Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020



Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 19, Number 11 (November 1994)

Managing Editor: Richard Wunderman

Additional Reports (Unknown)

Fiji: Aerial pumice sightings; source unknown

Aira (Japan)

Explosive activity continues; summary of aviation hazards and mitigation efforts

Arenal (Costa Rica)

Ongoing Strombolian activity and a deflating edifice during 1994

Arjuno-Welirang (Indonesia)

Steam plume in mid-November seen from space

Asosan (Japan)

Minor phreatic activity from crater lake

Bulusan (Philippines)

Phreatic explosions cause ashfall in local villages and up to 16 km away

Concepcion (Nicaragua)

Fumarolic activity persists

Erebus (Antarctica)

Gas plume analyses reported

Galeras (Colombia)

Seismicity, deformation, and SO2 flux at low levels

Huila, Nevado del (Colombia)

Tremor pulses follow the 6 June earthquake

Irazu (Costa Rica)

Shallow earthquake (M 3.4) and early December explosion

Kanaga (United States)

Minor ashfall observed and "hot spot" detected by satellite

Klyuchevskoy (Russia)

Moderate explosive eruption causes minor ashfall 30 km away

Langila (Papua New Guinea)

Moderate intermittent Vulcanian explosions

Lascar (Chile)

Small phreatic eruptions

Manam (Papua New Guinea)

Two short eruptions: one produces a lava flow, the other, pyroclastic flows

Masaya (Nicaragua)

Red glow from vent on crater floor; gas emission

Mombacho (Nicaragua)

Venting continues from fumarole in south crater; two other fumarole areas located

Poas (Costa Rica)

Slow deflation and low-to-moderate seismicity

Popocatepetl (Mexico)

Small eruption on 21 December 1994 ends decades-long slumber

Rabaul (Papua New Guinea)

Explosions from Tavurvur show steady decrease in frequency

Rincon de la Vieja (Costa Rica)

Vigorous fumarolic activity continues

Sheveluch (Russia)

Seismic station closed

Special Announcements (Unknown)

Kamchatkan volcanoes activity reports halted by lack of funding

Tinguiririca (Chile)

Phreatic explosion in January 1994

Tolbachik (Russia)

Seismic station closed

Unzendake (Japan)

Endogenous lava-dome growth continues at low rate; few pyroclastic flows

Veniaminof (United States)

Possible "hot spot" on satellite imagery, but no activity observed



Additional Reports (Unknown) — November 1994 Citation iconCite this Report

Additional Reports

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Fiji: Aerial pumice sightings; source unknown

S. Chandra, Fiji Meteorological Service, noted that Air Pacific FJ440 bound for Auckland from Nadi (Viti Levu) reported sighting pumice ~220-330 km out of Nadi at about 1530 on 25 November 1992.

On 2 December 1994, Mike Green of the Fiji Meteorological Service reported that the pilot of a flight from Nadi to Melbourne saw what he believed to be pumice ~130 km SSW of Nadi on a bearing of 200°. A lesser amount of pumice was seen to the left of the flight path ~240 km from the airport. The plane had been scheduled to depart at 1145, placing these observations around noon. Reply-paid telegrams were sent on 6 December to postal agents at Ono-i-Lau (southernmost Lau Group), Qalikarua (Matuku), and Daviqele (W Kadavu), asking if any pumice had arrived within the last few weeks. No reply had been received by the Fiji Mineral Resources Dept by 9 December, so it was assumed that none was seen.

Although no historical volcanism has been reported near these observation sites, the area is close to a spreading center.

Geologic Background. Reports of floating pumice from an unknown source, hydroacoustic signals, or possible eruption plumes seen in satellite imagery.

Information Contacts: P. Rodda and G. Wheller, Mineral Resources Dept, Suva, Fiji.


Aira (Japan) — November 1994 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive activity continues; summary of aviation hazards and mitigation efforts

Explosive volcanism continued through November 1994; it caused no damage and was lower than last month in both the number of eruptions and the mass of ash fall collected. There were 21 eruptions from Minami-dake crater, including eight explosive ones. The highest ash plume in November rose to 2,700 m (at 1435 on 10 November). Seismic swarms were registered at a seismic station 2.3 km NW of Minamidake cone between 1900 on 30 November and 0700 on 1 December; earthquakes for the month numbered 427. During November, the mass of ash fall collected [at KLMO], was 60 g/m2.

Volcano monitoring at Kagoshima airport. Recent papers discussed the challenge of operating aircraft in vicinity of active volcanoes, including Sakura-jima (Onodera and Kamo, 1994; Casadevall, 1994). In Japan, 19 out of 83 volcanoes are actively steaming and under constant surveillance by JMA headquarters or local observatories; the other volcanoes are regularly patrolled by "Mobile Volcanic Observation Teams" based in four cities. These surveillance groups disseminate critical eruption information to relevant organizations, for example, Aviation Weather Service Centers, Air Traffic Control Centers, and airlines.

The key components of the Sakura-jima monitoring system consist of a seismometer for detecting earthquakes and an infrasonic microphone for detecting air shocks produced by explosive eruptions. An additional prediction system includes other instruments, such as water tube tiltmeters and extensometers. Even though the monitoring system can detect volcanic emissions nearly instantaneously, a time delay of at least a couple of minutes allows volcanological officers to confirm the responses of the monitoring equipment. This time delay also allows for time to edit and dispatch outgoing SIGMET or notification messages. In general, a SIGMET (Significant Meteorological Event) gets issued when the volcanic ash cloud reaches cruising flight elevation or higher.

While in general the several-minute time delay may not cause serious aviation safety problems, it may be crucial when aircraft are close to volcanoes, as at Sakura-jima. In considering problems such as these, the investigators developed a working model to quantify hazards. They expressed the relationship between magnitude of danger (D), eruption magnitude (M), volcano-aircraft distance (L), and a constant that may be affected by wind and related atmospheric conditions (k): D = kM/L.

Aircraft operations adjacent Sakura-jima. Figure 18 shows Kagoshima airport, at the S tip of Kyushu Island, sitting 22 km N of Sakura-jima's active crater. One of Japan's busiest airports, it has about 130 large transport takeoffs and landings a day; aircraft on the lowest category approach (ILS RWY34) pass a point 17 km NE of Sakura-jima's crater. Meanwhile, Sakura-jima produces over 100 explosive eruptions a year on average, but over 400 eruptions on some years (figure 19). Ash production has also been measured for the years 1978-93 (figure 20). It varied by a factor of about 5.5. At Sakura-jima there were 12 encounters between aircraft and volcanic ash during the years 1975-91 (Onodera and Kamo, 1994).

Figure (see Caption) Figure 18. Sakura-jima airport showing both normal and ash avoidance air routes (top). More detailed map of the volcano and airport showing an air route and the JAL observation site (bottom). Courtesy of Onadera, Iguchi, and Ishihara.
Figure (see Caption) Figure 19. Annual number of explosions and mass of ashfall from Sakura-jima (1978-1993, with 1994 annual total up to July also shown). Courtesy of Onadera, Iguchi, and Ishihara.
Figure (see Caption) Figure 20. Annual number of explosions from Sakura-jima (1955 to July 1994). Arrows indicate small pyroclastic-flow episodes. Courtesy of Onadera and others (1994).

References. Onodera, S., Iguchi, M., and Ishihara, K., Recent advances in Japan, Volcano monitoring system of Japan Airlines at Kagoshima Airport: 9th Annual International Oceanic Airspace Conference, 9 November 1994.

Casadevall, T.J., 1994, Volcanic ash and aviation safety: Proceedings of the first International Symposium on Volcanic Ash and Aviation Safety, July 1991, Seattle, Washington, USGS Bulletin 2047, 450 p.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA; S. Onodera, Japan Airlines; K. Kamo, M. Iguchi, and K. Ishihara, Sakurajima Volcano Observatory, Kyoto Univ.


Arenal (Costa Rica) — November 1994 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Ongoing Strombolian activity and a deflating edifice during 1994

Strombolian eruptions and lava output from Crater C continued in November with columns reaching as high as 1 km above the Crater. OVSICORI reported that during 1994 the following accumulated deflations took place: a) the W-flank leveling line, 7.8 µrad; b) the inclination network, 7.7 µrad; and c) the distance network, 28.6 and 18.5 ppm (SW- and S-flanks, respectively). ICE reported that seismicity for November 1994 was comparatively low (table 8).

Table 8. ICE reported seismicity for Arenal, fall 1994. Their seismometer sits 1.5 km from Crater C. * November seismicity extrapolated based on 15 days of data. Courtesy of G. Soto.

Month Number of Events Hours of Daily Tremor
Jul 1994 104 1.3
Aug 1994 76 1.3
Sep 1994 55 0.94
Oct 1994 53 1.1
Nov 1994* 56 0.24

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.


Arjuno-Welirang (Indonesia) — November 1994

Arjuno-Welirang

Indonesia

7.733°S, 112.575°E; summit elev. 3339 m

All times are local (unless otherwise noted)


Steam plume in mid-November seen from space

A photograph taken from the Space Shuttle in mid-November 1994 showed a possible steam plume originating from the summit of Arjuno (figure 2).

Figure (see Caption) Figure 2. This is a striking, oblique view to the south of the Indonesian islands of Java (right), Bali and Lombok (upper left). The linear array of dark regions across the photo is a chain of volcanoes. Plumes of steam can be seen rising from the summits of Arjuno (eastern Java, near the center of the photo) and Merapi (central Java, near the right of the photo). The region appears hazy due to an extended drought over Indonesia, New Guinea, and Australia resulting in huge fires and a regional smoke pall. NASA Photo ID: STS066-154-157. Approximate date: 14 November 1994.

Geologic Background. The Arjuno and Welirang volcanoes anchor the SE and NW ends, respectively, of a 6-km-long line of volcanic cones and craters. The Arjuno-Welirang complex overlies two older volcanoes, Gunung Ringgit to the east and Gunung Linting to the south. The summit areas of both volcanoes are unvegetated. Additional pyroclastic cones are located on the north flank of Gunung Welirang and along an E-W line cutting across the southern side of Gunung Arjuno that extends to the lower SE flank. Fumarolic areas with sulfur deposition occur at several locations on Welirang.

Information Contacts: NASA JSC Digital Image Collection (URL: http://images.jsc.nasa.gov/).


Asosan (Japan) — November 1994 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Minor phreatic activity from crater lake

During November, no eruptive activity took place at Crater 1. Water and gas ejection from a pool of water on the crater floor was observed on 5 days in November (specifically, 2, 3, 6, 27 and 28 November). Tremor amplitude registered at a seismic station 800 m W of the crater was not greater than 0.5 µm, but in December the amplitude began to rise.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: JMA.


Bulusan (Philippines) — November 1994 Citation iconCite this Report

Bulusan

Philippines

12.769°N, 124.056°E; summit elev. 1535 m

All times are local (unless otherwise noted)


Phreatic explosions cause ashfall in local villages and up to 16 km away

A phreatic eruption at 2043 on 27 November sent an ash plume 1.5 km high that drifted W and SW, causing ashfall in six villages, and was accompanied by 14 minutes of felt tremor. Following this event, PHIVOLCS declared the area within 4 km of the crater off-limits. A second ash explosion on 3 December at 2348 was accompanied by rumbling, but details are sketchy owing to heavy cloud cover. The third ash ejection, on 4 December, deposited traces of ash ~7 km downwind; no other observations were possible. The next day, another explosion at 1227 sent ash 1.5 km high that caused ashfall 5 km WSW and was noticed in two villages.

A phreatic explosion at 0650 on 12 December was also the strongest so far. The cauliflower-shaped eruption column, accompanied by a loud "pop," rose 3 km and deposited ash as far as 16 km SW. The main eruption column, light gray in color, rose vertically, and a smaller dark-gray surge cloud seemed to emanate from the base of the main eruption cloud. However, the runout was still within 4 km of the vent and no evacuation was recommended.

Five additional small explosions occurred through 28 December. Observations of an ash explosion at 0155 on 18 December was hampered by clouds, but was inferred from the seismogram and ash deposits at 5 villages, all SW of the volcano. A minor ash explosion at 0807 on 20 December produced an ash cloud not directly observed due to rain clouds, but ash fell ~7 km SW of the vent. A brief cloud break enabled volcanologists to make a COSPEC measurement of ~370 metric tons/day. At 1525 on 23 December, a slightly stronger ash ejection lasted 4 minutes, causing light ashfall in 6 villages, also in the SW. Light ashfall 7 km from the summit was noted again the next day following a 3-minute ash ejection at 2153 on 24 December. Ash output from a 7-minute eruption at 1253 on 27 December seemed to be larger than other events and spread to a wider area, despite calmer winds, depositing small amounts of ash in nine villages.

The onset of all ash emissions had a corresponding explosion-type earthquake recorded on the seismogram. This became diagnostic during heavy cloud cover when ash plumes could not be observed directly. Based on the earthquake amplitudes, the 27 November and 12 December events were the biggest explosions, although ash emission was greater on 27 December. In nearly each case, the ash deposit was <=2 mm thick at ~7 km downwind. Hazard maps had been prepared before the 27 November event. PHIVOLCS is planning to pull the telemetered seismic network installed on Mindoro for aftershock monitoring, and move it to Bulusan.

Geologic Background. Luzon's southernmost volcano, Bulusan, was constructed along the rim of the 11-km-diameter dacitic-to-rhyolitic Irosin caldera, which was formed about 36,000 years ago. It lies at the SE end of the Bicol volcanic arc occupying the peninsula of the same name that forms the elongated SE tip of Luzon. A broad, flat moat is located below the topographically prominent SW rim of Irosin caldera; the NE rim is buried by the andesitic complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit is unvegetated and contains a 300-m-wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded since the mid-19th century.

Information Contacts: R. Punongbayan, E. Corpuz, and E. Listanco, PHIVOLCS; Reuters.


Concepcion (Nicaragua) — November 1994 Citation iconCite this Report

Concepcion

Nicaragua

11.538°N, 85.622°W; summit elev. 1700 m

All times are local (unless otherwise noted)


Fumarolic activity persists

The fumarole at 1,550 m elevation directly N of the crater, observed in January and April 1993, remained active in November 1994. The fumarole was located on a crescentic fault with a downthrow to the N, which is probably related to outward/downward movement on the N flank. Clouds obscured most of the fumarole sites during a crater visit in April 1994; those seen had not changed since 1993. A 20-point deformation survey network was installed from 13 November to 27 December 1994 to measure spreading rates (van Wyk de Vries and others, 1993). The network will also be used for general monitoring.

Reference. van Wyk de Vries, B., Brown, G.C., and Borgia, A., 1993, Spreading at Concepción volcano, Nicaragua (abs.), in EOS, Abstracts of the American Geophysical Union, 1993 Fall Meeting, San Francisco.

Geologic Background. Volcán Concepción is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepción was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the N flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.

Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.


Erebus (Antarctica) — November 1994 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Gas plume analyses reported

Since 1974 several expeditions have been organized to evaluate the mass and energy transfer from the magma in the lava lake to the atmosphere. Results have been in the range of 3-230 tons/day (t/d) of SO2. During this time, both the volcanic activity and the methods used to evaluate the gas output have changed. For the 1993-94 campaign both the COSPEC method and the SF6 tracer-gas method were used. A bottle of SF6 gas was driven into the crater and injected into the volcanic plume at a rate of 1.2 l/min. Seventeen sampling bottles installed downwind on the crater rim each sampled the plume for ~1 hour. Analyzing the SF6 concentration in each bottle allowed calculation of the atmospheric transfer coefficient: equal to the ratio of the concentration in the flask to the source SF6 flow rate. By analyzing the concentration of gas or aerosols collected at the same time and place it has been possible to determine the volcanic source output, assuming that the diffusion laws are the same for the artificial and the natural products.

The following results were obtained using the SF6 method (in tons/day): S, 50-80; Cl, 150-240; F, 50-80; Pb, 0.35; Zn, 0.53; As, 0.009; Bi, 0.0011; Cd, 0.01; Mo, 0.003; Cu, 0.19; Au, 0.002. COSPEC results obtained from a distance gave a SO2 flux of 120-150 t/d; an average of 60-75 t/d of sulfur.

CO was analyzed automatically during the cruise between Australia, Antarctica, and New Zealand, at the same time that samples were collected using a metallic cylinder on the crater rim and in the ice cave on the outer slopes of the volcano. The gas samples were analyzed using a trace analytical reduction gas detector connected with a gas chromatograph containing a 2-m molecular sieve column. Reduction gas detection occurs as a result of the passage of certain species through a heated bed of mercuric oxide (HgO); this method allows detection of reducing gases from the low parts per billion (ppb) to low percentages. The average concentration of CO varied between 80 and 120 ppb on the sea between Australia and Antarctica, but in the ice cave the CO concentration reached 152-456 ppb, and in the volcanic plume on the crater rim it reached 1,000-3,000 ppb.

Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. The summit has been modified by several generations of caldera formation. The glacier-covered volcano was erupting when first sighted in 1841 and has had an active lava lake in its summit crater since late 1972.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: R. Faivre-Pierret, Institut de Protection et de Surete Nucleaire, Grenoble, France; F. LeGuern, B. Bonsang, E. Demont, M. Le Cloarec, E. Nho, and B. Ardouin, CNRS Centre des Faibles Radioactivites, Gif sur Yvette, France.


Galeras (Colombia) — November 1994 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Seismicity, deformation, and SO2 flux at low levels

. . . Galeras displayed weak seismicity and deformation during November. Both tremor and long-period screw-type events (monochromatic and with a slow coda decay) continued. In addition to these signals, earthquakes took place. Some were located in the volcano's W sector at superficial depths. Others were located on the NW flank 3.5-4 km from the crater at 2-3 km depth. A third group struck on the NE flank in an area activated on previous occasions. Tiltmeters showed no significant change during November.

Tremor on 4 November lasted for 16 minutes (starting at 1638), on 5 November, for 43 minutes (starting at 1942). Coincident with the tremor, increased rain fell and a rise in mud flows was noted on the Azufral river in the W sector.

Airborne observers flying over the main crater noted a migration and an increase in the release of fumarolic gases. The escaping gases had migrated toward the external western wall of the cone and they concentrated along a tangentially oriented crevice and in some key fumaroles of this area. Nevertheless, the monthly SO2 measurements yielded low flux values for November.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS, Pasto.


Nevado del Huila (Colombia) — November 1994 Citation iconCite this Report

Nevado del Huila

Colombia

2.93°N, 76.03°W; summit elev. 5364 m

All times are local (unless otherwise noted)


Tremor pulses follow the 6 June earthquake

After the Paez earthquake (6 June 1994) tremor pulses began appearing on local seismic records. Such pulses were previously unseen since seismic monitoring began in 1986. On 7 August, a 75-minute interval of banded tremor took place over a 4-hour time span. On 27 September continuous tremor prevailed for up to 9.5 hours; the dominant frequency was in the 1-2 Hz range.

Geologic Background. Nevado del Huila, the highest peak in the Colombian Andes, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. The high point of the complex is Pico Central. Two glacier-free lava domes lie at the southern end of the volcanic complex. The first historical activity was an explosive eruption in the mid-16th century. Long-term, persistent steam columns had risen from Pico Central prior to the next eruption in 2007, when explosive activity was accompanied by damaging mudflows.

Information Contacts: H. Cepeda, INGOMINAS, Popayan.


Irazu (Costa Rica) — November 1994 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Shallow earthquake (M 3.4) and early December explosion

During November, Irazú produced [no explosions, but] was shaken by a seismic event. In the interval 7-18 November a seismic swarm took place during which the OVSICORI seismic station registered a total of 255 seismic events. There were 42 locatable events that fell on a 10-km-long segment of the NW- to SE-trending Irazú fault (figure 6).  The earthquakes ranged in magnitude, M 2.0-3.4, and some had focal depths of 27-29 km, though others had depths of <8 km. Similar alignments of epicenters have been seen on the fault since 1991. These epicenters suggest that the fault extends across Irazú. The seismic swarm terminated at 1337 on 18 November when a M 3.4 event occurred. Its epicenter fell 3 km SSE of the active crater. During this time, deformation detected via the inclinometer network failed to show significant changes. But, in contrast, around this time a leveling line 4 km S of the active crater did show a pulse of inflation: 32 µrad.

Figure (see Caption) Figure 6. Irazú earthquake epicenters, 7-18 November 1994. Courtesy of OVSICORI-UNA.

ICE reported that at 2248 on 8 December there was a phreatic explosion vented from a well-established fumarole on the upper NW-flank. They suggested that based on the response of the seismic station in San José, the released energy was similar to a M 4.4 earthquake. They further suggested that the explosion traveled toward the NW and destroyed forest on the upper slopes of the Rio Sucio, down to 2,500 m elevation. Explosion-triggered landslides and mudflows also followed along that drainage, but no lives were lost due to the absence of inhabitants in that area. The ash was composed of particles that appeared to be hydrothermally altered lithic fragments. The ash distribution pattern trended W (at an azimuth of 250°) and reached <= 30 km from the vent.

After the 8 December explosion, several tectonic earthquakes took place adjacent to Irazú, the largest, M 3.2 (at 0519 on 14 December) had a focal depth of 7 km. The explosion was also followed by many low-frequency and tremor-like signals. These were possibly triggered by the explosion.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.


Kanaga (United States) — November 1994 Citation iconCite this Report

Kanaga

United States

51.923°N, 177.168°W; summit elev. 1307 m

All times are local (unless otherwise noted)


Minor ashfall observed and "hot spot" detected by satellite

Observers in Adak . . . reported little activity during the first half of October, when clouds obscured Kanaga. Minor ash fall was noted 3-5 km S of the volcano on 12 October. A white steam cloud was observed from Adak the next day rising 1,200-1,500 m above the summit, and no new ash deposits were seen on the flanks of the volcano, covered by fresh snowfall. AVHRR satellite imagery on 13 October revealed a "hot spot" at the summit, but no eruption cloud was observed. During the following week, a white steam cloud rose 900-1,200 m above the summit. The volcano was obscured by cloudy weather conditions from 21 October through 25 November.

Geologic Background. Symmetrical Kanaga stratovolcano is situated within the Kanaton caldera at the northern tip of Kanaga Island. The caldera rim forms a 760-m-high arcuate ridge south and east of Kanaga; a lake occupies part of the SE caldera floor. The volume of subaerial dacitic tuff is smaller than would typically be associated with caldera collapse, and deposits of a massive submarine debris avalanche associated with edifice collapse extend nearly 30 km to the NNW. Several fresh lava flows from historical or late prehistorical time descend the flanks of Kanaga, in some cases to the sea. Historical eruptions, most of which are poorly documented, have been recorded since 1763. Kanaga is also noted petrologically for ultramafic inclusions within an outcrop of alkaline basalt SW of the volcano. Fumarolic activity occurs in a circular, 200-m-wide, 60-m-deep summit crater and produces vapor plumes sometimes seen on clear days from Adak, 50 km to the east.

Information Contacts: AVO.


Klyuchevskoy (Russia) — November 1994 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Moderate explosive eruption causes minor ashfall 30 km away

Although clouds obscured the volcano in early November, continuous tremor (maximum amplitude 0.1-0.3 Nm) was recorded, and 4-11 earthquakes/day were detected under the volcano except on 7 November, when 23 events occurred. On 10 November, a gas-and-steam plume seen from Kliuchi (30 km NNE) was directed ESE for ~1 km. An observer in Kliuchi saw a gas-and-steam plume on 12 November rising 1 km above the summit that extended ~10 km ENE. On 18 November, observers in Kozirevsk (50 km W) saw a gas-and-steam column rising 50 m above the summit crater. Seismicity on the 18th consisted of continuous tremor (maximum amplitude 0.24 µm), one weak deep earthquake, and 9 shallow events.

A moderate explosive eruption occurred beginning about 0400 on 23 November, based on interpretations of seismicity. The volcano was completely obscured by clouds, but as much as 0.5 mm of ash fell in Kliuchi. Thirteen strong and shallow earthquakes beneath the volcano between 0400 and 1200 had maximum amplitudes of 14.25 µm at a seismic station 14 km from the volcano, and were recorded at stations up to 70 km away; persistent volcanic tremor had a maximum amplitude of ~0.33 µm. Comparing the seismicity to that of 30 September-1 October, the ash plume may have reached an altitude of ~7 km.

On 24 November, observers in Kliuchi noted a vigorous gas-and-steam plume containing minor ash rising 1 km above the volcano and extending >30 km NE. Weak volcanic tremor (amplitude ~0.15 µm) and 22 shallow earthquakes were registered beneath the crater area. The next day, observers in Kozirevsk reported a gas-and-steam plume above the volcano. Continuous tremor was recorded ~32 km from the volcano, and 12 shallow earthquakes were recorded beneath the crater area. On 28 November, a gas-and-steam plume seen from Kliuchi rose 2 km above summit and extended 3 km SW. A vigorous gas-and-steam plume of unknown height was also seen from Kliuchi on the 30th, continuous tremor (0.4 µm) was recorded 11 km away, and 73 shallow earthquakes were detected as far as 70 km away.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: V. Kirianov, IVGG; AVO.


Langila (Papua New Guinea) — November 1994 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Moderate intermittent Vulcanian explosions

"Continuing the trend of previous months, eruptive activity consisted of moderate and intermittent Vulcanian explosions from Crater 2. During most of November, activity at Crater 2 consisted of noiseless emission of thin white vapour. Occasionally (on 4, 6-8, 15, 18, and 27-29 November), weak explosions were heard and accompanied the rise of dark-grey ash-laden columns to a few hundred meters above the crater. Some of these explosions were large enough to be recorded by a seismometer 9 km away. Fine ashfall was reported in downwind coastal areas. Between 14 and 27 November, weak night glow was seen and the activity was accompanied by low to loud rumblings. Crater 3 released only fumarolic emissions, occasionally accompanied by blue vapour."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.


Lascar (Chile) — November 1994 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Small phreatic eruptions

Observations during 11-23 November revealed a plume of variable strength, indicating continuing instability, and the volcano was not climbed. The fumarole on the N rim was visible and appeared to be stronger than in February. A small phreatic eruption at 1720 on 13 November ejected a brownish column ~700 m above the crater which was then blown SE. This event was preceded by a weak, diffuse vapor plume which reached 300-500 m above the crater. Following the eruption, the plume gradually strengthened, reaching altitudes of 2-2.5 km above the summit . . . by 16 November (figure 23). The plume became more dense, yellowish to brownish in color, and pulsed, ejecting "ashy slugs" every 5-15 minutes. A second phreatic eruption observed at 1720 on 19 November emitted a dense white plume to 3 km above the crater. Although sheared by wind to the SE, it retained its form for ~20 minutes.

Figure (see Caption) Figure 23. Plume altitudes and phreatic eruptions at Lascar, 11-23 November 1994. Courtesy of S. Matthews.

Similar activity was observed by Matthews in February, and was related to continuing collapse of the crater floor. In this interpretation, blockage of the degassing system leads to a weak plume and buildup of pressure beneath the crater floor. Periodic phreatic eruptions clear the conduit and allow the gas to vent freely, causing the plume to strengthen; the reason for the strong pulsing is not clear.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: S. Matthews, Univ of Bristol.


Manam (Papua New Guinea) — November 1994 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Two short eruptions: one produces a lava flow, the other, pyroclastic flows

"During November, the background level of activity consisted of noiseless weak emissions of white and blue vapour, with weak glow at night. Two short eruptions occurred at South Crater in November. A lava flow was produced on 12-13 November and pyroclastic flows on the 28th.

"On the evening of the 10th, weak incandescent projections were seen just above the crater rim. Nothing could be seen on the 11th, although weak rumbling noises were heard. On the morning of the 12th, white-grey, ash-laden emissions were rising 600-700 m every 3-5 minutes. By night time, moderately strong Strombolian explosions accompanied a forceful dark-brown ash column rising 1-2 km above the crater, with loud rumbling and explosion sounds. Glowing lava fragments rolled down into the SE and SW valleys, and thick ashfall was reported in coastal areas on the ESE side of the island. Lava started to flow out of South Crater into the SE valley at 1900 on 12 November and the flow later stopped with the front at ~700 m elev. The strength of the eruption decreased after 0200 on the 13th, and for the next day and a half, the crater produced high, loud, bright explosions at progressively longer time intervals (from 1-15 minutes apart).

"Weak rumbling sounds and fluctuating glow were reported on the 25th. Intermittent (3-5 minute intervals) forceful emissions of dark ash-laden vapour, accompanied by weak-to-loud rumbling or explosion sounds, were noted on the 26th at 1730. Emissions became sub-continuous by 1900. A period of sub-Plinian activity with high projections of incandescent fragments lasted until the next morning. During 27-28 November, forceful dark emissions occurred at 1-2 minute intervals. The strength of the eruption seemed to increase again after 1030 on the 28th and there were pyroclastic flows in the SE valley at 1330. The eruption waned after ~0400 on the 29th, becoming intermittent, with forceful grey-brown explosions to 1-2 km above the crater and glowing lava fragments to 100-200 m. Unstable products around the vent tumbled into the SE and SW valleys as scoria avalanches.

"Main Crater activity was apparently unaffected by these eruptions. It continued to release white vapour in weak to moderate volumes throughout November. The water-tube tiltmeter at Tabele Observatory showed no significant deflection. No seismograph was operating."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.


Masaya (Nicaragua) — November 1994 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Red glow from vent on crater floor; gas emission

When observed during November, the vent in Santiago crater was the same shape as in April 1994. It was possible to see ~20 m down into the hole, which was 10-20 m wide. During daylight a red glow could be seen from the lip of the vent inwards, but no lava or ejecta were observed. Pulses of gas emission occurred every 3-5 seconds.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.


Mombacho (Nicaragua) — November 1994 Citation iconCite this Report

Mombacho

Nicaragua

11.826°N, 85.968°W; summit elev. 1344 m

All times are local (unless otherwise noted)


Venting continues from fumarole in south crater; two other fumarole areas located

The fumarole that has been active since at least 1986 continued to vent vapor in November and December 1993. A strong sulfur odor was detected even when the wind was blowing towards the fumarole. This observation led to the discovery of two other previously unreported fumarole fields (figure 1). Vapor was seen rising from both, but they were not approached closely; neither appeared to be a new feature.

Figure (see Caption) Figure 1. Map of the Mombacho summit area, showing locations of reported and previously unreported fumarole areas. Courtesy of B. van Wyk de Vries and P. Hernandez.

Geologic Background. Mombacho is an andesitic and basaltic stratovolcano on the shores of Lake Nicaragua south of the city of Granada that has undergone edifice collapse on several occasions. Two large horseshoe-shaped craters formed by edifice failure cut the summit on the NE and S flanks. The NE-flank scarp was the source of a large debris avalanche that produced an arcuate peninsula and a cluster of small islands (Las Isletas) in Lake Nicaragua. Two small, well-preserved cinder cones are located on the volcano's lower N flank. The only reported historical activity was in 1570, when a debris avalanche destroyed a village on the south side of the volcano. Although there were contemporary reports of an explosion, there is no direct evidence that the avalanche was accompanied by an eruption. Fumarolic fields and hot springs are found within the two collapse scarps and on the upper N flank.

Information Contacts: B. van Wyk de Vries, Open Univ; Pedro Hernandez, INETER.


Poas (Costa Rica) — November 1994 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Slow deflation and low-to-moderate seismicity

Fumarolic activity continued at Poás in the re-established crater lake. OVSICORI reported the lake level remained the same in both October and November. ICE reported that due to heavy rains in November the lake had attained a diameter of ~220 m and its surface reached 8 m above the minimum level seen in August.

The turquoise-green colored lake hosted subaqueous fumarolic activity, leading to bubbling and minor phreatic eruption columns to 100 m height. In the NE part of the lake there existed a spot with sporadic phreatic eruptions. These reached 1-m height and had a dark-gray color. The area adjacent to the crater continues to recuperate from acidic conditions found earlier this year.

Results from the OVSICORI seismic system appear in table 6. The day of the month with the greatest number of seismic events was 7 November. Compared to earlier in 1994, the number of seismic events in November was low to moderate.

Deformation, measured by dry-tilt, failed to show significant changes in November. The four distance-measuring lines inside and across the active crater showed changes of less than 8 ppm in a deflationary direction. The two precision leveling lines at the summit changed less than 6 and 12 µrad. These leveling-line changes were interpreted as tending toward slow deflation after a brief pulse of inflation registered during the eruptive activity of August 1994.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, G. Alvarado, and F. Arias, ICE.


Popocatepetl (Mexico) — November 1994 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Small eruption on 21 December 1994 ends decades-long slumber

A new episode of explosive activity began at Popocatépetl volcano on 21 December 1994 (figure 5). The eruption followed increases in seismicity, SO2 flux, and fumarolic activity seen during the last 13 months. Although in the last year seismicity rose and fell several times, during late-October there was a sudden, prominent (roughly 1.6- to 10-fold) increase in daily earthquakes compared to previous months. Measurements of the volcano's total SO2 flux were consistently large (some airborne measurements averaged over 1,000 tons/day). During October-November 1993 a cluster of steam vents in the summit crater produced clouds that reached 6,000 m elevation, several-hundred meters above the 5,465 m summit. These clouds sometimes stretched for 50 km.

Figure (see Caption) Figure 5. Base map of Popocatépetl and vicinity (elevations taken from the 1986 México City 1:250,000 topographic sheet).

Eruptive activity. Near midnight on 22 December 1994, Servando De la Cruz sent the following report.

"The fumarolic activity that has been developing during the last two years or so culminated on early 21 December 1994, when a series of volcanic earthquakes, probably associated with phreatic explosions, marked the beginning of a new stage of eruptive activity. The seismic events, detected at 0131, 0132, 0138, 0140, and 0148, were very impulsive, high-frequency, short-duration signals, and were followed by a major, lower-frequency event at 0153. The events were recorded by four telemetric stations within 11 km of the volcano operated jointly by CENAPRED and the Institutes of Geophysics and Engineering of UNAM. As the day cleared an ash plume was observed for the first time in decades emerging from the volcano's crater. The ash emission was moderate and produced an almost horizontal plume causing a light ashfall over the city of Puebla, about 45 km ENE of the volcano's summit. A helicopter flight at 1030 showed that most of the ash issued from near the lower NE rim of the inclined crater. A radial fissure on the NE flank of the cone displayed some steam-producing vents, though the cloudy conditions make this interpretation equivocal. Old cracks in the glacier appeared to have extended a significant amount towards the W. A second flight at 1430 the same day revealed a substantial increase in ash production (about 3-4 times the amount observed in the morning). The light-gray ash appeared to be emitted episodically, with "puffs" every few minutes.

"The seismicity consisted of mostly low-amplitude B-type earthquakes and concurrent high-frequency A-type events. Though this seismicity remained lower than during night of 21 December, during the next day the seismicity again increased. At this stage and after several consultations between the scientific group and the Civil Protection authorities, an evacuation of the 19 most vulnerable towns and villages on the E sector of the volcano was started around 2100 of 21 December, and about 31,000 persons were moved during the night to shelters in safer areas. Since then the situation has remained fairly stable, though long-duration, low-amplitude tremors appeared in the night of 21-22 December, and continue."

Claus Siebe reported that climbers at Popocatépetl reached the summit, which lies along the W margin of the gaping summit crater's rim, both on the day before the eruption, and hours after the 21 December eruption started. On the day before the eruption visiting climbers could see the crater lake and sparse fumaroles. They reportedly heard no hissing sounds and they smelled less odor from sulfur-bearing gases than in previous months.

Curiously, the six volcanic earthquakes that took place between 0130 and 0200 on 21 December were not felt, and the presumably associated phreatic summit explosions were not heard by any of about 25 mountain climbers at Tlamacas, 4 km N of the summit (figure 6). The climbers, who said they started ascending the mountain around 0400 on 21 December, did not notice anything unusual until they neared the crater rim. Just prior to reaching the rim, a few minutes before 0800, climbers were stunned by what they thought was the sound of jet engines. At the crater rim they saw new bombs as large as 40 cm that had been thrown out of the 250-m-deep crater and had burrowed deep impact-pits in the snow. According to Siebe: "Most climbers who reached the summit that morning thought that the activity was normal, because they had never visited Popocatépetl before." At the summit, the climbers said they could not see the crater floor even though a strong wind was blowing. They descended back down the mountain without incident.

Siebe was at Tlamacas at 0900 on 21 December during clear weather. He observed a continuous ash plume rising 100-500 m above the crater with pulses at intervals of 1-5 minutes. The plume was carried at least 60 km E. Enough silt- and sand-sized material reached Puebla to produce a thin coating on cars. The ejecta appeared to be non-juvenile, and it contained pyrite, sulfur, and Ca-sulfate.

A report from Steve McNutt indicated that the volcano began to quiet down on the afternoon of 25 December. During the night of 27-28 December a M 2 earthquake took place; for reference the largest prior event in the recent past was M 2.9. On 27 December tremor was barely perceptible and a few small low-frequency events took place. During the 24-hour period ending about midday on 28 December there were ~30 low-frequency events. Tremor roughly doubled between 23 and 24 December, but then during 25-28 December it dropped and became barely detectible. No specific seismic data were available for dates after that, though seismicity did increase again and an audible explosion was heard roughly 10 km from the summit at about 1300 on 31 December. Investigators planned to install about four new seismic stations to improve spatial and azimuthal coverage, and to add one station close in.

By 27 December all but three of the previously evacuated towns had been reoccupied; those towns not reoccupied were subject to lahar hazard. A glaciologist made an initial helicopter inspection of the glacier looking especially for signs of abnormal melting. No report was available at the time of this publication, but steps to monitor the glacier included both a daily inspection flight and a video camera aimed at it from 5 km away. The last of the three previously evacuated towns was reoccupied by 28 December.

News reports. A 21 December Associated Press story said Popocatépetl, "spewed a column of roiling black ash Wednesday, dusting villages and farmland but causing no injuries" and that "television footage from traffic helicopters showed a dense column of ash belching from the summit."

As of 23 December, an Associated Press report noted that the Puebla state government said 75,000 people would be evacuated from the countryside around the volcano. Some other news reports put the number of evacuees at about 50,000. One of the evacuated towns, Santiago Xalitzintla, is located about 13 km NE of the summit. The town sits along the road over "Paso de Cortez," the pass between Popocatépetl and the adjacent Quaternary stratovolcano to the N, Iztaccihuatl (figure 6).

A 26 December United Press International news report noted that "Jorge Martinez Soto, a researcher at the Univ of Puebla, said the amount of smoke and ash being emitted from the volcano . . . diminished by about 75 percent since last week . . . ."

Plume imagery and transport modeling. Although the 21 December eruption plume may appear on satellite imagery, to our knowledge no investigator has yet announced having found it. There is an AVHRR (channel 1) image of a Popocatépetl plume on 22 December at 0818 (1418 GMT). That image shows a SE-directed plume tens of kilometers long. There are also three other AVHRR images for plumes on 26, 27, and 28 December. All four images are available via e-mail from Melissa Seymour. We learned of these images at press time and although we have not had time to see them first-hand and tabulate plume orientations, the imaged plumes reportedly trailed southward.

The Synoptic Analysis Branch (SAB) of NOAA/NESDIS first reported Popocatépetl activity at 1530 (2130 GMT) on 26 December for an eruption that took place at around 1300. A SIGMET (Significant Meteorological Event) notice was posted from México City announcing that a new eruption had taken place and that the plume from this eruption reached an altitude of about 6.7 km (22,000 feet). SAB later continued to describe the shape of the plume associated with this eruption based on GOES-7 and -8 data (table 2 and figure 6). A report later that day (26 December) indicated that the volcano had continued to erupt, creating a visible plume that at 1745 extended to 50 km E. At 0745 the next day (27 December), a GOES-8 visible satellite image of the plume suggested a gently curving, funnel-shaped mass tracking NE (figure 6). Based on the lack of infrared signatures and on their visible signatures, all the plumes reported in table 2 and figure 6 were thought to be of low density.

Table 2. Visible (GOES-7 and -8) satellite images reported for Popocatépetl. The time of initial eruption for all these plumes was around 1300 (1900 GMT) on 26 December. The third and fifth plumes listed are shown graphically on figure 6. Courtesy of SAB.

Date Local Time GMT Time Plume Length Greatest Width Estimated Height Height Source
26 Dec 1994 1300 (1900) 50 km -- 6.7 km (22,000 ft) SIGMETs from México City.
26 Dec 1994 1745 (2345) 50 km E -- 6.7 km (22,000 ft) SIGMETs from México City.
27 Dec 1994 0745 (1345) 250 km NE ~75 km 7.6 km (25,000 ft) SIGMETs from México City.
27 Dec 1994 1400 (2000) 85 km -- 7.0 km (23,000 ft) Upper air data from México City at 0600 (1200 GMT). SIGMET ALFA 2 indicated ash cloud 17,000-20,000 ft at 1500 GMT.
28 Dec 1994 0815 (1415) 160 km 40 km 6.1 km (20,000 ft) Previous SIGMETS and weather balloon (radiosonde) data from México City.
Figure (see Caption) Figure 6. Popocatépetl ash plume at a) 0745 (1345 GMT) on 26 December 1994 (black) and b) 0815 (1415 GMT) on 28 December 1994 (stipple) as seen on satellite imagery. The northern edge of the longer plume just touched the Gulf Coast near Tampico. Courtesy of Nick Heffter.

A modeling program called "VAFTAD" was used to forecast the transport and dispersion of the plume from the 26 December eruption (see references and description of VAFTAD in the report for Rinjani, 19:06). VAFTAD produced a series of visual ash cloud forecasts such as those on figure 7, which showed the plume initially covering both quadrants in the E half of the volcano and then traveling NE along about the same path taken by actual plumes seen in the GOES imagery (table 2 and figure 6). The models forecasted that after about 24 hours the plume would travel NE over the Gulf of Mexico.

Figure (see Caption) Figure 7. Examples of forecasts of the Popocatépetl plume after a large eruption. Both of these forecasts were for an initial erupted plume height of 7.6 km (25,000 feet) and an eruption duration of 24 hours. They both portray the elevation range from 6 to 10 km (20,000-35,000 feet). The forecasts were based on an eruption beginning at 1300 (1900 GMT) on 26 December. The map on the left shows the forecast plume 12 hours after the eruption began, the map on the right, 24 hours after the eruption began. Courtesy of Nick Heffter.

VAFTAD uses wind and pressure data updated twice daily on grids with spacings of 91 km in the USA and 1 degree over the rest of the globe. The model assumes the eruption delivers a mass load to the atmosphere. The mass load is not scaled to the actual mass of the eruption, but rather the load is assumed to be 1 gram (composed of spherical particles with a density of 2.5 x 106 grams/m-3 in a size range of 0.3-30 µm in diameter). VAFTAD computes transport and dispersion assuming particles are carried by advection both horizontally and vertically, diffuse with a bivariate normal distribution, and fall according to Stoke's law with a slip correction. Calculated ash concentrations have been correlated with satellite imagery for defining the visual ash cloud forecasts.

One noteworthy aspect of the Popocatépetl plumes is the relatively large height of the summit crater (elevation ~5,215 m). Even small, low-energy eruptions from this high altitude vent can erupt material to 6 km (~20,000 feet) elevation.

So in essence, these ash cloud forecasts serve best for hazards planning purposes. A key use, in fact, is to warn airline pilots of the airspace most likely to contain volcanic ash particles. Besides the other hazards discussed in Boudal and Robin (1989), a large eruption from Popocatépetl could affect air travel in routes over parts of NE México and much of the Gulf of Mexico.

Eruptive history. In the Holocene Popocatépetl has produced both effusive and pyroclastic activity. The latter has ranged from mild steam-and-ash emissions to Plinian eruptions accompanied by pyroclastic flows and surges. Vigorous Holocene explosive activity took place in three periods (in years before present, ybp): a) 10,000 to 8,000, b) 5,000 to 3,800, and c) 1,200 to present (Boudal and Robin, 1989). An effusive period from 3,800 to 1,200 ybp ended with a vigorous explosive eruption that both enlarged the summit crater and generated St. Vincent-type pyroclastic flows. Another large explosive eruption, about 1,000 ybp, produced pyroclastic flows that descended the N flank.

Historical eruptions depicted on Aztec codices date back to 1345 AD. About 30 eruptions have been reported since then, although documentation is poor. Most historical eruptions were apparently mild-to-moderate Vulcanian steam and ash emissions. Lava flows restricted to the summit area may also have occurred in historical time, but cannot be attributed to specific eruptions. Larger explosive eruptions, possibly Plinian in character, were recorded in 1519 and possibly 1663. The last significant activity took place from 1920-22. Then, intermittent explosive eruptions produced 6.6-km-tall columns and extruded a small lava plug onto the floor of the summit crater. Ash clouds were also reported in 1923-24, 1933, 1942-43, and 1947.

Reference. Boudal, C., and C. Robin, 1989, Volcan Popocatépetl: Recent eruptive history, and potential hazards and risks in future eruptions, IAVCEI Proceedings in Volcanology 1; J.H. Latter (Ed.), Volcanic Hazards, Springer-Verlag Berlin Heidelberg, pp. 110-128.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando de la Cruz-Reyna, Instituto de Geofísica, UNAM, Ciudad Universitaria; Claus Siebe, Instituto de Geofísica, UNAM, Coyoacán; Steve McNutt, Alaska Volcano Observatory, Univ. Alaska Fairbanks, USA; Melissa Seymour, LSU Earth Scan Lab, Coastal Studies Institute, USA; Nick Heffter, National Oceanic and Atmospheric Administration (NOAA), Air Resources Laboratory, USA; Jim Lynch, Synoptic Analysis Branch, NOAA/NESDIS, USA.


Rabaul (Papua New Guinea) — November 1994 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Explosions from Tavurvur show steady decrease in frequency

"The eruption . . . continued through November. Tavurvur exhibited moderate Vulcanian activity that declined slowly in strength, while Vulcan remained quiet. Vulcan exhibited only weak fumarolic activity from four small vents filled with bubbling water at the base of the new crater.

"Activity at Tavurvur consisted mainly of discrete explosive pulses. The ash content was generally low, producing a pale-grey emission column. The size of, and timing between, explosions was variable, but there was a general decline in activity during November. At the beginning of the month, explosions were 1-4 minutes apart and the emission columns rose forcefully to ~1.5 km. By the 6th, the intervals were 1-10 minutes and the crater was sometimes clear of emissions. Blue vapours were seen around the active vent at the bottom of a 50-m-high tephra cone. There were, however, large explosions on the 5th, 6th, and 9th which showered the flanks of Tavurvur with blocks and bombs, and produced a large billowing cloud up to 2 km high. From 9-19 November, emissions were mainly of white vapour with occasional explosion clouds up to 1 km. The eruption was mainly silent, except for rumbling and roaring noises on the 10th and 11th.

"The Tavurvur crater was never freely open during this phase of the eruption, but was clogged up with a mass of rubble, welded together and sometimes glowing. The dark ash-laden billowing clouds that suddenly rushed out of the vent every few minutes seemed to percolate through the rubble. A lava mound, 10 m in diameter and 2 m thick, formed over the vent on the 15th but was destroyed by a large explosion the next day. A new lava mound had formed by the 18th, this time 20 m across and 4 m thick, possibly consisting of two lobes and fractured into four main blocks. The intermittent ash-laden emissions were then hissing out from under the sides of the mound. Details of the crater could not be seen again until the 25th, when all traces of the lava mound had disappeared from the base of the bowl-shaped crater, presumably blown out by the large explosions heard at intervals of 1-4 hours on the 19th.

"From the 19th until the end of the month explosions were generally mild. Large explosions, however, occurred on 20-22, 26, and 29 November. At night, these explosions resulted in a shower of incandescent blocks on the flanks of the volcano. Sizeable blocks were occasionally found in the Talwat road that goes around the base of the cone.

"Seismic activity in the caldera was lower in November than in October. It was dominated by shallow explosive and low-frequency earthquakes associated with the eruptive activity at Tavurvur. RSAM amplitudes and event counts showed a marked decline between 29 October and 2 November (figure 22). Throughout the rest of the month, the data were dominated by diurnal meteorological effects, although a gradual decline could still be seen. Data captured on the seismic data-acquisition system showed an average of ~6.5 low-frequency and explosive events per day, compared to almost 26 per day in the second half of October.

Figure (see Caption) Figure 22. Seismicity at Rabaul (station KPTH), October-November 1994. Courtesy of RVO.

"Before the eruption, seismic activity . . . was dominated by high-frequency earthquakes located on the caldera ring-fault system. Since the eruption, there have been few high-frequency earthquakes detected (58 in October and 37 in November, compared to normal pre-eruption levels of 200-300/month) and most of these were located away from the ring fault or in previously inactive regions of it. The level of seismicity cannot be easily compared to earlier pre-eruption levels because totally different seismic detection systems were used. However, it is believed that the level is much lower than before the eruption. This, and the fact that the majority of the epicenters are away from the ring-fault system that previously contained almost all of the seismicity, suggest that the caldera is no longer in a highly pressurized state.

"Ground deformation determined from electronic tilt meters and dry-tilt measurements indicate a reduction in the rate of deflation of the caldera since the onset of the eruption. This change is illustrated by an offshore pylon near the centre of deformation, 2 km S of Tavurvur, which subsided by 8 cm in November, compared to 18 cm in October and at least 45 cm in the last 10 days of September."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: B. Talai, R. Stewart, and P. de Saint-Ours, RVO.


Rincon de la Vieja (Costa Rica) — November 1994 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Vigorous fumarolic activity continues

The fumarolic activity in the main crater that remained vigorous during August and September, continued in November. A seismic record made by ICE in November suggested seismo-volcanic activity of low frequency and magnitude located at very shallow depths beneath the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernández, J. Barquero, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, and R. Sáenz, OVSICORI; G. Soto, Guillerma E. Alvarado, and Francisco (Chico) Arias, ICE.


Sheveluch (Russia) — November 1994 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Seismic station closed

[Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time.]

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: V. Kirianov, IVGG; T. Miller, AVO.


Special Announcements (Unknown) — November 1994 Citation iconCite this Report

Special Announcements

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Kamchatkan volcanoes activity reports halted by lack of funding

Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time. Expressions of concern and support... by interested parties would be appreciated."

An AVO Information Release on 9 January 1995 suggested that "Letters of concern might mention the Kamchatka Volcanic Eruptions Response Team under the leadership of Vladimir Kirianov, its value in monitoring and reporting of volcanic eruptions, the suspension of KVERT activities because of the delay in funding, the need for rapid transfer of funds, etc." Letters should be sent to the Russian Department of Air Transport official handling the KVERT funds [outdated contact information removed].

KVERT began regularly sending reports to AVO for further distribution in April 1993. Since then, KVERT has provided the overwhelming bulk of information for GVN reports about Kamchatkan volcanic activity, the first steady stream of information from this important region. For example, information provided by KVERT has described significant eruptions at Shiveluch (22 April 1993), Bezymianny (21 October 1993), and Kliuchevskoi (1-3 October 1994). Continuous activity at Shiveluch (gas-and-steam plumes, growth of extrusive lava dome) and Kliuchevskoi (minor ash explosions, gas-and-steam plumes, lava fountaining, lava flows) has also been consistently reported. Prompt notification of Kamchatkan eruptions is especially critical because of the large volume of international air traffic in the vicinity.

Geologic Background. Special announcements or information of general interest not linked to any specific volcano.

Information Contacts: Vladimir Yu. Kirianov, Institute of Volcanic Geology & Geochemistry (see Kliuchevskoi); Thomas P. Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA, b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Tinguiririca (Chile) — November 1994 Citation iconCite this Report

Tinguiririca

Chile

34.814°S, 70.352°W; summit elev. 4280 m

All times are local (unless otherwise noted)


Phreatic explosion in January 1994

On about 15 January 1994, Bolivar Miranda, a SERNAGEOMIN chemical engineer, observed a 5-km-high explosive column rising above Tinguiririca from a location 65 km W. A photograph taken by his son, Matías, showed a distinct white cauliflower-shaped column on a clear day. Based on the shape and growth of the column, this eruption was most likely phreatic.

Geologic Background. Tinguiririca is composed of at least seven Holocene scoria cones W of the Chile-Argentina border constructed along a NNE-SSW fissure over an eroded Pleistocene stratovolcano. The complex was constructed during three eruptive cycles dating back to the middle Pleistocene. The latest activity produced a series of youthful small stratovolcanoes and craters, of which the youngest appear to be Tinguiririca and Fray Carlos. Constant fumarolic activity occurs within and on the NW wall of the summit crater. Hot springs and fumaroles with sulfur deposits are found on the W flanks of the summit cones. A single historical eruption was recorded in 1917.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago.


Tolbachik (Russia) — November 1994 Citation iconCite this Report

Tolbachik

Russia

55.832°N, 160.326°E; summit elev. 3611 m

All times are local (unless otherwise noted)


Seismic station closed

[Following notice in early December that seismic stations at Shiveluch and Tolbachik had closed, on 22 December the following message was sent from the Alaska Volcano Observatory (AVO): "KVERT [Kamchatka Volcanic Eruptions Response Team] has informed AVO that, because of a long delay in promised funding from the Ministry of Transportation in Moscow, KVERT must suspend transmittal of information on volcanic activity in Kamchatka. The length of the suspension is unknown at this time.]

Geologic Background. The massive Tolbachik basaltic volcano is located at the southern end of the dominantly andesitic Kliuchevskaya volcano group. The massif is composed of two overlapping, but morphologically dissimilar volcanoes. The flat-topped Plosky Tolbachik shield volcano with its nested Holocene Hawaiian-type calderas up to 3 km in diameter is located east of the older and higher sharp-topped Ostry Tolbachik stratovolcano. The summit caldera at Plosky Tolbachik was formed in association with major lava effusion about 6500 years ago and simultaneously with a major southward-directed sector collapse of Ostry Tolbachik volcano. Lengthy rift zones extending NE and SSW of the volcano have erupted voluminous basaltic lava flows during the Holocene, with activity during the past two thousand years being confined to the narrow axial zone of the rifts. The 1975-76 eruption originating from the SSW-flank fissure system and the summit was the largest historical basaltic eruption in Kamchatka.

Information Contacts: V. Kirianov, IVGG; T. Miller, AVO.


Unzendake (Japan) — November 1994 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Endogenous lava-dome growth continues at low rate; few pyroclastic flows

The period from mid-November through mid-December was characterized by a low eruption rate (~104 m3/d) and low frequency of pyroclastic-flow events. A theodolite survey indicated that lava blocks (a spine and the surrounding area) in the center of the endogenous dome had moved upward at a rate of <0.5 m/day. Movement of talus slopes on the dome was hardly detected during this period. Some geophysicists proposed that the upward movement of the spine and the surrounding area was related directly to microearthquakes, which occurred periodically within the dome in recent months. It is difficult to test this hypothesis because of the slow movement and poor weather conditions. The endogenous dome was the highest point in early December, reaching ~220 m above the former Jigokuato Crater. The height of the dome has varied but generally increased with time, and had reached 245 m in April 1994.

Oxidized lava blocks (several meters across) on the dome surface tumbled NE and SE due to inclination of the surface around the uplifting part; some developed into pyroclastic flows. During October, eight pyroclastic flows were observed to travel <=2 km SE. The Geological Survey of Japan reported that the average volume of pyroclastic-flow deposits in November was ~100 m3/day, which is the lowest since May 1991. Volume estimates were made using pyroclastic-flow seismic records (amplitude and duration of signal).

During November, microearthquakes detected 3.6 km W of the dome (station A) totaled 436, roughly half the number seen in October (993). Since mid-October, the number of hourly earthquakes has been periodic, with 38-40 hours between cycles. A corresponding periodic character was also found in tilt data at the N caldera rim, but the mechanism remains unknown. COSPEC analysis by the Tokyo Institute of Technology in late November showed that SO2 flux from the dome was ~20 t/d; half of the value in late September. The value of SO2 flux . . . is roughly concordant with the lava eruption rate throughout the last 3.5 years.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: S. Nakada, Kyushu Univ; JMA.


Veniaminof (United States) — November 1994 Citation iconCite this Report

Veniaminof

United States

56.17°N, 159.38°W; summit elev. 2507 m

All times are local (unless otherwise noted)


Possible "hot spot" on satellite imagery, but no activity observed

Cloudy conditions throughout October and the first half of November prevented observations on most days. On 13 October AVHRR satellite imagery revealed a "hot spot" in the same location as during the past few months, but no eruption cloud was observed. By October 18, when clear skies allowed good views, no "hot spot" or eruption cloud was detected. Satellite imagery on 17 November again revealed a possible "hot spot" within the caldera, indicating probable continuing low-level activity. No activity was observed from Perryville . . . during clear conditions on 24 November.

Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Information Contacts: AVO.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports