012 ergs and their magnitudes were negative. Particle motion analysis revealed the presence of Rayleigh and Rayleigh-like waves with a prograde rotation; the arrivals of these two phases followed one another during such earthquakes. Geologists interpreted these events, centered in the Fossa crater, as being related to fumarolic gas flow at shallow depth.

Figure (see Caption) Figure 8. Seismograms showing events classified as "Volcano-tectonic" (top) and "Volcanic" (bottom) at Vulcano.

Reference. Latter, J.H., 1981, Volcanic earthquakes and their relationship to eruptions at Ruapehu and Ngāuruhoe volcanoes: JVGR, v. 9, p. 293-310.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages over the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated north over time. La Fossa cone, active throughout the Holocene and the location of most historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform is a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning more than 2,000 years ago and was connected to the main island in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. Explosive activity took place at the Fossa cone from 1898 to 1900.

Information Contacts: D. Tedesco, S. Vulcano, and G. Luongo, OV.


Waesche (Antarctica) — March 1990 Citation iconCite this Report

Waesche

Antarctica

77.17°S, 126.88°W; summit elev. 3292 m

All times are local (unless otherwise noted)


No signs of recent activity

January 1990 fieldwork revealed no fumarolic ice towers or other signs of recent activity. A thick (<=4 m) sequence of tephra was found in blue ice at the foot of the volcano, but its vertical attitude suggested eruptions thousands of years ago.

Geologic Background. Mount Waesche is the southernmost of a N-S chain of volcanoes in central Marie Byrd Land, 20 km SW of Pliocene Mount Sidley. The Waesche shield was constructed around 1.0 Ma on the SE rim of the 10-km-wide Chang Peak caldera; pre-caldera Chang Peak lavas were erupted about 1.6 Ma. Satellitic cinder cones, some aligned along radial fissures, are located on the SW flank. The youngest dated products suggest a pulse of effusive activity between about 200,000 and 100,000 years ago.

Information Contacts: P. Kyle and W. McIntosh, New Mexico Institute of Mining and Technology; R. Dibble, Victoria Univ.


Whakaari/White Island (New Zealand) — March 1990 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Strong submarine hydrothermal activity at the Calypso Vents

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, are reported by W.F. Giggenbach and I. Menyailov.

"Calypso Mound is a white anhydrite cone some 6-8 m high, formed at 167 m depth by discharge of thermal waters at the ocean floor. It was discovered in February 1987 using the diving vessel Soucoup carried on the RV Calypso (Sarano and others, 1989). It lies within one of the 'bubble zones' extending in a line from White Island to Whale Island in the Bay of Plenty (Duncan and Pantin, 1969) [around 37.64°S, 177.10°E].

"The echograms indicated strong hydrothermal activity with a number of vents producing bubble curtains. However, an extended visual search under calm conditions from both the RV Vulkanolog and a rubber dinghy detected no bubbles at the surface. A possible explanation is re-dissolution of the gas in seawater. Similar gases, collected from more shallow submarine springs in the Bay of Plenty, S of Whale Island, and from Whale Island itself (see below), consisted predominantly of CO2, which has a comparatively high solubility in water. Re-dissolution is also supported by the distribution of reflections recorded during a slow pass over the area. Most of the individual bubble swarms, now clearly separated, appeared to terminate at ~20 m depth.

"Close inspection of a video recording shows that the fluid discharged from two vents on Calypso Mound is very likely to contain a considerable free vapor phase, indicated by flame-like tongues of free vapor, rapidly quenched on contact with cold seawater. Water leaving the vapor-seawater interaction zone appeared clear and colorless except for schlieren indicating a density difference from seawater.

"The existence of free vapor at 167 m depth and about 18 bars pressure suggests that the temperature of the fluid discharged from Calypso Mound is close to 207°C. The high proportion of vapor, apparently present in the fluid mixture leaving the vents, would indicate high corresponding enthalpies of the fluid feeding Calypso Mound. The temperature of any initial single phase liquid, before flashing and possibly present at greater depth, may therefore be considerably higher. However, Sarano et al. (1989) consider it unlikely that the waters emitted from Calypso Mound were as hot as 160°C. The 'hydrothermal' nature indicated for the Calypso Mound system may also explain the enrichment in typically 'epithermal' elements such as As, Sb, Hg, and Tl, and the absence of a 'volcanic' trace metal signature (Giggenbach and Glasby, 1977) in clays recovered from near the main cone."

References. Duncan, A.R., and Pantin, H.M., 1969, Evidence for submarine geothermal activity in the Bay of Plenty: New Zealand Journal of Marine and Freshwater Research, v. 3, p. 602-606.

Giggenbach, W.F., and Glasby, G.P., 1977, The influence of thermal activity on the trace metal distribution in marine sediments around White Island, New Zealand: New Zealand Department of Scientific and Industrial Research Bulletin, v. 218, p. 121-126.

Sarano, F., Murphy, R.C., Houghton, B.F., and Hedenquist, J.W., 1989, Preliminary observations of submarine geothermal activity in the vicinity of White Island, Taupo Volcanic Zone, New Zealand: Journal of the Royal Society of New Zealand, v. 19, p. 449-459.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Whakaari/White Island (New Zealand) — March 1990 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Minor ash emission; seismicity and thermal activity decline; deflation

Little eruptive activity has occurred since 29 November fieldwork revealed a new vent and fresh tephra on the main crater floor. Seismic activity has been at low levels, fumarole temperatures have decreased, and deflation on the main crater floor (centered in the Donald Duck area) suggests that heatflow has been redirected from Noisy Nellie fumarole westward to 1978 Crater. R. Fleming reported a small eruption of lithic accessory ejecta from Noisy Nellie in late January 1990, and further collapse of Corporate and Congress Craters.

Geologists from the RV Vulkanolog visited White Island 2-3 March. Only blue "flames" associated with fumarolic discharge were seen over fumaroles E of 1978 Crater (Donald Mound, Blue Duck, and Noisy Nellie) during the night of 2 March. The three most vigorous vents along a small cone on R.F. crater's floor glowed pale red (500-550°C) and a small eruptive episode on 3 March added pebble-sized material to the cone. A shallow green pond that occupied the rest of the crater floor was surrounded by yellow to orange precipitates.

On 6 March geologists found only 4 mm of fine green ash that had fallen since 29 November at a site 35 m E of 1978 Crater. No new ash was found on the 1978 Crater rim or to the SE (S of Donald Mound). Donald Duck emitted white gas/steam clouds, and low-pressure gas emerged from Noisy Nellie. Accessory blocks and smaller ejecta, first seen about a month earlier, extended 30 m SE from Noisy Nellie. Emissions from 1978 Crater obscured R.F. and Corporate craters, but small detonations from R.F. Crater were frequently heard.

Only ~10 small B-type events/day and an average of ~3 A-types/day were recorded in December, with small E-types recorded on the 7th and 21st. About 3-6 B-type events/day plus rare A-types were recorded during January and February, with tremor nearly absent.

A March deformation survey showed strong subsidence of the Donald Mound area following a period of brief uplift measured 29 November. Subsidence since then was centered E of 1978 Crater (between Noisy Nellie and Donald Mound), reaching 30 mm near Donald Duck vent, with a trough extending NW along the line of fumaroles. Noisy Nellie, near the apparent center of the 15+ mm uplift prior to 29 November, lies on the edge of this trough. The recent subsidence of 9 mm/month is similar to the rate observed since mid-1987.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Nairn, P. Otway, B. Scott, and C. Wood, NZGS Rotorua; W. Giggenbach, DSIR Chemistry, Petone.


Zhupanovsky (Russia) — March 1990 Citation iconCite this Report

Zhupanovsky

Russia

53.589°N, 159.15°E; summit elev. 2899 m

All times are local (unless otherwise noted)


Four vigorous fumaroles

On 2 February, fumarolic activity was noted in two vents inside the active crater and two vents to the W (figure 1).

Figure (see Caption) Figure 1. Active fumarolic vents at Zhupanovsky, looking roughly E on 2 February 1990. Courtesy of B. Ivanov.

Geologic Background. The Zhupanovsky volcanic massif consists of four overlapping stratovolcanoes along a WNW-trending ridge. The elongated complex was constructed within a Pliocene-early Pleistocene caldera whose rim is exposed only on the eastern side. Three of the stratovolcanoes were built during the Pleistocene. An early Holocene stage of frequent moderate and weak eruptions from 7,000 to 5,000 years before present (BP) was followed by a period of infrequent larger eruptions that produced pyroclastic flows. The last major eruption took place about 800-900 BP. Recorded eruptions have consisted of relatively minor explosions from Priemysh, the third cone from the E about 2.5 km from the summit peak.

Information Contacts: B. Ivanov, IV.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports