Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Erta Ale (Ethiopia) Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Rincon de la Vieja (Costa Rica) Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Manam (Papua New Guinea) Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Stromboli (Italy) Strombolian activity continues at both summit crater areas, September-December 2019

Semeru (Indonesia) Ash plumes and thermal anomalies continue during September 2019-February 2020

Popocatepetl (Mexico) Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Santa Maria (Guatemala) Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

Villarrica (Chile) Brief increase in explosions, mid-September 2019; continued thermal activity through February 2020

Semisopochnoi (United States) Intermittent small explosions detected in December 2019 through mid-March 2020

Ubinas (Peru) Explosions produced ash plumes in September 2019; several lahars generated in January and February 2020

Yasur (Vanuatu) Strombolian activity continues during June 2019 through February 2020

Cleveland (United States) Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020



Erta Ale (Ethiopia) — May 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Erta Ale is a shield volcano located in Ethiopia and contains multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. Surficial lava flow activity continued within the southeastern caldera during November 2019 until early April 2020; source information was primarily from various satellite data.

The number of days that thermal anomalies were detected using MODIS data in MODVOLC and NASA VIIRS satellite data was notably higher in November and December 2019 (figure 96); the number of thermal anomalies in the Sentinel-2 thermal imagery was substantially lower due to the presence of cloud cover. Across all satellite data, thermal anomalies were identified for 29 days in November, followed by 30 days in December. After December 2019, the number of days thermal anomalies were detected decreased; hotspots were detected for 17 days in January 2020 and 20 days in February. By March, these thermal anomalies became rare until activity ceased. Thermal anomalies were identified during 1-4 March, with weak anomalies seen again during 26 March-8 April 2020.

Figure (see Caption) Figure 96. Graph comparing the number of thermal alerts using calendar dates using MODVOLC, NASA VIIRS, and Sentinel-2 satellite data for Erta Ale during November 2019-March 2020. Data courtesy of HIGP - MODVOLC Thermal Alerts System, NASA Worldview using the “Fire and Thermal Anomalies” layer, and Sentinel Hub Playground.

MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent strong thermal anomalies from 18 April through December 2019 (figure 97). Between early August 2019 and March 2020, these thermal signatures were detected at distances less than 5 km from the summit. In late December the thermal intensity dropped slightly before again increasing, while at the same time moving slightly closer to the summit. Thermal anomalies then became more intermittent and steadily decreased in power over the next two months.

Figure (see Caption) Figure 97. Two time-series plots of thermal anomalies from Erta Ale from 18 April 2019 through 18 April 2020 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently until early January 2020 when both the power and frequency visibly declined. The lower plot (B) shows these anomalies as a function of distance from the summit, including a sudden decrease in distance (measured in kilometers) in early August 2019, reflecting a change in the location of the lava flow outbreak. A smaller distance change can be identified at the end of December 2019. Courtesy of MIROVA.

Unlike the obvious distal breakouts to the NE seen previously (BGVN 44:04 and 44:11), infrared satellite imagery during November-December 2019 showed only a small area with a thermal anomaly near the NE edge of the Southeast Caldera (figure 98). A thermal alert was seen at that location using the MODVOLC system on 28 December, but the next day it had been replaced by an anomaly about 1.5 km WSW near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018 (BGVN 43:04). The thermal anomaly that was detected in the summit caldera was no longer visible after 9 January 2020, based on Sentinel-2 imagery. The exact location of lava flows shifted within the same general area during January and February 2020 and was last detected by Sentinel-2 on 4 March. After about two weeks without detectable thermal activity, weak unlocated anomalies were seen in VIIRS data on 26 March and in MODIS data on the MIROVA system four times between 26 March and 8 April. No further anomalies were noted through the rest of April 2020.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between November 2019 and March 2020 showing small lava flow outbreaks (bright yellow-orange) just NE of the southeastern calderas. A thermal anomaly can be seen in the summit crater on 15 November and very faintly on 20 December 2019. Imagery on 19 January 2020 showed a small thermal anomaly near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018. The last weak thermal hotspot was detected on 4 March (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Rincon de la Vieja (Costa Rica) — April 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Rincón de la Vieja is a remote volcanic complex in Costa Rica containing an acid lake that has regularly generated weak phreatic explosions since 2011 (BGVN 44:08). The most recent eruptive period occurred during late March-early June 2019, primarily consisting of small phreatic explosions, minor deposits on the N crater rim, and gas-and-steam emissions. The report period of August 2019-March 2020 was characterized by similar activity, including small phreatic explosions, gas-and-steam plumes, ash and lake sediment ejecta, and volcanic tremors. The most significant activity during this time occurred on 30 January, where a phreatic explosion ejected ash and lake sediment above the crater rim, resulting in a pyroclastic flow which gradually turned into a lahar. Information for this reporting period of August 2019-March 2020 comes from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins.

According to OVSICORI-UNA, a small hydrothermal eruption was recorded on 1 August 2019. The seismicity was low with a few long period (LP) earthquakes around 1 August and intermittent background tremor. No explosions or emissions were reported through 11 September; seismicity remained low with an occasional LP earthquake and discontinuous tremor. The summit’s extension that has been recorded since the beginning of June stopped, and no significant deformation was observed in August.

Starting again in September 2019 and continuing intermittently through the reporting period, some deformation was observed at the base of the volcano as well as near the summit, according to OVSICORI-UNA. On 12 September an eruption occurred that was followed by volcanic tremors that continued through 15 September. In addition to these tremors, vigorous sustained gas-and-steam plumes were observed. The 16 September weekly bulletin did not describe any ejecta produced as a result of this event.

During 1-3 October small phreatic eruptions were accompanied by volcanic tremors that had decreased by 5 October. In November, volcanism and seismicity were relatively low and stable; few LP earthquakes were reported. This period of low activity remained through December. At the end of November, horizontal extension was observed at the summit, which continued through the first half of January.

Small phreatic eruptions were recorded on 2, 28, and 29 January 2020, with an increase in seismicity occurring on 27 January. On 30 January at 1213 a phreatic explosion produced a gas column that rose 1,500-2,000 m above the crater, with ash and lake sediment ejected up to 100 m above the crater. A news article posted by the Universidad de Costa Rica (UCR) noted that this explosion generated pyroclastic flows that traveled down the N flank for more than 2 km from the crater. As the pyroclastic flows moved through tributary channels, lahars were generated in the Pénjamo river, Zanjonuda gorge, and Azufrosa, traveling N for 4-10 km and passing through Buenos Aires de Upala (figure 29). Seismicity after this event decreased, though there were still some intermittent tremors.

Figure (see Caption) Figure 29. Photo of a lahar generated from the 30 January 2020 eruption at Rincon de la Vieja. Photo taken by Mauricio Gutiérrez, courtesy of UCR.

On 17, 24, and 25 February and 11, 17, 19, 21, and 23 March, small phreatic eruptions were detected, according to OVSICORI-UNA. Geodetic measurements observed deformation consisting of horizontal extension and inflation near the summit in February-March. By the week of 30 March, the weekly bulletin reported 2-3 small eruptions accompanied by volcanic tremors occurred daily during most days of the week. None of these eruptions produced solid ejecta, pyroclastic flows, or lahars, according to the weekly OVSICORI-UNA bulletins during February-March 2020.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Luis Enrique Brenes Portuguéz, University of Costa Rica, Ciudad Universitaria Rodrigo Facio Brenes, San José, San Pedro, Costa Rica (URL: https://www.ucr.ac.cr/noticias/2020/01/30/actividad-del-volcan-rincon-de-la-vieja-es-normal-segun-experto.html).


Manam (Papua New Guinea) — May 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption, ongoing since June 2014, produced multiple large explosive eruptions during January-September 2019, including two 15-km-high ash plumes in January, repeated SO2 plumes each month, and another 15.2 km-high ash plume in June that resulted in ashfall and evacuations of several thousand people (BGVN 44:10).

This report covers continued activity during October 2019 through March 2020. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

A few modest explosions with ash emissions were reported in early October and early November 2019, and then not again until late March 2020. Although there was little explosive activity during the period, thermal anomalies were recorded intermittently, with low to moderate activity almost every month, as seen in the MODIS data from MIROVA (figure 71) and also in satellite imagery. Sulfur dioxide emissions persisted throughout the period producing emissions greater than 2.0 Dobson Units that were recorded in satellite data 3-13 days each month.

Figure (see Caption) Figure 71. MIROVA thermal anomaly data for Manam from 17 June 2019 through March 2020 indicate continued low and moderate level thermal activity each month from August 2019 through February 2020, after a period of increased activity in June and early July 2019. Courtesy of MIROVA.

The Darwin VAAC reported an ash plume in visible satellite imagery moving NW at 3.1 km altitude on 2 October 2019. Weak ash emissions were observed drifting N for the next two days along with an IR anomaly at the summit. RVO reported incandescence at night during the first week of October. Visitors to the summit on 18 October 2019 recorded steam and fumarolic activity at both of the summit craters (figure 72) and recent avalanche debris on the steep slopes (figure 73).

Figure (see Caption) Figure 72. Steam and fumarolic activity rose from Main crater at Manam on 18 October 2019 in this view to the south from a ridge north of the crater. Google Earth inset of summit shows location of photograph. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.
Figure (see Caption) Figure 73. Volcanic debris covered an avalanche chute on the NE flank of Manam when visited by hikers on 18 October 2019. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.

On 2 November, a single large explosion at 1330 local time produced a thick, dark ash plume that rose about 1,000 m above the summit and drifted NW. A shockwave from the explosion was felt at the Bogia Government station located 40 km SE on the mainland about 1 minute later. RVO reported an increase in seismicity on 6 November about 90 minutes before the start of a new eruption from the Main Crater which occurred between 1600 and 1630; it produced light to dark gray ash clouds that rose about 1,000 m above the summit and drifted NW. Incandescent ejecta was visible at the start of the explosion and continued with intermittent strong pulses after dark, reaching peak intensity around 1900. Activity ended by 2200 that evening. The Darwin VAAC reported a discrete emission observed in satellite imagery on 8 November that rose to 4.6 km altitude and drifted WNW, although ground observers confirmed that no eruption took place; emissions were only steam and gas. There were no further reports of explosive activity until the Darwin VAAC reported an ash emission in visible satellite imagery on 20 March 2020 that rose to 3.1 km altitude and drifted E for a few hours before dissipating.

Although explosive activity was minimal during the period, SO2 emissions, and evidence for continued thermal activity were recorded by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite captured evidence each month of SO2 emissions exceeding two Dobson Units (figure 74). The most SO2 activity occurred during October 2019, with 13 days of signatures over 2.0 DU. There were six days of elevated SO2 each month in November and December, and five days in January 2020. During February and March, activity was less, with smaller SO2 plumes recording more than 2.0 DU on three days each month. Sentinel-2 satellite imagery recorded thermal anomalies at least once from one or both of the summit craters each month between October 2019 and March 2020 (figure 75).

Figure (see Caption) Figure 74. SO2 emissions at Manam exceeded 2 Dobson Units multiple days each month between October 2019 and March 2020. On 3 October 2019 (top left) emissions were also measured from Ulawun located 700 km E on New Britain island. On 30 November 2019 (top middle), in addition to a plume drifting N from Manam, a small SO2 plume was detected at Bagana on Bougainville Island, 1150 km E. The plume from Manam on 2 December 2019 drifted ESE (top right). On 26 January 2020 the plume drifted over 300 km E (bottom left). The plumes measured on 29 February and 4 March 2020 (bottom middle and right) only drifted a few tens of kilometers before dissipating. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 75. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, and 8a) showed thermal anomalies at one or both of Manam’s summit craters each month during October 2019-March 2020. On 17 October 2019 (top left) a bright anomaly and weak gas plume drifted NW from South crater, while a dense steam plume and weak anomaly were present at Main crater. On 25 January 2020 (top right) the gas and steam from the two craters were drifting E; the weaker Main crater thermal anomaly is just visible at the edge of the clouds. A clear image on 5 March 2020 (bottom left) shows weak plumes and distinct thermal anomalies from both craters; on 20 March (bottom right) the anomalies are still visible through dense cloud cover that may include steam from the crater vents as well. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulkanologische Gesellschaft (URL: https://twitter.com/vulkanologen/status/1194228532219727874, https://twitter.com/vulkanologen/status/1193788836679225344); Claudio Jung, (URL: https://www.facebook.com/claudio.jung.1/posts/10220075272173895, https://www.instagram.com/jung.claudio/).


Stromboli (Italy) — April 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit crater areas, September-December 2019

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island (figure 168). Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; September-December 2019 is covered in this report.

Figure (see Caption) Figure 168. This shaded relief map of Stromboli’s crater area was created from images acquired by drone on 9 July 2019 (In collaboration with GEOMAR drone group, Helmholtz Center for Ocean Research, Kiel, Germany). Inset shows Stromboli Island, the black rectangle indicates the area of the larger image, the black curved and the red hatched lines indicate, respectively, the morphological escarpment and the crater edges. Courtesy of INGV (Rep. No. 50/2019, Stromboli, Bollettino Settimanale, 02/12/2019 - 08/12/2019, data emissione 10/12/2019).

Activity was very consistent throughout the period of September-December 2019. Explosion rates ranged from 2-36 per hour and were of low to medium-high intensity, producing material that rose from less than 80 to over 150 m above the vents on occasion (table 7). The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the Terrazza Craterica, and also down the Sciara del Fuoco towards the coast. After the explosions of early July and late August, thermal activity decreased to more moderate levels that persisted throughout the period as seen in the MIROVA Log Radiative Power data (figure 169). Sentinel-2 satellite imagery supported descriptions of the constant glow at the summit, revealing incandescence at both summit areas, each showing repeating bursts of activity throughout the period (figure 170).

Table 7. Monthly summary of activity levels at Stromboli, September-December 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2019 Explosion rates varied from 11-36 events per hour and were of low- to medium intensity (producing 80-120 m high ejecta). Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the terrace, and also down the Sciara del Fuoco towards the coast.
Oct 2019 Typical Strombolian activity and degassing continued. Explosions rates varied from 2-21 events per hour. Low intensity activity was common in the N area (ejecta less than 80 m high) and low to moderate intensity activity was typical in the CS area, with a few explosions rising over 150 m high. Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. Some of the explosions sent ejecta down the Sciara del Fuoco.
Nov 2019 Typical Strombolian activity and degassing continued. Explosion rates varied from 11-23 events per hour with ejecta rising usually 80-150 m above the vents. Occasional explosions rose 250 m high. In the N area, explosions were generally low intensity with coarse material (lapilli and bombs). In many explosions, ejecta covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. In the CS area, coarse material was mixed with fine and some explosions sent ejecta onto the upper part of the Sciara del Fuoco.
Dec 2019 Strombolian activity and degassing continued. Explosion rates varied from 12-26 per hour. In the N area, explosion intensity was mainly medium-low (less than 150 m) with coarse ejecta while in the CS area it was usually medium-high (more than 150 m) with both coarse and fine ejecta. In many explosions, debris covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. Spattering activity was noted in the southern vents of the N area.
Figure (see Caption) Figure 169. Thermal activity at Stromboli was high during July-August 2019, when two major explosions occurred. Activity continued at more moderate levels through December 2019 as seen in the MIROVA graph of Log Radiative Power from 8 June through December 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 170. Stromboli reliably produced strong thermal signals from both of the summit vents throughout September-December 2019 and has done so since long before Sentinel-2 satellite imagery was able to detect it. Image dates are (top, l to r) 5 September, 15 October, 20 October, (bottom l to r) 14 November, 14 December 2019, and 3 January 2020. Sentinel-2 imagery uses Atmospheric penetration rendering with bands 12, 11, and 8A, courtesy of Sentinel Hub Playground.

After a major explosion with a pyroclastic flow on 28 August 2019, followed by lava flows that reached the ocean in the following days (BGVN 44:09), activity diminished in early September to levels more typically seen in recent times. This included Strombolian activity from vents in both the N and CS areas that sent ejecta typically 80-150 m high. Ejecta from the N area generally consisted of lapilli and bombs, while the material from the CS area was often finer grained with significant amounts of lapilli and ash. The number of explosive events remained high in September, frequently reaching 25-30 events per hour. The ejecta periodically landed outside the craters on the Terrazza Craterica and even traveled partway down the Sciara del Fuoco. An inspection on 7 September by INGV revealed four eruptive vents in the N crater area and five in the S crater area (figure 171). The most active vents in the N area were N1 with mostly ash emissions and N2 with Strombolian explosions rich in incandescent coarse material that sometimes rose well above 150 m in height. In the S area, S1 and S2 produced jets of lava that often reached 100 m high. A small cone was observed around N2, having grown after the 28 August explosion. Between 11 and 13 September aerial surveys with drones produced detailed visual and thermal imagery of the summit (figure 172).

Figure (see Caption) Figure 171. Video of the Stromboli summit taken with a thermal camera on 7 September 2019 from the Pizzo sopra la Fossa revealed four active vents in the N area and five active vents in the S area. Images prepared by Piergiorgio Scarlato, courtesy of INGV (Rep. No. 37.2/2019, Stromboli, Bollettino Giornaliero del 10/09/2019).
Figure (see Caption) Figure 172. An aerial drone survey on 11 September 2019 at Stromboli produced a detailed view of the N and CS vent areas (left) and thermal images taken by a drone survey on 13 September (right) showed elevated temperatures down the Sciara del Fuoco in addition to the vents in the N and CS areas. Images by E. De Beni and M. Cantarero, courtesy of INGV (Rep. No. 37.5/2019, Stromboli, Bollettino Giornaliero del 13/09/2019).

Strombolian activity from the N crater on 28 September and 1 October 2019 produced blocks and debris that rolled down the Sciara del Fuoco and reached the ocean (figure 173). Explosive activity from the CS crater area sometimes produced ejecta over 150 m high (figure 174). A survey on 26 November revealed that a layer of ash 5-10 cm thick had covered the bombs and blocks that were deposited on the Pizzo Sopra la Fossa during the explosions of 3 July and 28 August (figure 175). On the morning of 27 December a lava flow emerged from the CS area and traveled a few hundred meters down the Sciara del Fuoco. The frequency of explosive events remained relatively constant from September through December 2019 after decreasing from higher levels during July and August (figure 176).

Figure (see Caption) Figure 173. Strombolian activity from vents in the N crater area of Stromboli produced ejecta that traveled all the way to the bottom of the Sciara del Fuoco and entered the ocean. Top images taken 28 September 2019 from the 290 m elevation viewpoint by Rosanna Corsaro. Bottom images captured on 1 October from the webcam at 400 m elevation. Courtesy of INGV (Rep. No. 39.0/2019 and Rep. No. 40.3, Stromboli, Bollettino Giornaliero del 29/09/2019 and 02/10/2019).
Figure (see Caption) Figure 174. Ejecta from Strombolian activity at the CS crater area of Stromboli rose over 150 m on multiple occasions. The webcam located at the 400 m elevation site captured this view of activity on 8 November 2019. Courtesy of INGV (Rep. No. 45.5/2019, Stromboli, Bollettino Giornaliero del 08/11/2019).
Figure (see Caption) Figure 175. The Pizzo Sopra la Fossa area at Stromboli was covered with large blocks and pyroclastic debris on 6 September 2019, a week after the major explosion of 28 August (top). By 26 November, 5-10 cm of finer ash covered the surface; the restored webcam can be seen at the far right edge of the Pizzo (bottom). Courtesy of INGV (Rep. No. 49/2019, Stromboli, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).
Figure (see Caption) Figure 176. The average hourly frequency of explosive events at Stromboli captured by surveillance cameras from 1 June 2019 through 5 January 2020 remained generally constant after the high levels seen during July and August. The Total value (blue) is the sum of the average daily hourly frequency of all explosive events produced by active vents.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semeru (Indonesia) — April 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes and thermal anomalies continue during September 2019-February 2020

Semeru is a stratovolcano located in East Java, Indonesia containing an active Jonggring-Seloko vent at the Mahameru summit. Common activity has consisted of ash plumes, pyroclastic flows and avalanches, and lava flows that travel down the SE flank. This report updates volcanism from September 2019 to February 2020 using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The dominant activity at Semeru for this reporting period consists of ash plumes, which were frequently reported by the Darwin VAAC. An eruption on 10 September 2019 produced an ash plume rising 4 km altitude drifting WNW, as seen in HIMAWARI-8 satellite imagery. Ash plumes continued to rise during 13-14 September. During the month of October the Darwin VAAC reported at least six ash plumes on 13, 14, 17-18, and 29-30 October rising to a maximum altitude of 4.6 km and moving primarily S and SW. Activity in November and December was relatively low, dominated mostly by strong and frequent thermal anomalies.

Volcanism increased in January 2020 starting with an eruption on 17 and 18 January that sent a gray ash plume up to 4.6 km altitude (figure 38). Eruptions continued from 20 to 26 January, producing ash plumes that rose up to 500 m above the crater that drifted in different directions. For the duration of the month and into February, ash plumes occurred intermittently. On 26 February, incandescent ejecta was ejected up to 50 m and traveled as far as 1000 m. Small sulfur dioxide emissions were detected in the Sentinel 5P/TROPOMI instrument during 25-27 February (figure 39). Lava flows during 27-29 February extended 200-1,000 m down the SE flank; gas-and-steam and SO2 emissions accompanied the flows. There were 15 shallow volcanic earthquakes detected on 29 February in addition to ash emissions rising 4.3 km altitude drifting ESE.

Figure (see Caption) Figure 38. Ash plumes rising from the summit of Semeru on 17 (left) and 18 (right) January 2020. Courtesy of MAGMA Indonesia and via Ø.L. Andersen's Twitter feed (left).
Figure (see Caption) Figure 39. Small SO2 plumes from Semeru were detected by the Sentinel 5P/TROPOMI instrument during 25 (left) and 26 (right) February 2020. Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively weak and intermittent thermal anomalies occurring during May to August 2019 (figure 40). The frequency and power of these thermal anomalies significantly increased during September to mid-December 2019 with a few hotspots occurring at distances greater than 5 km from the summit. These farther thermal anomalies to the N and NE of the volcano do not appear to be caused by volcanic activity. There was a brief break in activity during mid-December to mid-January 2020 before renewed activity was detected in early February 2020.

Figure (see Caption) Figure 40. Thermal anomalies were relatively weak at Semeru during 30 April 2019-August 2019, but significantly increased in power and frequency during September to early December 2019. There was a break in activity from mid-December through mid-January 2020 with renewed thermal anomalies around February 2020. Courtesy of MIROVA.

The MODVOLC algorithm detected 25 thermal hotspots during this reporting period, which took place during 25 September, 18 and 21 October 2019, 29 January, and 11, 14, 16, and 23 February 2020. Sentinel-2 thermal satellite imagery shows intermittent hotspots dominantly in the summit crater throughout this reporting period (figure 41).

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite imagery detected intermittent thermal anomalies (bright yellow-orange) at the summit of Semeru, which included some lava flows in late January to early February 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Popocatepetl (Mexico) — April 2020 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Frequent historical eruptions have been reported from Mexico's Popocatépetl going back to the 14th century. Activity increased in the mid-1990s after about 50 years of quiescence, and the current eruption, ongoing since January 2005, has included numerous episodes of lava-dome growth and destruction within the 500-m-wide summit caldera. Multiple emissions of steam and gas occur daily, rising generally 1-3 km above the summit at about 5,400 m elevation; many contain small amounts of ash. Larger, more explosive events with ash plumes and incandescent ejecta landing on the flanks occur frequently. Activity through August 2019 was typical of the ongoing eruption with near-constant emissions of water vapor, gas, and minor ash, as well as multiple explosions with ash plumes and incandescent blocks scattered on the flanks (BGVN 44:09). This report covers similar activity from September 2019 through February 2020. Information comes from daily reports provided by México's Centro Nacional de Prevención de Desastres (CENAPRED); ash plumes are reported by the Washington Volcanic Ash Advisory Center (VAAC). Satellite visible and thermal imagery and SO2 data also provide helpful observations of activity.

Activity summary. Activity at Popocatépetl during September 2019-February 2020 continued at the high levels that have been ongoing for many years, characterized by hundreds of daily low-intensity emissions that included steam, gas, and small amounts of ash, and periods with multiple daily minor and moderate explosions that produce kilometer-plus-high ash plumes (figure 140). The Washington VAAC issued multiple daily volcanic ash advisories with plume altitudes around 6 km for many, although some were reported as high as 8.2 km. Hundreds of minutes of daily tremor activity often produced ash emissions as well. Incandescent ejecta landed 500-1,000 m from the summit frequently. The MIROVA thermal anomaly data showed near-constant moderate to high levels of thermal energy throughout the period (figure 141).

Figure (see Caption) Figure 140. Emissions continued at a high rate from Popocatépetl throughout September 2019-February 2020. Daily low-intensity emissions numbered usually in the hundreds (blue, left axis), while less frequent minor (orange) and moderate (green) explosions, plotted on the right axis, occurred intermittently through November 2019, and increased again during February 2020. Data was compiled from CENAPRED daily reports.
Figure (see Caption) Figure 141. MIROVA log radiative power thermal data for Popocatépetl from 1 May 2019 through February 2020 showed a constant output of moderate energy the entire time. Courtesy of MIROVA.

Sulfur dioxide emissions were measured with satellite instruments many days of each month from September 2019 thru February 2020. The intensity and drift directions varied significantly; some plumes remained detectable hundreds of kilometers from the volcano (figure 142). Plumes were detected almost daily in September, and on most days in October. They were measured at lower levels but often during November, and after pulses in early and late December only small plumes were visible during January 2020. Intermittent larger pulses returned in February. Dome growth and destruction in the summit crater continued throughout the period. A small dome was observed inside the summit crater in late September. Dome 85, 210-m-wide, was observed inside the summit crater in early November. Satellite imagery captured evidence of dome growth and ash emissions throughout the period (figure 143).

Figure (see Caption) Figure 142. Sulfur dioxide emissions from Popocatépetl were frequent from September 2019 through February 2020. Plumes drifted SW on 7 September (top left), 30 October (top middle), and 21 February (bottom right). SO2 drifted N and NW on 26 November (top right). On 2 December (bottom left) a long plume of sulfur dioxide hundreds of kilometers long drifted SW over the Pacific Ocean while the drift direction changed to NW closer to the volcano. The SO2 plumes measured in January (bottom center) were generally smaller than during the other months covered in this report. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 143. Sentinel-2 satellite imagery of Popocatépetl during November 2019-February 2020 provided evidence for ongoing dome growth and explosions with ash emissions. Top left: a ring of incandescence inside the summit crater on 8 November 2019 was indicative of the growth of dome 85 observed by CENAPRED. Top middle: incandescence on 8 December inside the summit crater was typical of that observed many times during the period. Top right: a dense, narrow ash plume drifted N from the summit on 17 January 2020. Bottom left: Snow cover made ashfall on 6 February easily visible on the E flank. On 11 February, the summit crater was incandescent and nearly all the snow was covered with ash. Bottom right: a strong thermal anomaly and ash emission were captured on 21 February. Bottom left and top right images use Natural color rendering (bands 4, 3, 2); other images use Atmospheric penetration rendering to show infrared signal (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during September-November 2019. On 1 September 2019 minor ashfall was reported in the communities of Atlautla, Ozumba, Juchitepec, and Tenango del Aire in the State of Mexico. The ash plumes rose less than 2 km above the summit and incandescent ejecta traveled less than 100 m from the summit crater. Twenty-two minor and three moderate explosions were recorded on 4-5 September along with minor ashfall in Juchitepec, Tenango del Aire, Tepetlixpa, and Atlautla. During a flyover on 5 September, officials did not observe a dome within the crater, and the dimensions remained the same as during the previous visit (350 m in diameter and 150 m deep) (figure 144). Ashfall was reported in Tlalmanalco and Amecameca on 6 September. The following day incandescent ejecta was visible on the flanks near the summit and ashfall was reported in Amecameca, Ayapango, and Tenango del Aire. The five moderate explosions on 8 September produced ash plumes that rose as high as 2 km above the summit, and incandescent ejecta on the flanks. Explosions on 10 September sent ejecta 500 m from the crater. Eight explosions during 20-21 September produced ejecta that traveled up to 1.5 km down the flanks (figure 145). During an overflight on 27 September specialists from the National Center for Disaster Prevention (CENAPRED ) of the National Coordination of Civil Protection and researchers from the Institute of Geophysics of UNAM observed a new dome 30 m in diameter; the overall crater had not changed size since the overflight in early September.

Figure (see Caption) Figure 144. CENAPRED carried out overflights of Popocatépetl on 5 (left) and 27 September (right) 2019; the crater did not change in size, but a new dome 30 m in diameter was visible on 27 September. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 y 27 de septiembre).
Figure (see Caption) Figure 145. Ash plumes at Popocatépetl on 19 (left) and 20 (right) September 2019 rose over a kilometer above the summit before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19 y 20 de septiembre).

Fourteen explosions were reported on 2 October 2019. The last one produced an ash plume that rose 2 km above the summit and sent incandescent ejecta down the E slope (figure 146). Ashfall was reported in the municipalities of Atlautla Ozumba, Ayapango and Ecatzingo in the State of Mexico. Explosions on 3 and 4 October also produced ash plumes that rose between 1 and 2 km above the summit and sent ejecta onto the flanks. Additional incandescent ejecta was reported on 6, 7, 15, and 19 October. The communities of Amecameca, Tenango del Aire, Tlalmanalco, Cocotitlán, Temamatla, and Tláhuac reported ashfall on 10 October; Amecameca reported more ashfall on 12 October. On 22 October slight ashfall appeared in Amecameca, Tenango del Aire, Tlalmanalco, Ayapango, Temamatla, and Atlautla.

Figure (see Caption) Figure 146. Incandescent ejecta at Popocatépetl traveled down the E slope on 2 October 2019 (left); an ash plume two days later rose 2 km above the summit (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 2 y 4 de octubre).

During 2-3 November 2019 there was 780 minutes of tremor reported in four different episodes. The seismicity was accompanied by ash emissions that drifted W and NW and produced ashfall in numerous communities, including Amecameca, Juchitepec, Ozumba, Tepetlixpa, and Atlautla in the State of México, in Ayapango and Cuautla in the State of Morelos, and in the municipalities of Tlahuac, Tlalpan, and Xochimilco in Mexico City. A moderate explosion on 4 November sent incandescent ejecta 2 km down the slopes and produced an ash plume that rose 1.5 km and drifted NW. Minor ashfall was reported in Tlalmanalco, Amecameca, and Tenango del Aire, State of Mexico. Similar ash plumes from explosions occurred the following day. Scientists from CENAPRED and the Institute of Geophysics of UNAM observed dome number 85 during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick, with an irregular surface (figure 147). Multiple explosions on 6 and 7 November produced incandescent ejecta; a moderate explosion late on 11 November produced ejecta that traveled 1.5 km from the summit and produced an ash plume 2 km high (figure 148). A lengthy period of constant ash emission that drifted E was reported on 18 November. A moderate explosion on 28 November sent incandescent fragments 1.5 km down the slopes and ash one km above the summit.

Figure (see Caption) Figure 147. A new dome was visible inside the summit crater at Popocatépetl during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 de noviembre).
Figure (see Caption) Figure 148. Ash emissions and explosions with incandescent ejecta continued at Popocatépetl during November 2019. The ash plume on 1 November changed drift direction sharply a few hundred meters above the summit (left). Incandescent ejecta traveled 1.5 km down the flanks on 11 November (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 1 y 12 de noviembre).

Activity during December 2019-February 2020. Throughout December 2019 weak emissions of steam and gas were reported daily, sometimes with minor amounts of ash, and minor explosions were only reported on 21 and 27 December. On 21 December two new high-resolution webcams were installed around Popocatépetl, one 5 km from the crater at the Tlamacas station, and the second in San Juan Tianguismanalco, 20 km away. Ash emissions and incandescent ejecta 800 m from the summit were observed on 25 December (figure 149). Incandescence at night was reported during 27-29 December.

Figure (see Caption) Figure 149. Incandescent ejecta moved 800 m down the flanks of Popocatépetl during explosions on 25 December 2019 (left); weak emissions of steam, gas, and minor ash were visible on 27 December and throughout the month. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 25 y 27 de diciembre).

Continuous emissions of water vapor and gas with low ash content were typical daily during January 2020. A moderate explosion on 9 January produced an ash plume that rose 3 km from the summit and drifted NE. In addition, incandescent ejecta traveled 1 km from the crater rim. A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (figure 150). The first of two explosions late on 27 January produced ejecta that traveled 500 m and a 1-km-high ash plume. Constant incandescence was observed overnight on 29-30 January.

Figure (see Caption) Figure 150. Although fewer explosions were recorded at Popocatépetl during January 2020, activity continued. An ash plume on 19 January rose over a kilometer above the summit (top left). A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (top right). Smaller emissions with steam, gas, and ash were typical many days, including on 22 (bottom left) and 31 (bottom right) January 2019. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19, 21, 22 y 31 de enero).

A moderate explosion on 5 February 2020 produced an ash plume that rose 1.5 km and drifted NNE. Explosions on 10 and 13 February sent ejecta 500 m down the flanks (figure 151). During an overflight on 18 February scientists noted that the internal crater maintained a diameter of 350 m and its approximate depth was 100-150 m; the crater was covered by tephra. For most of the second half of February the volcano had a continuous emission of gases with minor amounts of ash. In addition, multiple explosions produced ash plumes that rose 400-1,200 m above the crater and drifted in several different directions.

Figure (see Caption) Figure 151. Ash emissions and explosions continued at Popocatépetl during February 2020. Dense ash drifted near the snow-covered summit on 6 February (top left). Incandescent ejecta traveled 500 m down the flanks on 13 February (top right). Ash plumes billowed from the summit on 18 and 22 February (bottom row). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 6, 15, 18 y 22 de febrero).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2020 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. Ash explosions, pyroclastic, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during September 2019-February 2020, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Constant fumarolic activity with steam and gas persisted from the Caliente dome throughout September 2019-February 2020. Explosions occurred multiple times per day, producing ash plumes that rose to altitudes of 3.1-3.5 km and usually drifted a few kilometers before dissipating. Several lahars during September and October carried volcanic blocks, ash, and debris down major drainages. Periodic ashfall was reported in communities within 10 km of the volcano. An increase in thermal activity beginning in November (figure 101) resulted in an increased number of observations of incandescence visible at night from the summit of Caliente through February 2020. Block avalanches occurred daily on the flanks of the dome, often reaching the base, stirring up small clouds of ash that drifted downwind.

Figure (see Caption) Figure 101. The MIROVA project graph of thermal activity at Santa María from 12 May 2019 through February 2020 shows a gradual increase in thermal energy beginning in November 2019. This corresponds to an increase in the number of daily observations of incandescence at the summit of the Caliente dome during this period. Courtesy of MIROVA.

Constant steam and gas fumarolic activity rose from the Caliente dome, drifting W, usually rising to 2.8-3.0 km altitude during September 2019. Multiple daily explosions with ash plumes rising to 2.9-3.4 km altitude drifted W or SW over the communities of San Marcos, Loma Linda Palajunoj, and Monte Claro (figure 102). Constant block avalanches fell to the base of the cone on the NE and SE flanks. The Washington VAAC reported an ash plume visible in satellite imagery on 10 September at 3.1 km altitude drifting W. On 14 September another plume was spotted moving WSW at 4.6 km altitude which dissipated quickly; the webcam captured another plume on 16 September. Ashfall on 27 September reached about 1 km from the volcano; it reached 1.5 km on 29 September. Lahars descended the Rio Cabello de Ángel on 2 and 24 September (figure 102). They were about 15 m wide, and 1-3 m deep, carrying blocks 1-2 m in diameter.

Figure (see Caption) Figure 102. A lahar descended the Rio Cabello de Ángel at Santa Maria and flowed into the Rio Nima 1 on 24 September 2019. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 21 al 27 de septiembre de 2019).

Througout October 2019, degassing of steam with minor gases occurred from the Caliente summit, rising to 2.9-3.0 km altitude and generally drifting SW. Weak explosions took place 1-5 times per hour, producing ash plumes that rose to 3.2-3.5 km altitude. Ashfall was reported in Monte Claro on 2 October. Nearly constant block avalanches descended the SE and S flanks, disturbing recent layers of fine ash and producing local ash clouds. Moderate explosions on 11 October produced ash plumes that rose to 3.5 km altitude and drifted W and SW about 1.5 km towards Río San Isidro (figure 103). The following day additional plumes drifted a similar distance to the SE. The Washington VAAC reported an ash emission visible in satellite imagery at 4.9 km altitude on 13 October drifting NNW. Ashfall was reported in Parcelamiento Monte Claro on 14 October. Some of the block avalanches observed on 14 October on the SE, S, and SW flanks were incandescent. Ash drifted 1.5 km W and SW on 17 October. Ashfall was reported near la finca Monte Claro on 25 and 28 October. A lahar descended the Río San Isidro, a tributary of the Río El Tambor on 7 October carrying blocks 1-2 m in diameter, tree trunks, and branches. It was about 16 m wide and 1-2 m deep. Additional lahars descended the rio Cabello de Angel on 23 and 24 October. They were about 15 m wide and 2 m deep, and carried ash and blocks 1-2 m in diameter, tree trunks, and branches.

Figure (see Caption) Figure 103. Daily ash plumes were reported from the Caliente cone at Santa María during October 2019, similar to these from 30 September (left) and 11 October 2019 (right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 28 de septiembre al 04 de octubre de 2019; Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 05 al 11 de octubre de 2019).

During November 2019, steam plumes rose to 2.9-3.0 km altitude and generally drifted E. There were 1-3 explosions per hour; the ash plumes produced rose to altitudes of 3.1-3.5 km and often drifted SW, resulting in ashfall around the volcanic complex. Block avalanches descended the S and SW flanks every day. On 4 November ashfall was reported in the fincas (ranches) of El Faro, Santa Marta, El Viejo Palmar, and Las Marías, and the odor of sulfur was reported 10 km S. Incandescence was observed at the Caliente dome during the night of 5-6 November. Ash fell again in El Viejo Palmar, fincas La Florida, El Faro, and Santa Marta (5-6 km SW) on 7 November. Sulfur odor was also reported 8-10 km S on 16, 19, and 22 November. Fine-grained ash fell on 18 November in Loma Linda and San Marcos Palajunoj. On 29 November strong block avalanches descended in the SW flank, stirring up reddish ash that had fallen on the flanks (figure 104). The ash drifted up to 20 km SW.

Figure (see Caption) Figure 104. Ash plumes rose from explosions multiple times per day at Santa Maria’s Santiaguito complex during November 2019, and block avalanches stirred up reddish clouds of ash that drifted for many kilometers. Courtesy of INSIVUMEH. Left, 11 November 2019, from Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 09 al 15 de noviembre de 2019. Right, 29 November 2019 from BOLETÍN VULCANOLÓGICO ESPECIAL BESTG# 106-2019, Guatemala 29 de noviembre de 2019, 10:50 horas (Hora Local).

White steam plumes rising to 2.9-3.0 km altitude drifted SE most days during December 2019. One to three explosions per hour produced ash plumes that rose to 3.1-3.5 km altitude and drifted W and SW producing ashfall on the flanks. Several strong block avalanches sent material down the SW flank. Ash from the explosions drifted about 1.5 km SW on 3 and 7 December. The Washington VAAC reported a small ash emission that rose to 4.9 km altitude and drifted WSW on 8 December, and another on 13 December that rose to 4.3 km altitude. Ashfall was reported up to 10 km S on 24 December. Incandescence was reported at the dome by INSIVUMEH eight times during the month, significantly more than during the recent previous months (figure 105).

Figure (see Caption) Figure 105. Strong thermal anomalies were visible in Sentinel-2 imagery at the summit of the Caliente cone at Santa María’s Santiaguito’s complex on 19 December 2019. Image uses Atmospheric Penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during January 2020 was similar to that during previous months. White plumes of steam rose from the Caliente dome to altitudes of 2.7-3.0 km and drifted SE; one to three explosions per hour produced ash plumes that rose to 3.2-3.4 km altitude and generally drifted about 1.5 km SW before dissipating. Frequent block avalanches on the SE flank caused smaller plumes that drifted SSW often over the ranches of San Marcos and Loma Linda Palajunoj. On 28 January ash plumes drifted W and SW over the communities of Calaguache, El Nuevo Palmar, and Las Marías. In addition to incandescence observed at the crater of Caliente dome at least nine times, thermal anomalies in satellite imagery were detected multiple times from the block avalanches on the S flank (figure 106).

Figure (see Caption) Figure 106. Incandescence at the summit and in the block avalanches on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was visible in Sentinel-2 satellite imagery on 8 and 13 January 2020. Atmospheric penetration rendering images (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

The Washington VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude drifting W on 3 February 2020. INSIVUMEH reported constant steam degassing that rose to 2.9-3.0 km altitude and drifted SW. In addition, 1-3 weak to moderate explosions per hour produced ash plumes to 3.1-3.5 km altitude that drifted about 1 km SW. Small amounts of ashfall around the volcano’s perimeter was common. The ash plumes on 5 February drifted NE over Santa María de Jesús. On 8 February the ash plumes drifted E and SE over the communities of Calaguache, El Nuevo Palmar, and Las Marías. Block avalanches on the S and SE flanks of Caliente dome continued, creating small ash clouds on the flank. Incandescence continued frequently at the crater and was also observed on the S flank in satellite imagery (figure 107).

Figure (see Caption) Figure 107. Incandescence at the summit and on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was frequent during February 2020, including on 2 (left) and 17 (right) February 2020 as seen in Sentinel-2 imagery. Atmostpheric Penetration rendering imagery (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Villarrica (Chile) — April 2020 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Brief increase in explosions, mid-September 2019; continued thermal activity through February 2020

Historical eruptions at Chile's Villarrica, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. An intermittently active lava lake at the summit has been the source of Strombolian activity, incandescent ejecta, and thermal anomalies for several decades; the current eruption has been ongoing since December 2014. Continuing activity during September 2019-February 2020 is covered in this report, with information provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a research group that studies volcanoes across Chile.

A brief period of heighted explosive activity in early September 2019 caused SERNAGEOMIN to raise the Alert Level from Yellow to Orange (on a four-color scale of Green-Yellow-Orange-Red) for several days. Increases in radiative power were visible in the MIROVA thermal anomaly data during September (figure 84). Although overall activity decreased after that, intermittent explosions were observed at the summit, and incandescence continued throughout September 2019-February 2020. Sentinel-2 satellite imagery indicated a strong thermal anomaly from the summit crater whenever the weather conditions permitted. In addition, ejecta periodically covered the area around the summit crater, and particulates often covered the snow beneath the narrow gas plume drifting S from the summit (figure 85).

Figure (see Caption) Figure 84. Thermal activity at Villarrica from 28 May 2019 through February 2020 was generally at a low level, except for brief periods in August and September 2019 when larger explosions were witnessed and recorded in seismic data and higher levels of thermal activity were noted by the MIROVA project. Courtesy of MIROVA.
Figure (see Caption) Figure 85. Natural-color (top) and Atmospheric penetration (bottom) renderings of three different dates during September 2019-February 2020 show typical continued activity at Villarica during the period. Dark ejecta periodically covered the snow around the summit crater, and streaks of particulate material were sometimes visible on the snow underneath the plumes of bluish gas drifting S from the volcano (top images). Persistent thermal anomalies were recorded in infrared satellite data on the same dates (bottom images). Dates recorded are (left to right) 28 September 2019, 20 December 2019, and 1 January 2020. Natural color rendering uses bands 4,3, and 2, and Atmospheric penetration rendering uses bands 12, 11, and 8a. Courtesy of Sentinel Hub Playground.

SERNAGEOMIN raised the Alert Level from Green to Yellow in early August 2019 due to the increase in activity that included incandescent ejecta and bombs reaching 200 m from the summit crater (BGVN 44:09). An increase in seismic tremor activity on 8 September was accompanied by vigorous Strombolian explosions reported by POVI. The following day, SERNAGEOMIN raised the Alert Level from Yellow to Orange. Poor weather prevented visual observations of the summit on 8 and 9 September, but high levels of incandescence were observed briefly on 10 September. Incandescent ejecta reached 200 m from the crater rim late on 10 September (figure 86). Activity increased the next day with ejecta recorded 400 m from the crater, and the explosions were felt 12 km from the summit.

Figure (see Caption) Figure 86. A new pulse of activity at Villarrica reached its maximum on 10 (left) and 11 (right) September 2019. Incandescent ejecta reached 200 m from the crater rim on 10 September and up to 400 m the following day. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).

Explosions decreased in intensity by 13 September, but avalanches of incandescent material were visible on the E flank in the early morning hours (figure 87). Small black plumes later in the day were interpreted by POVI as the result of activity from landslides within the crater. Fine ash deposited on the N and NW flanks during 16-17 September was attributed to wind moving ash from within the crater, and not to new emissions from the crater (figure 88). SERNAGEOMIN lowered the Alert Level to Yellow on 16 September as tremor activity decreased significantly. Activity continued to decrease during the second half of September; incandescence was moderate with no avalanches observed, and intermittent emissions with small amounts of material were noted. Degassing of steam plumes rose up to 120 m above the crater.

Figure (see Caption) Figure 87. By 13 September 2019, a decrease in activity at Villarrica was apparent. Incandescence (red arrow) was visible on the E flank of Villarrica early on 13 September (left). Fine ash, likely from small collapses of new material inside the vent, rose a short distance above the summit later in the day (right). Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).
Figure (see Caption) Figure 88. Fine-grained material covered the summit of Villarrica on 17 September 2019. POVI interpreted this as a result of strong winds moving fine ash-sized particles from within the crater and depositing them on the N and NW flanks. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).

Low-altitude degassing was typical activity during October-December 2019; occasionally steam and gas plumes rose 300 m above the summit, but they were generally less than 200 m high. Incandescence was visible at night when weather conditions permitted. Occasional Strombolian explosions were observed in the webcam (figure 89). During January and February 2020, similar activity was reported with steam plumes observed to heights of 300-400 m above the summit, and incandescence on nights where the summit was visible (figure 90). A drone overflight on 19 January produced a clear view into the summit crater revealing a 5-m-wide lava pit about 120 m down inside the crater (figure 91).

Figure (see Caption) Figure 89. Activity continued at a lower level at the summit of Villarrica from October-December 2019. The 30-m-wide vent at the bottom of the summit crater (120 m deep) of Villarrica (left) was emitting wisps of bluish gas on 30 October 2019. Sporadic Strombolian explosions ejected material around the crater rim on 12 December (right). Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a enero 2020).
Figure (see Caption) Figure 90. Small explosive events were recorded at Villarrica during January and February 2020, including these events on 4 (left) and 18 (right) January where ejecta reached about 50 m above the crater rim. Courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).
Figure (see Caption) Figure 91. An oblique view into the bottom of the summit crater of Villarrica on 19 January 2020 was captured by drone. The diameter of the lava pit was calculated at about 5 m and was about 120 m deep. Image copyright by Leighton M. Watson, used with permission; courtesy of POVI (Volcan Villarrica, Resumen grafico del comportamiento, Septiembre 2019 a Enero 2020).

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Leighton M. Watson, Department of Earth Sciences at the University of Oregon, Eugene, OR 97403-1272, USA (URL: https://earthsciences.uoregon.edu/).


Semisopochnoi (United States) — April 2020 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Intermittent small explosions detected in December 2019 through mid-March 2020

Semisopochnoi is a remote stratovolcano located in the western Aleutians dominated by an 8 km-wide caldera containing the small (100 m diameter) Fenner Lake and a three-cone cluster: a northern cone known as the North cone of Mount Cerberus, an eastern cone known as the East cone of Mount Cerberus, and a southern cone known as the South cone of Mount Cerberus. Previous volcanism has included small explosions, ash deposits, and gas-and-steam emissions. This report updates activity during September 2019 through March 2020 using information from the Alaska Volcano Observatory (AVO). A new eruptive period began on 7 December 2019 and continued until mid-March 2020 with activity primarily focused in the North cone of Mount Cerberus.

During September-November 2019, low levels of unrest were characterized by intermittent weeks of elevated seismicity and gas-and-steam plumes visible on 8 September, 7-8 October, and 24 November. On 6 October an SO2 plume was visible in satellite imagery, according to AVO.

Seismicity increased on 5 December and was described as a strong tremor through 7 December. This tremor was associated with a small eruption on 7 December; intermittent explosions occurred and continued into the night. Increased seismicity was recorded throughout the rest of the month while AVO registered small explosions during 11-19 December. On 11-12 December, a gas-and-steam plume possibly containing some of ash extended 80 km (figure 2). Two more ash plumes were observed on 14 and 17 December, the latter of which extended 15 km SE. Sentinel-2 satellite images show gas-and-steam plumes rising from the North Cerberus crater intermittently at the end of 2019 and into early 2020 (figure 3).

Figure (see Caption) Figure 2. Sentinel-2 satellite image showing a gray ash plume extending up to 17 km SE from the North Cerberus crater on 11 December 2019. Image taken by Hannah Dietterich; courtesy of AVO.
Figure (see Caption) Figure 3. Sentinel-2 satellite images of gas-and-steam plumes at Semisopochnoi from late November 2019 through mid-March 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

The month of January 2020 was characterized by low levels of unrest due to intermittent low seismicity. Small explosions were reported during 14-17 February and a gas-and-steam plume was visible on 26 February. Seismic unrest occurred between 18 February-7 March. Gas-and-steam plumes were visible on 1, 9, 14-17, 20, and 21 March (figure 4). During 15-17 March, small explosions occurred, according to AVO. Additionally, clear satellite images showed gas-and-steam emissions and minor ash deposits around North Cerberus’ crater rim. After 17 March the explosions subsided and ash emissions were no longer observed. However, intermittent gas-and-steam emissions continued and seismicity remained elevated through the end of the month.

Figure (see Caption) Figure 4. Satellite image of Semisopochnoi showing degassing within the North Cerberus crater on 22 March 2020. Image taken by Matt Loewen; courtesy of AVO.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ubinas (Peru) — March 2020 Citation iconCite this Report

Ubinas

Peru

16.355°S, 70.903°W; summit elev. 5672 m

All times are local (unless otherwise noted)


Explosions produced ash plumes in September 2019; several lahars generated in January and February 2020

Ubinas, located 70 km from the city of Arequipa in Peru, has produced frequent eruptions since 1550 characterized by ash plumes, ballistic ejecta (blocks and bombs), some pyroclastic flows, and lahars. Activity is focused at the summit crater (figure 53). A new eruptive episode began on 24 June 2019, with an ash plume reaching 12 km altitude on 19 July. This report summarizes activity during September 2019 through February 2020 and is based on agency reports and satellite data.

Figure (see Caption) Figure 53. A PlanetScope satellite image of Ubinas on 16 December 2019. Courtesy of PlanetLabs.

Prior to September 2019 the last explosion occurred on 22 July. At 2145 on 1 September moderate, continuous ash emission occurred reaching nearly 1 km above the crater. An explosion produced an ash plume at 1358 on the 3rd that reached up to 1.3 km above the summit; six minutes later ashfall and lapilli up to 1.5 cm in diameter was reported 6 km away, with ashfall reported up to 8 km away (figure 54 and 55). Three explosions produced ash plumes at 0456, 0551, and 0844 on 4 September, with the two later ash plumes reaching around 2 km above the crater. The ash plume dispersed to the south and ashfall was reported in Ubinas, Tonohaya, San Miguel, Anascapa, Huatahua, Huarina, and Matalaque, reaching a thickness of 1 mm in Ubinas.

Figure (see Caption) Figure 54. An eruption at Ubinas produced an ash plume up to 1.3 km on at 1358 on 3 September 2019. Courtesy of INGEMMET.
Figure (see Caption) Figure 55. Ash and lapilli fall up to 1.5 cm in diameter was reported 6 km away from Ubinas on 3 September 2019 (top) and an Ingemmet geologist collects ash samples from the last three explosions. Courtesy of INGEMMET.

During 8-9 September there were three explosions generating ash plumes to less than 2.5 km, with the largest occurring at 1358 and producing ashfall in the Moquegua region to the south. Following these events, gas and water vapor were continuously emitted up to 1 km above the crater. There was an increase in seismicity during the 10-11th and an explosion produced a 1.5 km high (above the crater) ash plume at 0726 on the 12th, which dispersed to the S and SE (figure 56). During 10-15 September there was continuous emission of gas (blue in color) and steam up to 1.5 km above the volcano. Gas emission, thermal anomalies, and seismicity continued during 16-29 September, but no further explosions were recorded.

Figure (see Caption) Figure 56. An explosion at Ubinas on 12 September 2019 produced an ash plume to 1.5 km above the volcano. The ash dispersed to the S and SE. Courtesy of IGP.

Throughout October activity consisted of seismicity, elevated temperatures within the crater, and gas emissions reaching 800 to 1,500 m above the crater. No explosions were recorded. Drone footage released in early October (figure 57) shows the gas emissions and provided a view of the crater floor (figure 58). On the 15th IGP reported that the likelihood of an eruption had reduced.

Figure (see Caption) Figure 57. IGP flew a fixed-wing drone over Ubinas as part of their monitoring efforts. This photograph shows gas emissions rising from the summit crater, published on 7 October 2019. Courtesy of IGP.
Figure (see Caption) Figure 58. Drone image showing gas emissions and the summit crater of Ubinas. Image taken by IGP staff and released on 7 October 2019; courtesy of IGP.

Similar activity continued through early November with no reported explosions, and the thermal anomalies were no longer detected at the end of November (figure 59), although a faint thermal anomaly was visible in Sentinel-2 data in mid-December (figure 60). A rockfall occurred at 1138 on 13 November down the Volcanmayo gorge.

Figure (see Caption) Figure 59. This MIROA Log Radiative Power plot shows increased thermal energy detected at Ubinas during August through November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 60. Sentinel-2 thermal satellite image showing elevated temperatures in the Ubinas crater on 16 December 2019. Courtesy of Sentinel Hub Playground.

There were no explosions during January or February 2020, with seismicity and reduced gas emissions continuing. There was a small- to moderate-volume lahar generated at 1620 on 4 January down the SE flank. A second moderate- to high-volume lahar was generated at 1532 on 24 February, and three more lahars at 1325 and 1500 on 29 February, and at 1601 on 1 March, moved down the Volcanmayo gorge and the Sacohaya river channel. The last three lahars were of moderate to large volume.

Geologic Background. A small, 1.4-km-wide caldera cuts the top of Ubinas, Perú's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one of Holocene age about 1,000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Yasur (Vanuatu) — March 2020 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strombolian activity continues during June 2019 through February 2020

Yasur has remained on Alert Level 2 (on a scale of 0-4) since 18 October 2016, indicating "Major Unrest; Danger Zone remains at 395 m around the eruptive vents." The summit crater contains several active vents that frequently produce Strombolian explosions and gas plumes (figure 60). This bulletin summarizes activity during June 2019 through February 2020 and is based on reports by the Vanuatu Meteorology and Geo-Hazards Department (VMGD), visitor photographs and videos, and satellite data.

Figure (see Caption) Figure 60. The crater of Yasur contains several active vents that produce gas emissions and Strombolian activity. Photo taken during 25-27 October 2019 by Justin Noonan, used with permission.

A VMGD report on 27 June described ongoing Strombolian explosions with major unrest confined to the crater. The 25 July report noted the continuation of Strombolian activity with some strong explosions, and a warning that volcanic bombs may impact outside of the crater area (figure 61).

Figure (see Caption) Figure 61. A volcanic bomb (a fluid chunk of lava greater than 64 mm in diameter) that was ejected from Yasur. The pattern on the surface shows the fluid nature of the lava before it cooled into a solid rock. Photo taken during 25-27 October 2019 by Justin Noonan, used with permission.

No VMGD report was available for August, but Strombolian activity continued with gas emissions and explosions, as documented by visitors (figure 62). The eruption continued through September and October with some strong explosions and multiple active vents visible in thermal satellite imagery (figure 63). Strombolian explosions ejecting fluid lava from rapidly expanding gas bubbles were recorded during October, and likely represented the typical activity during the surrounding months (figure 64). Along with vigorous degassing producing a persistent plume there was occasional ash content (figure 65). At some point during 20-29 October a small landslide occurred along the eastern inner wall of the crater, visible in satellite images and later confirmed to have produced ashfall at the summit (figure 66).

Figure (see Caption) Figure 62. Different views of the Yasur vents on 7-8 August 2019 taken from a video. Strombolian activity and degassing were visible. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 63. Sentinel-2 thermal satellite images show variations in detected thermal energy emitting from the active Yasur vents on 18 September and 22 December 2019. False color (bands 12, 11, 4) satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 64. Strombolian explosions at Yasur during 25-27 October 2019. Large gas bubbles rise to the top of the lava column and burst, ejecting volcanic bombs – fluid chunks of lava, out of the vent. Photos by Justin Noonan, used with permission.
Figure (see Caption) Figure 65. Gas and ash emissions rise from the active vents at Yasur between 25-27 October 2019. Photos by Justin Noonan, used with permission.
Figure (see Caption) Figure 66. Planet Scope satellite images of Yasur show a change in the crater morphology between 20 and 29 October 2019. Copyright of Planet Labs.

Continuous explosive activity continued in November-February with some stronger explosions recorded along with accompanying gas emissions. Gas plumes of sulfur dioxide were detected by satellite sensors on some days through this period (figure 67) and ash content was present at times (figure 68). Thermal anomalies continued to be detected by satellite sensors with varying intensity, and with a reduction in intensity in February, as seen in Sentinel-2 imagery and the MIROVA system (figures 69 and 70).

Figure (see Caption) Figure 67. SO2 plumes detected at Yasur by Aura/OMI on 21 December 2019 and 31 January 2020, drifting W to NW, and on 14 and 23 February 2020, drifting W and south, and NWW to NW. Courtesy of Global Sulfur Dioxide Monitoring Page, NASA.
Figure (see Caption) Figure 68. An ash plume erupts from Yasur on 20 February 2020 and drifts NW. Courtesy of Planet Labs.
Figure (see Caption) Figure 69. Sentinel-2 thermal satellite images show variations in detected thermal energy in the active Yasur vents during January and February 2020. False color (bands 12, 11, 4) satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 70. The MIROVA thermal detection system recorded persistent thermal energy emitted at Yasur with some variation from mid-May 2019 to May 2020. There was a reduction in detected energy after January. Courtesy of MIROVA.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Justin Noonan (URL: https://www.justinnoonan.com/, Instagram: https://www.instagram.com/justinnoonan_/); Doro Adventures (Twitter: https://twitter.com/DoroAdventures, URL: http://doroadventures.com/).


Cleveland (United States) — March 2020 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Cleveland is a stratovolcano located in the western portion of Chuginadak Island, a remote island part of the east central Aleutians. Common volcanism has included small lava flows, explosions, and ash clouds. Intermittent lava dome growth, small ash explosions, and thermal anomalies have characterized more recent activity (BGVN 44:02). For this reporting period during February 2019-January 2020, activity largely consisted of gas-and-steam emissions and intermittent thermal anomalies within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) and various satellite data.

Low levels of unrest occurred intermittently throughout this reporting period with gas-and-steam emissions and thermal anomalies as the dominant type of activity (figures 30 and 31). An explosion on 9 January 2019 was followed by lava dome growth observed during 12-16 January. Suomi NPP/VIIRS sensor data showed two hotspots on 8 and 14 February 2019, though there was no evidence of lava within the summit crater at that time. According to satellite imagery from AVO, the lava dome was slowly subsiding during February into early March. Elevated surface temperatures were detected on 17 and 24 March in conjunction with degassing; another gas-and-steam plume was observed rising from the summit on 30 March. Thermal anomalies were again seen on 15 and 28 April using Suomi NPP/VIIRS sensor data. Intermittent gas-and-steam emissions continued as the number of detected thermal anomalies slightly increased during the next month, occurring on 1, 7, 15, 18, and 23 May. A gas-and-steam plume was observed on 9 May.

Figure (see Caption) Figure 30. The MIROVA graph of thermal activity (log radiative power) at Cleveland during 4 February 2019 through January 2020 shows increased thermal anomalies between mid-April to late November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed intermittent thermal signatures occurring in the summit crater during March 2019 through October 2019. Some gas-and-steam plumes were observed accompanying the thermal anomaly, as seen on 17 March 2019 and 8 May 2019. Courtesy of Sentinel Hub Playground.

There were 10 thermal anomalies observed in June, and 11 each in July and August. Typical mild degassing was visible when photographed on 9 August (figure 32). On 14 August, seismicity increased, which included a swarm of a dozen local earthquakes. The lava dome emplaced in January was clearly visible in satellite imagery (figure 33). The number of thermal anomalies decreased the next month, occurring on 10, 21, and 25 September. During this month, a gas-and-steam plume was observed in a webcam image on 6, 8, 20, and 25 September. On 3-6, 10, and 21 October elevated surface temperatures were recorded as well as small gas-and-steam plumes on 4, 7, 13, and 20-25 October.

Figure (see Caption) Figure 32. Photograph of Cleveland showing mild degassing from the summit vent taken on 9 August 2019. Photo by Max Kaufman; courtesy of AVO/USGS.
Figure (see Caption) Figure 33. Satellite image of Cleveland showing faint gas-and-steam emissions rising from the summit crater. High-resolution image taken on 17 August 2019 showing the lava dome from January 2019 inside the crater (dark ring). Image created by Hannah Dietterich; courtesy of AVO/USGS and DigitalGlobe.

Four thermal anomalies were detected on 3, 6, and 8-9 November. According to a VONA report from AVO on 8 November, satellite data suggested possible slow lava effusion in the summit crater; however, by the 15th no evidence of eruptive activity had been seen in any data sources. Another thermal anomaly was observed on 14 January 2020. Gas-and-steam emissions observed in webcam images continued intermittently.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent weak thermal anomalies within 5 km of the crater summit during mid-April through November 2019 with a larger cluster of activity in early June, late July and early October (figure 30). Thermal satellite imagery from Sentinel-2 also detected weak thermal anomalies within the summit crater throughout the reporting period, occasionally accompanied by gas-and-steam plumes (figure 31).

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 11 (December 1995)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosive eruptions continue to generate ash plumes

Akan (Japan)

Early November seismic swarm with two minutes of tremor

Arenal (Costa Rica)

Explosive activity increase from October; lava flows continue

Asosan (Japan)

Numerous isolated tremors

Barren Island (India)

Eruption apparently ends by late June, but aviation notice posted on 2 December

Erebus (Antarctica)

No significant activity from the active lava lake; gas measurements

Erta Ale (Ethiopia)

Lava lake still active with fountains as high as 15 m

Etna (Italy)

Six lava fountaining episodes from Northeast Crater

Fogo (Cape Verde)

Eruption of 2 April through 28 May covered over 6 square kilometers of land

Fukutoku-Oka-no-Ba (Japan)

Discolored seawater

Galeras (Colombia)

Fumarolic and seismic activity continue at low levels

Irazu (Costa Rica)

Local seismicity detected

Kilauea (United States)

Surface lava flows, lava tubes, and ocean entries still active

Kujusan (Japan)

Seismically active with occasional lapilli and steam ejections

Langila (Papua New Guinea)

Ongoing eruptions lead to detectable ashfalls 10-15 km away

Lengai, Ol Doinyo (Tanzania)

Minor lava flows and projectile emission in December

Manam (Papua New Guinea)

Steam release with occasional minor ash and bombs

Monowai (New Zealand)

Earthquake swarm in late November detected acoustically

Negro, Cerro (Nicaragua)

Vigorous eruption produces a new cone, dome, lava flows, and large ash plumes

Niijima (Japan)

Seismic swarm on 4 December

Poas (Costa Rica)

Fumarolic and seismic activity

Rabaul (Papua New Guinea)

Small ash-bearing emissions from Tavurvur

Rincon de la Vieja (Costa Rica)

Additional details about the 6-10 November eruption

Shishaldin (United States)

Eruption sends ash plume above 10 km altitude

Soufriere Hills (United Kingdom)

Dome building, minor ash eruptions

St. Helens (United States)

Seismicity decreases without any explosive activity

Stromboli (Italy)

Low-level ash plumes and lava fountains during September-October

Suwanosejima (Japan)

Continued minor eruptive activity throughout much of 1995

Tokachidake (Japan)

Gradual increase in the number of seismic events

Ulawun (Papua New Guinea)

Modest degassing

Veniaminof (United States)

Minor steam and ash emissions in November

Whakaari/White Island (New Zealand)

Sub-crater divides collapse, but no eruptive activity



Aira (Japan) — December 1995 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive eruptions continue to generate ash plumes

Minami-dake crater was active throughout November-December 1995. Eruption totals for November and December were 19 and 42, respectively. Of these, explosive eruptions for the same months numbered 14 and 36, respectively. The local seismic station recorded 453 earthquakes and 446 tremors during November and 467 earthquakes and 83 tremors during December. The highest monthly ash plumes took place on 30 November (2,300 m above the crater), and on 9 December (1,700 m). Ashfall measured 10 km W of the crater was as follows: November, 5 g/m2; and December, 18 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Akan (Japan) — December 1995 Citation iconCite this Report

Akan

Japan

43.384°N, 144.013°E; summit elev. 1499 m

All times are local (unless otherwise noted)


Early November seismic swarm with two minutes of tremor

On 1 November there were 46 earthquakes recorded, and small amplitude volcanic tremor continued for ~2 minutes. High seismicity continued through the 5th with 18-28 events/day. The November earthquakes totaled 643.

Geologic Background. Akan is a 13 x 24 km caldera located immediately SW of Kussharo caldera. The elongated, irregular outline of the caldera rim reflects its incremental formation during major explosive eruptions from the early to mid-Pleistocene. Growth of four post-caldera stratovolcanoes, three at the SW end of the caldera and the other at the NE side, has restricted the size of the caldera lake. Conical Oakandake was frequently active during the Holocene. The 1-km-wide Nakamachineshiri crater of Meakandake was formed during a major pumice-and-scoria eruption about 13,500 years ago. Within the Akan volcanic complex, only the Meakandake group, east of Lake Akan, has been historically active, producing mild phreatic eruptions since the beginning of the 19th century. Meakandake is composed of nine overlapping cones. The main cone of Meakandake proper has a triple crater at its summit. Historical eruptions at Meakandake have consisted of minor phreatic explosions, but four major magmatic eruptions including pyroclastic flows have occurred during the Holocene.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Arenal (Costa Rica) — December 1995 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Explosive activity increase from October; lava flows continue

October plumes rose as high as 1 km above Crater C. During the second week of November explosive activity increased, growing both in terms of the number of outbursts and the overall quantity of tephra emitted. Blocks and bombs landed above 1,000 m elevation. Ash columns rose over 1 km and blew over the NW, W, and SW flanks. Windows vibrated in buildings 6.5 km E (La Fortuna).

A lava flow first emitted in July remained mobile; one arm reached 860 m and another reached 900 m elevation. A new flow began at the end of the month, venting from a point S of the vent for the previous month's flow, and moving SW. Re-established vegetation in the zone of lava flows continued to degrade due to acid rain.

For the frequency range below 3.5 Hz, there were 765 events during October and 444 seismic events during November (figure 74). These events chiefly occurred associated with Strombolian eruptions; some were of sufficient amplitude to reach station JTS, 30 km from the active crater. The largest number recorded in a single day was 40 (on 5 November). During October and November, 2.1-3.5 Hz tremor took place for about 232 and 238 hours, respectively (figure 74). On 15 and 17 November tremor prevailed for 21 and 20 hours, respectively.

Figure (see Caption) Figure 74. Arenal seismicity and tremor for 1995 (recorded at station "VACR," 2.7 km NE of the main crater). Courtesy of OVSICORI-UNA.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Asosan (Japan) — December 1995 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Numerous isolated tremors

During November and December 1995 the floor of Naka-dake Crater 1 remained covered with hot water, yet there were few if any mud-and-water ejections. During November the number of isolated tremors reached 5,488; during December, 4,896. In addition, continuous tremor prevailed with amplitudes confined to 0.1-0.8 µm.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Barren Island (India) — December 1995 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Eruption apparently ends by late June, but aviation notice posted on 2 December

Based on observations in late June 1995, the Indian Coast Guard reported on 1 July that explosive activity in the crater area had stopped, but gas emissions were still coming from the area near the coast. On 2 December an aviation Notice to Airmen (NOTAM) was issued from the United Kingdom for increased activity at Barren Island. However, no eruptive activity was seen on GMS satellite imagery over the area.

Landsat TM images from January 1995 (20:04) showed activity from a subsidiary vent on the S slope of the central crater. Subsequent images from 24 February, 13, 14, and 30 March, and 15 April 1995 also revealed activity from the central crater. Some of the images showed a lava or debris flow present in the WNW channel leading towards the sea. A thermal infrared image on 13 March showed a large hot central vent, and at least two subsidiary vents on the S slope; the image also revealed a lava passageway and the cooler plume.

Further Reference. Haldar, D., Chakraborty, S.C., and Chakraborty, P.P., 1996, The 1995 eruption of the Barren Island volcano in the Andaman Sea: Records, Geological Survey of India, v. 129(3), p. 59-62.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: D. Haldar, Director, GSI Eastern Region, Calcutta; J. Lynch, SAB.


Erebus (Antarctica) — December 1995 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


No significant activity from the active lava lake; gas measurements

Significant collapse of the Inner Crater was occurring in late 1995, although the lava lake remained fairly constant in size at ~20 m diameter and generally in the same location. No significant eruptions have occurred from the lava lake over the last 5 years and no bombs have been observed on the crater rim. Magma composition has shown no change over the last 20 years. A recent volume of 12 papers (Kyle, 1994) summarizes some aspects of the volcanic activity and environmental effects of Erebus through the 1980's and early 1990's.

Passive degassing from the lake contributes a small plume and the SO2 content has usually been monitored in December by COSPEC (see Kyle and others, 1994 for COSPEC data up to 1991). Since 1991 the SO2 emissions have ranged between 40 and 70 Mg/day (megagrams/day is the SI unit equivalent to metric tons/day); bad weather limited measurements in December 1995. FTIR (Fourier Transform Infrared) open-field spectrometry measurements in December confirmed the HCl/SO2 ratio of the emitted gases to be in agreement with measurements made by impregnated filters over the last 8 years. However, high CO levels significantly exceeded those of both HCl and SO2. Although CO2 in the plume has not been measured it is assumed to be high due to the alkalic nature of the magma. The high CO may be a function of the presumed high CO2 concentrations in the magma and its fairly low oxygen fugacity.

A network of eight seismic stations are operated as part of the Erebus Volcano Observatory by the New Mexico Institute of Mining and Technology. Seven stations have 1-Hz vertical single-component instruments, and the eighth is a 1-Hz three-component station. The stations have radio telemetry links to McMurdo Station where a digital event detection system and several analog helirecorders record the data, which are automatically transferred daily via the Internet to New Mexico for analysis and archiving. Details about the seismic network and associated seismicity can be accessed on the WWW Erebus page (see below).

Magmatic eruptive activity has been continuous since the discovery of a anorthoclase phonolite lava lake in 1972 (Giggenbach and others, 1973). Activity has been relatively uniform over the last 15 years with the exception of two significant events. In 1984 there was a 3-4 month period of larger and more frequent Strombolian eruptions which ejected bombs >2 km from the summit crater. On 19 October 1993 two moderate phreatic eruptions blasted a new crater ~80 m in diameter on the Main Crater floor and ejected debris over the northern Main Crater rim. These are the first known phreatic eruptions at Erebus, and probably resulted from steam build-up associated with melting snow in the crater.

References. Giggenbach, W.F., Kyle, P.R., and Lyons, G., 1973, Present volcanic activity on Erebus, Ross Island, Antarctica: Geology, v. 1, p. 135-136.

Kyle, P.R., Sybeldon, L.M., McIntosh, W.C., Meeker, K., and Symonds, R., 1994, Sulfur dioxide emissions rates from Mount Erebus, Antarctica, in Kyle (1994), p. 69-82.

Kyle, P.R., ed., 1994, Volcanological and Environmental Studies of Erebus, Antarctica: Antarctic Research Series, American Geophysical Union, v. 66.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Philip R. Kyle, Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, Socorro, NM 87801 USA.


Erta Ale (Ethiopia) — December 1995 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Lava lake still active with fountains as high as 15 m

Lava lakes have been present since 1967, and possibly 1906, although the N lava lake became inactive between 1988 and 1992. Recent ground observations were reported in September and November 1992. Observations have also been made using satellite imagery. New observations were made during 6-11 December 1995 by a team from Spele-Film and the Societe de Volcanologie Geneve while working for a French television network.

Only fumarolic activity was observed from the large crater (~300 m diameter) in the N part of the caldera. Fumaroles were concentrated SW of the pit within the crater, with some emissions coming from the inside wall and the slope of talus covering the pit floor. Almost all of the visible fumes came from the main pit, and seemed more abundant than in November 1992. A secondary pit crater with a diameter of ~15 m was seen in the SE part of the main pit.

Within the central part of the caldera, the S lava lake is located at the top of a small lava shield. The N and E flanks of this shield are partially covered by abundant lava flows originating from the N crater. The S flank of the shield is dominated by a large inactive cone. No fumes were visible, but the air near the pit-crater rim was very hot, frequently making it difficult to breathe without a mask. The diameter of the S pit-crater was ~140 m (based on a measured circumference of 446 +- 2 m), and the lake was 90 m below the W rim. The lava lake was similar in size and location to one observed in 1992, covering an area of ~60 x 100 m in the WSW part of the pit (figure 6). However, the level of the lake was believed to have risen ~5-6 m. Two slope breaks on the generally flat pit floor, not present in 1992, suggest that the entire floor may have subsided.

Figure (see Caption) Figure 6. Sketch showing a cross-sectional view of the central pit-crater (S lava lake) at Erta Ale, December 1995. Courtesy of P. Vetsch.

Lava lake activity was characterized by intermittent fountaining from as many as four locations at a time. No regular pattern was noted, but fountaining was more frequent near the SW border of the lake, and the more intense fountains (5-15 m high), started near the center of the lake and migrated to the border. During the stronger fountaining phases, a large raft of cooled surface lava moved towards the lake center. The lava lake was generally more active than in 1992. Pele's hair was frequently seen above the fountains, and some rose on the hot air out of the pit.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: P. Vetsch, Societe de Volcanologie Geneve, B.P. 298, CH-1225 Chene-bourg, Switzerland; L. Cantamessa, Geo-Decouverte, 65 rue de Lausanne, CH-1202 Geneva, Switzerland; G. Farve and C. Rufi, Spele-Film, Borex, Switzerland; C. Peter, 14 Haupstrasse, D-82547 Eurasburg, Germany.


Etna (Italy) — December 1995 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Six lava fountaining episodes from Northeast Crater

On 2 August 1995 explosive activity resumed at Northeast Crater (NEC) (BGVN 20:08). In August and September the activity was sporadic and low in intensity (BGVN 20:09), but after 2 October a vigorous Strombolian phase was observed (BGVN 20:10). Explosive activity occurred again during 19-22 October.

On 1 November there was vigorous spattering and bubbling of magma in a 15-m-wide pit on the NEC floor. Magma degassing formed large bubbles that burst, throwing spatter to the crater rim. In the following days the activity was discontinuous and less intense.

Lava fountaining episodes, 9-14 November. At 0014 on 9 November there was a sudden increase in volcanic tremor, but bad weather prevented summit observations. Between 0105 (at Trecastagni) and 0110 (at Catania, 30 km SSE) ash and lapilli fallout covered the SE flank (figure 61), eventually reaching as far as Siracusa, 75 km from the vent. The episode lasted only a few minutes and the material on the lower slope amounted to a few tens of grams per square meter, although rare dense lapilli broke some skylights and car windows. Fieldwork the next morning revealed that the NEC eruption produced a lava fountain followed by a strong phreatomagmatic blast. Part of the S rim collapsed inside the NEC and was later ejected. A welded spatter deposit several meters thick mantled the upper slope of the NEC cone and was overlain by a few centimeters of ash and lapilli. The bombs varied from 2-3 m close to the vent, to 25 cm at 2.5 km downwind. Several large accidental lithics (up to 1 m) occurred in the very proximal deposit. A large amount of spatter fell into the crater, raising its floor by several tens of meters. The crater appeared completely sealed, with wide red cracks on the crust of the spatter pile. The total volume of tephra from the 9 November eruption was ~1.5 x 106 m3.

Figure (see Caption) Figure 61. Map of the Etna area showing areas affected by ashfall on 9, 14, and 27 November, and 23 December 1995. Courtesy of IIV.

On 10 November a new lava fountain episode at NEC was observed from Catania around 0400-0530. Pulsating magma jets climbed up to 300 m above the crater rim; some were expelled up to 500 m. An ash-and-lapilli column ascended ~5,000 m and was blown SE. The spatter deposit was limited to the upper part of the volcano and in a narrow strip extending ~3 km SE; little ash fell on the middle slopes. The estimated volume of the pyroclastics was a few tens of thousands of cubic meters.

A third episode took place around 0600 on 14 November, and lasted ~3 hours. Between 0800 and 0900 the paroxysmal phase sent dense black ash columns through a white cloud covering the summit until they reached 5,000 m altitude. During the entire episode a non-continuous sustained eruptive column was observed and each ash puff contributed to a plume bent downwind that reached its buoyancy level at 6-7 km altitude. Ash and lapilli rained on the NE flank down to the coast (figure 61), leaving only a few grams of material per square meter on the middle and lower slopes. The proximal spatter deposits, mapped two days later, partially covered the previous ones on the cone and extended ~2 km NE in a band a few hundred meters wide. Lithic blocks and ash were less abundant than in deposits from the 9 November episode. The crater bottom was sealed by back-fallen welded spatter and was ~50 m below the crater rim, 100 m higher than before 9 November. The total volume of tephra from the 14 November eruptions was ~350,000 m3.

The volcano remained quiet after the 3rd episode. Within NEC, only a few large cracks on the welded spatter crust emitted fumes. Bocca Nuova crater showed a normal continuous degassing; Southeast and Voragine craters continued their steam emission.

Lava fountaining episodes, 22-27 November. Late on 22 November continuous glows were observed at NEC and some bangs were heard on the lower slopes. Beginning around midnight, two hours of fire fountaining and intense red glow was visible from Catania. The lava jets remained fairly low (~100 m above the crater rim) so the proximal spatter deposit mantled only the upper part of the cone, whereas the fine material fell on the SE flank as far as the coast. However, the total volume of the erupted material was limited to a few tens of thousand cubic meters, close to that of the second episode.

After the 22 November episode the vent was closed again by material that fell back into the crater. Three days later some bangs were heard at NEC and glow was observed during the night of 26-27 November. That morning seismic tremor rose suddenly and at 0715 an ash-and-lapilli column rose from the volcano. Cloud cover prevented direct observations. Ash and lapilli were carried by strong winds and fell on a narrow band of the N flank down to its foot (figure 61). Lapilli fallout ended around 1000, but the explosive activity continued for several hours. The thickness of the scoria-fall deposit varied from decimeters close to the vent to ~1 mm at 12 km away. The total tephra volume from this 5th eruptive episode was estimated at 0.4-0.5 x 106 m3.

Fieldwork two days later revealed that the proximal spatter deposits of the 22 and 26 November episodes were thinner than earlier ones. Lithic blocks were less abundant than in the 9 November deposits, but large ballistic scoriaceous bombs were found up to 500 m from the vent. The crater floor was completely sealed by fall-back spatter, but every 40-60 minutes a gas pocket broke the solid crust and a single lava bubble burst. These phenomena were observed for a few more days.

Activity during December. In the first half of December the summit craters were quiet, with continuous steam emissions, except for NEC, which had no open vent. A short explosive phase was reported on the night of 6 December. Poor weather conditions prevented observations until 16 December, when continuous Strombolian activity was seen at a small vent on the crater floor; a cone grew within a few days. The activity was characterized by the bursting of single magma bubbles alternating with degassing jets and spatter lasting from tens of seconds to a few minutes. This intense Strombolian activity continued for several days.

Around 1100 on 23 December strong bangs were heard from skiers on the upper slope. Very soon the bangs became frequent and black ash puffs were observed from NEC. Between 1215 and 1220 the first jet of magma rose above the crater rim, followed shortly by several pulses of magma jets and a large eruptive column. Between 1235 and 1305 the paroxysmal phase occurred, with jets of magma that rose 500-600 m (measured on the video record of the surveillance camera at La Montagnola, 2,700 m elevation on the S flank). Fragments from the top of the jets fed an eruptive column that reached 9.5 km altitude (6.2 km above the summit). Clear weather allowed observation of the column from many places on Sicily, as far as the city of Palermo 190 km away. Abundant ash and lapilli fell on a wide band of the NE flank down to the coast (figure 61). A brownish ash plume was emitted by Voragine during the entire paroxysmal phase of the eruption. Around 1330 the eruption quickly declined, but isolated explosions occurred until the evening. This episode was the most energetic among the six at NEC during November and December 1995.

The proximal deposit mantled the NEC cone with meters of welded spatter. In the W and E saddles between NEC and the Central Cone, spatter formed two thick lava flows a few hundred meters long. The E flow was still active during the night of 23-24 December; downslope movement of fluid material in the core produced continuous collapses of large incandescent blocks at the flow front. Crater modifications included the thick new scoria bank and widening and lowering of the S crater rim. Ballistic clasts had been thrown up to 600 m from the vent and landed as cow-pie bombs up to 2 m in diameter. The distal deposit from the eruptive column was made of scoriaceous bombs and lapilli up to 10-15 km from the vent, and from lapilli and a minor ash up to the shoreline, 22 km away. The bombs were very brittle, flat, and up to 30 cm in diameter at 6 km from the vent (observed while still in the air). The scoria-fall deposit formed a continuous band from the vent to the coast, damaging fruit plantations, vehicles, and buildings. The Messina-Catania freeway had to be cleared of a scoria deposit along a 4-km-long stretch. The deposit thickness along the dispersal axis was 6-7 cm at 6 km, 3-4 cm at 13 km, 3 cm at 16 km along the freeway, and 1-2 cm at 20 km near the coast. The estimated total volume of pyroclastics erupted on 23 December was ~3 x 106 m3.

On the days after 23 December eruption only a few blasts were heard from NEC, but on the nights of 27 and 28 December discontinuous glow was again seen, sometimes similar to those produced by mild Strombolian explosions. No further activity was reported at NEC or the other craters through the end of the year.

Tephra characteristics. Bombs and lapilli erupted during the November-December 1995 episodes are highly vesiculated and show glassy and smooth surfaces. Only in the volcanics erupted on 9 November are both vesicles and surfaces filled by reddish, fine-grained non-juvenile material. Juvenile ash consists of: 1) poorly vesiculated tachylitic (glassy) grains; 2) highly vesiculated clasts with glassy, smooth surfaces, and many Pele's hair and shards in the finer fraction; and 3) loose crystals covered in some cases by a thin film of glass.

Generally rounded grains with variable alteration form the non-juvenile fraction. In the ash fraction of all deposits, juvenile material is always the most abundant (60-100%), and preliminary investigation indicates that it increased with time. The juvenile fraction is ~60% of the 9 November ash, ~80% of the 14 November ash, and ~100% of the ash erupted during the following episodes (23 and 27 November, 23 December). The proportions of different juvenile components also changed during the eruptive sequence.

Scoria erupted during the November-December explosive episodes are, like most of Etna's historical volcanics, porphyritic hawaiites with phenocrysts of plagioclase, clinopyroxene, and olivine, and microphenocrysts of Ti-magnetite in a hyalopilitic groundmass. The scoria are more vesiculated and slightly less porphyritic than those erupted in October 1995. The chemical composition of November-December scoria is rather homogeneous even if the 9 and 14 November material is slightly more differentiated than those erupted after 23 November. Overall, the composition of the November-December volcanics is comparable to those of the Strombolian activity at NEC during the first half of October, and to the products erupted in the first days of the 1991-93 eruption.

Seismicity. Seismicity recorded by the permanent seismic network (12 stations; figure 62), during November-December 1995 was characterized by remarkable phases of increased volcanic tremor amplitude. Earthquake activity stayed at very low levels. A few tens of shocks took place and the only significant episode occurred on 24 December when a minor swarm (6 events; Mmax=3.2) was located near Mt. Maletto (NW slope of the volcano) at a depth of ~15 km.

Figure (see Caption) Figure 62. Map of Etna showing locations of seismic stations, tilt stations, and EDM networks maintained by the Istituto Internazionale di Vulcanologia as of December 1995. Courtesy of IIV.

Since the end of August 1995 volcanic tremor recorded at Pizzi Deneri (PDN: ~2 km from NEC, 2,820 m elevation) and Serra Pizzuta Calvarina (ESP: ~7 km from NEC, 1,590 m elevation) stations has shown an increasing trend. This pattern became more evident in late September, when some increases in tremor amplitude were recorded for durations ranging from tens of minutes to a few hours. The most relevant increases in tremor amplitude occurred on 22-23 September, 2, 3 and 21 October, 9, 10, 14, 22-23, and 27 November, and 23 December. This tremor amplitude pattern correlated with visually observed NEC eruptive activity.

The volcanic tremor spectral amplitude temporal pattern at PDN and ESP stations showed a clear amplitude increase. Spectral amplitude peaks were superimposed on the increased trend and corresponded to the episodes listed above. Dominant peaks in tremor spectra recorded at PDN and ESP stations showed a high-frequency (~3.5 Hz) trend coincident with the high tremor amplitude. Each amplitude increase showed similar characteristics.

Ground deformation. After the end of the 1991-93 eruption deformation was dominated by steady inflation, mostly affecting the W and NE slopes. Positive trends of areal dilatation, cumulating at ~14 ppm, were clearly apparent on the SW and NE flank EDM networks (figure 62) following the 1991-93 eruption, while the S network was characterized by a flat trend of areal dilatation for several years. Both the SW and NE networks followed comparable trends, only differing in the recent sharp positive gradient variation (10 ppm) shown by the latter between August and October.

The shallow bore-hole permanent tilt network (figure 62) indicated a progressive increase (starting by the second half of 1993) in the radial tilt component recorded at the stations on the W flank (MSC: 50 µrad) and on the N flank (MNR: 10 µrad), while the S slope showed no appreciable positive variation until July 1995. The eruptive activity resumed at the summit craters by late July-early August, and the renewed ejection of magma appeared to be strictly related in time to the positive variation of the radial tilt at SPC (~15 µrad) and the sharp increase of areal dilatation in the NE sector. Radial tilt at PDN was affected by a sharp negative variation (35 µrad) at almost the same time.

September EDM survey on the S flank. J. Moss noted that reoccupation of a different S-flank EDM network in September 1995 showed only minor line extension since eruptive activity resumed in August. Significant extensions of lines perpendicular to the Valle del Bove accompanied dike emplacement prior to the 1991-93 eruption. However, the July 1995 survey showed only minor changes since July 1994. Over 80% of the lines measured between those two surveys showed extension, suggesting a pattern of broad edifice inflation. The small strain rates suggest that no magma was intruded into this part of the S rift zone prior to September 1995.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: M. Coltelli, M. Pompilio, E. Privitera, S. Spampinato, and S. Bonaccorso, CNR Istituto Internazionale di Vulcanologia (IIV), Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ingv.it/en/); Jane L. Moss, Cheltenham and Gloucester College of Higher Education, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, United Kingdom.


Fogo (Cape Verde) — December 1995 Citation iconCite this Report

Fogo

Cape Verde

14.95°N, 24.35°W; summit elev. 2829 m

All times are local (unless otherwise noted)


Eruption of 2 April through 28 May covered over 6 square kilometers of land

The eruption that began on 2 April (BGVN 20:04 and 20:05) ended on or about 28 May, according to V. Martins. New lava flows covered ~6.3 km2 of land. The total volume of lava extruded was ~60-100 x 106 m3, assuming lava flow thicknesses of ~9-15 m; the known range was from 1 to >20 m. Based on six major-element XRF analyses, the lava flow erupted during the first night (3 April) was determined to be a differentiated kaersutite-bearing phonotephrite (IUGS system), whereas later lava flows and spatter were more primitive tephrite basanite.

Fogo Island consists of a single massive volcano with an 8-km-wide caldera breached to the E. The central cone was apparently almost continuously active from the time of Portuguese settlement in 1500 A.D. until around 1760. The June-August 1951 eruption from caldera vents S and NW of the central cone began with ejection of pyroclastic material.

Geologic Background. The island of Fogo consists of a single massive stratovolcano that is the most prominent of the Cape Verde Islands. The roughly circular 25-km-wide island is truncated by a large 9-km-wide caldera that is breached to the east and has a headwall 1 km high. The caldera is located asymmetrically NE of the center of the island and was formed as a result of massive lateral collapse of the ancestral Monte Armarelo edifice. A very youthful steep-sided central cone, Pico, rises more than 1 km above the caldera floor to about 100 m above the caldera rim, forming the 2829 m high point of the island. Pico, which is capped by a 500-m-wide, 150-m-deep summit crater, was apparently in almost continuous activity from the time of Portuguese settlement in 1500 CE until around 1760. Later historical lava flows, some from vents on the caldera floor, reached the eastern coast below the breached caldera.

Information Contacts: Richard Moore, U.S. Geological Survey, Mail Stop 903, Federal Center Box 25046, Denver, CO 80225 USA; Frank Trusdell, U.S. Geological Survey, Hawaiian Volcano Observatory, Hawaii National Park, HI 96718, USA; Veronica Carvalho Martins, U.S. Embassy, Rua Hoji Ya Henda 81, C.P. 201, Praia, Cape Verde; Arrigo Querido, INGRH Servicos Estudos Hidrologicos, C.P. 367, Praia, Cape Verde.


Fukutoku-Oka-no-Ba (Japan) — December 1995 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Discolored seawater

An aviator flying over the waters of the southern Volcano Islands for Japan's Maritime Safety Agency reported seeing light-green seawater on 25, 27, and 28 November. Discolored seawater was last seen at this location in September 1993.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Galeras (Colombia) — December 1995 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Fumarolic and seismic activity continue at low levels

Volcanic activity remained low during November and December. No significant surface changes were detected during this period, in agreement with electronic tiltmeter measurements on the E flank. Gas emission was concentrated in the W part of the crater, and the El Paisita, Las Chavas, La Joya, and Las Deformes fumaroles remained active. During 2-22 November there were temperature increases at Las Deformes and Las Chavas of 28 and 14°C, respectively. Correlation spectrometer measurements of the SO2 flux remained low (<100 metric tons/day).

There were a few small seismic events associated with fluid movement in November, and sporadic seismicity associated with rock fracturing 2-4 km NNE of the active crater. During December, high-frequency seismicity consisted of small events (M <2.6) concentrated in the seismogenic region 6 km NE of the crater. Local residents felt events on 4 and 29 December that were M 2.5 and 2.6, respectively. The first of these events was centered in the NE region at 5 km depth, and the second at 7 km SW of the crater at 8 km depth. Only three small long-period events were recorded.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Pablo Chamorro, INGEOMINAS - Observatorio Vulcanologico y Sismologico de Pasto, A.A. 1795, San Juan de Pasto, Narino, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Irazu (Costa Rica) — December 1995 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Local seismicity detected

During October Irazú's seismic station (IRZ2), located 5 km SW of the active crater, registered 14 low-frequency events and an additional 19 microseisms that were only detected locally.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, OVSICORI-UNA.


Kilauea (United States) — December 1995 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Surface lava flows, lava tubes, and ocean entries still active

The East Rift Zone eruption continued in the last quarter of 1995 with lava erupting from the 780-m elevation flank vent next to the Pu`u `O`o cone (figure 98). The lava immediately entered subsurface tubes and traveled SE toward the coast, a distance of ~11 km.

Figure (see Caption) Figure 98. Map of recent lava flows from Kilauea's east rift zone, October 1995. Contours are in meters and the contour interval is approximately 150 m. Courtesy of the USGS Hawaiian Volcano Observatory.

Activity during 10 October-6 November. Most surface flows broke out from the tubes on the steep slope of Pulama Pali and on the coastal plain. Some of these flows burned vegetation and extended the flow field at the base of Pulama Pali several hundred meters E. On the flats at the coast, surface flows occurred just upslope from the ocean entry at Kamokuna, and also 1 km farther W, near the old Kamoamoa campground. A major bench collapse at the Kamokuna entry on 16-17 October was accompanied by explosive activity that built two littoral cones.

A portion of the crater floor in the Pu`u `O`o cone collapsed, leaving a pit ~50 m in diameter that was partially filled by a large rockslide from the base of the W crater wall. The timing of the pit formation probably coincided with seismic events either on 19 and/or 29 October. The lava pond rose to ~75 m below the N spillway. On the upper slope above Pulama Pali, new skylights in the roof of the lava tubes continued to appear and crust over rapidly. Surface flows in this area and on the slope of Pulama Pali were small and infrequent. Most of the lava traveled via lava tubes to the coastal plain on the E side of the Kamoamoa flow field. Isolated breakouts occurred in the central part of the flow field, below Paliuli. The ocean entry at Kamokuna continued to produce a large acidic plume. Interaction between lava and seawater was occasionally explosive and formed two littoral cones on the bench.

Eruption tremor levels remained relatively low with amplitudes ~2x background. Long-period events from both shallow- and intermediate-depth sources continued at low-moderate rates. The number of short period microearthquakes was low beneath the summit and rift zones.

Activity during 7 November-4 December. A brief pause during the night of 10-11 November was immediately preceded by increased shallow seismic tremor and slight summit deflation. By the morning of 11 November lava was no longer entering the ocean at Kamokuna; however, activity at the eruption vent and the Pu`u `O`o cone had already resumed. During the afternoon, the lava pond was very active, its level fluctuating at least 10-15 m within 30 minutes, with spattering up to a height of 30 m. By the following day, lava was once again entering the ocean. Since this short pause, the lava pond has maintained a level ~75 m below the N rim. The floor of the large collapse pit was partially resurfaced by new lava flows after the pause.

Surface flows on the lower slope of Pulama pali and on the coastal plain continued to expand the Kamoamoa flow field E into forest and grasslands. At the shoreline, advancing pahoehoe flows filled the gap created by Kupaianaha eruptions in 1992, at the E edge of the current Kamoamoa flow field. These flows have produced a new ocean entry ~500 m E of the Kamokuna entry.

A large bench at the West Kamokuna entry collapsed on 23 November. Sustained explosive activity on 26 November built a new littoral cone (3-4 m high) on the bench. Lava was entering the ocean at 2-3 locations along a new East Kamokuna bench, located inside the W edge of the old Kupaianaha flow field. Breakouts from the relatively immature tube system were continuously active on the coastal plain near this entry. An older tube continued to feed isolated breakouts in the middle of the Kamoamoa flow field. The long-lived skylight at 735 m elevation finally crusted over in late November, leaving the tube system completely sealed off for the first 4 km from the vent. However, new skylights continued to appear and crust over near the top of Pulama Pali.

Eruption tremor was low and relatively steady, with a few isolated increases in amplitude in banded patterns. Shallow, long-period microearthquakes were slightly above average on 11, 12, and 16 November, with daily counts of nearly 100. Intermediate-depth, long-period counts were high on 2 and 3 December. Short-period summit and rift microearthquake counts were low.

Activity during 5 December-1 January. Small surface breakouts were observed high on Pulama Pali and on the coastal plain. The West Kamokuna entry occupied a large, mature bench; on 12 December, explosive activity at this entry built a new littoral cone. The East Kamokuna entry continued building a new bench. A pause in the eruption began at 1500 on 14 December and lasted until midnight on 15-16 December. The plume from the ocean entries stopped completely by 16 December. When the eruption resumed, lava again flowed through the existing tube system and reached the ocean at West Kamokuna bench on the afternoon of 17 December. The East Kamokuna entry was not reactivated after the pause.

Just prior to the 14-16 December pause, only a solid crust was visible where the Pu`u `O`o lava pond had been, at 80-90 m below the rim. By 19 December the lava pond had risen to ~68 m below the rim of the cone and was actively circulating. The pond level then subsided several meters and stabilized by 28 December. Surface flows occurred high on Pulama Pali, between 675 and 570 m elevation, and in the area from the 300-m elevation on Pulama Pali, down to the far eastern side of the flow field, to the coastal plain and ocean entry. Flows moved E into the grassland and brush near the base of Pulama Pali. A single ocean entry at West Kamokuna was active in late December, where a major collapse between 30 December and 1 January took out a section of the bench ~50-70 x 200-300 m in surface area, including several littoral cones. Explosive activity was observed at the ocean entry both before and after the collapse, but the most energetic and spectacular activity was reported on 1 January, immediately following the bench collapse. This activity included lava bubble burst and spatter and tephra ejections to heights estimated at 60 m. These explosions built a new littoral cone.

Eruption tremor levels remained low at ~2-3x the background. Shallow, long-period (LPC-A, 3-5 Hz) microearthquake counts were high on 5 December and again from 15-18 December. On the 15th and 16th, LPC-A counts were 200/day, gradually diminishing on the 17th and 18th. Shallow, long period (LPC-B, 1-3 Hz) microearthquakes were also high in number during 16-18 December, peaking on the 17th, with more than 150 events counted. Both types of LPC events are from a source 0-5 km in depth. They differ in frequency, suggesting a possible change in the condition of the source.

Shallow summit activity continued in the second half of December, with many hundreds of long-period (LPC-B, 0-3 Hz) events per day. The high counts peaked on 22 and 24 December with daily totals of 1,730 and 1,346, respectively. By 26 December, LPC-B counts appeared to be decreasing, while a slight increase of LPC-A was noted. The increase of shallow activity was coincident with the mid-December eruptive pause. Microearthquake counts were below average.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Dave Clague, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, Hawaii Volcanoes National Park, HI 96718, USA.


Kujusan (Japan) — December 1995 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Seismically active with occasional lapilli and steam ejections

An aseismic phreatic eruption vented from the N flank (not E as previously reported) of Hosho dome on the evening of 11 October (BGVN 20:10). The eruption came from a 400-m-long E-W fissure that includes multiple sub-fissures and craters.

The Volcano Research Center (VRC) at the University of Tokyo reported that the estimated volume of tephra from the 11 October eruption was 22,000 m3. Violent steaming from the vents and craters along en-echelon cracks has reportedly continued since then. An image taken by the French SPOT-2 satellite on the morning of 13 October shows an ash plume extending SW.

JMA reported that on 12 and 13 November field observers saw steam vigorously escaping from Vent D. The steam carried volcanic lapilli up to 5 cm in diameter.

Another JMA field party witnessed a loud explosion on 13 December, but ejecta were not found. VRC reported that another phreatic eruption on the morning of 18 December produced ~20% of the tephra of the 11 October eruption. Associated tremor, local deflation, and earthquakes were noted. Small ash emissions continued until at least as late as the night of 13 January 1996. In material erupted since 20 December, clear juvenile rhyolite glass shards were recognized in the ash and comprised roughly 1% of its volume.

The highest plumes during November and December rose ~300 and 600 m above the vent. On 23 November, earthquakes increased and the daily total was 13; the monthly total was 69. During the most active days in December, the 2nd and 18th, daily totals were 22 and 29, respectively; the total for the month was 134.

Further Reference. Hiroki, H., and Tatsuro, C., 1995, Eruption of Iozan at Kuju volcano in October 1995: Journal of the Geological Society of Japan, v. 101, no. 12, p. 43-56.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan; Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Geological Survey of Japan, 1-1-3 Higashi, Tsukuba, Ibaraki 305 Japan (URL: http://www.aist.go.jp/ GSJ/dEG/sVOLC/kuju_E.html).


Langila (Papua New Guinea) — December 1995 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ongoing eruptions lead to detectable ashfalls 10-15 km away

Throughout November-December, Crater 2 continued to emit white-to-gray ash and vapor, with plumes rising up to several hundred meters above the crater. During November, ashfalls reached 10-15 km on the N-NW flank; these eruptions were accompanied by audible explosions and rumbling. The eruptions threw incandescent projectiles during the first half of both November and December, and steady crater glow took place on most November nights and on 9-11 December. Crater 3 remained quiet. The greatest December activity, during the 23rd through the 26th, had emissions similar to those in November, but plumes rose somewhat higher (up to 1 km above the crater) and ash fell 10-15 km SE and SW.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, H. Patia, D. Lolok, and C. McKee, RVO.


Ol Doinyo Lengai (Tanzania) — December 1995 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Minor lava flows and projectile emission in December

Summit visits by members of the Societe de Volcanologie Geneve during 15-19 December revealed low rates of intermittent effusive activity and some small explosions. Five episodes of lava emission were observed from hornito cluster T36 (BGVN20:10), each lasting

Figure (see Caption) Figure 37. Sketch map of part of the Ol Doinyo Lengai crater showing new features and lava flows, 15-19 December 1995. Modified from the January 1994 map in BGVN 19:04.

Almost continuous ejection of lava fragments occurred from a cinder cone T37 (~15-25 m high), and with less intensity from a hornito in a small collapse depression just W of T5/T9 (figure 37). A small lava pond, observed for ~3 hours on 16 December, inside the depression at the foot of the hornito exhibited splashing and small bubbles. Two major flank collapses of T37 released large quantities of very fast-moving (5-8 m/second) aa lava flows that were ~50 cm thick. The first flank failure, on 16 December, was a progressive event on the W side. However, the E-flank collapse on the 18th came without warning, quickly sending a lava flow NE between T5/T9 and F35, almost to the crater rim.

Fumarole temperature measurements were taken on the N crater rim, inside new cracks on the crater floor, and at the tops of T8 and T15. All temperatures were 70-80 degrees C.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: P. Vetsch, S. Haefli, and C. Peter, Societe de Volcanologie Geneve, B.P. 298, CH-1225 Chene-bourg, Switzerland.


Manam (Papua New Guinea) — December 1995 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Steam release with occasional minor ash and bombs

Throughout November, Manam's activity remained low and night glow from its craters was absent. On 8 December, weak projections of incandescent lava were seen, and steady glow took place on the nights of 9 and 10 December. During November and December, both summit craters chiefly released steam, but on 8, 17, and 19 November South Crater released wisps of blue vapor, and on 25 and 28 November it released gray ash. South Crater also made weak, low-frequency roaring sounds on 1 November. Except for 6-11 December, activity was low during most of the month.

Earthquakes increased at the end of October, but during November they took place at the moderate rate of 600-1,400/day. They remained moderate in December. In the first half of November a tiltmeter 4 km SW of the summit continued to register slight deflation followed during the latter half of the month by a 2 µrad inflation.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ben Talai, H. Patia, D. Lolok, and C. McKee, RVO.


Monowai (New Zealand) — December 1995 Citation iconCite this Report

Monowai

New Zealand

25.887°S, 177.188°W; summit elev. -132 m

All times are local (unless otherwise noted)


Earthquake swarm in late November detected acoustically

During November, Reseau Sismique Polynesien (RSP) stations on the islands of Tahiti, Rangiroa, Tubuai, and Rikitea registered acoustic T-waves. The waves were associated with a seismic swarm centered >2,500 km E of these islands. The swarm was located at 25.92 S, 177.15 W, essentially the coordinates of the Monowai seamount.

The T-wave swarm consisted of four episodes. The first, at 1751 on 27 November, lasted for 20 minutes and included seven separate explosions and other strong events. The second, 1403 on 28 November lasted 4 minutes and included small-amplitude events. The third, at 1842 on 30 November, prevailed for 7 minutes and included moderate-amplitude events. Ten minutes later, the fourth episode included 25 distinct explosions and other strong events.

The character of the T-wave signals was consistent with volcanism. T-waves are sound waves with paths that propagate through the sea; on reaching land the energy travels at the higher speed of ordinary seismic waves. Compared to earthquake-generated T-waves, volcanically generated ones are impulsive and of comparatively short duration.

Recent activity includes a possible eruption in 1944, and about seven documented eruptions during 1977-90 (BGVN 16:03). The seamount lies midway between the Kermadec and Tonga Islands, ~1,400 km NE of New Zealand. The adjacent trench is significantly shallower (~4 km) compared to the Tonga and Kermadec trenches (9-11 km deep).

Geologic Background. Monowai, also known as Orion seamount, rises to within 100 m of the sea surface about halfway between the Kermadec and Tonga island groups. The volcano lies at the southern end of the Tonga Ridge and is slightly offset from the Kermadec volcanoes. Small parasitic cones occur on the N and W flanks of the basaltic submarine volcano, which rises from a depth of about 1500 m and was named for one of the New Zealand Navy bathymetric survey ships that documented its morphology. A large 8.5 x 11 km wide submarine caldera with a depth of more than 1500 m lies to the NNE. Numerous eruptions from Monowai have been detected from submarine acoustic signals since it was first recognized as a volcano in 1977. A shoal that had been reported in 1944 may have been a pumice raft or water disturbance due to degassing. Surface observations have included water discoloration, vigorous gas bubbling, and areas of upwelling water, sometimes accompanied by rumbling noises.

Information Contacts: Francois Schindele, Laboratoire de Geophysique, B.P. 640, Papeete, Tahiti.


Cerro Negro (Nicaragua) — December 1995 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


Vigorous eruption produces a new cone, dome, lava flows, and large ash plumes

A significant eruption in November-December followed almost six months of unrest and minor eruptive activity. During a crater visit on 13 November no precursors were observed, and on 18 November only background seismicity was recorded by the CNGN station (500 m E of the crater).

Early phase of activity, 19-22 November. Local residents first noticed explosions about the time of the onset of 30 minutes of mildly increasing seismicity detected by the CNGN station at 1145 on 19 November. Following a pause, seismicity continued to gain strength. Increasing activity was reported that afternoon by residents in Malpaisillo (~10 km N). Observations on the night of 19-20 November indicated mild Strombolian activity, with vertically directed ejecta, that was gradually increasing in strength. A Notice to Airmen (NOTAM) was issued the next day warning aviators of the volcanic activity.

Eruption tremor amplitude increased continuously and saturated the CNGN station (60 dB gain) at 0200 on the 21st. Tremor was detected on short-period seismic stations within a 30 km radius (at San Cristóbal and Momotombo volcanoes, and near the city of León). Energy release increased continuously and tremor could be felt over 1 km away, when sitting down, as a smooth rocking motion.

At 2000 on 21 November incandescent bombs were being thrown up to 300-400 m above the 1992 crater rim. Ash content was low compared with the 1992 and May-August 1995 activity, and bombs were often very large (meters across), which deformed and broke up in flight. Because of near-vertical trajectories, few bombs fell outside the crater. The new cone being built within the 1992 crater (figure 8) had a steep (>45 degrees) basal scarp, 2-5 m high, followed by a level bench and then a less steep slope (25 degrees) to its crater. Ejecta pulses maintained a frequency of 20/minute, but the size and duration of each pulse varied. From 0255 to 0310 on 22 November ejecta heights were <150 m but ash content and degassing were much higher, emitting dark clouds with each explosion. A thick, white lower plume appeared to be escaping from a new lava dome in the 1992 crater, 50 m W of the new cone (figure 8). By 0500 the eruption had regained previous intensity levels and exhibited near-constant fire-fountain-like activity, bombs were larger, and pulse frequency increased to 22/minute. The eruption continued at this level for over 4 hours.

Figure (see Caption) Figure 8. Sketch of the crater at Cerro Negro, 0700 on 22 November 1995. Drawn from photographs taken by Pedro Perez; courtesy of INETER.

The new cone had almost reached the lip of the 1992 crater by 0700 on 22 November. At that time the lava dome emitted a small lava flow, 2-5 m wide and 50 m long, that followed the edge of the new cone towards the lowest part of the 1992 crater (figure 9). From 0930 to 1000 a series of explosions ejected material to the lower slopes of the new cone. Sand to gravel size ash fell W of the cone, but no large ejecta. Compared to the 1992 ejecta this material is highly vesicular with millimeter-size vesicles; olivine, pyroxene, and plagioclase are present, and some plagioclase crystals are 1 cm long. That evening the new cone overgrew the N rim of the 1992 crater and material began spilling towards Cerro La Mula. From 1900 to 2300 a tongue of lava spilled over the N rim of the 1992 crater. The front moved at less than 1 m/hour, but blocks constantly tumbled from the front down to the base of the main cone.

Figure (see Caption) Figure 9. Sketch map of Cerro Negro showing active lava flows, 2000 on 23 November 1995. Drawn by B. Van Wyk de Vries; courtesy of INETER.

Lava flows beyond the crater, 23 November. After 1400 on 23 November dark gray pulses observed from 25 km away formed a plume that rose faster and higher than on previous days, attaining several kilometers altitude. Observations were made from the seismic station after 1500. During about 1515-1525 the plume became less ash-rich, ejecta became less frequent, and strong degassing pulses were heard. When regular pulses resumed, some bombs were ejected laterally onto the flanks of the main cone. Periodic heavy falls of 1-3 cm scoria were encountered by the scientists walking under the plume 1.5 km from the cone. Red glow was visible at 1730 over Cerro La Mula, and there was a smell of burning vegetation, suggesting an active lava flow. The lava tongue was observed at 1800 between Cerro La Mula and Cerro Negro (figure 9). Later named the La Mula flow, it was ~20 m wide and 5 m thick, and advancing at ~2 m/hour.

At 1830 a 20-m-wide lava stream moved down the N flank through a small breach at a rate of ~150 m/minute from the crater rim to the base of the cone. A lava field spreading out from the base of the cone had reached ~1 km from the crater by 2000, advancing 10-30 m/hour along two 300-m-wide fronts (figure 9). To the E of the flow the volcano flank appeared to be bulging and was irregular with large blocks jutting out that occasionally fell downslope, revealing incandescent lava. It appeared to the scientists that a slow-moving 20-m-thick blocky lava flow was moving to the crater rim and collapsing down the flank; however, the shape of the flank also suggested outward bulging. The blocky lava extended at least 200 m NE from the base of the cone.

Continuous and voluminous pulses at 2000 created a fountain that sent bombs at least 600 m above the crater. Ash clouds accompanied each pulse and occasional flames of burning gas reached 100-200 m above the crater. This activity had decreased by 2045, and by 2115 pulses of bombs appeared only every 30 seconds, although continual noise suggested smaller pulses.

Of the four GPS stations set up in the vicinity of the cone, by 23 November one had been destroyed by lava and another was too dangerous to approach. Measurements at the remaining stations were within the error of the equipment (2 cm at best). However, two fresh fault scarps radial to the cone were observed on the W side with 5 cm of displacement. Tremor energy increased continuously until 1200 on 23 November, after which it maintained a constant level.

Continuing activity, 25-26 November.The eruption plume was again clearly visible on 25 November from Managua as a diffuse gray column turning horizontal at ~2,000 m. At 0900 distinct pulses of dark gray ash rose from the crater and formed mushroom shapes before drifting W and being incorporated into the plume; ashfall was reported in León and Corinto. At times only massive bombs were thrown out, while at others strong explosions sent up dense ash clouds. Ash and highly vesicular scoria

At 1100 on 25 November most bombs were still ejected vertically, but a significant number were exiting at low angles and falling low on the flanks. The new cone had grown to ~40 m across, and its top was ~30-50 m below the 1992 crater summit. Bombs fell mostly on the cone and rolled down to the base. The small breach where the 23 November lava flow exited was partly covered by a new blocky flow, which appeared to come straight N from the new cone, though no exit vent was visible. It may have been produced by accumulated, still liquid ejecta beginning to flow outwards, as seen on 22 November. The flow had advanced half way down the flank, covering another blocky flow. The dome in the crater had grown to ~100 m wide and 40 m high. Blocks were continually spalling off the dome, which also sustained a continuous rain of bombs from the new cone. Multiple small lava tongues originated from the dome. The crater dome was less pronounced on 26 November, and was blocky rather than spiny. The new cone had grown ~10 m overnight.

The two flows moving N on the 23rd had reached ~1-1.5 km from the volcano. The larger W lobe was ~400 m wide and 3-5 m thick at the front with a small lobe extending down the gully below Cerro La Mula, and another extending E into a depression in the old N lava field. The E lobe had extended into forest at the E side of the old N lava field. Over a three-hour period the flows advanced ~12 m. A low ash-covered area with a small old cinder cone separated the lobes. The sides of each flow were slowly (~1 m/hour) encroaching on this and thickening. The thick lava lobes below the dome were advancing, and many areas of the dome were glowing. The ~30-m-wide La Mula lava flow had advanced W ~500 m down a small valley and was moving at ~1 m/hour on 25 November; by 0600 on the 26th it had stopped. By 0645 the other lava fronts had advanced 20-50 m since the previous evening. The main W lobe had spread E and a large block in the middle of the flow had moved ~100 m.

Seismic tremor levels remained high through 26 November. Tremor was continuous and distinctly felt up to 1.5 km from the cone.

Satellite observations of the ash plume. Visible satellite imagery on 25 November indicated a possible low-level ash cloud at 1245 (figure 10). The height of the plume was estimated at 4,500 m altitude and was moving SW at ~30 km/hour. Another small low-level plume was seen on imagery at 0815 the next day at an estimated 2,750 m altitude and moving WSW at ~35 km/hour. Explosive activity increased on 1 December, when visible imagery at 1230 revealed a plume 18 km wide extending ~320 km W; it was estimated to be between 3,000 and 6,000 m altitude. By 0900 on 2 December, the plume extended at least 640 km W and was below 4,000 m.

Figure (see Caption) Figure 10. Map showing ash plumes from Cerro Negro detected on visible satellite imagery on 25-26 November, and 1-2 December 1995. Courtesy of the Synoptic Analysis Branch, NOAA/NESDIS.

End of the eruption, early December. Explosive and effusive activity ended on 6 December. However, a lava flow was still moving N on 8 December. Isopach maps of the ashfall through 2 December (figure 11) were constructed by Markus Kesseler based on 85 GPS control points (precision +- 30 m). The 0.1 cm isopach encloses an area of ~200 km2. An estimated 12,000 people were affected by this eruption, about 6,000 of whom had been evacuated from 15 rural communities. Farmland was significantly damaged by ashfall and lava flows during the harvesting season; most of those affected were farmers and their families.

Figure (see Caption) Figure 11. Isopach maps of ashfall from Cerro Negro, 19 November-2 December 1995. Isopachs within the 5.0 cm limit are at 10-cm intervals, up to 50 cm closest to the crater. The 2-5 June isopachs (BGVN 20:09) are shown for comparison. Courtesy of Markus Kesseler; base map courtesy of Brittain Hill.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Wilfried Strauch, Virginia Tenorio, Rolf Schick, Helman Taleno, Leonel Urbina, Cristian Lugo, and Pedro Perez, Instituto Nicaraguense de Estudios Territorales, Managua, Nicaragua; Benjamin van Wyk de Vries, The Open University, Milton Keynes, United Kingdom; Markus Kesseler, Dept. of Mineralogy, Universite de Geneve, 13 rue des Maraichers, 1211 Geneve 4, Switzerland; Michael Conway and Brittain E. Hill, Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238 USA; Jim Lynch, NOAA/NESDIS Synoptic Analysis Branch (SAB) , Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA; Department of Humanitarian Affairs, United Nations, Palais des Nations, 1211 Geneva 10, Switzerland.


Niijima (Japan) — December 1995 Citation iconCite this Report

Niijima

Japan

34.397°N, 139.27°E; summit elev. 432 m

All times are local (unless otherwise noted)


Seismic swarm on 4 December

On 4 December, many earthquakes occurred in and around the island, some of which were felt. The largest one was M 4.3.

Geologic Background. The elongated island of Niijima, SSW of Oshima, is 11 km long and only 2.5 km wide. It is comprised of eight low rhyolitic lava domes that are clustered in two groups at the northern and southern ends of the island, separated by a low, flat isthmus. The flat-topped domes give the island the appearance of two large plateaus bounded by steep cliffs. The Mukaiyama complex at the southern end of the island and Achiyama lava dome at the northern end were formed during Niijima's only historical eruptions in the 9th century CE. Shikineyama and Zinaito domes form small islands immediately to the SW and west, respectively, during earlier stages of volcanism. Earthquake swarms occurred during the 20th century.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Poas (Costa Rica) — December 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Fumarolic and seismic activity

The surface of the sky-blue crater lake rose in November (20 cm higher than October); the lake's temperature was 26°C. A vigorous subaqueous fumarole appeared adjacent the lake's S shore. The W-terrace fumarole emitted yellow, sulfur-rich gases and particles; other fumaroles located on the NW-SW terrace emitted only low amounts of gases. Measured fumarole temperatures were in the range 94-96°C along the S and SE crater, an area that produced 100-m-tall gas columns. Gases escaping the pyroclastic cone had temperatures of 93°C.

During 1-22 November the local seismic station recorded 5,146 events (predominantly of low-frequency), significantly fewer than the number seen in the two previous months (figure 59).

Figure (see Caption) Figure 59. Poás seismicity for January-November 1995 recorded at station POA2 (2.7 km SW of the active crater). Courtesy of OVSICORI-UNA.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA).


Rabaul (Papua New Guinea) — December 1995 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Small ash-bearing emissions from Tavurvur

Throughout most of November 1995 the two recently active centers remained quiet, with Tavurvur emitting only steam and Vulcan not emitting any visible vapor (figure 24). Then on 28 November, Tavurvur suddenly began erupting, creating a parasitic crater. Vulcan continued to remain quiet throughout December.

Figure (see Caption) Figure 24. Index map of Rabaul and detail of soil CO2 transect. Elevation contours given in meters; base map after Johnson (1995).

The volume of Tavurvur's faint blue vapor emissions seemed to increase in the weeks prior to 28 November. On the morning of the eruption an impressive white steam cloud stood several hundred meters above Tavurvur's summit. The new eruption, which was preceded by weak roaring sounds, started at about 1020, and initially consisted of forceful emissions of gas and dark ash at 2-6 minute intervals. Those emissions lacked explosion sounds; they rose 400-800 m above the crater rim and blew over a broad arc between the SE and SW, resulting in fine ashfall both onshore and over the sea. No ashfall reached Kokopo, 25 km SE. The next day, 29 November, two intervals of stronger emission took place (at 1200-1300 and 1415-1430), sending columns ~1 km above the summit.

An aerial inspection on 30 November revealed a new crater on the 1994-95 crater's SSE rim. Although the 1994-95 crater displayed no new activity, fumaroles were particularly active along its E walls. An old explosion crater along the base of Tavurvur's S flank, in which 6 people were killed in 1990 by inhalation of carbon dioxide, was releasing weak-to-moderate emissions of white vapor from its N to E walls. Directly downslope and immediately offshore of this explosion crater a spring had become considerably more active since the 1994 eruption; during the 30 November aerial inspection it was prominent, giving off a strong stream of rusty brown water. During November and December, ground deformation remained low.

Tavurvur discharged dark ash clouds in December, typically at 3-6 minute intervals, that rose 400-1,000 m above the summit. On 2 December two ash clouds rose to 1.5-2 km. The second brought intense lightning causing minor damage to home appliances in Rabaul Town (figure 24). On 5 December, a particularly loud explosion, heard 30-40 km away, accompanied the discharge of an ash cloud that rose to 1.2 km. Additional loud explosions accompanied dense ash clouds that rose to 1-1.2 km; these took place during December as follows: 11th (1 time), 13th (1), 14th (4), 18th (1), 23rd (1), 24th (1), and 29th (2). Moderate-sized clouds blew SE, and very fine ash occasionally fell both in Kokopo and, due to shifting winds, in Rabaul Town. On December nights, observers saw incandescent fragments and during the second half of the month they heard occasional deep roaring noises.

Seismicity. November seismicity generally remained low, but was punctuated by 11 high- and 42 low-frequency events. Eight of the high-frequency events were located. Five occurred within the caldera's seismically active elliptical fault zone, in the NE (1 event), W (1), and S (3) quadrants. Although one of the extra-caldera events was centered S of the caldera, two events were located immediately to the caldera's NE, an area where the bulk of the high-frequency earthquakes have occurred in the past few months. One of these two events, ML 3.0 on 24 November, produced a felt intensity of MM III at Rabaul Town.

Of the 42 low-frequency earthquakes during November, 17 came from around Tavurvur volcano. Two of these occurred in late October, and 9 others in November prior to the 28 November eruption. The last time such events appeared was during the eruptive activity in March 1995. The other 25 low-frequency earthquakes not centered around Tavurvur were more difficult to locate accurately due to emergent waveforms and fewer stations outside the caldera. Many may have originated immediately N of the caldera. On 10 November a low-frequency earthquake centered 7-8 km outside of the caldera was strong enough to trigger aftershocks.

During December, seismic instruments detected 30 high-frequency earthquakes, 684 low-frequency earthquakes, and 488 explosion events. Instruments also recorded occasional discontinuous non-harmonic tremors. About 70% of the high frequency earthquakes occurred during 4-6 December. The five located events had epicenters in either the S part of the caldera's seismically active zone (the largest one, M 2.7), NE of the caldera (two events), or within the caldera. All of the seismic explosions and most low-frequency earthquakes originated at Tavurvur; the 20 exceptions originated farther NW and took place at the end of the month.

Fumarole and soil sampling. During 21-27 November, rainwater, water from hot springs, and gases from subaerial and submarine fumaroles were sampled at 13 sites (table 3). Compared to Vulcan, fumaroles at Tavurur displayed relatively high temperature, low pH, and high conductivity. Hot springs sampled near the shore of Greet Harbor were slightly acidic and comparatively conductive. All samples were more acid than those assessed prior to the 1994 eruption episode.

Table 3. Summary of fumarole and hot spring sampling at Rabaul Caldera, 21-27 November 1995. Courtesy of RVO.

Location Number of samples/type Temp (deg C) pH Electrical conductivity (mS/cm)
Tavurvur 3/fumarole 202-98.9 1.21-3.53 0.327-10.4
Vulcan 1/fumarole 99.8 5.28 0.0758
Rabalanakaia 1/fumarole 99.3 3.20 0.444
Vulcan 1/hot spring 99.2 5.98 73.3
Greet Harbor shore 4/hot spring 62.6-84.8 5.89-6.66 52.9-53.8
Sulphur Creek 1/hot spring N.D. 6.21 4.29
Rabaul 1/rainwater N.D. 6.06 N.D.

A soil CO2 survey E of Simpson Harbor (figure 24) showed that CO2 concentrations varied widely, 0.4-20% (figure 25). As reported by Mori and McKee in 1987, the CO2 concentrations peaked along the seismically active fault zone (near the old airport), some distance from either Tavurvur or Vulcan. Other anomalously high concentrations were seen at the Matupit causeway and Sulphur Creek. Low concentrations were seen at other places, including Matupit Island.

Figure (see Caption) Figure 25. Soil CO2 concentrations at Rabaul Caldera along transect A-A'. Courtesy of RVO.

Isotopic analysis of six selected samples along the profile found that 13C ranged from -29.8 to -18.4 per mil suggesting chiefly biogenic contributions. A mixing process with a minor contribution of volcanogenic CO2 might also account for the wide range of ratios seen. High soil CO2 levels could be related to the effects of a higher thermal gradient along active fractures and faults.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, H. Patia, D. Lolok, and C. McKee, RVO; N. M. Perez and H. Wakita; University of Tokyo, Earth Chemistry, Bunkyo-ku, Tokyo 113 Japan.


Rincon de la Vieja (Costa Rica) — December 1995 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Additional details about the 6-10 November eruption

An eruption on 6 November 1995 followed increases in fumarolic activity and a several-month long increase in local earthquakes and tremor (figures 11 and 12). Park rangers who visited the summit at the start of October noted increased fumarolic activity and witnessed landslides down the main crater's walls. Strong sulfur smells were noted W-SW of the volcano on multiple occasions in the days prior to 6 November (figure 13).

Figure (see Caption) Figure 11. Rincón de la Vieja's monthly totals for tremor and low-frequency seismicity, January-September 1995. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 12. Rincón de la Vieja's seismicity, 1-13 November 1995. An eruption began on 6 November. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 13. Map of NW Costa Rica showing key features associated with Rincón de la Vieja's 6 November 1995 eruption. Courtesy of OVSICORI-UNA.

The seismic receiver (RIN3) sits 5 km SW of the active crater. Although the OVSCICORI-UNA seismic system failed on 29 October (and possibly other times during the month), it functioned reliably again after the 31st. Low-frequency events gradually increased during 1-6 November (figure 12), followed by a modest decline. High-frequency events were only registered after 3 November. Tremor was absent prior to the 6 November eruption.

OVSCICORI reported that the first phase of the eruption consisted of vapor with subordinate ash in a discharge lasting 2 minutes. Later, vigorous fumarolic activity led to many hours of constant tremor. Only two more clear eruptions followed in the initial 17 hours of venting, but others followed in subsequent days. The eruption climaxed on the morning of the 8th, when columns reached 3.5 km altitude. Fine ash blew W and NW; larger blocks and tephra were confined to within ~1 km and the area of heavy ashfall reached ~5 km away (figure 13).

During some phases of the eruption, lahars flowed down the Azul and Penjamo rivers and an interfluvial ravine called the Quebrada Azumicrorada (figure 13). Upper reaches of these drainages sustained up to 6 m of erosion. Lahars on the 7th were cooler and more water-rich than those on the 8th. In addition to previously reported damage, on 8 November lahars shut down some communications systems.

At 0900 and 1130 on 8 November OVSICORI scientists visited the summit area and saw impact craters as large as 2 m in diameter; the craters were produced by 0.5-1.0 m diameter blocks, some of which were still warm to the touch. The scientists also saw ongoing phreatic eruptions escaping from a vent adjacent to the crater lake.

At 0411 on the 9th a shock wave was felt 25 km SE in the city of Liberia; the related outburst was seen from the N flank, where residents witnessed incandescent block ejections.

Amplitudes on the seismic recorders regularly peaked at over 30 mm on 6-9 November. The highest amplitudes, on 7-9 November, reached nearly 60 mm. Amplitudes decreased the morning of 9 November; following the eruption (10-14 November) amplitudes generally remained under 10 mm with infrequent spikes to ~20 mm and a few rare spikes to 30 mm. Tremor decreased by an order of magnitude on 10 November and it dropped to <1 hour/day on 13 November.

During fieldwork in early December, G. Soto (ICE) and G. Boudon (IPG) inspected the near-source region. For a radial distance of ~1 km from the crater they saw a deposit consisting of muddy ash, lapilli, and blocks. These reached 40 cm thick on the crater's southern outer rim at a point 150 m from the inner rim. The deposit's thickness and grain size decreased rapidly with distance, such that at 600 m SW of the crater the deposit was only 7 cm thick. The deposit's basal zone was enriched in fine grained, muddy-looking material, but throughout the deposit there occurred lustrous black juvenile clasts. Over ~1 km2 of the upper surface of the deposit, there lay a blanket consisting of (a) dense, quenched blocks, (b) breadcrust bombs with notably vesicular cores, and (c) some highly vesiculated fragments. On 8 December at points 5 and 8 km from the summit, the Penjama and Blanco rivers, respectively, still ran milky and were slightly acidic in taste. That same day, the scientists saw only fumarolic activity. Although scientists looked for a lake in the depths of the crater, they failed to gain a clear view there.

Reference. Boudon, G., Rancon J.-P., Kieffer, G., Soto, G.J., Traineau, H., and Rossignol, J.-C., 1995, Estilio eruptivo actual del Volcan Rincón de la Vieja: evidencias de las productos de las erupciones de 1966-70 y 1991-92: Rothschildia, 2 (2): 10-13, Area de conservacion de Guanacaste, Costa Rica.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, E. Duarte, R. Sáenz, W. Jimenez, and V. Barboza, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Georges Boudon, Institut de Physique du Globe de Paris, 4, Place Jussieu, 75252, Paris Cedex 05, France.


Shishaldin (United States) — December 1995 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Eruption sends ash plume above 10 km altitude

Based on satellite imagery and pilot reports received by the U.S. Federal Aviation Administration, an eruption began at 1830 on 23 December. Between 1830 and 2000 on 23 December, pilots reported an ash plume as high as 10.5 km altitude (35,000 feet); prevailing winds carried the plume primarily N and NW. Analysis of a satellite image from 1912 showed a possible small ash plume extending ~50 km NW. Possible very light ashfall was reported at approximately 0130 on 24 December in Cold Bay, 90 km NE; this ash would have been carried by westerly low-altitude winds.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory.


Soufriere Hills (United Kingdom) — December 1995 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Dome building, minor ash eruptions

Although there was relative quiet during October (20:10), during the first 10 days of November three large phreatic eruptions occurred. Each of these eruptions blanketed Plymouth, 4.5 km W of the active vent, with ~2 mm of ash (table 2). Dome growth within the crater started on 16 November, the estimated date when juvenile material first reached the surface, and continued through at least December. Estimates of the dome's rate of growth from 16 November to 6 December were on the order of 0.5 m3/sec.

Table 2. Summary of the daily behavior of Soufriere Hills, 1 November through 11 December 1995. The table omits most geophysical and geodedic observations, however, "eruption signal" refers to seismically determined eruptions, and "mudflow signal" refers to seismically determined mudflows. Courtesy of MVO.

Date Events and Comments (local time)
01 Nov 1995 Ashfall (1129).
02 Nov 1995 Ashfall in Trails, Brodericks, and surrounding areas (0118). Explosions accompanied by light ashfall in Upper Gages and Chances Peak (1923).
03 Nov 1995 Mudflow (0254); Steam-and-ash emissions resulting in light ashfall in Parson's-Amersham and Plymouth (1122). Continued enlargement of Vent 1. Steam-and- ash emission (1122). No major changes in Castle Peak.
04 Nov 1995 Eruption signal (0247), no reported ashfall. Eruption signal; one eruption generated an ash plume reaching 2.5-km high; several millimeters of ash fell in Amersham-Plymouth and S of Plymouth (1725).
05 Nov 1995 Eruption signal (0139), no reported ashfall. Mudflow toward Fort Ghaut (0214). Minor eruption without visible ash or steam (1307). Eruption signal (2030).
06 Nov 1995 Minor mudflow (0410). Increase in the size of Vent 1. Ashfall, light (0347) in crater area and steam plume, 1.5-km high. Eruption signals (1044, 1809), no ashfall.
07 Nov 1995 Eruption signal (0123), no ashfall. Ashfall (0815). Eruption signals (2018, 2358).
08 Nov 1995 Eruption signal (0935).
09 Nov 1995 Ashfall, several millimeters accumulated in areas to the W and SW of the vent (Kinsale, Amersham, Plymouth, and Richmond) (0419).
10 Nov 1995 Eruption signals (0145, 0420, 1348). Plume of ash and steam (1535), 1.5-km high, blown SW.
11 Nov 1995 Mudflows in Gages-Fort Ghaut areas (0548, 0743). Eruption signal (0733), no ash emission.
12 Nov 1995 Eruption signal (0247), no ash emission. Steam emission from several new vents SW of main activity area. Old vent reopened S of Vent 1.
13 Nov 1995 Eruption signal (0600). Minor ash and steam (1603), blown N.
14 Nov 1995 Minor ash-and-steam emission (1610). Continued steam emissions from vents first observed on 12 November. Vent closest to Castle Peak greatly increased in size, surrounded by fresh ash.
15 Nov 1995 Minor ash-and-steam emission (0900-1000). Noise of breaking rocks, small landslides, venting heard from crater.
16 Nov 1995 Poor visibility but felt earthquakes, loud venting, rock-impact sounds, and light ashfall at Chances Peak (1500), with some drifting SW into the Broderick's area.
17 Nov 1995 Episodes of light ashfall in Amersham. Landslides had partially filled the Vent 1 crater. The September dome grew in height and extended toward Chance's Peak. Vigorous steaming at the two vents between Castle Peak and the dome.
18 Nov 1995 Occasional landslides at the edge of Vent 1.
23 Nov 1995 Noises heard from crater (rock breaking and small landslides). CO2 detected in the summit area for the first time.
24 Nov 1995 Noises heard from crater (as above).
26 Nov 1995 Confirmed emergence of a new spine adjacent to the September spine and close to Castle Peak.
28 Nov 1995 Sound of breaking rocks heard from crater.
29 Nov 1995 Sound of breaking rocks heard from crater.
30 Nov 1995 Confirmed lava dome within Vent 1.
01 Dec 1995 Dome slowly growing in Vent 1 crater; attendant ash emission and rock avalanches. A second area of dome growth identified NW of September spine. Two small ash clouds drifted towards Plymouth.
05 Dec 1995 Rapid increase in the size of and the number of cracks within the new (26 November) spine. Increased emission of steam and light ash of reddish color.
06 Dec 1995 Lava dome glowing, visible from the airport.
07 Dec 1995 Reddish ashfall (0929) accompanied a small explosion. Continued slow growth of lava dome.
08 Dec 1995 Lava dome had broken along cracks. Deformation continued in the area around the September and November domes. Ash cloud (1025).
09 Dec 1995 About 20 minutes of mudflow signal recorded at Gages seismic station (0434). Explosion with light ashfall (1419, 1520). Dome growth rate slowed.
10 Dec 1995 Mudflow signal recorded at Gages seismic station (2240).
11 Dec 1995 Rusty brown ash eruptions, ashfall W of crater (0910, 1455, 1530, 1604). No major dome growth detected. Steam emitted with variable intensity at a vent close to Castle Peak.

Small rockfalls from the flanks of the new, locally incandescent dome were witnessed on several occasions. During early December, debris from a larger rock avalanche was seen in the moat of English's Crater. As of early January, neither local avalanches nor material liberated during the failure of spines escaped the crater area. The limited mobility of the rock avalanches suggested they were not propelled by gas explosions with great overpressures. Although floods and dilute mudflows were distinguished seismically, no significant debris avalanches or pyroclastic flows occurred.

Heavy rainfall after 11 December may have triggered several small ash emissions, depositing red-brown ash on the upper W-flanks. The ash presumably consisted of non-juvenile material, from rock avalanches sloughing off the new dome, and some hot juvenile ejecta from small explosions vented in or around the new dome.

Although quantitative SO2 flux measurements were lacking, as of early December related damage to vegetation extended ~3 km downwind and 1.5 km laterally. Tree damage was severe on the upper W flank. Gases sampled at three of the established fumaroles (soufrieres) around the volcano showed no change in composition. Although gas and acid aerosol production had been at enhanced levels from mid-November to early December, air sampled in Plymouth during early December contained very little SO2.

Dome growth.Beginning on 30 November, good visibility allowed observers to watch a single dome develop from two smaller bodies (figure 6). One body was NW of the September cryptodome (an intrusion that produces a surficial bulging), and the other at Vent 1. The evolving dome had a rough blocky carapace that initially had some small (

Figure (see Caption) Figure 6. Topographic map of the crater area at Soufriere Hills showing pre-eruption morphology (thin lines) and new features (bold lines) as of 10 December 1995. Contour interval is 50 feet, values shown are feet x 100 (3.28 feet = 1 m); coordinates shown are UTM. CH indicates Chances Peak; CA indicates Castle Peak. Courtesy of MVO.

A prominent spine on the new dome's E side grew in height until 7 December when it began to collapse. The spine's maximum vertical growth rate was estimated to be 5-8 m/day. Further dome growth at a slower rate occurred until 9-10 December, and slower growth, or a possible halt, continued as late as 13 December. On 13 December a small, radial crack on the N side of the new dome emitted steam and ash for most of the day. At least two columns reached in excess of 500 m above the crater rim.

A new batch of extruded material reached the surface on 15 December. On the 17th, in addition to widespread incandescence radiating from the new dome, observers saw a new ~ 40-m-tall spine. Between the 17th and 20th the spine grew vertically at 7 m/day, and the adjacent dome also rose, but at a slightly slower rate. The spine's growth rate during some undisclosed intervals reached up to 20 m/day. On 17 December observers also saw a narrow crack in the dome within Vent 1 that emitted glowing ejecta. Many small ash releases sent columns up to ~1.1 km above the summit.

During the week ending 27 December, several spines grew 5-10 m/day then subsequently collapsed. One spine had grown to ~15 m higher than Castle Peak (summit elevation ~910 m) prior to failing late on 25 December.

Explosions on 21 December produced a mildly convecting ash cloud that rose ~1.5 km above the volcano. Ash fell to the N, reaching the N portion of the island. Although apparently phreatic events took place in early- to mid-November, this was the most vigorous explosion since then and it may have been driven magmatically. Steam production remained constant during 21-27 December, feeding a plume that sometimes carried small amounts of ash. From 28 December to 3 January there was relative quiet and slow dome growth. Only 3 m of dome growth took place during the week, and for a least a few days after about 1 January, the dome may have ceased growing.

Deformation. Data from two electronic tiltmeters showed no significant changes during the crisis. Despite their stability, around 10 November deformation in the upper part of the volcanic edifice was recorded by EDM and GPS measurements at Castle Peak Dome and Chances Peak. Four days of significant deformation were followed on 15 November by intense seismic activity (see below). These were followed on 17 and 18 November by an upward extension of the dome that formed in September. The dome also appeared to have extended slightly towards Chance's Peak. Although visibility was poor for the next 10 days, glimpses through steam and cloud cover suggested further doming and rock avalanching. These processes influenced a wide area on the NW side of Castle Peak Dome, including the edge of Vent 1.

From mid-November until about mid-December, the rate of deformation remained very low, with daily shortening on the order of a few millimeters along most lines, even those aimed at the presumably less stable upper flanks.

The EDM data for 10-12 December showed lengthening of the lines to Castle Peak—a deflation of the edifice. Around this time, a longer interval of GPS data also showed their lines had lengthened by >1 cm overall (with some shorter-term variability). This rate was equal to or greater than the average rate during the month of October. Late December deformation measurements using GPS and EDM techniques suggested either a return to slight inflation (14-20 December) or stability (21-27 December).

Seismicity. Montserrat seismic activity falls into four categories: 1) tremor, 2) long-period events, 3) volcano-tectonic earthquakes, and 4) regional earthquakes.

After 15 November, elevated seismicity prevailed with relatively few quiet periods. The pattern appeared very similar to that seen in late September associated with the formation of a cryptodome and possibly associated with the later extrusion of a spine. The elevated seismicity was inferred to be due to a high-level magmatic intrusion.

After 27 November there was a loss of discreet, locatable events. Low-amplitude tremor became intermixed with intervals of intense, low-amplitude, long-period events; these arrived at rates of up to 5/minute but were recorded only on the closest seismic station (MGAT, Upper Gages, figure 7). In early December tremor increased somewhat at other stations farther from the crater (MLGT, Long Ground, and MBCT, Bethel); at this time amplitudes of events at Gages also increased and the RSAM seismic index rose as high as it has been since 15 November.

Figure (see Caption) Figure 7. Montserrat seismic stations and epicenters shown in map and cross-section views, 10 December 1995. The intersection of the two cross sections is indicated by an asterisk. Epicenters are shown with two symbols, indicating variations in data quality (square, A and B quality; cross, C and D quality). Stations MSAT and MPVF were off line; MVPZ and MSSZ were 3-component stations. Courtesy of MVO.

Until 9 December there were also small, frequent, long-period earthquakes. These were accompanied by low-to-variable amplitude tremor at the Gages station, but tremor disappeared from all other stations by 8 December. The number of locatable earthquakes dropped to 1-2/day, the lowest observed during this crisis. Located earthquakes were mostly volcano-tectonic and at slightly greater depths (0-5 km) than the long-period and hybrid-type earthquakes that had dominated since 24 November. High-amplitude, high-frequency tremor was recorded at station MGAT for several hours during 10-11 December; this was probably due to an increase in steam venting from several areas on Castle Peak.

The dome grew during the week ending on 13 December, with few accompanying earthquakes early on 6 December. In contrast, during 14-20 September there were 2-20 locatable earthquakes/day, many with epicenters along the N flanks at depths of 0-6 km. During the week ending on 20 December all stations registered earthquakes with emergent onsets and a dominant frequency of 2.2 Hz; these took place 5-15 times/day. Some of the earthquakes corresponded to small explosions. Heavy rains on 16-19 December triggered floods and dilute mudflows who's acoustic signals were detected by the seismic network.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: MVO, Plymouth; Seismic Research Unit, UWI.


St. Helens (United States) — December 1995 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Seismicity decreases without any explosive activity

During October-December there were no explosions or gas-and-ash emissions from the lava dome, and no explosion-like seismicity was detected. Surveys of the lava dome indicated that deformation rates have remained at background levels. No increase in deformation of the dome occurred as a consequence of the recent earthquake activity, but the NW side of the dome continued to move downward very slowly as it has since a series of small explosions between 1989 and 1991. Periods of intense rainfall in November generated several lahars from the crater. All of the lahars were detected by the USGS real-time acoustic-flow network and probably flowed into Spirit Lake. Such lahars are common during intense rainfall following the dry summer months.

The number of small-magnitude (M <1) earthquakes beneath the crater decreased slowly from nearly 100/month in September (BGVN 20:09) to ~25/month in December. Seismicity at the end of December was similar to the first 6 months of 1995. The gradual decrease in seismicity, combined with the lack of small explosions related to the September increase, has lowered the concern of scientists monitoring the volcano. Small dome explosions are still possible, but their likelihood is no greater early in 1995.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: Dan Dzurisin, Cascades Volcano Observatory, U.S. Geological Survey, 5400 MacArthur Blvd., Vancouver, WA 98661 USA (URL: http://volcanoes.usgs.gov/); Steve Malone, Geophysics Program, University of Washington, Seattle, WA 98195 USA (URL: https://volcanoes.usgs.gov/observatories/cvo/ home.html).


Stromboli (Italy) — December 1995 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Low-level ash plumes and lava fountains during September-October

In contrast to very intense activity seen in summer-autumn 1994, Boris Behncke noted that activity remained low from early 1995 through October. The low level of activity, also shown by seismic data acquired by the University of Udine (see recent Bulletins), was interpreted by some researchers as a possible precursor of a more powerful eruption in the near future, resulting in a warning and access restrictions in April-May.

Eruptions during August-October produced low lava fountains and ash plumes. Activity from vent 3/1 (figure 46) consisted of night glow and spatter ejections, at times throwing bombs outside the crater. Vent 1/1 had periods of vigorous lava fountaining, often dropping incandescent bombs on the Sciara del Fuoco, particularly in early September. During dry weather, a dense gas plume often formed a hazy layer at 850-900 m altitude that extended for tens of kilometers.

Figure (see Caption) Figure 46. Map of the crater terrace at Stromboli, 19-20 September 1995, showing active vents. The map was produced using EDM and triangulation measurements. Vent numbering is consistent with sketch maps from April 1995 (BGVN 20:04). Courtesy of Andy Harris and Nicki Stevens.

During a 19-20 September visit by Andy Harris and Nicki Stevens, activity was observed from five vents (figure 47). A 4-m-diameter vent in the side of a hornito (1/4), had incandescent walls and an internal temperature of 940°C, as measured with a Minolta/Land Cyclops 152 infrared (0.8-1.1 µm) thermometer. Gas-jet eruptions from this vent sent incandescent gas and minor ejecta ~50 m high. Regular explosions from vents 1/2 and 3/2 ejected bombs and brown ash clouds up to ~100 m. Seven eruptions during a 90-minute period from vent 2/1 sent bombs to a height of ~50 m. No explosions were seen from vent 3/1, but it exhibited continuous night glow and apparently quietly ejected a few bombs to no more than 10 m above the crater rim.

Observations by Behncke on 28-29 September showed that craters 2 and 3 had not changed significantly since a visit on 20 April (BGVN 20:04). Vent 3/1 showed fluctuating glow at night but had no ejections. Vent 3/2 had very weak emissions of reddish ash every 5-20 minutes. Crater 1 had been largely filled with small spatter cones during the summer of 1994, but their destruction began with a powerful phreatic explosion on 5 March 1995 (BGVN 20:04). However, the twin cones (1/4 & 5) in vent area 1/3 remained. Neither of them had erupted after September/October 1994, but an incandescent vent (~10 m wide) at the SE base of the SW cone (1/4) had brief noisy gas explosions that emitted a diffuse incandescent gas cloud.

Vigorous eruptions observed by Behncke from vent 1/1 ejected black ash plumes that occasionally rose >100 m. After dark, incandescent ejections were seen, and loud roaring noises were audible. Reports by other observers in early October disclosed continuing low-level eruptions from vents 1/1 and 3/2 and incandescence from vents 1/3 and 3/1. In addition to the vents active in September, a vent behind the twin cones in Crater 1 and a vent in the NW part of Crater 3 were active when observed by Open University geologists on 15 and 30 October.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Boris Behncke and Giada Giuntoli, Department of Volcanology and Petrology, GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany; Andy Harris, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Nicki Stevens, ESSC, University of Reading, P.O. Box 227, Reading RG2 2AB, United Kingdom.


Suwanosejima (Japan) — December 1995 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Continued minor eruptive activity throughout much of 1995

Eruptive activity took place from March to June and from August to December 1995. Some ashfalls were observed at a village 4 km SSW of the crater. The two historically active summit craters and typically have Strombolian eruptions.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Tokachidake (Japan) — December 1995 Citation iconCite this Report

Tokachidake

Japan

43.418°N, 142.686°E; summit elev. 2077 m

All times are local (unless otherwise noted)


Gradual increase in the number of seismic events

During the second half of December, the number of earthquakes gradually increased, totalling 103 for the month. Consisting of a NE-SW aligned group of stratovolcanoes, Tokachi has a record that includes a partial cone collapse in 1925 that led to ~144 deaths and 5,000 homes destroyed.

Geologic Background. Tokachidake volcano consists of a group of dominantly andesitic stratovolcanoes and lava domes arranged on a NE-SW line above a plateau of welded Pleistocene tuffs in central Hokkaido. Numerous explosion craters and cinder cones are located on the upper flanks of the small stratovolcanoes, with the youngest Holocene centers located at the NW end of the chain. Frequent historical eruptions, consisting mostly of mild-to-moderate phreatic explosions, have been recorded since the mid-19th century. Two larger eruptions occurred in 1926 and 1962. Partial cone collapse of the western flank during the 1926 eruption produced a disastrous debris avalanche and mudflow.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Ulawun (Papua New Guinea) — December 1995 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Modest degassing

During October-December emissions generally consisted of moderate-to-high amounts of white vapor. Gray emissions were also reportedly observed on three days in October and a number of days in November. Seismic activity was very low in October-November and unreported for December.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Ben Talai, H. Patia, D. Lolok, and C. McKee, RVO.


Veniaminof (United States) — December 1995 Citation iconCite this Report

Veniaminof

United States

56.17°N, 159.38°W; summit elev. 2507 m

All times are local (unless otherwise noted)


Minor steam and ash emissions in November

On 15 November, residents of Perryville, ~30 km S, heard rumblings and booms through the early evening. They also observed minor ash emission, as well as increased steaming. Minor steam and ash emission was again observed on 30 November. Veniaminof was obscured by clouds on satellite imagery of 15 November, and no hot spot was visible during the last week of the month. Low-level eruptive activity has been intermittent since July 1993 (BGVN 18:07).

Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA, b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Whakaari/White Island (New Zealand) — December 1995 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Sub-crater divides collapse, but no eruptive activity

The following summarizes observations between August and December 1995 made by pilot R. Fleming and IGNS scientists. No significant eruptive activity has occurred since minor ash emissions on 28-29 June (BGVN 20:07).

A new 30-m-diameter crater was noted on 12 August in the area of the May '91 embayment. It had destroyed a large fumarole and was ejecting mud at intervals of 2-5 seconds. By 3 October, Wade, TV1, and Princess craters were joined in a single lake, following the failure of their divides. On 13 November the rising lake level was encroaching on the area of fumaroles and hot ground. Several new fumarolic vents were noted 20-30 m above the lake level. No more crater changes were observed through 12 December. Very little seismicity was recorded: low-frequency tremor accompanied the formation of the 12 August vent. Seismicity revealed no evidence of eruptive activity since 28-29 June.

Ground deformation and magnetic surveys continued to record trends indicative of future eruptive activity. Inflation was localized in the Donald Mound area, in contrast with the earlier pattern of crater-wide inflation between November 1994 and July 1995. Inflation is occurring at a much greater rate than that observed before the 1976 eruption. Magnetic decreases under Donald Mound and on the NE side of the 1978/90 Crater Complex indicate shallow heating. Other indicators like heatflow and gas chemistry do not suggest an incipient eruption. Fumarole temperatures remain relatively low, and gas samples from fumaroles were richer in water than in the past, consistent with the rise of the water table. However, the influence of the rising water level and its possible masking effects remain uncertain.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B.J. Scott, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports