Recently Published Bulletin Reports
Erebus (Antarctica) Lava lake remains active; most thermal alerts recorded since 2019
Rincon de la Vieja (Costa Rica) Frequent phreatic explosions during July-December 2023
Bezymianny (Russia) Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Kilauea (United States) Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Nyamulagira (DR Congo) Lava flows and thermal activity during May-October 2023
Bagana (Papua New Guinea) Explosions, ash plumes, ashfall, and lava flows during April-September 2023
Mayon (Philippines) Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Nishinoshima (Japan) Eruption plumes and gas-and-steam plumes during May-August 2023
Krakatau (Indonesia) White gas-and-steam plumes and occasional ash plumes during May-August 2023
Villarrica (Chile) Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Merapi (Indonesia) Frequent incandescent avalanches during April-September 2023
Ebeko (Russia) Moderate explosive activity with ash plumes continued during June-November 2023
Erebus (Antarctica) — January 2024
Cite this Report
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Lava lake remains active; most thermal alerts recorded since 2019
The lava lake in the summit crater of Erebus has been active since at least 1972. Located in Antarctica overlooking the McMurdo Station on Ross Island, it is the southernmost active volcano on the planet. Because of the remote location, activity is primarily monitored by satellites. This report covers activity during 2023.
The number of thermal alerts recorded by the Hawai'i Institute of Geophysics and Planetology’s MODVOLC Thermal Alerts System increased considerably in 2023 compared to the years 2020-2022 (table 9). In contrast to previous years, the MODIS instruments aboard the Aqua and Terra satellites captured data from Erebus every month during 2023. Consistent with previous years, the lowest number of anomalous pixels were recorded in January, November, and December.
Table 9. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2023. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the HIGP – MODVOLC Thermal Alerts System.
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
SUM |
2017 |
0 |
21 |
9 |
0 |
0 |
1 |
11 |
61 |
76 |
52 |
0 |
3 |
234 |
2018 |
0 |
21 |
58 |
182 |
55 |
17 |
137 |
172 |
103 |
29 |
0 |
0 |
774 |
2019 |
2 |
21 |
162 |
151 |
55 |
56 |
75 |
53 |
29 |
19 |
1 |
0 |
624 |
2020 |
0 |
2 |
16 |
18 |
4 |
4 |
1 |
3 |
18 |
3 |
1 |
6 |
76 |
2021 |
0 |
9 |
1 |
0 |
2 |
56 |
46 |
47 |
35 |
52 |
5 |
3 |
256 |
2022 |
1 |
13 |
55 |
22 |
15 |
32 |
39 |
19 |
31 |
11 |
0 |
0 |
238 |
2023 |
2 |
33 |
49 |
82 |
41 |
32 |
70 |
64 |
42 |
17 |
5 |
11 |
448 |
Sentinel-2 infrared images showed one or two prominent heat sources within the summit crater, accompanied by adjacent smaller sources, similar to recent years (see BGVN 46:01, 47:02, and 48:01). A unique image was obtained on 25 November 2023 by the OLI-2 (Operational Land Imager-2) on Landsat 9, showing the upper part of the volcano surrounded by clouds (figure 32).
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: https://earthobservatory.nasa.gov/images/152134/erebus-breaks-through).
Rincon de la Vieja (Costa Rica) — January 2024
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent phreatic explosions during July-December 2023
Rincón de la Vieja is a volcanic complex in Costa Rica with a hot convecting acid lake that exhibits frequent weak phreatic explosions, gas-and-steam emissions, and occasional elevated sulfur dioxide levels (BGVN 45:10, 46:03, 46:11). The current eruption period began June 2021. This report covers activity during July-December 2023 and is based on weekly bulletins and occasional daily reports from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).
Numerous weak phreatic explosions continued during July-December 2023, along with gas-and-steam emissions and plumes that rose as high as 3 km above the crater rim. Many weekly OVSICORI-UNA bulletins included the previous week's number of explosions and emissions (table 9). For many explosions, the time of explosion was given (table 10). Frequent seismic activity (long-period earthquakes, volcano-tectonic earthquakes, and tremor) accompanied the phreatic activity.
Table 9. Number of reported weekly phreatic explosions and gas-and-steam emissions at Rincón de la Vieja, July-December 2023. Counts are reported for the week before the Weekly Bulletin date; not all reports included these data. Courtesy of OVSICORI-UNA.
OVSICORI Weekly Bulletin |
Number of explosions |
Number of emissions |
28 Jul 2023 |
6 |
14 |
4 Aug 2023 |
10 |
12 |
1 Sep 2023 |
13 |
11 |
22 Sep 2023 |
12 |
13 |
29 Sep 2023 |
6 |
11 |
6 Oct 2023 |
12 |
5 |
13 Oct 2023 |
7 |
9 |
20 Oct 2023 |
1 |
15 |
27 Oct 2023 |
3 |
23 |
3 Nov 2023 |
3 |
10 |
17 Nov 2023 |
0 |
Some |
24 Nov 2023 |
0 |
14 |
8 Dec 2023 |
4 |
16 |
22 Dec 2023 |
8 |
18 |
Table 10. Summary of activity at Rincón de la Vieja during July-December 2023. Weak phreatic explosions and gas emissions are noted where the time of explosion was indicated in the weekly or daily bulletins. Height of plumes or emissions are distance above the crater rim. Courtesy of OVSICORI-UNA.
Date |
Time |
Description of Activity |
1 Jul 2023 |
0156 |
Explosion. |
2 Jul 2023 |
0305 |
Explosion. |
4 Jul 2023 |
0229, 0635 |
Event at 0635 produced a gas-and-steam plume that rose 700 m and drifted W; seen by residents in Liberia (21 km SW). |
9 Jul 2023 |
1843 |
Explosion. |
21 Jul 2023 |
0705 |
Explosion. |
26 Jul 2023 |
1807 |
Explosion. |
28 Jul 2023 |
0802 |
Explosion generated a gas-and-steam plume that rose 500 m. |
30 Jul 2023 |
1250 |
Explosion. |
31 Jul 2023 |
2136 |
Explosion. |
11 Aug 2023 |
0828 |
Explosion. |
18 Aug 2023 |
1304 |
Explosion. |
21 Aug 2023 |
1224 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
22 Aug 2023 |
0749 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
24 Aug 2023 |
1900 |
Explosion. |
25 Aug 2023 |
0828 |
Event produced a steam-and-gas plume that rose 3 km and drifted NW. |
27-28 Aug 2023 |
0813 |
Four small events; the event at 0813 on 28 August lasted two minutes and generated a steam-and-gas plume that rose 2.5 km. |
1 Sep 2023 |
1526 |
Explosion generated plume that rose 2 km and ejected material onto the flanks. |
2-3 Sep 2023 |
- |
Small explosions detected in infrasound data. |
4 Sep 2023 |
1251 |
Gas-and-steam plume rose 1 km and drifted W. |
7 Nov 2023 |
1113 |
Explosion. |
8 Nov 2023 |
0722 |
Explosion. |
12 Nov 2023 |
0136 |
Small gas emissions. |
14 Nov 2023 |
0415 |
Small gas emissions. |
According to OVSICORI-UNA, during July-October the average weekly sulfur dioxide (SO2) flux ranged from 68 to 240 tonnes/day. However, in mid-November the flux increased to as high as 334 tonnes/day, the highest value measured in recent years. The high SO2 flux in mid-November was also detected by the TROPOMI instrument on the Sentinel-5P satellite (figure 43).
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).
Bezymianny (Russia) — November 2023
Cite this Report
Bezymianny
Russia
55.972°N, 160.595°E; summit elev. 2882 m
All times are local (unless otherwise noted)
Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Bezymianny, located on Russia’s Kamchatka Peninsula, has had eruptions since 1955 characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. Activity during November 2022-April 2023 included gas-and-steam emissions, lava dome collapses generating avalanches, and persistent thermal activity. Similar eruptive activity continued from May through October 2023, described here based on information from weekly and daily reports of the Kamchatka Volcano Eruptions Response Team (KVERT), notices from Tokyo VAAC (Volcanic Ash Advisory Center), and from satellite data.
Overall activity decreased after the strong period of activity in late March through April 2023, which included ash explosions during 29 March and 7-8 April 2023 that sent plumes as high as 10-12 km altitude, along with dome growth and lava flows (BGVN 48:05). This reduced activity can be seen in the MIROVA thermal detection system graph (figure 56), which was consistent with data from the MODVOLC thermal detection system and with Sentinel-2 satellite images that showed persistent hotspots in the summit crater when conditions allowed observations. A renewed period of strong activity began in mid-October 2023.
Activity increased significantly on 17 October 2023 when large collapses began during 0700-0830 on the E flanks of the lava dome and continued to after 0930 the next day (figure 57). Ash plumes rose to an altitude of 4.5-5 km, extending 220 km NNE by 18 October. A large explosion at 1630 on 18 October produced an ash plume that rose to an altitude of 11 km (8 km above the summit) and drifted NNE and then NW, extending 900 km NW within two days at an altitude of 8 km. Minor ashfall was noted in Kozyrevsk (45 km WNW). At 0820 on 20 October an ash plume was identified in satellite images drifting 100 km ENE at altitudes of 4-4.5 km.
Lava flows and hot avalanches from the dome down the SE flank continued over the next few days, including 23 October when clear conditions allowed good observations (figures 58 and 59). A large thermal anomaly was observed over the volcano through 24 October, and in the summit crater on 30 October (figure 60). Strong fumarolic activity continued, with numerous avalanches and occasional incandescence. By the last week of October, volcanic activity had decreased to a level consistent with that earlier in the reporting period.
Aviation warnings were frequently updated during 17-20 October. KVERT issued a Volcano Observatory Notice for Aviation (VONA) on 17 October at 1419 and 1727 (0219 and 0527 UTC) raising the Aviation Color Code (ACC) from Yellow to Orange (second highest level). The next day, KVERT issued a VONA at 1705 (0505 UTC) raising the ACC to Red (highest level) but lowered it back to Orange at 2117 (0917 UTC). After another decrease to Yellow and back to Orange, the ACC was reduced to Yellow on 20 October at 1204 (0004 UTC). In addition, the Tokyo VAAC issued a series of Volcanic Ash Advisories beginning on 16 October and continuing through 30 October.
Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).chr
Kilauea (United States) — January 2023
Cite this Report
Kilauea
United States
19.421°N, 155.287°W; summit elev. 1222 m
All times are local (unless otherwise noted)
Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Kīlauea is the southeastern-most volcano in Hawaii and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).
The current eruption period started during September 2021 and has recently been characterized by lava effusions, spatter, and sulfur dioxide emissions in the active Halema’uma’u lava lake (BGVN 47:08). Lava effusions, some spatter, and sulfur dioxide emissions have continued during this reporting period of July through December 2022 using daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).
Summary of activity during July-December 2022. Low-level effusions have continued at the western vent of the Halema’uma’u crater during July through early December 2022. Occasional weak ooze-outs (also called lava break outs) would occur along the margins of the crater floor. The overall level of the active lava lake throughout the reporting period gradually increased due to infilling, however it stagnated in mid-September (table 13). During September through November, activity began to decline, though lava effusions persisted at the western vent. By 9 December, the active part of the lava lake had completely crusted over, and incandescence was no longer visible.
Table 13. Summary of measurements taken during overflights at Kīlauea that show a gradual increase in the active lava lake level and the volume of lava effused since 29 September 2021. Lower activity was reported during September-October. Data collected during July-December 2022. Courtesy of HVO.
Date: |
Level of the active lava lake (m): |
Cumulative volume of lava effused (million cubic meters): |
7 Jul 2022 |
130 |
95 |
19 Jul 2022 |
133 |
98 |
4 Aug 2022 |
136 |
102 |
16 Aug 2022 |
137 |
104 |
12 Sep 2022 |
143 |
111 |
5 Oct 2022 |
143 |
111 |
28 Oct 2022 |
143 |
111 |
Activity during July 2022. Lava effusions were reported from the western vent in the Halema’uma’u crater, along with occasional weak ooze-outs along the margins of the crater floor. The height of the lava lake was variable due to deflation-inflation tilt events; for example, the lake level dropped approximately 3-4 m during a summit deflation-inflation event reported on 1 July. Webcam images taken during the night of 6-12 July showed intermittent low-level spattering at the western vent that rose less than 10 m above the vent (figure 519). Measurements made during an overflight on 7 July indicated that the crater floor was infilled about 130 m and that 95 million cubic meters of lava had been effused since 29 September 2021. A single, relatively small lava ooze-out was active to the S of the lava lake. Around midnight on 8 July there were two brief periods of lava overflow onto the lake margins. On 9 July lava ooze-outs were reported near the SE and NE edges of the crater floor and during 10-11 July they occurred near the E, NE, and NW edges. On 16 July crater incandescence was reported, though the ooze-outs and spattering were not visible. On 18 July overnight webcam images showed incandescence in the western vent complex and two ooze-outs were reported around 0000 and 0200 on 19 July. By 0900 there were active ooze-outs along the SW edge of the crater floor. Measurements made from an overflight on 19 July indicated that the crater floor was infilled about 133 m and 98 million cubic meters of lava had erupted since 29 September 2021 (figure 520). On 20 July around 1600 active ooze-outs were visible along the N edge of the crater, which continued through the next day. Extensive ooze-outs occurred along the W margin during 24 July until 1900; on 26 July minor ooze-outs were noted along the N margin. Minor spattering was visible on 29 July along the E margin of the lake. The sulfur dioxide emission rates ranged 650-2,800 tons per day (t/d), the higher of which was measured on 8 July (figure 519).
Activity during August 2022. The eruption continued in the Halema’uma’u crater at the western vent. According to HVO the lava in the active lake remained at the level of the bounding levees. Occasional minor ooze-outs were observed along the margins of the crater floor. Strong nighttime crater incandescence was visible after midnight on 6 August over the western vent cone. During 6-7 August scattered small lava lobes were active along the crater floor and incandescence persisted above the western vent through 9 August. During 7-9 August HVO reported a single lava effusion source was active along the NW margin of the crater floor. Measurements from an overflight on 4 August indicated that the crater floor was infilled about 136 m total and that 102 million cubic meters of lava had been erupted since the start of the eruption. Lava breakouts were reported along the N, NE, E, S, and W margins of the crater during 10-16 August. Another overflight survey conducted on 16 August indicated that the crater floor infilled about 137 m and 104 million cubic meters of lava had been erupted since September 2021. Measured sulfur dioxide emissions rates ranged 1,150-2,450 t/d, the higher of which occurred on 8 August.
Activity during September 2022. During September, lava effusion continued from the western vent into the active lava lake and onto the crater floor. Intermittent minor ooze-outs were reported through the month. A small ooze-out was visible on the W crater floor margin at 0220 on 2 September, which showed decreasing surface activity throughout the day, but remained active through 3 September. On 3 September around 1900 a lava outbreak occurred along the NW margin of the crater floor but had stopped by the evening of 4 September. Field crews monitoring the summit lava lake on 9 September observed spattering on the NE margin of the lake that rose no higher than 10 m, before falling back onto the lava lake crust (figure 521). Overflight measurements on 12 September indicated that the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had been erupted since September 2021. Extensive breakouts in the W and N part of the crater floor were reported at 1600 on 20 September and continued into 26 September. The active part of the lava lake dropped by 10 m while other parts of the crater floor dropped by several meters. Summit tiltmeters recorded a summit seismic swarm of more than 80 earthquakes during 1500-1800 on 21 September, which occurred about 1.5 km below Halema’uma’u; a majority of these were less than Mw 2. By 22 September the active part of the lava lake was infilled about 2 m. On 23 September the western vent areas exhibited several small spatter cones with incandescent openings, along with weak, sporadic spattering (figure 522). The sulfur dioxide emission rate ranged from 930 t/d to 2,000 t/d, the higher of which was measured on 6 September.
Activity during October 2022. Activity during October declined slightly compared to previous months, though lava effusions persisted from the western vent into the active lava lake and onto the crater floor during October (figure 523). Slight variations in the lava lake were noted throughout the month. HVO reported that around 0600 on 3 October the level of the lava lake has lowered slightly. Overflight measurements taken on 5 October indicated that the crater floor was infilled a total of about 143 m and that 111 million cubic meters of lava had been effused since September 2021. During 6-7 October the lake gradually rose 0.5 m. Sulfur dioxide measurements made on 22 October had an emission rate of 700 t/d. Another overflight taken on 28 October showed that there was little to no change in the elevation of the crater floor: the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had erupted since the start of the eruption.
Activity during November 2022. Activity remained low during November, though HVO reported that lava from the western vent continued to effuse into the active lava lake and onto the crater floor throughout the month. The rate of sulfur dioxide emissions during November ranged from 300-600 t/d, the higher amount of which occurred on 9 November.
Activity during December 2022. Similar low activity was reported during December, with lava effusing from the western vent into the active lava lake and onto the crater floor. During 4-5 December the active part of the lava lake was slightly variable in elevation and fluctuated within 1 m. On 9 December HVO reported that lava was no longer erupting from the western vent in the Halema’uma’u crater and that sulfur dioxide emissions had returned to near pre-eruption background levels; during 10-11 December, the lava lake had completely crusted over, and no incandescence was visible (figure 524). Time lapse camera images covering the 4-10 December showed that the crater floor showed weak deflation and no inflation. Some passive events of crustal overturning were reported during 14-15 December, which brought fresh incandescent lava to the lake surface. The sulfur dioxide emission rate was approximately 200 t/d on 14 December. A smaller overturn event on 17 December and another that occurred around 0000 and into the morning of 20 December were also detected. A small seismic swarm was later detected on 30 December.
Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.
Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).
Nyamulagira (DR Congo) — November 2023
Cite this Report
Nyamulagira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Lava flows and thermal activity during May-October 2023
Nyamulagira (also known as Nyamuragira) is a shield volcano in the Democratic Republic of Congo with the summit truncated by a small 2 x 2.3 km caldera with walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from numerous flank fissures and cinder cones. The current eruption period began in April 2018 and has more recently been characterized by summit crater lava flows and thermal activity (BGVN 48:05). This report describes lava flows and variable thermal activity during May through October 2023, based on information from the Observatoire Volcanologique de Goma (OVG) and various satellite data.
Lava lake activity continued during May. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded moderate-to-strong thermal activity throughout the reporting period; activity was more intense during May and October and relatively weaker from June through September (figure 95). The MODVOLC thermal algorithm, detected a total of 209 thermal alerts. There were 143 hotspots detected during May, eight during June, nine during September, and 49 during October. This activity was also reflected in infrared satellite images, where a lava flow was visible in the NW part of the crater on 7 May and strong activity was seen in the center of the crater on 4 October (figure 96). Another infrared satellite image taken on 12 May showed still active lava flows along the NW margin of the crater. According to OVG lava effusions were active during 7-29 May and moved to the N and NW parts of the crater beginning on 9 May. Strong summit crater incandescence was visible from Goma (27 km S) during the nights of 17, 19, and 20 May (figure 97). On 17 May there was an increase in eruptive activity, which peaked at 0100 on 20 May. Notable sulfur dioxide plumes drifted NW and W during 19-20 May (figure 98). Drone footage acquired in partnership with the USGS (United States Geological Survey) on 20 May captured images of narrow lava flows that traveled about 100 m down the W flank (figure 99). Data from the Rumangabo seismic station indicated a decreasing trend in activity during 17-21 May. Although weather clouds prevented clear views of the summit, a strong thermal signature on the NW flank was visible in an infrared satellite image on 22 May, based on an infrared satellite image. On 28 May the lava flows on the upper W flank began to cool and solidify. By 29 May seismicity returned to levels similar to those recorded before the 17 May increase. Lava effusion continued but was confined to the summit crater; periodic crater incandescence was observed.
Low-level activity was noted during June through October. On 1 June OVG reported that seismicity remained at lower levels and that crater incandescence had been absent for three days, though infrared satellite imagery showed continued lava effusion in the summit crater. The lava flows on the flanks covered an estimated 0.6 km2. Satellite imagery continued to show thermal activity confined to the lava lake through October (figure 96), although no lava flows or significant sulfur dioxide emissions were reported.
Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.
Bagana (Papua New Guinea) — October 2023
Cite this Report
Bagana
Papua New Guinea
6.137°S, 155.196°E; summit elev. 1855 m
All times are local (unless otherwise noted)
Explosions, ash plumes, ashfall, and lava flows during April-September 2023
The remote volcano of Bagana is located in central Bougainville Island, Papua New Guinea. Recorded eruptions date back to 1842 and activity has consisted of effusive activity that has built a small lava dome in the summit crater and occasional explosions that produced pyroclastic flows. The most recent eruption has been ongoing since February 2000 and has produced occasional explosions, ash plumes, and lava flows. More recently, activity has been characterized by ongoing effusive activity and ash emissions (BGVN 48:04). This report updates activity from April through September 2023 that has consisted of explosions, ash plumes, ashfall, and lava flows, using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.
An explosive eruption was reported on 7 July that generated a large gas-and-ash plume to high altitudes and caused significant ashfall in local communities; the eruption plume had reached upper tropospheric (16-18 km altitude) altitudes by 2200, according to satellite images. Sulfur dioxide plumes were detected in satellite images on 8 July and indicated that the plume was likely a mixture of gas, ice, and ash. A report issued by the Autonomous Bougainville Government (ABG) (Torokina District, Education Section) on 10 July noted that significant ash began falling during 2000-2100 on 7 July and covered most areas in the Vuakovi, Gotana (9 km SW), Koromaketo, Laruma (25 km W) and Atsilima (27 km NW) villages. Pyroclastic flows also occurred, according to ground-based reports; small deposits confined to one drainage were inspected by RVO during an overflight on 17 July and were confirmed to be from the 7 July event. Ashfall continued until 10 July and covered vegetation, which destroyed bushes and gardens and contaminated rivers and streams.
RVO reported another eruption on 14 July. The Darwin VAAC stated that an explosive event started around 0830 on 15 July and produced an ash plume that rose to 16.5 km altitude by 1000 and drifted N, according to satellite images. The plume continued to drift N and remained visible through 1900, and by 2150 it had dissipated.
Ashfall likely from both the 7 and 15 July events impacted about 8,111 people in Torokina (20 km SW), including Tsito/Vuakovi, Gotana, Koromaketo, Kenaia, Longkogari, Kenbaki, Piva (13 km SW), and Atsinima, and in the Tsitovi district, according to ABG. Significant ashfall was also reported in Ruruvu (22 km N) in the Wakunai District of Central Bougainville, though the thickness of these deposits could not be confirmed. An evacuation was called for the villages in Wakunai, where heavy ashfall had contaminated water sources; the communities of Ruruvu, Togarau, Kakarapaia, Karauturi, Atao, and Kuritaturi were asked to evacuate to a disaster center at the Wakunai District Station, and communities in Torokina were asked to evacuate to the Piva District station. According to a news article, more than 7,000 people needed temporary accommodations, with about 1,000 people in evacuation shelters. Ashfall had deposited over a broad area, contaminating water supplies, affecting crops, and collapsing some roofs and houses in rural areas. Schools were temporarily shut down. Intermittent ash emissions continued through the end of July and drifted NNW, NW, and SW. Fine ashfall was reported on the coast of Torokina, and ash plumes also drifted toward Laruma and Atsilima.
A small explosive eruption occurred at 2130 on 28 July that ejected material from the crater vents, according to reports from Torokina, in addition to a lava flow that contained two lobes. A second explosion was detected at 2157. Incandescence from the lava flow was visible from Piva as it descended the W flank around 2000 on 29 July (figure 47). The Darwin VAAC reported that a strong thermal anomaly was visible in satellite images during 30-31 July and that ash emissions rose to 2.4 km altitude and drifted WSW on 30 July. A ground report from RVO described localized emissions at 0900 on 31 July.
The Darwin VAAC reported that ash plumes were identified in satellite imagery at 0800 and 1220 on 12 August and rose to 2.1 km and 3 km altitude and drifted NW and W, respectively. A news report stated that aid was sent to more than 6,300 people that were adversely affected by the eruption. Photos taken during 17-19 August showed ash emissions rising no higher than 1 km above the summit and drifting SE. A small explosion generated an ash plume during the morning of 19 August. Deposits from small pyroclastic flows were also captured in the photos. Satellite images captured lava flows and pyroclastic flow deposits. Two temporary seismic stations were installed near Bagana on 17 August at distances of 7 km WSW (Vakovi station) and 11 km SW (Kepox station). The Kepox station immediately started to record continuous, low-frequency background seismicity.
Satellite data. Little to no thermal activity was detected during April through mid-July 2023; only one anomaly was recorded during early April and one during early June, according to MIROVA (Middle InfraRed Observation of Volcanic Activity) data (figure 48). Thermal activity increased in both power and frequency during mid-July through September, although there were still some short gaps in detected activity. MODVOLC also detected increased thermal activity during August; thermal hotspots were detected a total of five times on 19, 20, and 27 August. Weak thermal anomalies were also captured in infrared satellite images on clear weather days throughout the reporting period on 7, 12, and 17 April, 27 May, 1, 6, 16, and 31 July, and 19 September (figure 48); a strong thermal anomaly was visible on 31 July. Distinct sulfur dioxide plumes that drifted generally NW were intermittently captured by the TROPOMI instrument on the Sentinel-5P satellite and sometimes exceeded two Dobson Units (DUs) (figure 49).
Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Autonomous Bougainville Government, P.O Box 322, Buka, AROB, PNG (URL: https://abg.gov.pg/); Andrew Tupper (Twitter: @andrewcraigtupp); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Radio NZ (URL: https://www.rnz.co.nz/news/pacific/494464/more-than-7-000-people-in-bougainville-need-temporary-accommodation-after-eruption); USAID, 1300 Pennsylvania Ave, NW, Washington DC 20004, USA (URL: https://www.usaid.gov/pacific-islands/press-releases/aug-08-2023-united-states-provides-immediate-emergency-assistance-support-communities-affected-mount-bagana-volcanic-eruptions).
Mayon (Philippines) — October 2023
Cite this Report
Mayon
Philippines
13.257°N, 123.685°E; summit elev. 2462 m
All times are local (unless otherwise noted)
Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Mayon is located in the Philippines and has steep upper slopes capped by a small summit crater. Historical eruptions date back to 1616 CE that have been characterized by Strombolian eruptions, lava flows, pyroclastic flows, and mudflows. Eruptions mostly originated from a central conduit. Pyroclastic flows and mudflows have commonly descended many of the approximately 40 drainages that surround the volcano. The most recent eruption occurred during June through October 2022 and consisted of lava dome growth and gas-and-steam emissions (BGVN 47:12). A new eruption was reported during late April 2023 and has included lava flows, pyroclastic density currents, ash emissions, and seismicity. This report covers activity during April through September 2023 based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS).
During April through September 2023, PHIVOLCS reported near-daily rockfall events, frequent volcanic earthquakes, and sulfur dioxide measurements. Gas-and-steam emissions rose 100-900 m above the crater and drifted in different directions. Nighttime crater incandescence was often visible during clear weather and was accompanied by incandescent avalanches of material. Activity notably increased during June when lava flows were reported on the S, SE, and E flanks (figure 52). The MIROVA graph (Middle InfraRed Observation of Volcanic Activity) showed strong thermal activity coincident with these lava flows, which remained active through September (figure 53). According to the MODVOLC thermal algorithm, a total of 110 thermal alerts were detected during the reporting period: 17 during June, 40 during July, 27 during August, and 26 during September. During early June, pyroclastic density currents (PDCs) started to occur more frequently.
Low activity was reported during much of April and May; gas-and-steam emissions rose 100-900 m above the crater and generally drifted in different directions. A total of 52 rockfall events and 18 volcanic earthquakes were detected during April and 147 rockfall events and 13 volcanic events during May. Sulfur dioxide flux measurements ranged between 400-576 tons per day (t/d) during April, the latter of which was measured on 29 April and between 162-343 t/d during May, the latter of which was measured on 13 May.
Activity during June increased, characterized by lava flows, pyroclastic density currents (PDCs), crater incandescence and incandescent rockfall events, gas-and-steam emissions, and continued seismicity. Weather clouds often prevented clear views of the summit, but during clear days, moderate gas-and-steam emissions rose 100-2,500 m above the crater and drifted in multiple directions. A total of 6,237 rockfall events and 288 volcanic earthquakes were detected. The rockfall events often deposited material on the S and SE flanks within 700-1,500 m of the summit crater and ash from the events drifted SW, S, SE, NE, and E. Sulfur dioxide emissions ranged between 149-1,205 t/d, the latter of which was measured on 10 June. Short-term observations from EDM and electronic tiltmeter monitoring indicated that the upper slopes were inflating since February 2023. Longer-term ground deformation parameters based on EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano remained inflated, especially on the NW and SE flanks. At 1000 on 5 June the Volcano Alert Level (VAL) was raised to 2 (on a 0-5 scale). PHIVOLCS noted that although low-level volcanic earthquakes, ground deformation, and volcanic gas emissions indicated unrest, the steep increase in rockfall frequency may indicate increased dome activity.
A total of 151 dome-collapse PDCs occurred during 8-9 and 11-30 June, traveled 500-2,000 m, and deposited material on the S flank within 2 km of the summit crater. During 8-9 June the VAL was raised to 3. At approximately 1947 on 11 June lava flow activity was reported; two lobes traveled within 500 m from the crater and deposited material on the S (Mi-isi), SE (Bonga), and E (Basud) flanks. Weak seismicity accompanied the lava flow and slight inflation on the upper flanks. This lava flow remained active through 30 June, moving down the S and SE flank as far as 2.5 km and 1.8 km, respectively and depositing material up to 3.3 km from the crater. During 15-16 June traces of ashfall from the PDCs were reported in Sitio Buga, Nabonton, City of Ligao and Purok, and San Francisco, Municipality of Guinobatan. During 28-29 June there were two PDCs generated by the collapse of the lava flow front, which generated a light-brown ash plume 1 km high. Satellite monitors detected significant concentrations of sulfur dioxide beginning on 29 June. On 30 June PDCs primarily affected the Basud Gully on the E flank, the largest of which occurred at 1301 and lasted eight minutes, based on the seismic record. Four PDCs generated between 1800 and 2000 that lasted approximately four minutes each traveled 3-4 km on the E flank and generated an ash plume that rose 1 km above the crater and drifted N and NW. Ashfall was recorded in Tabaco City.
Similar strong activity continued during July; slow lava effusion remained active on the S and SE flanks and traveled as far as 2.8 km and 2.8 km, respectively and material was deposited as far as 4 km from the crater. There was a total of 6,983 rockfall events and 189 PDCs that affected the S, SE, and E flanks. The volcano network detected a total of 2,124 volcanic earthquakes. Continuous gas-and-steam emissions rose 200-2,000 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 792-4,113 t/d, the latter of which was measured on 28 July. During 2-4 July three PDCs were generated from the collapse of the lava flow and resulting light brown plumes rose 200-300 m above the crater. Continuous tremor pulses were reported beginning at 1547 on 3 July through 7 July at 1200, at 2300 on 8 July and going through 0300 on 10 July, and at 2300 on 16 July, as recorded by the seismic network. During 6-9 July there were 10 lava flow-collapse-related PDCs that generated light brown plumes 300-500 m above the crater. During 10-11 July light ashfall was reported in some areas of Mabinit, Legazpi City, Budiao and Salvacion, Daraga, and Camalig, Albay. By 18 July the lava flow advanced 600 m on the E flank as well.
During 1733 on 18 July and 0434 on 19 July PHIVOLCS reported 30 “ashing” events, which are degassing events accompanied by audible thunder-like sounds and entrained ash at the crater, which produced short, dark plumes that drifted SW. These events each lasted 20-40 seconds, and plume heights ranged from 150-300 m above the crater, as recorded by seismic, infrasound, visual, and thermal monitors. Three more ashing events occurred during 19-20 July. Short-term observations from electronic tilt and GPS monitoring indicate deflation on the E lower flanks in early July and inflation on the NW middle flanks during the third week of July. Longer-term ground deformation parameters from EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano was still generally inflated relative to baseline levels. A short-lived lava pulse lasted 28 seconds at 1956 on 21 July, which was accompanied by seismic and infrasound signals. By 22 July, the only lava flow that remained active was on the SE flank, and continued to extend 3.4 km, while those on the S and E flanks weakened markedly. One ashing event was detected during 30-31 July, whereas there were 57 detected during 31 July-1 August; according to PHIVOLCS beginning at approximately 1800 on 31 July eruptive activity was dominated by phases of intermittent ashing, as well as increased in the apparent rates of lava effusion from the summit crater. The ashing phases consisted of discrete events recorded as low-frequency volcanic earthquakes (LFVQ) typically 30 seconds in duration, based on seismic and infrasound signals. Gray ash plume rose 100 m above the crater and generally drifted NE. Shortly after these ashing events began, new lava began to effuse rapidly from the crater, feeding the established flowed on the SE, E, and E flanks and generating frequent rockfall events.
Intensified unrest persisted during August. There was a total of 4,141 rockfall events, 2,881 volcanic earthquakes, which included volcanic tremor events, 32 ashing events, and 101 PDCs detected throughout the month. On clear weather days, gas-and-steam emissions rose 300-1,500 m above the crater and drifted in different directions (figure 54). Sulfur dioxide emissions averaged 735-4,756 t/d, the higher value of which was measured on 16 August. During 1-2 August the rate of lava effusion decreased, but continued to feed the flows on the SE, S, and E flanks, maintaining their advances to 3.4 km, 2.8 km, and 1.1 km from the crater, respectively (figure 55). Rockfall and PDCs generated by collapses at the lava flow margins and from the summit dome deposited material within 4 km of the crater. During 3-4 August there were 10 tremor events detected that lasted 1-4 minutes. Short-lived lava pulse lasted 35 seconds and was accompanied by seismic and infrasound signals at 0442 on 6 August. Seven collapses were recorded at the front of the lava flow during 12-14 August.
During September, similar activity of slow lava effusion, PDCs, gas-and-steam emissions, and seismicity continued. There was a total of 4,452 rockfall events, 329 volcanic earthquakes, which included volcanic tremor events, two ashing events, and 85 PDCs recorded throughout the month. On clear weather days, gas-and-steam emissions rose 100-1,500 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 609-2,252 t/d, the higher average of which was measured on 6 September. Slow lava effusion continued advancing on the SE, S, and E flanks, maintaining lengths of 3.4 km, 2.8 km, and 1.1 km, respectively. Rockfall and PDC events generated by collapses along the lava flow margins and at the summit dome deposited material within 4 km of the crater.
Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.
Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); William Rogers, Legazpi City, Albay Province, Philippines.
Nishinoshima (Japan) — October 2023
Cite this Report
Nishinoshima
Japan
27.247°N, 140.874°E; summit elev. 100 m
All times are local (unless otherwise noted)
Eruption plumes and gas-and-steam plumes during May-August 2023
Nishinoshima, located about 1,000 km S of Tokyo, is a small island in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent submarine peaks to the S, W, and NE. Eruptions date back to 1973 and the current eruption period began in October 2022. Recent activity has consisted of small ash plumes and fumarolic activity (BGVN 48:07). This report covers activity during May through August 2023, using information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports and satellite data.
Activity during May through June was relatively low. The Japan Coast Guard (JCG) did overflights on 14 and 22 June and reported white gas-and-steam emissions rising 600 m and 1,200 m from the central crater of the pyroclastic cone, respectively (figure 125). In addition, multiple white gas-and-steam emissions rose from the inner rim of the W side of the crater and from the SE flank of the pyroclastic cone. Discolored brown-to-green water was observed around almost the entire perimeter of the island; on 22 June light green discolored water was observed off the S coast of the island.
Observations from the Himawari meteorological satellite confirmed an eruption on 9 and 10 July. An eruption plume rose 1.6 km above the crater and drifted N around 1300 on 9 July. Satellite images acquired at 1420 and 2020 on 9 July and at 0220 on 10 July showed continuing emissions that rose 1.3-1.6 km above the crater and drifted NE and N. The Tokyo VAAC reported that an ash plume seen by a pilot and identified in a satellite image at 0630 on 21 July rose to 3 km altitude and drifted S.
Aerial observations conducted by JCG on 8 August showed a white-and-gray plume rising from the central crater of the pyroclastic cone, and multiple white gas-and-steam emissions were rising from the inner edge of the western crater and along the NW-SE flanks of the island (figure 126). Brown-to-green discolored water was also noted around the perimeter of the island.
Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity), showing an increase in both frequency and power beginning in July (figure 127). This increase in activity coincides with eruptive activity on 9 and 10 July, characterized by eruption plumes. According to the MODVOLC thermal alert algorithm, one thermal hotspot was recorded on 20 July. Weak thermal anomalies were also detected in infrared satellite imagery, accompanied by strong gas-and-steam plumes (figure 128).
Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Krakatau (Indonesia) — October 2023
Cite this Report
Krakatau
Indonesia
6.1009°S, 105.4233°E; summit elev. 285 m
All times are local (unless otherwise noted)
White gas-and-steam plumes and occasional ash plumes during May-August 2023
Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of Strombolian eruptions and ash plumes (BGVN 48:07). This report describes lower levels of activity consisting of ash and white gas-and-steam plumes during May through August 2023, based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, and satellite data.
Activity was relatively low during May and June. Daily white gas-and-steam emissions rose 25-200 m above the crater and drifted in different directions. Five ash plumes were detected at 0519 on 10 May, 1241 on 11 May, 0920 on 12 May, 2320 on 12 May, and at 0710 on 13 May, and rose 1-2.5 km above the crater and drifted SW. A webcam image taken on 12 May showed ejection of incandescent material above the vent. A total of nine ash plumes were detected during 6-11 June: at 1434 and 00220 on 6 and 7 June the ash plumes rose 500 m above the crater and drifted NW, at 1537 on 8 June the ash plume rose 1 km above the crater and drifted SW, at 0746 and at 0846 on 9 June the ash plumes rose 800 m and 3 km above the crater and drifted SW, respectively, at 0423, 1431, and 1750 on 10 June the ash plumes rose 2 km, 1.5 km, and 3.5 km above the crater and drifted NW, respectively, and at 0030 on 11 June an ash plume rose 2 km above the crater and drifted NW. Webcam images taken on 10 and 11 June at 0455 and 0102, respectively, showed incandescent material ejected above the vent. On 19 June an ash plume at 0822 rose 1.5 km above the crater and drifted SE.
Similar low activity of white gas-and-steam emissions and few ash plumes were reported during July and August. Daily white gas-and-steam emissions rose 25-300 m above the crater and drifted in multiple directions. Three ash plumes were reported at 0843, 0851, and 0852 on 20 July that rose 500-2,000 m above the crater and drifted NW.
The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during May through August 2023 (figure 140). Although activity was often obscured by weather clouds, a thermal anomaly was visible in an infrared satellite image of the crater on 12 May, accompanied by an eruption plume that drifted SW (figure 141).
Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Villarrica (Chile) — October 2023
Cite this Report
Villarrica
Chile
39.42°S, 71.93°W; summit elev. 2847 m
All times are local (unless otherwise noted)
Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Villarrica, in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago and is located at the base of the presently active cone at the NW margin of a 6-km-wide caldera. Historical eruptions eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of nighttime crater incandescence, ash emissions, and seismicity (BGVN 48:04). This report covers activity during April through September 2023 and describes occasional Strombolian activity, gas-and-ash emissions, and nighttime crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.
Seismicity during April consisted of long period (LP) events and tremor (TRE); a total of 9,413 LP-type events and 759 TR-type events were detected throughout the month. Nighttime crater incandescence persisted and was visible in the degassing column. Sulfur dioxide data was obtained using Differential Absorption Optical Spectroscopy Equipment (DOAS) that showed an average value of 1,450 ± 198 tons per day (t/d) during 1-15 April and 1,129 ± 201 t/d during 16-30 April, with a maximum daily value of 2,784 t/d on 9 April. Gas-and-steam emissions of variable intensities rose above the active crater as high as 1.3 km above the crater on 13 April. Strombolian explosions were not observed and there was a slight decrease in the lava lake level.
There were 14,123 LP-type events and 727 TR-type events detected during May. According to sulfur dioxide measurements taken with DOAS equipment, the active crater emitted an average value of 1,826 ± 482 t/d during 1-15 May and 912 ± 41 t/d during 16-30 May, with a daily maximum value of 5,155 t/d on 13 May. Surveillance cameras showed continuous white gas-and-steam emissions that rose as high as 430 m above the crater on 27 May. Nighttime incandescence illuminated the gas column less than 300 m above the crater rim was and no pyroclastic emissions were reported. A landslide was identified on 13 May on the E flank of the volcano 50 m from the crater rim and extending 300 m away; SERNAGEOMIN noted that this event may have occurred on 12 May. During the morning of 27 and 28 May minor Strombolian explosions characterized by incandescent ejecta were recorded at the crater rim; the last reported Strombolian explosions had occurred at the end of March.
Seismic activity during June consisted of five volcano-tectonic (VT)-type events, 21,606 LP-type events, and 2,085 TR-type events. The average value of sulfur dioxide flux obtained by DOAS equipment was 1,420 ± 217 t/d during 1-15 June and 2,562 ± 804 t/d, with a maximum daily value of 4,810 t/d on 17 June. White gas-and-steam emissions rose less than 480 m above the crater; frequent nighttime crater incandescence was reflected in the degassing plume. On 12 June an emission rose 100 m above the crater and drifted NNW. On 15 June one or several emissions resulted in ashfall to the NE as far as 5.5 km from the crater, based on a Skysat satellite image. Several Strombolian explosions occurred within the crater; activity on 15 June was higher energy and ejected blocks 200-300 m on the NE slope. Surveillance cameras showed white gas-and-steam emissions rising 480 m above the crater on 16 June. On 19 and 24 June low-intensity Strombolian activity was observed, ejecting material as far as 200 m from the center of the crater to the E.
During July, seismicity included 29,319 LP-type events, 3,736 TR-type events, and two VT-type events. DOAS equipment recorded two days of sulfur dioxide emissions of 4,220 t/d and 1,009 t/d on 1 and 13 July, respectively. Constant nighttime incandescence was also recorded and was particularly noticeable when accompanied by eruptive columns on 12 and 16 July. Minor explosive events were detected in the crater. According to Skysat satellite images taken on 12, 13, and 16 July, ashfall deposits were identified 155 m S of the crater. According to POVI, incandescence was visible from two vents on the crater floor around 0336 on 12 July. Gas-and-ash emissions rose as high as 1.2 km above the crater on 13 July and drifted E and NW. A series of gas-and-steam pulses containing some ash deposited material on the upper E flank around 1551 on 13 July. During 16-31 July, average sulfur dioxide emissions of 1,679 ± 406 t/d were recorded, with a maximum daily value of 2,343 t/d on 28 July. Fine ash emissions were also reported on 16, 17, and 23 July.
Seismicity persisted during August, characterized by 27,011 LP-type events, 3,323 TR-type events, and three VT-type events. The average value of sulfur dioxide measurements taken during 1-15 August was 1,642 ± 270 t/d and 2,207 ± 4,549 t/d during 16-31 August, with a maximum daily value of 3,294 t/d on 27 August. Nighttime crater incandescence remained visible in degassing columns. White gas-and-steam emissions rose 480 m above the crater on 6 August. According to a Skysat satellite image from 6 August, ash accumulation was observed proximal to the crater and was mainly distributed toward the E slope. White gas-and-steam emissions rose 320 m above the crater on 26 August. Nighttime incandescence and Strombolian activity that generated ash emissions were reported on 27 August.
Seismicity during September was characterized by five VT-type events, 12,057 LP-type events, and 2,058 TR-type events. Nighttime incandescence persisted. On 2 September an ash emission rose 180 m above the crater and drifted SE at 1643 (figure 125) and a white gas-and-steam plume rose 320 m above the crater. According to the Buenos Aires VAAC, periods of continuous gas-and-ash emissions were visible in webcam images from 1830 on 2 September to 0110 on 3 September. Strombolian activity was observed on 2 September and during the early morning of 3 September, the latter event of which generated an ash emission that rose 60 m above the crater and drifted 100 m from the center of the crater to the NE and SW. Ashfall was reported to the SE and S as far as 750 m from the crater. The lava lake was active during 3-4 September and lava fountaining was visible for the first time since 26 March 2023, according to POVI. Fountains captured in webcam images at 2133 on 3 September and at 0054 on 4 September rose as high as 60 m above the crater rim and ejected material onto the upper W flank. Sulfur dioxide flux of 1,730 t/d and 1,281 t/d was measured on 3 and 4 September, respectively, according to data obtained by DOAS equipment.
Strong Strombolian activity and larger gas-and-ash plumes were reported during 18-20 September. On 18 September activity was also associated with energetic LP-type events and notable sulfur dioxide fluxes (as high as 4,277 t/d). On 19 September Strombolian activity and incandescence were observed. On 20 September at 0914 ash emissions rose 50 m above the crater and drifted SSE, accompanied by Strombolian activity that ejected material less than 100 m SSE, causing fall deposits on that respective flank. SERNAGEOMIN reported that a Planet Scope satellite image taken on 20 September showed the lava lake in the crater, measuring 32 m x 35 m and an area of 0.001 km2. Several ash emissions were recorded at 0841, 0910, 1251, 1306, 1312, 1315, and 1324 on 23 September and rose less than 150 m above the crater. The sulfur dioxide flux value was 698 t/d on 23 September and 1,097 t/d on 24 September. On 24 September the Volcanic Alert Level (VAL) was raised to Orange (the third level on a four-color scale). SENAPRED maintained the Alert Level at Yellow (the middle level on a three-color scale) for the communities of Villarrica, Pucón (16 km N), Curarrehue, and Panguipulli.
During 24-25 September there was an increase in seismic energy (observed at TR-events) and acoustic signals, characterized by 1 VT-type event, 213 LP-type events, and 124 TR-type events. Mainly white gas-and-steam emissions, in addition to occasional fine ash emissions were recorded. During the early morning of 25 September Strombolian explosions were reported and ejected material 250 m in all directions, though dominantly toward the NW. On 25 September the average value of sulfur dioxide flux was 760 t/d. Seismicity during 25-30 September consisted of five VT-type events, 1,937 LP-type events, and 456 TR-type events.
During 25-29 September moderate Strombolian activity was observed and ejected material as far as the crater rim. In addition, ash pulses lasting roughly 50 minutes were observed around 0700 and dispersed ENE. During 26-27 September a TR episode lasted 6.5 hours and was accompanied by discrete acoustic signals. Satellite images from 26 September showed a spatter cone on the crater floor with one vent that measured 10 x 14 m and a smaller vent about 35 m NE of the cone. SERNAGEOMIN reported an abundant number of bomb-sized blocks up to 150 m from the crater, as well as impact marks on the snow, which indicated explosive activity. A low-altitude ash emission was observed drifting NW around 1140 on 28 September, based on webcam images. Between 0620 and 0850 on 29 September an ash emission rose 60 m above the crater and drifted NW. During an overflight taken around 1000 on 29 September scientists observed molten material in the vent, a large accumulation of pyroclasts inside the crater, and energetic degassing, some of which contained a small amount of ash. Block-sized pyroclasts were deposited on the internal walls and near the crater, and a distal ash deposit was also visible. The average sulfur dioxide flux measured on 28 September was 344 t/d. Satellite images taken on 29 September ashfall was deposited roughly 3 km WNW from the crater and nighttime crater incandescence remained visible. The average sulfur dioxide flux value from 29 September was 199 t/d. On 30 September at 0740 a pulsating ash emission rose 1.1 km above the crater and drifted NNW (figure 126). Deposits on the S flank extended as far as 4.5 km from the crater rim, based on satellite images from 30 September.
Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed intermittent thermal activity during April through September, with slightly stronger activity detected during late September (figure 127). Small clusters of thermal activity were detected during mid-June, early July, early August, and late September. According to the MODVOLC thermal alert system, a total of four thermal hotspots were detected on 7 July and 3 and 23 September. This activity was also intermittently captured in infrared satellite imagery on clear weather days (figure 128).
Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.
Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Sistema y Servicio Nacional de Prevención y Repuesta Ante Desastres (SENAPRED), Av. Beauchef 1671, Santiago, Chile (URL: https://web.senapred.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Merapi (Indonesia) — October 2023
Cite this Report
Merapi
Indonesia
7.54°S, 110.446°E; summit elev. 2910 m
All times are local (unless otherwise noted)
Frequent incandescent avalanches during April-September 2023
Merapi, located just north of the major city of Yogyakarta in central Java, Indonesia, has had activity within the last 20 years characterized by pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome. The current eruption period began in late December 2020 and has more recently consisted of ash plumes, intermittent incandescent avalanches of material, and pyroclastic flows (BGVN 48:04). This report covers activity during April through September 2023, based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG which specifically monitors Merapi. Additional information comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data.
Activity during April through September 2023 primarily consisted of incandescent avalanches of material that mainly affected the SW and W flanks and traveled as far as 2.3 km from the summit (table 25) and white gas-and-steam emissions that rose 10-1,000 m above the crater.
Table 25. Monthly summary of avalanches and avalanche distances recorded at Merapi during April through September 2023. The number of reported avalanches does not include instances where possible avalanches were heard but could not be visually confirmed as a result of inclement weather. Data courtesy of BPPTKG (April-September 2023 daily reports).
Month |
Average number of avalanches per day |
Distance avalanches traveled (m) |
Apr 2023 |
19 |
1,200-2,000 |
May 2023 |
22 |
500-2,000 |
Jun 2023 |
18 |
1,200-2,000 |
Jul 2023 |
30 |
300-2,000 |
Aug 2023 |
25 |
400-2,300 |
Sep 2023 |
23 |
600-2,000 |
BPPTKG reported that during April and May white gas-and-steam emissions rose 10-750 m above the crater, incandescent avalanches descended 500-2,000 m on the SW and W flanks (figure 135). Cloudy weather often prevented clear views of the summit, and sometimes avalanches could not be confirmed. According to a webcam image, a pyroclastic flow was visible on 17 April at 0531. During the week of 28 April and 4 May a pyroclastic flow was reported on the SW flank, traveling up to 2.5 km. According to a drone overflight taken on 17 May the SW lava dome volume was an estimated 2,372,800 cubic meters and the dome in the main crater was an estimated 2,337,300 cubic meters.
During June and July similar activity persisted with white gas-and-steam emissions rising 10-350 m above the crater and frequent incandescent avalanches that traveled 300-2,000 m down the SW, W, and S flanks (figure 136). Based on an analysis of aerial photos taken on 24 June the volume of the SW lava dome was approximately 2.5 million cubic meters. A pyroclastic flow was observed on 5 July that traveled 2.7 km on the SW flank. According to the Darwin VAAC multiple minor ash plumes were identified in satellite images on 19 July that rose to 3.7 km altitude and drifted S and SW. During 22, 25, and 26 July a total of 17 avalanches descended as far as 1.8 km on the S flank.
Frequent white gas-and-steam emissions continued during August and September, rising 10-450 m above the crater. Incandescent avalanches mainly affected the SW and W flanks and traveled 400-2,300 m from the vent (figure 137). An aerial survey conducted on 10 August was analyzed and reported that estimates of the SW dome volume was 2,764,300 cubic meters and the dome in the main crater was 2,369,800 cubic meters.
Frequent and moderate-power thermal activity continued throughout the reporting period, according to a MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 138). There was an increase in the number of detected anomalies during mid-May. The MODVOLC thermal algorithm recorded a total of 47 thermal hotspots: six during April, nine during May, eight during June, 15 during July, four during August, and five during September. Some of this activity was captured in infrared satellite imagery on clear weather days, sometimes accompanied by incandescent material on the SW flank (figure 139).
Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.
Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Øystein Lund Andersen (URL: https://www.oysteinlundandersen.com/, https://twitter.com/oysteinvolcano).
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Moderate explosive activity with ash plumes continued during June-November 2023
Ebeko, located on the N end of Paramushir Island in Russia’s Kuril Islands just S of the Kamchatka Peninsula, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Observed eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruptive period began in June 2022, consisting of frequent explosions, ash plumes, and thermal activity (BGVN 47:10, 48:06). This report covers similar activity during June-November 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Moderate explosive activity continued during June-November 2023 (figures 50 and 51). According to visual data from Severo-Kurilsk, explosions sent ash 2-3.5 km above the summit (3-4.5 km altitude) during most days during June through mid-September. Activity after mid-September was slightly weaker, with ash usually reaching less than 2 km above the summit. According to KVERT the volcano in October and November was, with a few exceptions, either quiet or obscured by clouds that prevented satellite observations. KVERT issued Volcano Observatory Notices for Aviation (VONA) on 8 and 12 June, 13 and 22 July, 3 and 21 August, and 31 October warning of potential aviation hazards from ash plumes drifting 3-15 km from the volcano. Based on satellite data, KVERT reported a persistent thermal anomaly whenever weather clouds permitted viewing.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 19, Number 11 (November 1994)
Managing Editor: Richard Wunderman
Additional Reports (Unknown)
Fiji: Aerial pumice sightings; source unknown
Aira (Japan)
Explosive activity continues; summary of aviation hazards and mitigation efforts
Arenal (Costa Rica)
Ongoing Strombolian activity and a deflating edifice during 1994
Arjuno-Welirang (Indonesia)
Steam plume in mid-November seen from space
Asosan (Japan)
Minor phreatic activity from crater lake
Bulusan (Philippines)
Phreatic explosions cause ashfall in local villages and up to 16 km away
Concepcion (Nicaragua)
Fumarolic activity persists
Erebus (Antarctica)
Gas plume analyses reported
Galeras (Colombia)
Seismicity, deformation, and SO2 flux at low levels
Huila, Nevado del (Colombia)
Tremor pulses follow the 6 June earthquake
Irazu (Costa Rica)
Shallow earthquake (M 3.4) and early December explosion
Kanaga (United States)
Minor ashfall observed and "hot spot" detected by satellite
Klyuchevskoy (Russia)
Moderate explosive eruption causes minor ashfall 30 km away
Langila (Papua New Guinea)
Moderate intermittent Vulcanian explosions
Lascar (Chile)
Small phreatic eruptions
Manam (Papua New Guinea)
Two short eruptions: one produces a lava flow, the other, pyroclastic flows
Masaya (Nicaragua)
Red glow from vent on crater floor; gas emission
Mombacho (Nicaragua)
Venting continues from fumarole in south crater; two other fumarole areas located
Poas (Costa Rica)
Slow deflation and low-to-moderate seismicity
Popocatepetl (Mexico)
Small eruption on 21 December 1994 ends decades-long slumber
Rabaul (Papua New Guinea)
Explosions from Tavurvur show steady decrease in frequency
Rincon de la Vieja (Costa Rica)
Vigorous fumarolic activity continues
Sheveluch (Russia)
Seismic station closed
Special Announcements (Unknown)
Kamchatkan volcanoes activity reports halted by lack of funding
Tinguiririca (Chile)
Phreatic explosion in January 1994
Tolbachik (Russia)
Seismic station closed
Unzendake (Japan)
Endogenous lava-dome growth continues at low rate; few pyroclastic flows
Veniaminof (United States)
Possible "hot spot" on satellite imagery, but no activity observed
Additional Reports (Unknown) — November 1994
Cite this Report
Additional Reports
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
Fiji: Aerial pumice sightings; source unknown
S. Chandra, Fiji Meteorological Service, noted that Air Pacific FJ440 bound for Auckland from Nadi (Viti Levu) reported sighting pumice ~220-330 km out of Nadi at about 1530 on 25 November 1992.
On 2 December 1994, Mike Green of the Fiji Meteorological Service reported that the pilot of a flight from Nadi to Melbourne saw what he believed to be pumice ~130 km SSW of Nadi on a bearing of 200°. A lesser amount of pumice was seen to the left of the flight path ~240 km from the airport. The plane had been scheduled to depart at 1145, placing these observations around noon. Reply-paid telegrams were sent on 6 December to postal agents at Ono-i-Lau (southernmost Lau Group), Qalikarua (Matuku), and Daviqele (W Kadavu), asking if any pumice had arrived within the last few weeks. No reply had been received by the Fiji Mineral Resources Dept by 9 December, so it was assumed that none was seen.
Although no historical volcanism has been reported near these observation sites, the area is close to a spreading center.
Geologic Background. Reports of floating pumice from an unknown source, hydroacoustic signals, or possible eruption plumes seen in satellite imagery.
Information Contacts: P. Rodda and G. Wheller, Mineral Resources Dept, Suva, Fiji.
Aira
Japan
31.5772°N, 130.6589°E; summit elev. 1117 m
All times are local (unless otherwise noted)
Explosive activity continues; summary of aviation hazards and mitigation efforts
Explosive volcanism continued through November 1994; it caused no damage and was lower than last month in both the number of eruptions and the mass of ash fall collected. There were 21 eruptions from Minami-dake crater, including eight explosive ones. The highest ash plume in November rose to 2,700 m (at 1435 on 10 November). Seismic swarms were registered at a seismic station 2.3 km NW of Minamidake cone between 1900 on 30 November and 0700 on 1 December; earthquakes for the month numbered 427. During November, the mass of ash fall collected [at KLMO], was 60 g/m2.
Volcano monitoring at Kagoshima airport. Recent papers discussed the challenge of operating aircraft in vicinity of active volcanoes, including Sakura-jima (Onodera and Kamo, 1994; Casadevall, 1994). In Japan, 19 out of 83 volcanoes are actively steaming and under constant surveillance by JMA headquarters or local observatories; the other volcanoes are regularly patrolled by "Mobile Volcanic Observation Teams" based in four cities. These surveillance groups disseminate critical eruption information to relevant organizations, for example, Aviation Weather Service Centers, Air Traffic Control Centers, and airlines.
The key components of the Sakura-jima monitoring system consist of a seismometer for detecting earthquakes and an infrasonic microphone for detecting air shocks produced by explosive eruptions. An additional prediction system includes other instruments, such as water tube tiltmeters and extensometers. Even though the monitoring system can detect volcanic emissions nearly instantaneously, a time delay of at least a couple of minutes allows volcanological officers to confirm the responses of the monitoring equipment. This time delay also allows for time to edit and dispatch outgoing SIGMET or notification messages. In general, a SIGMET (Significant Meteorological Event) gets issued when the volcanic ash cloud reaches cruising flight elevation or higher.
While in general the several-minute time delay may not cause serious aviation safety problems, it may be crucial when aircraft are close to volcanoes, as at Sakura-jima. In considering problems such as these, the investigators developed a working model to quantify hazards. They expressed the relationship between magnitude of danger (D), eruption magnitude (M), volcano-aircraft distance (L), and a constant that may be affected by wind and related atmospheric conditions (k): D = kM/L.
Aircraft operations adjacent Sakura-jima. Figure 18 shows Kagoshima airport, at the S tip of Kyushu Island, sitting 22 km N of Sakura-jima's active crater. One of Japan's busiest airports, it has about 130 large transport takeoffs and landings a day; aircraft on the lowest category approach (ILS RWY34) pass a point 17 km NE of Sakura-jima's crater. Meanwhile, Sakura-jima produces over 100 explosive eruptions a year on average, but over 400 eruptions on some years (figure 19). Ash production has also been measured for the years 1978-93 (figure 20). It varied by a factor of about 5.5. At Sakura-jima there were 12 encounters between aircraft and volcanic ash during the years 1975-91 (Onodera and Kamo, 1994).
References. Onodera, S., Iguchi, M., and Ishihara, K., Recent advances in Japan, Volcano monitoring system of Japan Airlines at Kagoshima Airport: 9th Annual International Oceanic Airspace Conference, 9 November 1994.
Casadevall, T.J., 1994, Volcanic ash and aviation safety: Proceedings of the first International Symposium on Volcanic Ash and Aviation Safety, July 1991, Seattle, Washington, USGS Bulletin 2047, 450 p.
Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.
Information Contacts: JMA; S. Onodera, Japan Airlines; K. Kamo, M. Iguchi, and K. Ishihara, Sakurajima Volcano Observatory, Kyoto Univ.
Arenal (Costa Rica) — November 1994
Cite this Report
Arenal
Costa Rica
10.463°N, 84.703°W; summit elev. 1670 m
All times are local (unless otherwise noted)
Ongoing Strombolian activity and a deflating edifice during 1994
Strombolian eruptions and lava output from Crater C continued in November with columns reaching as high as 1 km above the Crater. OVSICORI reported that during 1994 the following accumulated deflations took place: a) the W-flank leveling line, 7.8 µrad; b) the inclination network, 7.7 µrad; and c) the distance network, 28.6 and 18.5 ppm (SW- and S-flanks, respectively). ICE reported that seismicity for November 1994 was comparatively low (table 8).
Table 8. ICE reported seismicity for Arenal, fall 1994. Their seismometer sits 1.5 km from Crater C. * November seismicity extrapolated based on 15 days of data. Courtesy of G. Soto.
Month |
Number of Events |
Hours of Daily Tremor |
Jul 1994 |
104 |
1.3 |
Aug 1994 |
76 |
1.3 |
Sep 1994 |
55 |
0.94 |
Oct 1994 |
53 |
1.1 |
Nov 1994* |
56 |
0.24 |
Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.
Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.
Arjuno-Welirang (Indonesia) — November 1994
Arjuno-Welirang
Indonesia
7.733°S, 112.575°E; summit elev. 3343 m
All times are local (unless otherwise noted)
Steam plume in mid-November seen from space
A photograph taken from the Space Shuttle in mid-November 1994 showed a possible steam plume originating from the summit of Arjuno (figure 2).
Geologic Background. The Arjuno and Welirang volcanoes anchor the SE and NW ends, respectively, of a 6-km-long line of volcanic cones and craters. The complex overlies most of the Gunung Ringgit edifice, whose summit is about 3 km NE from the main ridge. Pyroclastic cones are located on the north flank of Gunung Welirang and along an E-W line cutting across the southern side of Gunung Arjuno that extends to the lower SE flank. Fumarolic areas with sulfur deposition occur at several locations on Welirang.
Information Contacts: NASA JSC Digital Image Collection (URL: http://images.jsc.nasa.gov/).
Asosan
Japan
32.8849°N, 131.085°E; summit elev. 1592 m
All times are local (unless otherwise noted)
Minor phreatic activity from crater lake
During November, no eruptive activity took place at Crater 1. Water and gas ejection from a pool of water on the crater floor was observed on 5 days in November (specifically, 2, 3, 6, 27 and 28 November). Tremor amplitude registered at a seismic station 800 m W of the crater was not greater than 0.5 µm, but in December the amplitude began to rise.
Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.
Information Contacts: JMA.
Bulusan (Philippines) — November 1994
Cite this Report
Bulusan
Philippines
12.769°N, 124.056°E; summit elev. 1535 m
All times are local (unless otherwise noted)
Phreatic explosions cause ashfall in local villages and up to 16 km away
A phreatic eruption at 2043 on 27 November sent an ash plume 1.5 km high that drifted W and SW, causing ashfall in six villages, and was accompanied by 14 minutes of felt tremor. Following this event, PHIVOLCS declared the area within 4 km of the crater off-limits. A second ash explosion on 3 December at 2348 was accompanied by rumbling, but details are sketchy owing to heavy cloud cover. The third ash ejection, on 4 December, deposited traces of ash ~7 km downwind; no other observations were possible. The next day, another explosion at 1227 sent ash 1.5 km high that caused ashfall 5 km WSW and was noticed in two villages.
A phreatic explosion at 0650 on 12 December was also the strongest so far. The cauliflower-shaped eruption column, accompanied by a loud "pop," rose 3 km and deposited ash as far as 16 km SW. The main eruption column, light gray in color, rose vertically, and a smaller dark-gray surge cloud seemed to emanate from the base of the main eruption cloud. However, the runout was still within 4 km of the vent and no evacuation was recommended.
Five additional small explosions occurred through 28 December. Observations of an ash explosion at 0155 on 18 December was hampered by clouds, but was inferred from the seismogram and ash deposits at 5 villages, all SW of the volcano. A minor ash explosion at 0807 on 20 December produced an ash cloud not directly observed due to rain clouds, but ash fell ~7 km SW of the vent. A brief cloud break enabled volcanologists to make a COSPEC measurement of ~370 metric tons/day. At 1525 on 23 December, a slightly stronger ash ejection lasted 4 minutes, causing light ashfall in 6 villages, also in the SW. Light ashfall 7 km from the summit was noted again the next day following a 3-minute ash ejection at 2153 on 24 December. Ash output from a 7-minute eruption at 1253 on 27 December seemed to be larger than other events and spread to a wider area, despite calmer winds, depositing small amounts of ash in nine villages.
The onset of all ash emissions had a corresponding explosion-type earthquake recorded on the seismogram. This became diagnostic during heavy cloud cover when ash plumes could not be observed directly. Based on the earthquake amplitudes, the 27 November and 12 December events were the biggest explosions, although ash emission was greater on 27 December. In nearly each case, the ash deposit was <=2 mm thick at ~7 km downwind. Hazard maps had been prepared before the 27 November event. PHIVOLCS is planning to pull the telemetered seismic network installed on Mindoro for aftershock monitoring, and move it to Bulusan.
Geologic Background. Luzon's southernmost volcano, Bulusan, was constructed along the rim of the 11-km-diameter dacitic-to-rhyolitic Irosin caldera, which was formed about 36,000 years ago. It lies at the SE end of the Bicol volcanic arc occupying the peninsula of the same name that forms the elongated SE tip of Luzon. A broad, flat moat is located below the topographically prominent SW rim of Irosin caldera; the NE rim is buried by the andesitic complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit is unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded since the mid-19th century.
Information Contacts: R. Punongbayan, E. Corpuz, and E. Listanco, PHIVOLCS; Reuters.
Concepcion (Nicaragua) — November 1994
Cite this Report
Concepcion
Nicaragua
11.538°N, 85.622°W; summit elev. 1700 m
All times are local (unless otherwise noted)
Fumarolic activity persists
The fumarole at 1,550 m elevation directly N of the crater, observed in January and April 1993, remained active in November 1994. The fumarole was located on a crescentic fault with a downthrow to the N, which is probably related to outward/downward movement on the N flank. Clouds obscured most of the fumarole sites during a crater visit in April 1994; those seen had not changed since 1993. A 20-point deformation survey network was installed from 13 November to 27 December 1994 to measure spreading rates (van Wyk de Vries and others, 1993). The network will also be used for general monitoring.
Reference. van Wyk de Vries, B., Brown, G.C., and Borgia, A., 1993, Spreading at Concepción volcano, Nicaragua (abs.), in EOS, Abstracts of the American Geophysical Union, 1993 Fall Meeting, San Francisco.
Geologic Background. Volcán Concepción is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepción was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the N flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.
Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.
Erebus (Antarctica) — November 1994
Cite this Report
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Gas plume analyses reported
Since 1974 several expeditions have been organized to evaluate the mass and energy transfer from the magma in the lava lake to the atmosphere. Results have been in the range of 3-230 tons/day (t/d) of SO2. During this time, both the volcanic activity and the methods used to evaluate the gas output have changed. For the 1993-94 campaign both the COSPEC method and the SF6 tracer-gas method were used. A bottle of SF6 gas was driven into the crater and injected into the volcanic plume at a rate of 1.2 l/min. Seventeen sampling bottles installed downwind on the crater rim each sampled the plume for ~1 hour. Analyzing the SF6 concentration in each bottle allowed calculation of the atmospheric transfer coefficient: equal to the ratio of the concentration in the flask to the source SF6 flow rate. By analyzing the concentration of gas or aerosols collected at the same time and place it has been possible to determine the volcanic source output, assuming that the diffusion laws are the same for the artificial and the natural products.
The following results were obtained using the SF6 method (in tons/day): S, 50-80; Cl, 150-240; F, 50-80; Pb, 0.35; Zn, 0.53; As, 0.009; Bi, 0.0011; Cd, 0.01; Mo, 0.003; Cu, 0.19; Au, 0.002. COSPEC results obtained from a distance gave a SO2 flux of 120-150 t/d; an average of 60-75 t/d of sulfur.
CO was analyzed automatically during the cruise between Australia, Antarctica, and New Zealand, at the same time that samples were collected using a metallic cylinder on the crater rim and in the ice cave on the outer slopes of the volcano. The gas samples were analyzed using a trace analytical reduction gas detector connected with a gas chromatograph containing a 2-m molecular sieve column. Reduction gas detection occurs as a result of the passage of certain species through a heated bed of mercuric oxide (HgO); this method allows detection of reducing gases from the low parts per billion (ppb) to low percentages. The average concentration of CO varied between 80 and 120 ppb on the sea between Australia and Antarctica, but in the ice cave the CO concentration reached 152-456 ppb, and in the volcanic plume on the crater rim it reached 1,000-3,000 ppb.
Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. The summit has been modified by several generations of caldera formation. The glacier-covered volcano was erupting when first sighted in 1841 and has had an active lava lake in its summit crater since late 1972.
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: R. Faivre-Pierret, Institut de Protection et de Surete Nucleaire, Grenoble, France; F. LeGuern, B. Bonsang, E. Demont, M. Le Cloarec, E. Nho, and B. Ardouin, CNRS Centre des Faibles Radioactivites, Gif sur Yvette, France.
Galeras (Colombia) — November 1994
Cite this Report
Galeras
Colombia
1.22°N, 77.37°W; summit elev. 4276 m
All times are local (unless otherwise noted)
Seismicity, deformation, and SO2 flux at low levels
. . . Galeras displayed weak seismicity and deformation during November. Both tremor and long-period screw-type events (monochromatic and with a slow coda decay) continued. In addition to these signals, earthquakes took place. Some were located in the volcano's W sector at superficial depths. Others were located on the NW flank 3.5-4 km from the crater at 2-3 km depth. A third group struck on the NE flank in an area activated on previous occasions. Tiltmeters showed no significant change during November.
Tremor on 4 November lasted for 16 minutes (starting at 1638), on 5 November, for 43 minutes (starting at 1942). Coincident with the tremor, increased rain fell and a rise in mud flows was noted on the Azufral river in the W sector.
Airborne observers flying over the main crater noted a migration and an increase in the release of fumarolic gases. The escaping gases had migrated toward the external western wall of the cone and they concentrated along a tangentially oriented crevice and in some key fumaroles of this area. Nevertheless, the monthly SO2 measurements yielded low flux values for November.
Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.
Information Contacts: INGEOMINAS, Pasto.
Nevado del Huila (Colombia) — November 1994
Cite this Report
Nevado del Huila
Colombia
2.93°N, 76.03°W; summit elev. 5364 m
All times are local (unless otherwise noted)
Tremor pulses follow the 6 June earthquake
After the Paez earthquake (6 June 1994) tremor pulses began appearing on local seismic records. Such pulses were previously unseen since seismic monitoring began in 1986. On 7 August, a 75-minute interval of banded tremor took place over a 4-hour time span. On 27 September continuous tremor prevailed for up to 9.5 hours; the dominant frequency was in the 1-2 Hz range.
Geologic Background. Nevado del Huila, the highest peak in the Colombian Andes, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. The high point of the complex is Pico Central. Two glacier-free lava domes lie at the southern end of the volcanic complex. The first historical activity was an explosive eruption in the mid-16th century. Long-term, persistent steam columns had risen from Pico Central prior to the next eruption in 2007, when explosive activity was accompanied by damaging mudflows.
Information Contacts: H. Cepeda, INGOMINAS, Popayan.
Irazu (Costa Rica) — November 1994
Cite this Report
Irazu
Costa Rica
9.979°N, 83.852°W; summit elev. 3436 m
All times are local (unless otherwise noted)
Shallow earthquake (M 3.4) and early December explosion
During November, Irazú produced [no explosions, but] was shaken by a seismic event. In the interval 7-18 November a seismic swarm took place during which the OVSICORI seismic station registered a total of 255 seismic events. There were 42 locatable events that fell on a 10-km-long segment of the NW- to SE-trending Irazú fault (figure 6). The earthquakes ranged in magnitude, M 2.0-3.4, and some had focal depths of 27-29 km, though others had depths of <8 km. Similar alignments of epicenters have been seen on the fault since 1991. These epicenters suggest that the fault extends across Irazú. The seismic swarm terminated at 1337 on 18 November when a M 3.4 event occurred. Its epicenter fell 3 km SSE of the active crater. During this time, deformation detected via the inclinometer network failed to show significant changes. But, in contrast, around this time a leveling line 4 km S of the active crater did show a pulse of inflation: 32 µrad.
ICE reported that at 2248 on 8 December there was a phreatic explosion vented from a well-established fumarole on the upper NW-flank. They suggested that based on the response of the seismic station in San José, the released energy was similar to a M 4.4 earthquake. They further suggested that the explosion traveled toward the NW and destroyed forest on the upper slopes of the Rio Sucio, down to 2,500 m elevation. Explosion-triggered landslides and mudflows also followed along that drainage, but no lives were lost due to the absence of inhabitants in that area. The ash was composed of particles that appeared to be hydrothermally altered lithic fragments. The ash distribution pattern trended W (at an azimuth of 250°) and reached <= 30 km from the vent.
After the 8 December explosion, several tectonic earthquakes took place adjacent to Irazú, the largest, M 3.2 (at 0519 on 14 December) had a focal depth of 7 km. The explosion was also followed by many low-frequency and tremor-like signals. These were possibly triggered by the explosion.
Geologic Background. The massive Irazú volcano in Costa Rica, immediately E of the capital city of San José, covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad summit crater complex. At least 10 satellitic cones are located on its S flank. No lava effusion is known since the eruption of the Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the main crater, which contains a small lake. The first well-documented eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas. Phreatic activity reported in 1994 may have been a landslide event from the fumarolic area on the NW summit (Fallas et al., 2018).
Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.
Kanaga (United States) — November 1994
Cite this Report
Kanaga
United States
51.923°N, 177.168°W; summit elev. 1307 m
All times are local (unless otherwise noted)
Minor ashfall observed and "hot spot" detected by satellite
Observers in Adak . . . reported little activity during the first half of October, when clouds obscured Kanaga. Minor ash fall was noted 3-5 km S of the volcano on 12 October. A white steam cloud was observed from Adak the next day rising 1,200-1,500 m above the summit, and no new ash deposits were seen on the flanks of the volcano, covered by fresh snowfall. AVHRR satellite imagery on 13 October revealed a "hot spot" at the summit, but no eruption cloud was observed. During the following week, a white steam cloud rose 900-1,200 m above the summit. The volcano was obscured by cloudy weather conditions from 21 October through 25 November.
Geologic Background. Symmetrical Kanaga stratovolcano is situated within the Kanaton caldera at the northern tip of Kanaga Island. The caldera rim forms a 760-m-high arcuate ridge south and east of Kanaga; a lake occupies part of the SE caldera floor. The volume of subaerial dacitic tuff is smaller than would typically be associated with caldera collapse, and deposits of a massive submarine debris avalanche associated with edifice collapse extend nearly 30 km to the NNW. Several fresh lava flows from historical or late prehistorical time descend the flanks of Kanaga, in some cases to the sea. Historical eruptions, most of which are poorly documented, have been recorded since 1763. Kanaga is also noted petrologically for ultramafic inclusions within an outcrop of alkaline basalt SW of the volcano. Fumarolic activity occurs in a circular, 200-m-wide, 60-m-deep summit crater and produces vapor plumes sometimes seen on clear days from Adak, 50 km to the east.
Information Contacts: AVO.
Klyuchevskoy (Russia) — November 1994
Cite this Report
Klyuchevskoy
Russia
56.056°N, 160.642°E; summit elev. 4754 m
All times are local (unless otherwise noted)
Moderate explosive eruption causes minor ashfall 30 km away
Although clouds obscured the volcano in early November, continuous tremor (maximum amplitude 0.1-0.3 Nm) was recorded, and 4-11 earthquakes/day were detected under the volcano except on 7 November, when 23 events occurred. On 10 November, a gas-and-steam plume seen from Kliuchi (30 km NNE) was directed ESE for ~1 km. An observer in Kliuchi saw a gas-and-steam plume on 12 November rising 1 km above the summit that extended ~10 km ENE. On 18 November, observers in Kozirevsk (50 km W) saw a gas-and-steam column rising 50 m above the summit crater. Seismicity on the 18th consisted of continuous tremor (maximum amplitude 0.24 µm), one weak deep earthquake, and 9 shallow events.
A moderate explosive eruption occurred beginning about 0400 on 23 November, based on interpretations of seismicity. The volcano was completely obscured by clouds, but as much as 0.5 mm of ash fell in Kliuchi. Thirteen strong and shallow earthquakes beneath the volcano between 0400 and 1200 had maximum amplitudes of 14.25 µm at a seismic station 14 km from the volcano, and were recorded at stations up to 70 km away; persistent volcanic tremor had a maximum amplitude of ~0.33 µm. Comparing the seismicity to that of 30 September-1 October, the ash plume may have reached an altitude of ~7 km.
On 24 November, observers in Kliuchi noted a vigorous gas-and-steam plume containing minor ash rising 1 km above the volcano and extending >30 km NE. Weak volcanic tremor (amplitude ~0.15 µm) and 22 shallow earthquakes were registered beneath the crater area. The next day, observers in Kozirevsk reported a gas-and-steam plume above the volcano. Continuous tremor was recorded ~32 km from the volcano, and 12 shallow earthquakes were recorded beneath the crater area. On 28 November, a gas-and-steam plume seen from Kliuchi rose 2 km above summit and extended 3 km SW. A vigorous gas-and-steam plume of unknown height was also seen from Kliuchi on the 30th, continuous tremor (0.4 µm) was recorded 11 km away, and 73 shallow earthquakes were detected as far as 70 km away.
Geologic Background. Klyuchevskoy is the highest and most active volcano on the Kamchatka Peninsula. Since its origin about 6,000 years ago, this symmetrical, basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during approximately the past 3,000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 and 3,600 m elevation. Eruptions recorded since the late 17th century have resulted in frequent changes to the morphology of the 700-m-wide summit crater. These eruptions over the past 400 years have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.
Information Contacts: V. Kirianov, IVGG; AVO.
Langila (Papua New Guinea) — November 1994
Cite this Report
Langila
Papua New Guinea
5.525°S, 148.42°E; summit elev. 1330 m
All times are local (unless otherwise noted)
Moderate intermittent Vulcanian explosions
"Continuing the trend of previous months, eruptive activity consisted of moderate and intermittent Vulcanian explosions from Crater 2. During most of November, activity at Crater 2 consisted of noiseless emission of thin white vapour. Occasionally (on 4, 6-8, 15, 18, and 27-29 November), weak explosions were heard and accompanied the rise of dark-grey ash-laden columns to a few hundred meters above the crater. Some of these explosions were large enough to be recorded by a seismometer 9 km away. Fine ashfall was reported in downwind coastal areas. Between 14 and 27 November, weak night glow was seen and the activity was accompanied by low to loud rumblings. Crater 3 released only fumarolic emissions, occasionally accompanied by blue vapour."
Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.
Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.
Lascar
Chile
23.37°S, 67.73°W; summit elev. 5592 m
All times are local (unless otherwise noted)
Small phreatic eruptions
Observations during 11-23 November revealed a plume of variable strength, indicating continuing instability, and the volcano was not climbed. The fumarole on the N rim was visible and appeared to be stronger than in February. A small phreatic eruption at 1720 on 13 November ejected a brownish column ~700 m above the crater which was then blown SE. This event was preceded by a weak, diffuse vapor plume which reached 300-500 m above the crater. Following the eruption, the plume gradually strengthened, reaching altitudes of 2-2.5 km above the summit . . . by 16 November (figure 23). The plume became more dense, yellowish to brownish in color, and pulsed, ejecting "ashy slugs" every 5-15 minutes. A second phreatic eruption observed at 1720 on 19 November emitted a dense white plume to 3 km above the crater. Although sheared by wind to the SE, it retained its form for ~20 minutes.
Similar activity was observed by Matthews in February, and was related to continuing collapse of the crater floor. In this interpretation, blockage of the degassing system leads to a weak plume and buildup of pressure beneath the crater floor. Periodic phreatic eruptions clear the conduit and allow the gas to vent freely, causing the plume to strengthen; the reason for the strong pulsing is not clear.
Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.
Information Contacts: S. Matthews, Univ of Bristol.
Manam (Papua New Guinea) — November 1994
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Two short eruptions: one produces a lava flow, the other, pyroclastic flows
"During November, the background level of activity consisted of noiseless weak emissions of white and blue vapour, with weak glow at night. Two short eruptions occurred at South Crater in November. A lava flow was produced on 12-13 November and pyroclastic flows on the 28th.
"On the evening of the 10th, weak incandescent projections were seen just above the crater rim. Nothing could be seen on the 11th, although weak rumbling noises were heard. On the morning of the 12th, white-grey, ash-laden emissions were rising 600-700 m every 3-5 minutes. By night time, moderately strong Strombolian explosions accompanied a forceful dark-brown ash column rising 1-2 km above the crater, with loud rumbling and explosion sounds. Glowing lava fragments rolled down into the SE and SW valleys, and thick ashfall was reported in coastal areas on the ESE side of the island. Lava started to flow out of South Crater into the SE valley at 1900 on 12 November and the flow later stopped with the front at ~700 m elev. The strength of the eruption decreased after 0200 on the 13th, and for the next day and a half, the crater produced high, loud, bright explosions at progressively longer time intervals (from 1-15 minutes apart).
"Weak rumbling sounds and fluctuating glow were reported on the 25th. Intermittent (3-5 minute intervals) forceful emissions of dark ash-laden vapour, accompanied by weak-to-loud rumbling or explosion sounds, were noted on the 26th at 1730. Emissions became sub-continuous by 1900. A period of sub-Plinian activity with high projections of incandescent fragments lasted until the next morning. During 27-28 November, forceful dark emissions occurred at 1-2 minute intervals. The strength of the eruption seemed to increase again after 1030 on the 28th and there were pyroclastic flows in the SE valley at 1330. The eruption waned after ~0400 on the 29th, becoming intermittent, with forceful grey-brown explosions to 1-2 km above the crater and glowing lava fragments to 100-200 m. Unstable products around the vent tumbled into the SE and SW valleys as scoria avalanches.
"Main Crater activity was apparently unaffected by these eruptions. It continued to release white vapour in weak to moderate volumes throughout November. The water-tube tiltmeter at Tabele Observatory showed no significant deflection. No seismograph was operating."
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.
Masaya (Nicaragua) — November 1994
Cite this Report
Masaya
Nicaragua
11.9844°N, 86.1688°W; summit elev. 594 m
All times are local (unless otherwise noted)
Red glow from vent on crater floor; gas emission
When observed during November, the vent in Santiago crater was the same shape as in April 1994. It was possible to see ~20 m down into the hole, which was 10-20 m wide. During daylight a red glow could be seen from the lip of the vent inwards, but no lava or ejecta were observed. Pulses of gas emission occurred every 3-5 seconds.
Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.
Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.
Mombacho (Nicaragua) — November 1994
Cite this Report
Mombacho
Nicaragua
11.826°N, 85.968°W; summit elev. 1344 m
All times are local (unless otherwise noted)
Venting continues from fumarole in south crater; two other fumarole areas located
The fumarole that has been active since at least 1986 continued to vent vapor in November and December 1993. A strong sulfur odor was detected even when the wind was blowing towards the fumarole. This observation led to the discovery of two other previously unreported fumarole fields (figure 1). Vapor was seen rising from both, but they were not approached closely; neither appeared to be a new feature.
Geologic Background. Mombacho is an andesitic and basaltic stratovolcano on the shores of Lake Nicaragua south of the city of Granada that has undergone edifice collapse on several occasions. Two large breached craters formed by edifice failure cut the summit on the NE and S flanks. The NE-flank scarp was the source of a large debris avalanche that produced an arcuate peninsula and a cluster of small islands (Las Isletas) in Lake Nicaragua. Two small, well-preserved cinder cones are located on the lower N flank. The only reported activity was in 1570, when a debris avalanche destroyed a village on the south side of the volcano. Although there were contemporary reports of an explosion, there is no direct evidence that the avalanche was accompanied by an eruption. Fumarolic fields and hot springs are found within the two collapse scarps and on the upper N flank.
Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.
Poas (Costa Rica) — November 1994
Cite this Report
Poas
Costa Rica
10.2°N, 84.233°W; summit elev. 2697 m
All times are local (unless otherwise noted)
Slow deflation and low-to-moderate seismicity
Fumarolic activity continued at Poás in the re-established crater lake. OVSICORI reported the lake level remained the same in both October and November. ICE reported that due to heavy rains in November the lake had attained a diameter of ~220 m and its surface reached 8 m above the minimum level seen in August.
The turquoise-green colored lake hosted subaqueous fumarolic activity, leading to bubbling and minor phreatic eruption columns to 100 m height. In the NE part of the lake there existed a spot with sporadic phreatic eruptions. These reached 1-m height and had a dark-gray color. The area adjacent to the crater continues to recuperate from acidic conditions found earlier this year.
Results from the OVSICORI seismic system appear in table 6. The day of the month with the greatest number of seismic events was 7 November. Compared to earlier in 1994, the number of seismic events in November was low to moderate.
Deformation, measured by dry-tilt, failed to show significant changes in November. The four distance-measuring lines inside and across the active crater showed changes of less than 8 ppm in a deflationary direction. The two precision leveling lines at the summit changed less than 6 and 12 µrad. These leveling-line changes were interpreted as tending toward slow deflation after a brief pulse of inflation registered during the eruptive activity of August 1994.
Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.
Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, G. Alvarado, and F. Arias, ICE.
Popocatepetl (Mexico) — November 1994
Cite this Report
Popocatepetl
Mexico
19.023°N, 98.622°W; summit elev. 5393 m
All times are local (unless otherwise noted)
Small eruption on 21 December 1994 ends decades-long slumber
A new episode of explosive activity began at Popocatépetl volcano on 21 December 1994 (figure 5). The eruption followed increases in seismicity, SO2 flux, and fumarolic activity seen during the last 13 months. Although in the last year seismicity rose and fell several times, during late-October there was a sudden, prominent (roughly 1.6- to 10-fold) increase in daily earthquakes compared to previous months. Measurements of the volcano's total SO2 flux were consistently large (some airborne measurements averaged over 1,000 tons/day). During October-November 1993 a cluster of steam vents in the summit crater produced clouds that reached 6,000 m elevation, several-hundred meters above the 5,465 m summit. These clouds sometimes stretched for 50 km.
Eruptive activity. Near midnight on 22 December 1994, Servando De la Cruz sent the following report.
"The fumarolic activity that has been developing during the last two years or so culminated on early 21 December 1994, when a series of volcanic earthquakes, probably associated with phreatic explosions, marked the beginning of a new stage of eruptive activity. The seismic events, detected at 0131, 0132, 0138, 0140, and 0148, were very impulsive, high-frequency, short-duration signals, and were followed by a major, lower-frequency event at 0153. The events were recorded by four telemetric stations within 11 km of the volcano operated jointly by CENAPRED and the Institutes of Geophysics and Engineering of UNAM. As the day cleared an ash plume was observed for the first time in decades emerging from the volcano's crater. The ash emission was moderate and produced an almost horizontal plume causing a light ashfall over the city of Puebla, about 45 km ENE of the volcano's summit. A helicopter flight at 1030 showed that most of the ash issued from near the lower NE rim of the inclined crater. A radial fissure on the NE flank of the cone displayed some steam-producing vents, though the cloudy conditions make this interpretation equivocal. Old cracks in the glacier appeared to have extended a significant amount towards the W. A second flight at 1430 the same day revealed a substantial increase in ash production (about 3-4 times the amount observed in the morning). The light-gray ash appeared to be emitted episodically, with "puffs" every few minutes.
"The seismicity consisted of mostly low-amplitude B-type earthquakes and concurrent high-frequency A-type events. Though this seismicity remained lower than during night of 21 December, during the next day the seismicity again increased. At this stage and after several consultations between the scientific group and the Civil Protection authorities, an evacuation of the 19 most vulnerable towns and villages on the E sector of the volcano was started around 2100 of 21 December, and about 31,000 persons were moved during the night to shelters in safer areas. Since then the situation has remained fairly stable, though long-duration, low-amplitude tremors appeared in the night of 21-22 December, and continue."
Claus Siebe reported that climbers at Popocatépetl reached the summit, which lies along the W margin of the gaping summit crater's rim, both on the day before the eruption, and hours after the 21 December eruption started. On the day before the eruption visiting climbers could see the crater lake and sparse fumaroles. They reportedly heard no hissing sounds and they smelled less odor from sulfur-bearing gases than in previous months.
Curiously, the six volcanic earthquakes that took place between 0130 and 0200 on 21 December were not felt, and the presumably associated phreatic summit explosions were not heard by any of about 25 mountain climbers at Tlamacas, 4 km N of the summit (figure 6). The climbers, who said they started ascending the mountain around 0400 on 21 December, did not notice anything unusual until they neared the crater rim. Just prior to reaching the rim, a few minutes before 0800, climbers were stunned by what they thought was the sound of jet engines. At the crater rim they saw new bombs as large as 40 cm that had been thrown out of the 250-m-deep crater and had burrowed deep impact-pits in the snow. According to Siebe: "Most climbers who reached the summit that morning thought that the activity was normal, because they had never visited Popocatépetl before." At the summit, the climbers said they could not see the crater floor even though a strong wind was blowing. They descended back down the mountain without incident.
Siebe was at Tlamacas at 0900 on 21 December during clear weather. He observed a continuous ash plume rising 100-500 m above the crater with pulses at intervals of 1-5 minutes. The plume was carried at least 60 km E. Enough silt- and sand-sized material reached Puebla to produce a thin coating on cars. The ejecta appeared to be non-juvenile, and it contained pyrite, sulfur, and Ca-sulfate.
A report from Steve McNutt indicated that the volcano began to quiet down on the afternoon of 25 December. During the night of 27-28 December a M 2 earthquake took place; for reference the largest prior event in the recent past was M 2.9. On 27 December tremor was barely perceptible and a few small low-frequency events took place. During the 24-hour period ending about midday on 28 December there were ~30 low-frequency events. Tremor roughly doubled between 23 and 24 December, but then during 25-28 December it dropped and became barely detectible. No specific seismic data were available for dates after that, though seismicity did increase again and an audible explosion was heard roughly 10 km from the summit at about 1300 on 31 December. Investigators planned to install about four new seismic stations to improve spatial and azimuthal coverage, and to add one station close in.
By 27 December all but three of the previously evacuated towns had been reoccupied; those towns not reoccupied were subject to lahar hazard. A glaciologist made an initial helicopter inspection of the glacier looking especially for signs of abnormal melting. No report was available at the time of this publication, but steps to monitor the glacier included both a daily inspection flight and a video camera aimed at it from 5 km away. The last of the three previously evacuated towns was reoccupied by 28 December.
News reports. A 21 December Associated Press story said Popocatépetl, "spewed a column of roiling black ash Wednesday, dusting villages and farmland but causing no injuries" and that "television footage from traffic helicopters showed a dense column of ash belching from the summit."
As of 23 December, an Associated Press report noted that the Puebla state government said 75,000 people would be evacuated from the countryside around the volcano. Some other news reports put the number of evacuees at about 50,000. One of the evacuated towns, Santiago Xalitzintla, is located about 13 km NE of the summit. The town sits along the road over "Paso de Cortez," the pass between Popocatépetl and the adjacent Quaternary stratovolcano to the N, Iztaccihuatl (figure 6).
A 26 December United Press International news report noted that "Jorge Martinez Soto, a researcher at the Univ of Puebla, said the amount of smoke and ash being emitted from the volcano . . . diminished by about 75 percent since last week . . . ."
Plume imagery and transport modeling. Although the 21 December eruption plume may appear on satellite imagery, to our knowledge no investigator has yet announced having found it. There is an AVHRR (channel 1) image of a Popocatépetl plume on 22 December at 0818 (1418 GMT). That image shows a SE-directed plume tens of kilometers long. There are also three other AVHRR images for plumes on 26, 27, and 28 December. All four images are available via e-mail from Melissa Seymour. We learned of these images at press time and although we have not had time to see them first-hand and tabulate plume orientations, the imaged plumes reportedly trailed southward.
The Synoptic Analysis Branch (SAB) of NOAA/NESDIS first reported Popocatépetl activity at 1530 (2130 GMT) on 26 December for an eruption that took place at around 1300. A SIGMET (Significant Meteorological Event) notice was posted from México City announcing that a new eruption had taken place and that the plume from this eruption reached an altitude of about 6.7 km (22,000 feet). SAB later continued to describe the shape of the plume associated with this eruption based on GOES-7 and -8 data (table 2 and figure 6). A report later that day (26 December) indicated that the volcano had continued to erupt, creating a visible plume that at 1745 extended to 50 km E. At 0745 the next day (27 December), a GOES-8 visible satellite image of the plume suggested a gently curving, funnel-shaped mass tracking NE (figure 6). Based on the lack of infrared signatures and on their visible signatures, all the plumes reported in table 2 and figure 6 were thought to be of low density.
Table 2. Visible (GOES-7 and -8) satellite images reported for Popocatépetl. The time of initial eruption for all these plumes was around 1300 (1900 GMT) on 26 December. The third and fifth plumes listed are shown graphically on figure 6. Courtesy of SAB.
Date |
Local Time |
GMT Time |
Plume Length |
Greatest Width |
Estimated Height |
Height Source |
26 Dec 1994 |
1300 |
(1900) |
50 km |
-- |
6.7 km (22,000 ft) |
SIGMETs from México City. |
26 Dec 1994 |
1745 |
(2345) |
50 km E |
-- |
6.7 km (22,000 ft) |
SIGMETs from México City. |
27 Dec 1994 |
0745 |
(1345) |
250 km NE |
~75 km |
7.6 km (25,000 ft) |
SIGMETs from México City. |
27 Dec 1994 |
1400 |
(2000) |
85 km |
-- |
7.0 km (23,000 ft) |
Upper air data from México City at 0600 (1200 GMT). SIGMET ALFA 2 indicated ash cloud 17,000-20,000 ft at 1500 GMT. |
28 Dec 1994 |
0815 |
(1415) |
160 km |
40 km |
6.1 km (20,000 ft) |
Previous SIGMETS and weather balloon (radiosonde) data from México City. |
A modeling program called "VAFTAD" was used to forecast the transport and dispersion of the plume from the 26 December eruption (see references and description of VAFTAD in the report for Rinjani, 19:06). VAFTAD produced a series of visual ash cloud forecasts such as those on figure 7, which showed the plume initially covering both quadrants in the E half of the volcano and then traveling NE along about the same path taken by actual plumes seen in the GOES imagery (table 2 and figure 6). The models forecasted that after about 24 hours the plume would travel NE over the Gulf of Mexico.
VAFTAD uses wind and pressure data updated twice daily on grids with spacings of 91 km in the USA and 1 degree over the rest of the globe. The model assumes the eruption delivers a mass load to the atmosphere. The mass load is not scaled to the actual mass of the eruption, but rather the load is assumed to be 1 gram (composed of spherical particles with a density of 2.5 x 106 grams/m-3 in a size range of 0.3-30 µm in diameter). VAFTAD computes transport and dispersion assuming particles are carried by advection both horizontally and vertically, diffuse with a bivariate normal distribution, and fall according to Stoke's law with a slip correction. Calculated ash concentrations have been correlated with satellite imagery for defining the visual ash cloud forecasts.
One noteworthy aspect of the Popocatépetl plumes is the relatively large height of the summit crater (elevation ~5,215 m). Even small, low-energy eruptions from this high altitude vent can erupt material to 6 km (~20,000 feet) elevation.
So in essence, these ash cloud forecasts serve best for hazards planning purposes. A key use, in fact, is to warn airline pilots of the airspace most likely to contain volcanic ash particles. Besides the other hazards discussed in Boudal and Robin (1989), a large eruption from Popocatépetl could affect air travel in routes over parts of NE México and much of the Gulf of Mexico.
Eruptive history. In the Holocene Popocatépetl has produced both effusive and pyroclastic activity. The latter has ranged from mild steam-and-ash emissions to Plinian eruptions accompanied by pyroclastic flows and surges. Vigorous Holocene explosive activity took place in three periods (in years before present, ybp): a) 10,000 to 8,000, b) 5,000 to 3,800, and c) 1,200 to present (Boudal and Robin, 1989). An effusive period from 3,800 to 1,200 ybp ended with a vigorous explosive eruption that both enlarged the summit crater and generated St. Vincent-type pyroclastic flows. Another large explosive eruption, about 1,000 ybp, produced pyroclastic flows that descended the N flank.
Historical eruptions depicted on Aztec codices date back to 1345 AD. About 30 eruptions have been reported since then, although documentation is poor. Most historical eruptions were apparently mild-to-moderate Vulcanian steam and ash emissions. Lava flows restricted to the summit area may also have occurred in historical time, but cannot be attributed to specific eruptions. Larger explosive eruptions, possibly Plinian in character, were recorded in 1519 and possibly 1663. The last significant activity took place from 1920-22. Then, intermittent explosive eruptions produced 6.6-km-tall columns and extruded a small lava plug onto the floor of the summit crater. Ash clouds were also reported in 1923-24, 1933, 1942-43, and 1947.
Reference. Boudal, C., and C. Robin, 1989, Volcan Popocatépetl: Recent eruptive history, and potential hazards and risks in future eruptions, IAVCEI Proceedings in Volcanology 1; J.H. Latter (Ed.), Volcanic Hazards, Springer-Verlag Berlin Heidelberg, pp. 110-128.
Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.
Information Contacts: Servando de la Cruz-Reyna, Instituto de Geofísica, UNAM, Ciudad Universitaria; Claus Siebe, Instituto de Geofísica, UNAM, Coyoacán; Steve McNutt, Alaska Volcano Observatory, Univ. Alaska Fairbanks, USA; Melissa Seymour, LSU Earth Scan Lab, Coastal Studies Institute, USA; Nick Heffter, National Oceanic and Atmospheric Administration (NOAA), Air Resources Laboratory, USA; Jim Lynch, Synoptic Analysis Branch, NOAA/NESDIS, USA.
Rabaul (Papua New Guinea) — November 1994
Cite this Report
Rabaul
Papua New Guinea
4.2459°S, 152.1937°E; summit elev. 688 m
All times are local (unless otherwise noted)
Explosions from Tavurvur show steady decrease in frequency
"The eruption . . . continued through November. Tavurvur exhibited moderate Vulcanian activity that declined slowly in strength, while Vulcan remained quiet. Vulcan exhibited only weak fumarolic activity from four small vents filled with bubbling water at the base of the new crater.
"Activity at Tavurvur consisted mainly of discrete explosive pulses. The ash content was generally low, producing a pale-grey emission column. The size of, and timing between, explosions was variable, but there was a general decline in activity during November. At the beginning of the month, explosions were 1-4 minutes apart and the emission columns rose forcefully to ~1.5 km. By the 6th, the intervals were 1-10 minutes and the crater was sometimes clear of emissions. Blue vapours were seen around the active vent at the bottom of a 50-m-high tephra cone. There were, however, large explosions on the 5th, 6th, and 9th which showered the flanks of Tavurvur with blocks and bombs, and produced a large billowing cloud up to 2 km high. From 9-19 November, emissions were mainly of white vapour with occasional explosion clouds up to 1 km. The eruption was mainly silent, except for rumbling and roaring noises on the 10th and 11th.
"The Tavurvur crater was never freely open during this phase of the eruption, but was clogged up with a mass of rubble, welded together and sometimes glowing. The dark ash-laden billowing clouds that suddenly rushed out of the vent every few minutes seemed to percolate through the rubble. A lava mound, 10 m in diameter and 2 m thick, formed over the vent on the 15th but was destroyed by a large explosion the next day. A new lava mound had formed by the 18th, this time 20 m across and 4 m thick, possibly consisting of two lobes and fractured into four main blocks. The intermittent ash-laden emissions were then hissing out from under the sides of the mound. Details of the crater could not be seen again until the 25th, when all traces of the lava mound had disappeared from the base of the bowl-shaped crater, presumably blown out by the large explosions heard at intervals of 1-4 hours on the 19th.
"From the 19th until the end of the month explosions were generally mild. Large explosions, however, occurred on 20-22, 26, and 29 November. At night, these explosions resulted in a shower of incandescent blocks on the flanks of the volcano. Sizeable blocks were occasionally found in the Talwat road that goes around the base of the cone.
"Seismic activity in the caldera was lower in November than in October. It was dominated by shallow explosive and low-frequency earthquakes associated with the eruptive activity at Tavurvur. RSAM amplitudes and event counts showed a marked decline between 29 October and 2 November (figure 22). Throughout the rest of the month, the data were dominated by diurnal meteorological effects, although a gradual decline could still be seen. Data captured on the seismic data-acquisition system showed an average of ~6.5 low-frequency and explosive events per day, compared to almost 26 per day in the second half of October.
"Before the eruption, seismic activity . . . was dominated by high-frequency earthquakes located on the caldera ring-fault system. Since the eruption, there have been few high-frequency earthquakes detected (58 in October and 37 in November, compared to normal pre-eruption levels of 200-300/month) and most of these were located away from the ring fault or in previously inactive regions of it. The level of seismicity cannot be easily compared to earlier pre-eruption levels because totally different seismic detection systems were used. However, it is believed that the level is much lower than before the eruption. This, and the fact that the majority of the epicenters are away from the ring-fault system that previously contained almost all of the seismicity, suggest that the caldera is no longer in a highly pressurized state.
"Ground deformation determined from electronic tilt meters and dry-tilt measurements indicate a reduction in the rate of deflation of the caldera since the onset of the eruption. This change is illustrated by an offshore pylon near the centre of deformation, 2 km S of Tavurvur, which subsided by 8 cm in November, compared to 18 cm in October and at least 45 cm in the last 10 days of September."
Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.
Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.
Rincon de la Vieja (Costa Rica) — November 1994
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Vigorous fumarolic activity continues
The fumarolic activity in the main crater that remained vigorous during August and September, continued in November. A seismic record made by ICE in November suggested seismo-volcanic activity of low frequency and magnitude located at very shallow depths beneath the crater.
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.
Sheveluch (Russia) — November 1994
Cite this Report
Sheveluch
Russia
56.653°N, 161.36°E; summit elev. 3283 m
All times are local (unless otherwise noted)
Seismic station closed
[Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time.]
Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.
Information Contacts: V. Kirianov, IVGG; T. Miller, AVO.
Special Announcements (Unknown) — November 1994
Cite this Report
Special Announcements
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
Kamchatkan volcanoes activity reports halted by lack of funding
Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time. Expressions of concern and support... by interested parties would be appreciated."
An AVO Information Release on 9 January 1995 suggested that "Letters of concern might mention the Kamchatka Volcanic Eruptions Response Team under the leadership of Vladimir Kirianov, its value in monitoring and reporting of volcanic eruptions, the suspension of KVERT activities because of the delay in funding, the need for rapid transfer of funds, etc." Letters should be sent to the Russian Department of Air Transport official handling the KVERT funds [outdated contact information removed].
KVERT began regularly sending reports to AVO for further distribution in April 1993. Since then, KVERT has provided the overwhelming bulk of information for GVN reports about Kamchatkan volcanic activity, the first steady stream of information from this important region. For example, information provided by KVERT has described significant eruptions at Shiveluch (22 April 1993), Bezymianny (21 October 1993), and Kliuchevskoi (1-3 October 1994). Continuous activity at Shiveluch (gas-and-steam plumes, growth of extrusive lava dome) and Kliuchevskoi (minor ash explosions, gas-and-steam plumes, lava fountaining, lava flows) has also been consistently reported. Prompt notification of Kamchatkan eruptions is especially critical because of the large volume of international air traffic in the vicinity.
Geologic Background. Special announcements or information of general interest not linked to any specific volcano.
Information Contacts: Vladimir Yu. Kirianov, Institute of Volcanic Geology & Geochemistry (see Kliuchevskoi); Thomas P. Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA, b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.
Tinguiririca (Chile) — November 1994
Cite this Report
Tinguiririca
Chile
34.814°S, 70.352°W; summit elev. 4280 m
All times are local (unless otherwise noted)
Phreatic explosion in January 1994
On about 15 January 1994, Bolivar Miranda, a SERNAGEOMIN chemical engineer, observed a 5-km-high explosive column rising above Tinguiririca from a location 65 km W. A photograph taken by his son, Matías, showed a distinct white cauliflower-shaped column on a clear day. Based on the shape and growth of the column, this eruption was most likely phreatic.
Geologic Background. Tinguiririca is composed of at least seven Holocene scoria cones W of the Chile-Argentina border constructed along a NNE-SSW fissure over an eroded Pleistocene stratovolcano. The complex was constructed during three eruptive cycles dating back to the middle Pleistocene. The latest activity produced a series of youthful small stratovolcanoes and craters, of which the youngest appear to be Tinguiririca and Fray Carlos. Constant fumarolic activity occurs within and on the NW wall of the summit crater. Hot springs and fumaroles with sulfur deposits are found on the W flanks of the summit cones. A single historical eruption was recorded in 1917.
Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago.
Tolbachik (Russia) — November 1994
Cite this Report
Tolbachik
Russia
55.832°N, 160.326°E; summit elev. 3611 m
All times are local (unless otherwise noted)
Seismic station closed
[Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time.]
Geologic Background. The massive Tolbachik volcano is located at the southern end of the Kliuchevskaya volcano group. The massif is composed of two overlapping, but morphologically distinct, volcanoes. The flat-topped Plosky Tolbachik shield volcano with its nested Holocene calderas up to 3 km in diameter is located east of the older and higher sharp-topped Ostry Tolbachik stratovolcano. The summit caldera at Plosky Tolbachik was formed in association with major lava effusion about 6,500 years ago and simultaneously with a major southward-directed sector collapse of Ostry Tolbachik. Long rift zones extending NE and SSW of the volcano have erupted voluminous basaltic lava flows during the Holocene, with activity during the past two thousand years being confined to the narrow axial zone of the rifts. The 1975-76 eruption originating from the SSW-flank fissure system and the summit was the largest historical basaltic eruption in Kamchatka.
Information Contacts: V. Kirianov, IVGG; T. Miller, AVO.
Unzendake (Japan) — November 1994
Cite this Report
Unzendake
Japan
32.761°N, 130.299°E; summit elev. 1483 m
All times are local (unless otherwise noted)
Endogenous lava-dome growth continues at low rate; few pyroclastic flows
The period from mid-November through mid-December was characterized by a low eruption rate (~104 m3/d) and low frequency of pyroclastic-flow events. A theodolite survey indicated that lava blocks (a spine and the surrounding area) in the center of the endogenous dome had moved upward at a rate of <0.5 m/day. Movement of talus slopes on the dome was hardly detected during this period. Some geophysicists proposed that the upward movement of the spine and the surrounding area was related directly to microearthquakes, which occurred periodically within the dome in recent months. It is difficult to test this hypothesis because of the slow movement and poor weather conditions. The endogenous dome was the highest point in early December, reaching ~220 m above the former Jigokuato Crater. The height of the dome has varied but generally increased with time, and had reached 245 m in April 1994.
Oxidized lava blocks (several meters across) on the dome surface tumbled NE and SE due to inclination of the surface around the uplifting part; some developed into pyroclastic flows. During October, eight pyroclastic flows were observed to travel <=2 km SE. The Geological Survey of Japan reported that the average volume of pyroclastic-flow deposits in November was ~100 m3/day, which is the lowest since May 1991. Volume estimates were made using pyroclastic-flow seismic records (amplitude and duration of signal).
During November, microearthquakes detected 3.6 km W of the dome (station A) totaled 436, roughly half the number seen in October (993). Since mid-October, the number of hourly earthquakes has been periodic, with 38-40 hours between cycles. A corresponding periodic character was also found in tilt data at the N caldera rim, but the mechanism remains unknown. COSPEC analysis by the Tokyo Institute of Technology in late November showed that SO2 flux from the dome was ~20 t/d; half of the value in late September. The value of SO2 flux . . . is roughly concordant with the lava eruption rate throughout the last 3.5 years.
Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.
Information Contacts: S. Nakada, Kyushu Univ; JMA.
Veniaminof (United States) — November 1994
Cite this Report
Veniaminof
United States
56.17°N, 159.38°W; summit elev. 2507 m
All times are local (unless otherwise noted)
Possible "hot spot" on satellite imagery, but no activity observed
Cloudy conditions throughout October and the first half of November prevented observations on most days. On 13 October AVHRR satellite imagery revealed a "hot spot" in the same location as during the past few months, but no eruption cloud was observed. By October 18, when clear skies allowed good views, no "hot spot" or eruption cloud was detected. Satellite imagery on 17 November again revealed a possible "hot spot" within the caldera, indicating probable continuing low-level activity. No activity was observed from Perryville . . . during clear conditions on 24 November.
Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.
Information Contacts: AVO.