Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Pacaya (Guatemala) Lava flows and Strombolian explosions continued during February-July 2019

Colima (Mexico) Renewed volcanism after two years of quiet; explosion on 11 May 2019

Masaya (Nicaragua) Lava lake activity declined during March-July 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions during March-July 2019

Aira (Japan) Explosions with ejecta and ash plumes continue weekly during January-June 2019

Agung (Indonesia) Continued explosions with ash plumes and incandescent ejecta, February-May 2019

Kerinci (Indonesia) Intermittent explosions with ash plumes, February-May 2019

Suwanosejima (Japan) Small ash plumes continued during January through June 2019

Great Sitkin (United States) Small steam explosions in early June 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019



Pacaya (Guatemala) — August 2019 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Lava flows and Strombolian explosions continued during February-July 2019

Pacaya is one of the most active volcanoes in Guatemala, with activity largely consisting of frequent lava flows and Strombolian activity at the Mackenney crater. This report summarizes continued activity during February through July 2019 based on reports by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) and Sistema de la Coordinadora Nacional para la Reducción de Desastres (CONRED), visiting scientists, and satellite data.

At the beginning of February activity included Strombolian explosions ejecting material up to 5 to 30 m above the Mackenney crater and a degassing plume up to 300 m. Multiple lava flows were observed throughout the month on the N, NW, and W flanks, reaching 350 m from the crater and resulting in avalanches from the flow fronts. Strombolian activity continued with sporadic to continuous explosions ejecting material 5-75 m above the Mackenney crater. Degassing produced plumes up to 300 m above the crater, and incandescence from the crater and lava flows were seen at night. Daniel Sturgess of Bristol University observed activity on the 24th, noting a 70-m-long lava flow with individual blocks from the front of the flow rolling down the flanks (figure 108). He reported that mild Strombolian explosions occurred every 10-20 minutes and ejected blocks, up to approximately 4 m in diameter, as high as 5-30 m above the crater and towards the northern flank.

Figure (see Caption) Figure 108. An active lava flow on the NW flank of Pacaya on 24 February 2019 with incandescence visible in lower light conditions. Courtesy of Daniel Sturgess, University of Bristol.

Similar activity continued through March with multiple lava flows reaching a maximum of 200 m N and NW, and avalanches descending from the flow fronts. Ongoing Strombolian explosions expelled material up to 75 m above the Mackenney crater. Degassing produced a white-blue plume to a maximum of 900 m above the crater (figure 109) and incandescence was noted some nights.

Figure (see Caption) Figure 109. A degassing plume at Pacaya reaching 350 m above the crater and dispersing to the S on 19 March 2019. Courtesy of CONRED.

During April lava flows continued on the N and NW flanks, reaching a maximum length of 300 m, with avalanches forming from the flow fronts. Degassing formed plumes up to 600 m above the crater that dispersed with various wind directions. Strombolian activity continued with explosions ejecting material up to 40 m above the crater. On the 2nd and 3rd weak rumbles were heard at distances of 4-5 km. Similar activity continued through May with lava flows reaching 300 m to the N, degassing producing plumes up to 600 m above the crater, and Strombolian explosions ejecting material up to 15 m above the crater.

Lava flows continued out to 300 m in length to the N and NW during June (figures 110 and 111). Strombolian activity ejected material up to 30 m above the crater and degassing resulted in plumes that reached 300 m. During July there were multiple active lava flows that reached a maximum of 300 m in length on the N and NW flanks (figure 112). Avalanches generated by the collapse of material at the front of the lava flows were accompanied by explosions ejecting material up to 30 m above the crater.

Figure (see Caption) Figure 110. An active lava flow on Pacaya on 9 June 2019 with incandescent blocks rolling down the flank from the flow front. Courtesy of Paul Wallace, University of Liverpool.
Figure (see Caption) Figure 111. Activity at Pacaya on 22 June 2019 with a degassing plume dispersed to the W and a 300-m-long lava flow. Photos by Miguel Morales, courtesy of CONRED.
Figure (see Caption) Figure 112. Two lava flows were active to the N and NW at Pacaya on 20 July 2019. Photos courtesy of CONRED.

During February through July multiple lava flows and crater activity were detected in Sentinel-2 satellite thermal images (figures 113 and 114) and relatively constant thermal energy was detected by the MIROVA system with a slight decrease in the energy and frequency of anomalies during June (figure 115). The thermal anomalies detected by the MODVOLC system for each month from February through July spanned 6-30, with six during June and 30 during April.

Figure (see Caption) Figure 113. Sentinel-2 thermal satellite images of Pacaya show lava flows to the N and NW during February through April 2019. There was a reduction in visible activity in early March. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images of Pacaya showing lava flow and hot avalanche activity during June and July 2019. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 115. MIROVA log radiative power plot of MODIS thermal infrared at Pacaya during October 2018 through July 2019. Detected thermal energy is relatively stable with a decrease through June and subsequent increase during July. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Daniel Sturgess, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom (URL: http://www.bristol.ac.uk/earthsciences/); Paul Wallace, Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom (URL: https://www.liverpool.ac.uk/environmental-sciences/staff/paul-wallace/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Colima (Mexico) — August 2019 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Renewed volcanism after two years of quiet; explosion on 11 May 2019

Frequent historical eruptions at Volcán de Colima date back to the 16th century and include explosive activity, lava flows, and large debris avalanches. The most recent eruptive episode began in January 2013 and continued through March 2017. Previous reports have covered activity involving ash plumes with extensive ashfall, lava flows, lahars, and pyroclastic flows (BGVN 41:01 and 42:08). In late April 2019, increased seismicity related to volcanic activity began again. This report covers activity through July 2019. The primary source of information was the Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC).

On 11 May 2019, CUEIV-UdC reported an explosion that was recorded by several monitoring stations. A thermal camera located south of Colima captured thermal anomalies associated with the explosion as well as intermittent degassing, which mainly consisted of water vapor (figure 131). A report from the Unidad Estatal de Protección Civil de Colima (UEPCC), and seismic and infrasound network data from CUEIV-UdC, recorded about 60 high-frequency events, 16 landslides, and 14 low-magnitude explosions occurring on the NE side of the crater during 11-24 May. Drone imagery showed fumarolic activity occurring on the inner wall of this crater on 22 May (figure 132).

Figure (see Caption) Figure 131. Gas emissions from Colima during the 11 May 2019 eruption as seen from the Naranjal station. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 17 mayo 2019 no 121).
Figure (see Caption) Figure 132. A drone photo showing fumarolic activity occurring within the NE wall of the crater at Colima on 22 May 2019. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 24 mayo 2019 no 122).

Small explosions and gas-and-steam emissions continued intermittently through mid-July 2019 concentrated on the NE side of the crater. An overflight on 9 July 2019 revealed that subsidence from the consistent activity slightly increased the diameter of the vent; other areas within the crater also showed evidence of subsidence and some collapsed material on the outer W wall (figure 133). During the weeks of 19 and 26 July 2019, monitoring cameras and seismic data recorded eight lahars.

Figure (see Caption) Figure 133. A drone photo of the crater at Colima on 8 July 2019 shows continuing fumarolic activity and evidence of a collapsed wall on the W exterior side. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 12 julio 2019 no 129).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC), Colima, Col. 28045, Mexico; Centro Universitario de Estudios Vulcanologicos y Facultad de Ciencias de la Universidad de Colima, Avenida Universidad 333, Colima, Col. 28045, Mexico (URL: http://portal.ucol.mx/cueiv/); Unidad Estatal de Protección Civil, Colima, Roberto Esperón No. 1170 Col. de los Trabajadores, C.P. 28020, Mexico (URL: http://www.proteccioncivil.col.gob.mx/).


Masaya (Nicaragua) — August 2019 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake activity declined during March-July 2019

Masaya, in Nicaragua, contains a lava lake found in the Santiago Crater which has remained active since its return in December 2015 (BGVN 41:08). In addition to this lava lake, previous volcanism included explosive eruptions, lava flows, and gas emissions. Activity generally decreased during March-July 2019, including the number and frequency of thermal anomalies, lava lake levels, and gas emissions. The primary source of information for this report comes from the Instituto Nicareguense de Estudios Territoriales (INETER).

On 21 July 2019 a small explosion in the Santiago Crater resulted in some gas emissions and an ash cloud drifting WNW. In addition to the active lava lake (figure 77), monthly reports from INETER noted that thermal activity and gas emissions (figure 78) were decreasing.

Figure (see Caption) Figure 77. Active lava lake visible in the Santiago Crater at Masaya on 27 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).
Figure (see Caption) Figure 78. Gas emissions coming from the Santiago Crater at Masaya on 29 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).

On 15 May and 22 July 2019, INETER scientists used a FLIR SC620 thermal infrared camera to measure temperatures of fumaroles on the Santiago Crater. In May 2019 the temperature of fumaroles had decreased by 48°C since the previous month. Between May and July 2019 fumarole temperatures continued to decline; temperatures ranged from 90° to 136°C (figure 79). Compared to May 2019 these temperatures are 3°C lower. INETER reports that the level of the lava lake has been slowly dropping during this reporting period.

Figure (see Caption) Figure 79. FLIR (forward-looking infrared) and visible images of the Santiago Crater at Masaya showing fumarole temperatures ranging from 90° to 136°C. The scale in the center shows the range of temperatures in the FLIR image. Courtesy of INETER (March 2019 report).

According to MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS satellite instruments, frequent thermal anomalies were recorded from mid-March through early May 2019, with little to no activity from mid-May to July 2019 (figure 80). Sentinel-2 thermal images show high temperatures in the active lava lake on 10 March 2019 (figure 81). Thermal energy detected by the MODVOLC algorithm showed 14 hotspot pixels with the most number of hotspots (7) occurring in March 2019.

Figure (see Caption) Figure 80. Thermal anomalies were relatively constant at Masaya from early September 2018 through early May 2019 and then abruptly decreased until mid-June 2019 as recorded by MIROVA. Courtesy of MIROVA.
Figure (see Caption) Figure 81. Sentinel-2 thermal satellite image showing a detected heat signature from the active lava lake at Masaya on 10 March 2019. The lava lake is visible (bright yellow-orange). Approximate diameter of the crater containing the lava lake is 500 m. Thermal (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Sheila DeForest (URL: https://www.facebook.com/sheila.deforest).


Rincon de la Vieja (Costa Rica) — August 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions during March-July 2019

The acid lake of Rincón de la Vieja's active crater has generated intermittent weak phreatic explosions regularly since 2011, continuing during the past year through at least August 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 4 March and 2 September 2019. Clouds often prevented webcam and satellite views. The current report describes activity from March through July 2019.

OVSICORI-UNA reported that weak events occurred on 19 March at 1851 and on 29 March 2019 at 2043. A two-minute-long phreatic explosion on 1 April at 0802 produced a plume that rose 600 m above the crater rim. Continuous emissions were visible during 3-4 April, rising 200 m above the crater rim. On 3 April, at 1437, a small explosion was detected. An explosion on 10 April at 0617 produced a gas-and-steam plume that rose 1 km above the crater rim and drifted SE. On 12 April at 0643, a plume rose 500 m. Another event took place at 0700 on 13 April, although poor weather conditions prevented visual observations. On 14 April, OVSICORI-UNA noted that aerial photographs showed a milky-gray acid lake at a relatively low water level with convection cells of several tens meters of diameter in the center and eastern parts of the lake.

According to an OVSICORI-UNA bulletin, a small phreatic explosion occurred on 1 May. Another explosion on 11 May at 0720 produced a white gas-and-steam plume that rose 600 m above the crater rim. Phreatic explosions were recorded on 14 May at 1703 and on 17 May at 0357, though dense fog prevented visual confirmation of both events with webcams. On 15 May a local observer noted a diffuse plume of steam and gas, material rising from the crater, and photographed milky-gray deposits on the N part of the crater rim ejected from the event the day before. A major explosion occurred on 24 May.

OVSICORI-UNA recorded a significant phreatic 10-minute-long explosion that began on 11 June at 0343, but plumes were not visible due to weather conditions. No further phreatic events were reported in July.

Seismic activity was very low during the reporting period, and there was no significant deformation. Short tremors were frequent toward the end of April, but were only periodic in May and June; tremor almost disappeared in July. A few long-period earthquakes were recorded, and volcano-tectonic earthquakes were even less frequent.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/).


Aira (Japan) — July 2019 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions with ejecta and ash plumes continue weekly during January-June 2019

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity from January through June 2019; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

From January to June 2019, ash plumes and explosions were usually reported multiple times each week. The quietest month was June with only five eruptive events; the most active was March with 29 (table 21). Ash plumes rose from a few hundred meters to 3,500 m above the summit during the period. Large blocks of incandescent ejecta traveled as far as 1,700 m from the Minamidake crater during explosions in February and April. All the activity originated in the Minamidake crater; the adjacent Showa crater only had a mild thermal anomaly and fumarole throughout the period. Satellite imagery identified thermal anomalies inside the Minamidake crater several times each month.

Table 21. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in Aira caldera, January-June 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Data courtesy of JMA (January to June 2019 monthly reports).

Month Ash emissions (explosive) Max. plume height above crater Max. ejecta distance from crater
Jan 2019 8 (6) 2.1 km 1.1 km
Feb 2019 15 (11) 2.3 km 1.7 km
Mar 2019 29 (12) 3.5 km 1.3 km
Apr 2019 10 (5) 2.2 km 1.7 km
May 2019 15 (9) 2.9 km 1.3 km
Jun 2019 5 (2) 2.2 km 1.3 km

There were eight eruptive events reported by JMA during January 2019 at the Minamidake summit crater of Sakurajima. They occurred on 3, 6, 7, 9, 17, and 19 January (figure 76). Ash plume heights ranged from 600 to 2,100 m above the summit. The largest explosion, on 9 January, generated an ash plume that rose 2,100 m above the summit crater and drifted E. In addition, incandescent ejecta was sent 800-1,100 m from the summit. Incandescence was visible at the summit on most clear nights. During an overflight on 18 January no significant changes were noted at the crater (figure 77). Infrared thermal imaging done on 29 January indicated a weak thermal anomaly in the vicinity of the Showa crater on the SE side of Minamidake crater. The Kagoshima Regional Meteorological Observatory (KRMO) (11 km WSW) recorded ashfall there during four days of the month. Satellite imagery indicated thermal anomalies inside Minamidake on 7 and 27 January (figure 77).

Figure (see Caption) Figure 76. Incandescent ejecta and ash emissions characterized activity from Sakurajima volcano at Aira during January 2019. Left: A webcam image showed incandescent ejecta on the flanks on 9 January 2019, courtesy of JMA (Explanation of volcanic activity in Sakurajima, January 2019). Right: An ash plume rose hundreds of meters above the summit, likely also on 9 January, posted on 10 January 2019, courtesy of Mike Day.
Figure (see Caption) Figure 77. The summit of Sakurajima consists of the larger Minamidake crater and the smaller Showa crater on the E flank. Left: The Minamidake crater at the summit of Sakurajima volcano at Aira on 18 January 2019 seen in an overflight courtesy of JMA (Explanation of volcanic activity in Sakurajima, March 2019). Right: Two areas of thermal anomaly were visible in Sentinel-2 satellite imagery on 27 January 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

Activity increased during February 2019, with 15 eruptive events reported on days 1, 3, 7, 8, 10, 13, 14, 17, 22, 24, and 27. Ash plume heights ranged from 600-2,300 m above the summit, and ejecta was reported 300 to 1,700 m from the crater in various events (figure 78). KRMO reported two days of ashfall during February. Satellite imagery identified thermal anomalies at the crater on 6 and 26 February, and ash plumes on 21 and 26 February (figure 79).

Figure (see Caption) Figure 78. An explosion from Sakurajima at Aira on 7 February 2019 sent ejecta up to 1,700 m from the Minamidake summit crater. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, February 2019).
Figure (see Caption) Figure 79. Thermal anomalies and ash emissions were captured in Sentinel-2 satellite imagery on 6, 21, and 26 February 2019 originating from Sakurajima volcano at Aira. Top: Thermal anomalies within the summit crater were visible underneath steam and ash plumes on 6 and 26 February (closeup of bottom right photo). Bottom: Ash emissions on 21 and 26 February drifted SE from the volcano. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

The number of eruptive events continued to increase during March 2019; there were 29 events reported on numerous days (figures 80 and 81). An explosion on 14 March produced an ash plume that rose 3,500 m above the summit and drifted E. It also produced ejecta that landed 800-1,100 m from the crater. During an overflight on 26 March a fumarole was the only activity in Showa crater. KRMO reported 14 days of ashfall during the month. Satellite imagery identified an ash plume on 13 March and a thermal anomaly on 18 March (figure 82).

Figure (see Caption) Figure 80. A large ash emission from Sakurajima volcano at Aira was photographed by a tourist on the W flank and posted on 1 March 2019. Courtesy of Kratü.
Figure (see Caption) Figure 81. An ash plume from Sakurajima volcano at Aira on 18 March 2019 produced enough ashfall to disrupt the trains in the nearby city of Kagoshima according to the photographer. Image taken from about 20 km away. Courtesy of Tim Board.
Figure (see Caption) Figure 82. An ash plume drifted SE from the summit of Sakurajima volcano at Aira on 13 March (left) and a thermal anomaly was visible inside the Minamidake crater on 18 March 2019 (right). "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

A decline in activity to only ten eruptive events on days 7, 13, 17, 22, and 25 was reported by JMA for April 2019. An explosion on 7 April sent ejecta up to 1,700 m from the crater. Another explosion on 13 April produced an ash plume that rose 2,200 m above the summit. Most of the eruptive events at Sakurajima last for less than 30 minutes; on 22 April two events lasted for almost an hour each producing ash plumes that rose 1,400 m above the summit. Ashfall at KRMO was reported during seven days in April. Two distinct thermal anomalies were visible inside the Minamidake crater on both 12 and 27 April (figure 83).

Figure (see Caption) Figure 83. Two thermal anomalies were present inside Minamidake crater at the summit of Sakurajima volcano at Aira on 12 (left) and 27 (right) April 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

There were 15 eruptive events during May 2019. An event that lasted for two hours on 12 May produced an ash plume that rose 2,900 m from the summit and drifted NE (figure 84). The Meteorological Observatory reported 14 days with ashfall during the month. Two thermal anomalies were present in satellite imagery in the Minamidake crater on both 17 and 22 May.

Figure (see Caption) Figure 84. An ash plume rose 2,900 m above the summit of Sakurajima at Aira on 12 May 2019 (left); incandescent ejecta went 1,300 m from the summit crater on 13 May. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, May 2019).

During June 2019 five eruptive events were reported, on 11, 13, and 24 June; the event on 11 June lasted for almost two hours, sent ash 2,200 m above the summit, and produced ejecta that landed up to 1,100 m from the crater (figure 85). Five days of ashfall were reported by KRMO.

Figure (see Caption) Figure 85. A large ash plume on 11 June 2019 rose 2,200 m above the summit of Sakurajima volcano at Aira. Courtesy of Aone Wakatsuki.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Mike Day, Minnesota, Twitter (URL: https://twitter.com/MikeDaySMM, photo at https://twitter.com/MikeDaySMM/status/1083489400451989505/photo/1); Kratü, Twitter (URL: https://twitter.com/TalesOfKratue, photo at https://twitter.com/TalesOfKratue/status/1101469595414589441/photo/1); Tim Board, Japan, Twitter (URL: https://twitter.com/Hawkworld_, photo at https://twitter.com/Hawkworld_/status/1107789108754038789); Aone Wakatsuke, Twitter (URL: https://twitter.com/AoneWakatsuki, photo at https://twitter.com/AoneWakatsuki/status/1138420031258210305/photo/3).


Agung (Indonesia) — June 2019 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Continued explosions with ash plumes and incandescent ejecta, February-May 2019

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung on Bali remained quiet until a new eruption began in November 2017 (BGVN 43:01). Lava emerged into the summit crater at the end of November and intermittent ash plumes rose as high as 3 km above the summit through the end of the year. Activity continued throughout 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the slow effusion of the lava within the summit crater (BGVN 43:08, 44:02). Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from February through May 2019.

Intermittent but increasingly frequent and intense explosions with ash emissions and incandescent ejecta characterized activity at Agung during February through May 2019. During February, explosions were reported three times; events on seven days in March were documented with ash plumes and ashfall in surrounding villages. Five significant events occurred during April; two involved incandescent ejecta that traveled several kilometers from the summit, and ashfall tens of kilometers from the volcano. Most of the five significant events reported in May involved incandescent ejecta and ashfall in adjacent villages; air traffic was disrupted during the 24 May event. Ash plumes in May reached altitudes over 7 km multiple times. Thermal activity increased steadily during the period, according to both the MIROVA project (figure 44) and MODVOLC thermal alert data. MAGMA Indonesia reported at the end of May 2019 that the volume of lava within the summit crater remained at about 25 million m3; satellite information indicated continued thermal activity within the crater. Alert Level III (of four levels) remained in effect throughout the period with a 4 km exclusion radius around the volcano.

Figure (see Caption) Figure 44. Thermal activity at Agung from 4 September 2018 through May 2019 was variable. The increasing frequency and intensity of thermal events was apparent from February-May. Courtesy of MIROVA.

Steam plumes rose 30-300 m high daily during February 2019. The Agung Volcano Observatory (AVO) and PVMBG issued a VONA on 7 February (UTC) reporting an ash plume, although it was not visible due to meteoric cloud cover. Incandescence, however, was observed at the summit from webcams in both Rendang and Karangasem City (16 km SE). The seismic event associated with the explosion lasted for 97 seconds. A similar event on 13 February was also obscured by clouds but produced a seismic event that lasted for 3 minutes and 40 seconds, and ashfall was reported in the village of Bugbug, about 20 km SE. On 22 February a gray ash plume rose 700 m from the summit during a seismic event that lasted for 6 minutes and 20 seconds (figure 45). The Darwin VAAC reported the plume visible in satellite imagery moving W at 4.3 km altitude. It dissipated after a few hours, but a hotspot remained visible about 10 hours later.

Figure (see Caption) Figure 45. An ash plume rose from the summit of Agung on 22 February 2019, viewed from the Besakih temple, 7 km SW of the summit. Courtesy of PunapiBali.

Persistent steam plumes rose 50-500 m from the summit during March 2019. An explosion on 4 March was recorded for just under three minutes and produced ashfall in Besakih (7 km SW); no ash plume was observed due to fog. A short-lived ash plume rose to 3.7 km altitude and drifted SE on 8 March (UTC) 2019. The seismic event lasted for just under 4 minutes. Ash emissions were reported on 15 and 17 March to 4.3 and 3.7 km altitude, respectively, drifting W (figure 46). Ashfall from the 15 March event spread NNW and was reported in the villages of Kubu (6 km N), Tianyar (14 km NNW), Ban, Kadundung, and Sukadana. MAGMA Indonesia noted that two explosions on the morning of 17 March (local time) produced gray plumes; the first sent a plume to 500 m above the summit drifting E and lasted for about 40 seconds, while the second plume a few hours later rose 600 m above the crater and lasted for 1 minute and 16 seconds. On 18 March an ash plume rose 1 km and drifted W and NW. An event on 20 March was measured only seismically by PVMBG because fog prevented observations. An eruption on 28 March produced an ash plume 2 km high that drifted W and NW. The seismic signal for this event lasted for about two and a half minutes. The Darwin VAAC reported the ash plume at 5.5 km altitude, dissipating quickly to the NW. No ash was visible four hours later, but a thermal anomaly remained at the summit (figure 47). Ashfall was reported in nearby villages.

Figure (see Caption) Figure 46. Ash plumes from Agung on 15 (left) and 17 (right) March 2019 resulted in ashfall in communities 10-20 km from the volcano. Courtesy of PVMBG and MAGMA Indonesia (Information on G. Agung Eruption, 15 March 2019 and Gunung Agung Eruption Press Release March 17, 2019).
Figure (see Caption) Figure 47. A thermal anomaly was visible through thick cloud cover at the summit of Agung on 29 March 2019 less than 24 hours after a gray ash plume was reported 2,000 m above the summit. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

The first explosion of April 2019 occurred on the 3rd (UTC); PVMBG reported the dense gray ash plume 2 km above the summit drifting W. A few hours later the Darwin VAAC raised the altitude to 6.1 km based on infrared temperatures in satellite imagery. The seismic signal lasted for three and a half minutes and the explosion was heard at the PGA Post in Rendang (12 km SW). Incandescent material fell within a radius of 2-3 km, mainly on the S flank (figure 48). Ashfall was reported in the villages of Telungbuana, Badeg, Besakih, Pempatan, Teges, and Puregai on the W and S flanks (figure 49). An explosion on 11 April also produced a dense gray ash plume that rose 2 km above the summit and drifted W. A hotspot remained about six hours later after the ash dissipated.

Figure (see Caption) Figure 48. Incandescent ejecta appeared on the flanks of Agung after an eruption on 4 April 2019 (local time) as viewed from the observation post in Rendang (8 km SW). Courtesy of Jamie Sincioco.
Figure (see Caption) Figure 49. Ashfall in a nearby town dusted mustard plants on 4 April 2019 from an explosion at Agung the previous day. Courtesy of Pantau.com (Photo: Antara / Nyoman Hendra).

PVMBG reported an eruption visible in the webcam early on 21 April (local time) that rose to 5.5 km altitude and drifted SW. The ash spread W and S and ash fell around Besakih (7 km SW), Rendang (8 km SW), Klungkung (25 km S), Gianyar (20 km WSW), Bangli (17 km WNW), Tabanan (50 km WSW), and at the Ngurah Rai-Denpasar Airport (60 km SW). About 15 hours later a new explosion produced a dense gray ash plume that rose to 3 km above the summit and produced incandescent ejecta in all directions as far as 3 km away (figure 50). The ash spread to the S and ashfall was reported in Besakih, Rendang, Sebudi (6 km SW), and Selat (12 km SSW). Both of the explosions were heard in Rendang and Batulompeh. The incandescent ejecta from the explosions remained within the 4-km exclusion zone. A satellite image on 23 April showed multiple thermal anomalies within the summit crater (figure 51). A dense gray plume drifted E from Agung on 29 April (30 April local time) at 4.6 km altitude. It was initially reported by ground observers, but was also visible in multispectral satellite imagery for about six hours before dissipating.

Figure (see Caption) Figure 50. An explosion at Agung on 21 April 2019 sent incandescent eject 3,000 m from the summit. Courtesy of MAGMA Indonesia (Gunung Agung Eruption Press Release April 21, 2019).
Figure (see Caption) Figure 51. Multiple thermal anomalies were still present within the summit crater of Agung on 23 April 2019 after two substantial explosions produced ash and incandescent ejecta around the summit two days earlier. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG reported an eruption on 3 May 2019 that was recorded on a seismogram with a signal that lasted for about a minute. Satellite imagery reported by the Darwin VAAC showed a growing hotspot and possible ash near the summit at 4.3 km altitude moving NE. A few days later, on 6 May, a gray ash plume rose to 5.2 km altitude and drifted slowly W before dissipating; it was accompanied by a seismic signal that lasted for about two minutes. Explosions on 12 and 18 May produced significant amounts of incandescent ejecta (figure 52). The seismic signal for the 12 May event lasted for about two minutes; no plume was observed due to fog, but incandescent ejecta was visible on the flanks and the explosion was heard at Rendang. The Darwin VAAC reported an ash plume from the explosion on 17 May (18 May local time) at 6.1 km altitude in satellite imagery moving E. They revised the altitude a short while later to 7.6 km based on IR temperature and movement; the plume drifted N, NE, and E in light and variable winds. A few hours after that it was moving NE at 7.6 km altitude and SE at 5.5 km altitude; this lasted for about 12 hours until it dissipated. Ashfall was reported in villages downwind including Cutcut, Tongtongan, Bonyoh (20 km WNW), and Temakung.

Figure (see Caption) Figure 52. Explosions on 12 (left) and 18 (right) May (local time) 2019 produced substantial ejecta on the flanks of Agung visible from a distance of 10 km or more in PVMBG webcams. The ash plume from the 18 May event resulted in ashfall in numerous communities downwind. Courtesy of PVMBG (Information Eruption G. Agung, May 13, 2019, Information Eruption G. Agung, May 18, 2019).

The initial explosion on 18 May was captured by a webcam at a nearby resort and sent incandescent ejecta hundreds of meters down the NE flank within 20 seconds (figure 53). Satellite imagery on 3, 8, 13, and 18 May indicated multiple thermal anomalies growing stronger at the summit. All of the images were captured within 24 hours of an explosive event reported by PVMBG (figure 54).

Figure (see Caption) Figure 53. The 18 May 2019 explosion at Agung produced an ash plume that rose to over 7 km altitude and large bombs of incandescent material that traveled hundreds of meters down the NE flank within the first 20 seconds of the explosion. Images taken from a private webcam located 12 km NE. Courtesy of Volcanoverse, used with permission.
Figure (see Caption) Figure 54. Satellite images from 3, 8, 13, and 18 May 2019 at Agung showed persistent and increasing thermal anomalies within the summit crater. All images were captured within 24 hours of explosions reported by PVMBG. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG issued a VONA on 24 May 2019 reporting a new ash emission. They indicated that incandescent fragments were ejected 2.5-3 km in all directions from the summit, and the seismic signal lasted for four and a half minutes (figure 55). A dense gray ash plume was observed from Tulamben on the NE flank rising 2 km above the summit. Satellite imagery indicated that the plume drifted SW and ashfall was reported in the villages of Besakih, Pempatan, Menanga, Sebudi, Muncan, Amerta Bhuana, Nongan, Rendang, and at the Ngurah Rai Airport in Denpassar. Additionally, ashfall was reported in the districts of Tembuku, Bangli, and Susut (20 km SW). The Darwin VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude along with a thermal anomaly and incandescent lava visible in webcam imagery. The remains of the ash plume were about 170 km S of the airport in Denpasar (60 km SW) and had nearly dissipated 18 hours after the event. According to a news article several flights to and from Australia were cancelled or diverted, though the International Gusti Ngurah Rai (IGNR) airport was not closed. On 31 May another large explosion produced the largest ash plume of the report period, rising more than 2 km above the summit (figure 56). The Darwin VAAC reported its altitude as 8.2 km drifting ESE visible in satellite data. It split into two plumes, one drifted E at 8.2 km and the other ESE at 6.1 km altitude, dissipating after about 20 hours.

Figure (see Caption) Figure 55. A large explosion at Agung on 24 May 2019 produced incandescent ejecta that covered all the flanks and dispersed ash to many communities to the SW. Courtesy of PVMBG (Gunung Agung Eruption Press Release 24 May 2019 20:38 WIB, Kasbani, Ir., M.Sc.).
Figure (see Caption) Figure 56. An explosion at Agung on 31 May 2019 sent an ash plume to 8.2 km altitude, the highest for the report period. Courtesy of Sutopo Purwo Nugroho, BNPB.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); The Jakarta Post, Mount Agung eruption disrupts Australian flights, (URL: https://www.thejakartapost.com/news/2019/05/25/mount-agung-eruption-disrupts-australian-flights.html); PunapiBali (URL: http://punapibali.com/, Twitter: https://twitter.com/punapibali, image at https://twitter.com/punapibali/status/1098869352588288000/photo/1); Jamie S. Sincioco, Phillipines (URL: Twitter: https://twitter.com/jaimessincioco. Image at https://twitter.com/jaimessincioco/status/1113765842557104130/photo/1); Pantau.com (URL: https://www.pantau.com/berita/erupsi-gunung-agung-sebagian-wilayah-bali-terpapar-hujan-abu?utm_source=dlvr.it&utm_medium=twitter); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ).


Kerinci (Indonesia) — June 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent explosions with ash plumes, February-May 2019

Frequently active, Indonesia's Mount Kerinci on Sumatra has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Intermittent explosions with ash plumes, usually multiple times per month, have characterized activity since April 2018. Similar activity continued during February-May 2019, the period covered in this report with information provided primarily by the Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, notices from the Darwin Volcano Ash Advisory Center (Darwin VAAC), and satellite data. PVMBG has maintained an Alert Level II (of 4) at Kerinci for several years.

On 13 February 2019 the Kerinci Volcano Observatory (KVO), part of PVMBG, noted a brownish-white ash emission that was drifting NE about 400 m above the summit. The seismicity during the event was dominated by continuous volcanic tremor. A brown ash emission was reported on 7 March 2019 that rose to 3.9 km altitude and drifted NE. Ash also drifted 1,300 m down the SE flank. Another ash plume the next morning drifted W at 4.5 km altitude, according to KVO. On 10, 11, and 13 March KVO reported brown ash plumes drifting NE from the summit at about 4.0-4.3 km altitude. The Darwin VAAC observed continuous ash emissions in satellite imagery on 15 March drifting W at 4.3 m altitude that dissipated after about 3 hours (figure 10). A gray ash emission was reported on 19 March about 600 m above the summit drifting NE; local news media noted that residents of Kayo Aro reported emissions on both 18 and 19 March (figure 11). An ash emission appeared in satellite imagery on 25 March (figure 10). On 30 March the observatory reported two ash plumes; a brown emission at 0351 UTC and a gray emission at 0746 UTC that both drifted NE at about 4.4 km altitude and dissipated within a few hours. PVMBG reported another gray ash plume the following day at a similar altitude.

Figure (see Caption) Figure 10. Sentinel-2 satellite imagery of Kerinci from 15 (left) and 25 (right) March 2019 showed evidence of ash plumes rising from the summit. Kerinci's summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Dense ash plumes from Kerinci were reported by local news media on 18 and 19 March 2019. Courtesy of Nusana Jambi.

Activity continued during April with a brown ash emission reported on 3 April by several different agencies; the Darwin VAAC and PVMBG daily reports noted that the plume was about 500 m above the summit (4.3 km altitude) drifting NE. KVO observed two brown ash emissions on 13 April (UTC) that rose to 4.2 km altitude and drifted NE. Satellite imagery showed minor ash emissions from the summit on 14 April; steam plumes 100-500 m above the summit characterized activity for the remainder of April (figure 12).

Figure (see Caption) Figure 12. A dilute ash emission rose from the summit of Kerinci on 14 April 2019 (left); only steam emissions were present on a clear 29 April in Sentinel-2 imagery (right). "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.

Ashfall on the NE and S flanks within 7 km of the volcano was reported on 2 May 2019. According to a news article, at least five villages were affected late on 2 May, including Tanjung Bungo, Sangir, Sangir Tengah, Sungai Rumpun, and Bendung Air (figures 13 and 14). The smell of sulfur was apparent in the villages. Brown ash emissions were observed on 3 and 4 May that rose to 4.6 and 4.1 km altitude and drifted SE. The Darwin VAAC reported an emission on 5 May, based on a pilot report, that rose to 6.7 km altitude and drifted NE for about an hour before dissipating. A brown ash emission on 10 May rose 700 m above the summit and drifted SE. Satellite imagery captured ash emissions from the summit on 14 and 24 May (figure 15). For the remainder of the month, 300-700-m-high dense steam plumes were noted daily until PVMBG reported white and brown plumes on 26 and 27 May rising 500-1,000 m above the summit. Although thermal anomalies were not reported during the period, persistent weak SO2 emissions were identified in TROPOMI instrument satellite data multiple times per month (figure 16).

Figure (see Caption) Figure 13. Ashfall was reported from five villages on the flanks of Kerinci on 2 May 2019. Courtesy of Uzone.
Figure (see Caption) Figure 14. An ash plume at Kerinci rose hundreds of meters on 2 May 2019; ashfall was reported in several nearby villages. Courtesy of Kerinci Time.
Figure (see Caption) Figure 15. Ash emissions from Kerinci were captured in Sentinel-2 satellite imagery on 14 (left) and 24 (right) May 2019. The summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. Weak SO2 anomalies from Kerinci emissions were captured by the TROPOMI instrument on the Sentinel-5P satellite multiple times each month from February to May 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nuansa Jambi, Informasi Utama Jambi: (URL: https://nuansajambi.com/2019/03/20/gunung-kerinci-semburkan-asap-tebal/); Kerinci Time (URL: https://kerincitime.co.id/gunung-kerinci-semburkan-abu-vulkanik.html); Uzone.id (URL: https://news.uzone.id/gunung-kerinci-erupsi-5-desa-tertutup-abu-tebal).


Suwanosejima (Japan) — July 2019 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Small ash plumes continued during January through June 2019

Suwanosejima is an active volcanic island south of Japan in the Ryuku islands with recent activity centered at Otake crater. The current eruption began in October 2004 and activity has mostly consisted of small ash plumes, ballistic ejecta, and visible incandescence at night. This report summarizes activity during January through June 2019 and is based on reports by the Japan Meteorological Agency (JMA), and various satellite data.

Thermal activity recorded by the MIROVA system was low through January and February after a decline in November (figure 36), shown in Sentined-2 thermal infrared imagery as originating at a vent in the Otake crater (figure 37). During January an explosive event was observed at 1727 on the 3rd, producing a gray plume that rose 600 m above the crater. A white gas-and-steam plume rose to 1.5 km above the crater and nighttime incandescence was observed throughout the month. Reduced activity continued through February with no reported explosive eruptions and light gray plumes up to 900 m above the crater. Incandescence continued to be recorded at night using a sensitive surveillance camera.

Figure (see Caption) Figure 36. MIROVA log radiative power plot of MODIS thermal infrared data at Suwanosejima during September 2018 through June 2019. There was reduced activity in 2019 with periods of more frequent anomalies during March and June. Courtesy of MIROVA.
Figure (see Caption) Figure 37. A Sentinel-2 thermal satellite image shows Suwanosejima with the active Otake crater in the center with elevated temperatures shown as bright orange/yellow. There is a light area next to the vent that may be a gas plume. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

There was an increase in thermal energy detected by the MIROVA system in mid-March and there was a MODVOLC thermal alert on the 15th. Occasional small explosions occurred but no larger explosive events were recorded. A white plume was noted on the 27th rising to 900 m above the crater and an event at 1048 on the 30th produced a light-gray plume that rose to 800 m. Incandescence was only observed using a sensitive camera at night (figure 38).

Figure (see Caption) Figure 38. Incandescence from the Suwanosejima Otake crater reflecting in clouds above the volcano. Courtesy of JMA (Volcanic activity of Suwanosejima March 2019).

No explosive events were observed through April. A white gas-and-steam plume rose to 1,200 m above the crater on the 19th and incandescence continued intermittently. Minor explosions were recorded on 5, 30, and 31 May, but no larger explosive events were observed during the month. The event on the 30th produced ash plume that reached 1.1 km above the crater. Similar activity continued through June with one explosive event occurring on the 2nd. Overall, there was a reduction in the number of ash plumes erupted during this period compared to previous months (figure 39).

Figure (see Caption) Figure 39. Observed activity at Suwanosejima for the year ending in July 2019. The black vertical bars represent steam, gas, or ash plume heights (scale in meters on the left axis), yellow diamonds represent incandescence observed in webcams, gray volcano symbols along the top are explosions accompanied by ash plumes, red volcano symbols represent large explosions with ash plumes. Courtesy of JMA (Volcanic activity of Suwanosejima June 2019).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Great Sitkin (United States) — July 2019 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small steam explosions in early June 2019

The Great Sitkin volcano is located about 40 km NE of Adak Island in the Aleutian Islands and has had a few short-lived eruptions over the past 100 years. Prior to the latest activity in early June 2019 described below, small phreatic explosions occurred in June and August 2018 (BGVN 43:09). An eruption in 1974 produced a lava dome in the center of the crater. The Alaska Volcano Observatory (AVO) is the primary source of information for this September 2018-June 2019 reporting period.

Low-level unrest occurred from September 2018 through February 2019 with slightly elevated seismic activity (figure 6). Small explosions were seismically detected by AVO on 30 October, 5 and 16 November, and 11 December 2018, but they were not seen in regional infrasound data and satellite data did not show an ash cloud.

On 1, 7, and 9 June 2019, AVO reported small steam explosions as well as slightly elevated seismic activity. Steam plumes and surficial evidence of an explosion were not observed during these events. On 18 June 2019 weakly elevated surface temperatures were recorded, field crews working on Adak observed some steam emissions, and a gas flight was conducted. Elevated concentrations of carbon dioxide detected above the lava dome were likely associated with the steam explosions earlier in the month (figures 7 and 8). From 23 June through the end of the month seismicity began to decline back to background levels.

Figure (see Caption) Figure 6. A steam plume was seen at the summit of Great Sitkin on 7 December 2018. Photo by Andy Lewis and Bob Boyd; courtesy of AVO/USGS.
Figure (see Caption) Figure 7. Some degassing was observed on the southern flank of the Great Sitkin during an overflight on 18 June 2019. Photo by Laura Clor; image courtesy of AVO/USGS.
Figure (see Caption) Figure 8. View of Great Sitkin with white plumes rising from the summit on 20 June 2019. Photo by Laura Clor, courtesy of AVO/USGS.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 25, Number 06 (June 2000)

Managing Editor: Richard Wunderman

Cameroon (Cameroon)

Explosive eruptions and a lava flow from two vents starting on 29 May

Colima (Mexico)

Low seismicity August 1999-May 2000; frequent explosions and evacuations

Copahue (Chile-Argentina)

Frequent ash explosions and acidic mudflows starting on 1 July

Etna (Italy)

Frequent Strombolian eruptions and high gas emissions March-June 2000

Guagua Pichincha (Ecuador)

Minor ash eruptions; partial collapse of January 2000 dome on 12 July

Hekla (Iceland)

Clarification of NASA airborne plume experiments on 29 February 2000

Irazu (Costa Rica)

Feeble microseismicity continues into early 2000

Kilauea (United States)

During May-July 2000, continued frequent surface flows and earthquakes

Lascar (Chile)

Ash eruption on 20-21 July

Miyakejima (Japan)

Magma intrusion within W flank and explosive eruption on 7 July

Momotombo (Nicaragua)

Increased seismic activity in June

Santa Maria (Guatemala)

January 2000 lava flow goes 2.5 km down S flank

Sheveluch (Russia)

Short-lived explosive eruptions 30 June-3 July

Soputan (Indonesia)

During May-July 2000, continued dome growth, lava flows, and several explosions

Soufriere Hills (United Kingdom)

Dome growth continues, reaches 950 m high during May-July 2000

Toya (Japan)

Eruption decreasing in intensity; precursors to 31 March eruption



Cameroon (Cameroon) — June 2000 Citation iconCite this Report

Cameroon

Cameroon

4.203°N, 9.17°E; summit elev. 4095 m

All times are local (unless otherwise noted)


Explosive eruptions and a lava flow from two vents starting on 29 May

Mt. Cameroon began erupting during the night of 28 May 2000. On 29 May, following a violent explosion, red-tinged fumaroles were observed at an elevation of 3,300 m. On May 30, an earthquake shook the provincial capital of Buea, located to the SE of the volcano. Volcanic ash and gases that were vented during the course of the eruption were blown to the W coast by NE winds.

The eruption occurred at two principle sites separated by 3 km. These sites lie on the central portion of the upper SE flank, upslope of the town of Buea and in the vicinity of vents active in 1904 and 1922. The first site, located at latitude 04°12'40" N and longitude 09°10'45" E and an elevation of 4,000 m, is composed of two craters aligned NE to SW. Juvenile material comprises less than 1% of the total volume of the pyroclastic material surrounding the vents. The larger pyroclasts were found farther away from the vent, while the finer material was deposited closest to the crater. The NE crater, with slopes that are fissured and unstable, showed relatively little activity compared with its neighbor to the SW. The eruption at the SW crater was characterized by sporadic explosions of gas and pyroclastic materials, including juvenile materials such as volcanic bombs, blocks, and scoria. There were no lava flows reported from this site.

The second vent lies at 04°11'15" N and 09°10' E at an elevation of 3,300 m. This site consists of a large open fissure oriented at N 40° E. The following features at the site run NE to SW along the fissure: two lava lakes surrounded by spatter cones, two craters in the process of forming cones with fluid lava, and several hectometer-sized (104 m2) fissure lava flows. The spatter cones are about 40 m from the associated lava lake.

The NE lava lake forms a 60 x 40 m ellipse. This lava lake was the source of the lava flows that moved towards the ocean to the S and away from many of the inhabited parts of the volcano's flanks. There were sporadic explosions at the lava lakes.

Contrary to some media reports that suggested the lava was advancing at rates up to 20-25 m/hour, a scientist from the Ministry of Territorial Administration reported that the lava moved at ~5 m/hour. The scientist also indicated that the lava flows were far from populated areas.

However, on 8 June, various news reports placed the lava flows within 5-7 km of the town of Buea. Reuters reported on 9 June that geologist Isaac Konifer Nijah, a member of a scientific team monitoring the volcano, considered the Buea area a high risk zone. Concern for the residents in this town prompted an evacuation plan for ~3,000 residents to the towns of Limbe to the SW and Tiko to the SE. However, the evacuation plan was not implemented because on 10 June the lava front halted its advance on the town.

The BBC reported that on 19 June, the Prime Minister of Cameroon, Peter Mafany Musonge, visited the village of Bokwango, which is on the outskirts of Buea. News reports stated that at this point the lava flows were 4 km from the edge of the village. However, no new activity had been reported by seismologists for several days preceding the visit.

Thanks to Pierre Vincent and the company ELF Aquitaine, an initially proprietary report on Mount Cameroon geology, eruptions, and hazards (including a geological map) were recently made available to the Smithsonian (Vincent, 1980). The same author has some earlier published work on this volcano (Vincent, 1971).

References. Vincent, Pierre M., 1980, GNL Project in Cameroon, geology and volcanology of Mount Cameroon: Report for ELF Aquitaine (in French), 11 p., appendices, and map (plate).

Vincent, Pierre M., 1971, New data about Cameroon Mountain volcano: 6th Colloquium on African Geology, Leicester, UK, April 1971, Jour. Geol. Soc. London 127, p. 414-415.

Geologic Background. Mount Cameroon, one of Africa's largest volcanoes, rises above the coast of west Cameroon. The massive steep-sided volcano of dominantly basaltic-to-trachybasaltic composition forms a volcanic horst constructed above a basement of Precambrian metamorphic rocks covered with Cretaceous to Quaternary sediments. More than 100 small cinder cones, often fissure-controlled parallel to the long axis of the 1400 km3 edifice, occur on the flanks and surrounding lowlands. A large satellitic peak, Etinde (also known as Little Cameroon), is located on the S flank near the coast. Historical activity was first observed in the 5th century BCE by the Carthaginian navigator Hannon. During historical time, moderate explosive and effusive eruptions have occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea. Explosive activity from two vents on the upper SE flank was reported in May 2000.

Information Contacts: US State Department, 2201 C St., NW, Washington, DC 20520 USA (URL: http://www.state.gov/); BBC (URL: http://news.bbc.co.uk/); Reuters (URL: http://www.reuters.com).


Colima (Mexico) — June 2000 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Low seismicity August 1999-May 2000; frequent explosions and evacuations

The following summarizes activity at Colima during the period from August 1999 to May 2000. As previously mentioned (BGVN 24:08), outbursts occurred on 5 and 17 July 1999. However, in the months that followed, August 1999 through May 2000, little activity occurred on Colima. Microearthquakes, sporadic eruptions and lahars were the most common events during these months.

During August through December 1999 Colima maintained low levels of seismicity, with few explosions or mudflows. Due to heavy precipitation on 2 September a lahar traveled under the Cordoban bridge without causing damage. Residents of Yerbabuena, La Becerrera, and Rancho El Jabali were told to avoid activities on the S-flank stream beds of the Cordoban, La Lumbre, San Antonio, and Montegrande rivers.

Landslides and lahars on the S and SW flanks during 5-6 September were quickly dispersed into La Lumbre and Cordoban drainages due to intense rains. Other monitored parameters showed no significant changes. During the week of 10 September seismicity remained low, with no degassing events or important explosions noted.

On 6 October at about 0120, residents from the village La Yerbabuena (8 km SW of the summit) reported a very short and light ashfall. The ashfall lasted only a few minutes, and prior to the fall residents reportedly heard "jet" sounds coming from the crater. Before the described events, the telemetered seismic network alerted the civil protection authorities, who then notified nearby villages of the activity. At 1700 on 12 October there were ground reports of an eruption that sent an ash cloud ~6 km.

During the first two weeks of November Colima ejected steam-and-ash an average of once per day. The estimated height of the columns varied from 200 to 1,000 m above the summit. Neither ballistic ejecta nor pyroclastic flows were observed. On 17 December seismicity remained stable, but some fumarolic and explosive emissions took place.

Beginning in January and continuing through May, ash explosions and steam emissions became frequent. Seismicity on 18 March remained low, yet Colima continued to produce fumes and explosions that were considered to be a high risk to the surrounding population. The evacuation of populations within a radius of 6.5-8.5 km from the summit was maintained by the State Systems of Civil Protection and the Mexican Army. After some explosions on 25 May these evacuations were again enforced.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Colima Volcano Observatory, University of Colima, Ave. 25 de Julio 965, Colima 28045 México (URL: https://portal.ucol.mx/cueiv/).


Copahue (Chile-Argentina) — June 2000 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


Frequent ash explosions and acidic mudflows starting on 1 July

An eruption of Copahue (figure 5) began on 1 July 2000. Ash-and-gas emissions, which have continued into late July, are considered to be Copahue's most vigorous activity in the past century. Reports were received from geologists in Argentina and Chile. Except where otherwise noted, Argentine geologists Adriana Bermúdez (CONICET) and Daniel Delpino (Civil Defense of Neuquén Province) reported information for 1-9 July, and Chilean geologists José Naranjo and Gustavo Fuentealba (both of SERNAGEOMIN) reported information from 10-13 July. The scientists submitted joint reports beginning on 13 July. All time references are to Argentina local time; Chilean time is one hour earlier (GMT - 4 hours).

Figure (see Caption) Figure 5. Preliminary geologic map of Copahue, showing outlines of Pliocene and Pleistocene calderas and post-caldera lava flows. Contour interval, 100 m. Modified from a previous map in BGVN 17:10. Courtesy of A. Bermúdez and D. Delpino.

Initial explosions, 1-2 July. Although visibility was poor in late June, at 0030 and at 0430 on 1 July local Argentine police and gendarmerie (National Guard) reported ash mixed with heavy snowfall, as well as a strong sulfur smell. At around 1145, lapilli and ashfall became heavier, eventually covering the snow and the products of previous eruptions around the summit. At 1200 the gendarmerie reported lapilli falling 7.5 km NE of the volcano, in the village of Copahue, Argentina. The alert status was set at yellow; the village's emergency committee restricted tourist access and helped to evacuate 200 people.

Explosions continued throughout 2 July with increasing intensity. Lapilli, ash, and sporadic bombs (15 cm in diameter) fell 8-9 km E on the town of Caviahue, Argentina, with up to 15 cm of materials from the day's explosions eventually being deposited in some areas (figure 6). Until 2345 there were explosions of varying intensities. Preliminary results of an examination of the deposits revealed that they were composed of a very fine silica, sulfur particles, accidental rock fragments from the conduit, and juvenile materials. In Caviahue, visibility was practically zero due to ash particles in the air, and heavy ashfall cut off power for several hours. By midday, eruption plumes blowing SE reached Loncopué, a small village 50 km from the volcano.

Figure (see Caption) Figure 6. Ashfall from the frequent eruptions that began [1 July] at Copahue and heavy snowfall have affected the reliability of power and potable water resources in the town of Caviahue, a popular ski area 8-9 km E of the volcano. Although the town is no longer under official evacuation, many inhabitants have not returned to battle current conditions. Courtesy of A. Bermúdez and D. Delpino.

Alert status was raised to orange on 2 July when ash was dispersed as far as 100 km away from the crater and the plume covered a total area of 2,000 km2. Maximum ash accumulation of 3-5 cm occurred over an area of 6 km2, including the town of Caviahue and the W sector of Lake Caviahue. Due to the ashfall, the surface of Lake Caviahue changed color from its normal deep blue to gray-green, and a water sample taken had a pH of 2.l.

Tests by Argentine geologists on ash samples deposited in Caviahue revealed a grain-size distribution of 15% coarse ash (> 1 mm), 80% fine ash (0.5-1.0 mm), and 5% fine ash dust (< 0.5 mm). The coarse ash contained a small quantity of juvenile and lapilli-sized (3-6 mm) accidental fragments; the juvenile materials were dark gray vitric scoria. Non-juvenile accessory materials accounted for 7-10% of the coarse ash and consisted primarily of white-gray silica from the bottom of the crater lake. The fine ash-sized particles had similar components and characteristics.

Irregularly shaped dark gray scoriae, 3-8 cm in size, were found as far as 12 km N of the crater; scoriae completely covered the area within a 1.0-1.5 km radius around the crater. The scoriae contained spherical vesicles 3-5 mm in diameter. Cooling cracks marked the scoriae's surfaces and their shapes had been modified during flight.

Ashfall was also reported 60 km SE of the volcano in the town of Loncopué, where the stream closest to the volcano had cloudy brown-gray waters.

Continuing activity through 25 July. Activity decreased after 2345 on 2 July. The only explosion of 3 July, at 1720 in the main crater, deposited tephra on the flanks and generated a dense, dark gray ash plume that blew NW and produced a local ashfall. According to the Buenos Aires Volcanic Ash Advisory Center, the ash plume reached an altitude of 10.6 km and blew NE. On 4 July there were explosions at 1030, 1830, and 2000. In the town of Caviahue, Delpino noted a strong sulfur smell and great booming sounds that caused windows to shake. A dark gray ash plume rose 2 km above the summit. Bermúdez and Delpino reported that at 0020 on 5 July a new cycle of rhythmic explosions began; by 1325 a total of 37 explosions had occurred. The biggest explosion, at 0515, generated a pyroclastic surge down the E and N slopes.

A report was received on 5 July from Ralco-Lepoy, a town 30 km SW of the volcano, indicating that dead fish had washed up along the banks of the Lomín river. The Lomín, as well as the Agrio river, which drain the acidic, active crater, were marked by a deep, dark-colored gully but there was no evidence of lahars. However, it is possible that ashfall covered up the evidence. The dead fish found along the Lomín River on 5 July confirmed that acidic mudflows from the crater had been channeled down this river. Chilean geologists Naranjo and Fuentealba recommended that states bordering the Lomín river (to the SW) and Queuco to Trapa-Trapa (to the N) be alerted that an acidic mudflow was moving down the river. Accordingly, authorities noted that inhabitants should be evacuated outside of an enforced safety radius. It was also recommended that professionals regularly measure the pH of affected Lomín drainages, meteorological reports be kept up to date, and that town officials periodically reevaluate the yellow alert.

Naranjo and Fuentealba also noted that at 2030 on 5 July a patrol of carabineros (Chilean National Guard) approached the volcano on horseback and observed small dark ash emissions moving SE from the volcano.

Observers in Argentina during the night of 5-6 July reported an incandescent pyroclastic emission flowing down the cone and, at one point, a white light emanating from the crater for ~15 seconds. In the same time interval, gendarmerie officers from Copahue village described "an orange-red light coming up from the crater." It is thought that the light was produced when magma rose to the surface but did not spill over the crater walls. They also noted the vertical ejection of large incandescent blocks that fell back into the crater, as well as smaller incandescent fragments that fell onto the volcano's slopes, rolled downhill, and broke up into smaller pieces.

On 6 July, Delpino reported to Naranjo and Fuentealba from Caviahue that the eruption was Strombolian with explosion pulses every 1-2 hours. Winds blew ash S of Caviahue without any ashfall in the town. There was no evidence of lahars or floods. Throughout the morning of 6 July snow continued, and there was zero visibility of the volcano.

Bermúdez and Delpino reported that during 0100-1020 on 7 July, loud explosions and ash emissions occurred at 15-minute intervals. At about 2000, the wind changed, blowing W, and ash began falling over Caviahue. About 1 mm of ashfall was observed from 20 km W of the crater.

The same day, ice blocks 15-20 cm in diameter, as well as ash and lapilli, were carried down the swollen Agrio river from the volcano's permanent ice cap. At 1300, a sample of the river water taken at the bridge near Caviahue had a pH of 2, and at 2000 a sample from the same location had a pH of 1.5. The Dulce stream source lies 4.5 km E of the cone and it flows 5.5 km W of the cone into Lake Caviahue. Ashfall altered the stream's typical pH of 7 to a pH of 2.5. Preliminary investigations by Argentina's Provincial Water Division also indicated an increased iron content.

A loud explosion summit at 0300 on 8 July awakened citizens of Caviahue; a day-long ash emission moved SE through clear skies. On 9 July at 0100 a glowing light was seen over the crater, but cloud cover obscured visual observations throughout the day.

Naranjo and Fuentealba reported that on 10 July, explosions were gray to dark brown and it is thought that the ash fell over a 25 km2 area to the W, in the direction of Chile. Ash reached the summit of neighboring Callaqui volcano, covering it in gray ash. Samples from this ashfall taken 4 km W of the active crater were found to contain juvenile volcanic glass fragments, 0.3-0.5 mm in diameter.

During 1200-1230 on 12 July, a Chilean overflight revealed that explosions inside the active crater (El Agrio) occurred at 1- to 3-minute intervals, ejecting fine material up to 500 m above the crater. This material was dispersed via a plume of fine ash and gases moving NNE for more than 250 km. Observers reported that 1-2 mm of fine ash was deposited in the village of Copahue. Throughout the day, activity increased and, at 2300, there was an explosion heard in Caviahue that was thought to have deposited 1-2 cm of ash 5 km NNE of Copahue. On 12 July, scientists noted that Copahue was in an eruptive phase of lower intensity (a Volcano Explosivity Index, VEI, of 1) compared to that seen on 1-2 July (an inferred VEI of 2).

At 1100 on 13 July, explosions generated white-gray to bluish gas emissions rising 200-300 m over the crater. A gas cloud with a strong sulfur odor remained trapped in the Agrio valley over a 10 km2 area; it later descended, and strong winds spread it over a 20 km2 area. At 2310, an explosion produced a 1-km-high plume and incandescent fragments were ejected onto the flanks of the cone reaching up to 1 km from the crater. The plume covered Caviahue, obscuring the moon, but there was no ashfall on the town.

A Chilean helicopter flight on the morning of 13 July observed explosions emitting pale gray ash columns up to 300 m above the crater rim. Winds dispersed the ash ENE to Caviahue. Carabineros sampling water at the source of the Lomín river found it slightly acidic (pH = 5-6).

At 1250 on 13 July, an eruption plume that rose 3-5 km over the crater was reported by military and civilian pilots. The column dispersed to the NE and was a reddish-brown color. Reports from Caviahue stated that on 15 July the eruption stayed at the same intensity as previous days, and fine ash was dispersed to the N. Ash samples from 13 July were found to have an andesitic composition and to include juvenile fragments, the presence of which indicates the volcano's potential to produce even larger explosions. Water samples from the Lomín river on the same date revealed high fluorine and sulfate levels.

At 1700-1730 on 16 July, and also between 0300 and 0400 on 17 July, a dusting of ash fell over Caviahue and there was a strong sulfur smell in the air. At 0905 on 18 July, a civilian pilot reported a pale gray ash column at 3.5-4 km above sea level (just over the top of the cordillera) dispersed over 10 km to the volcano's NNW. At this time, the ongoing eruptions were considered to be of VEI 1. Ash from the weak explosions was dispersed by low winds as it escaped from the crater.

At 2206 on 19 July, members of the gendarmerie reported that a series of explosions continued to generate columns of ash and water vapor 0.5-1.0 km above the crater. The plumes dispersed to the NE depositing a fine dusting of ash over the village of Copahue. A strong sulfurous odor was reported at 2100 in Caviahue. On 20 July activity remained low, and no noises or odors were detected. Winds carried the gas-and-ash plume NNE, depositing a light ashfall over the N sector of Caviahue.

On 21 July, light ashfall dusted Caviahue and, although the crater was obscured, ash columns were sighted rising above the summit and through the clouds to heights of 700-1,000 m. At 1048 (Argentina), Caviahue residents heard a series of rhythmic explosions occurring every 2-5 minutes for one hour. The plume carried ash NNE toward Trapa-Trapa. The volcano was obscured by cloud cover on 22 July but intermittent explosions continued emitting ash plumes carried NE toward Trapa-Trapa.

A seismological team from the Southern Andes Volcanological Observatory (OVDAS) installed a portable seismic station on 21 July at a spot ~2 km NNW of the active crater in the vicinity of Trapa-Trapa, Chile. After taking 15 hours of readings, the team left on 23 July after cold temperatures had prematurely reduced battery power. These readings were fortunately during a time of elevated activity, and registered seismic events generally correlated with visual observations. Despite this similarity, it was impossible to establish an exact correlation between the periodicity of the explosions (occurring every 1-3 minutes) and their microseismic signals at distance.

During the stay of the seismic team, no ashfall was reported in the Queco river region and no correlation was established between seismicity and sporadic thundering sounds reported by villagers in the area. These sounds have been attributed to chunks of the ice cap breaking off and rolling down Copahue's flanks. Due to over 3 m of snowfall, access to the area is difficult.

Explosions of low to intermediate intensity continued emitting ash-and-gas plumes on 23 July. The clouds continued to partially obscure the volcano, but at 1930 an ash column blew E toward Caviahue. On 24 July, the active crater was producing small explosions and dark gray ash emissions; a dusting of ash fell over Caviahue. When the Argentina gendarmerie and the Chilean carabineros compared respective observations no discrepancies were found.

Two pilots reported a strong sulfur odor at 1.8-2.1 km altitude, ~250 km WSW of Copahue on 25 July. At 1000 another pilot reported an ash plume extending 200 km WNW from the summit; plume height was ~2 km and width was 10-15 km. Although this explosion was not seen from Caviahue, a light ashfall fell over the town.

Due to the continued frequent ashfalls over Caviahue, town officials decided to reestablish a yellow alert. The prolonged fall of fluorine-rich ash has posed a possible problem for grazing animals in the affected fields, but heavy snowfall has made it less likely that vegetation will absorb the fluorine.

Background. Volcan Copahue is a composite cone constructed along the Chile-Argentina border. The cone lies within an 8-km-wide caldera formed 0.6 million years ago at a spot near the NW rim of the Pliocene, 20 x 15 km Del Agrio caldera. Copahue's eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains an acidic crater lake (also referred to as Del Agrio) and displays intense fumarolic activity. Infrequent explosive eruptions have been recorded since the 18th century. Eruptions in 1992 and 1995 produced several phreatic and phreatomagmatic explosions and emissions that contained higher levels of water vapor but lower ash particle content than the current eruption. The current eruption has been of longer duration than either of the previous two.

The Agrio river emerges from a crack in the edifice of the volcano 50 m below the active El Agrio crater. The river water is highly acidic and has a yellow color. Near Caviahue, the Agrio river enters the Caviahue lake basin. The lake is formed by 2 glacial finger lakes over a 9.2 km2 area and is a reservoir of acidic water.

Most residents of Copahue village leave each winter, but Caviahue's population of 400 can grow to 10,000 during the ski season. Eruption-related damage has cut off power and potable water, and there remains an inability to keep ski slopes cleared of ash. In late July there were reportedly only about 419 people staying in Caviahue.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Adriana Bermúdez, National Council of Scientific and Technical Research (CONICET) and the National University of Comahue, Buenos Aires 1400, Neuquén Capital, Argentina; Daniel Delpino, Advisor to the Civil Defense of Neuquén Province, Argentina and the National University of Comahue, Buenos Aires 1400, Neuquén Capital, Argentina; José Naranjo, National Geology and Mining Service (SERNAGEOMIN), P.O. Box 10465, Avda. Santa Maria 0104, Providencia, Santiago, Chile; Gustavo Fuentealba, Southern Andes Volcanological Observatory (OVDAS), SERNAGEOMIN, P.O. Box 10465, Avda. Santa Maria 0104, Providencia, Santiago, Chile; Buenos Aires Volcanic Ash Advisory Center, Argentina (URL: http://www.ssd.noaa.gov/ VAAC/OTH/AG/messages.html).


Etna (Italy) — June 2000 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Frequent Strombolian eruptions and high gas emissions March-June 2000

Between March and June 2000, Etna's activity was characterized by several Strombolian eruptions and high gas emissions predominantly at the Southeast Crater (SEC). Sixty-four strong eruptive episodes have occurred since the new eruptive series began on 26 January 2000 (BGVN 25:03), with 19 episodes between March and June. The information for the following report is based on official weekly monitoring reports posted on the Poseidon website.

Activity during 29 March-April. Through March lava flows and ash emissions occurred frequently, and on 29 March at about 1900, lava flows were generated on the S sector of the SEC. Shortly after 0730 on 1 April intermittent ash emissions rose to ~3 km and fell on the E flank. An episode on 3 April produced strong rumblings that were felt in the area of Zafferana Etnea, with ashfall in the area of Giardini (NE sector). On 6 April, between 1010 and 1130, explosive activity produced a lava fountain and lava flows. Over the following days the only activity at the volcano was abundant emissions of steam from Bocca Nuova (BN).

On 10 and 11 April, modest Strombolian activity was observed at BN, which became more sporadic in the following days then quieted on the evening of 14 April. On 15 April, at about 1700, weak effusive activity resumed from the vent at the S foot of SEC. At 0928 explosive activity recommenced with abundant lava emission. Ash also erupted from SEC's summit and reached 2 km altitude. Intense but irregular explosive activity was also present at the BN. Activity peaked at 1235 with an eruptive column that enveloped the SEC and rose to an estimated height of 6 km; the column produced abundant fall of ash and lapilli on the E slope. The episode ended abruptly at 1250. During this time Voragine (VOR) exhibited slow steam emission.

At 0545 on 26 April, intense Strombolian activity began and was followed at 0637 by an ash emission that rose several kilometers. In addition, a series of lava flows occurred from the SEC. Beginning at 0723, explosive activity diminished and had ended by 0740. In the following days there were no further eruptive events except for occasional, and sometimes intense, gas emissions from the BN.

Activity during May 2000. During 1-7 May, there was strong gas emission. On 5 May, a strong new gas emission phase began at the SEC, representing the 52nd episode since 26 January 2000. A dense eruptive column rose several kilometers over the volcano's summit and deposited several centimeters of ash on local villages to the SE. At about 1800 the volcanic tremors and eruptive column waned, leaving weak Strombolian activity that ended around 1824. After 5 May, the SEC returned to a state of quiet. The Northeast Crater (NEC) showed intense gas emission, with varied ash content. Weak Strombolian activity persisted at the BN.

Eruptive activity during 8-14 May consisted of abundant steam emissions, mainly from BN and NEC. The BN was the most active crater, emitting copious amounts of steam from at least two vents. The NEC also had abundant steam emissions with varied ash content. Meanwhile, VOR emitted modest amounts of gas and SEC virtually nothing.

During 15-21 May there were four strong gas emissions from the SEC. During the first strong episode, on 15 May, tephra covered the E flank of the volcano. A second episode during the night of 15-16 May consisted of a violent emission of tephra from 2100-2150 that covered the SE flank. The third episode began with Strombolian activity at the SEC then changed rapidly to well-developed lava fountains between 2240 and 2300. Activity abruptly decreased and ended completely within the space of a few minutes. A fourth strong episode occurred about 2145 on 19 May with increased activity from the lava flow on the N flank of the SEC. Violent gas emissions occurred shortly after 2200 and ended within an hour. Significant eruptive activity continued from the NEC, though more discontinuous than during the preceding weeks. The abundant emissions of ash increased significantly beginning 17 May, continuing for several hours. The ash emissions from the NEC were independent of the concurrent increase of volcanic tremors and activity of the SEC, except for occasional temporal coincidence. Steam emissions from the BN were also intense, sometimes associated with weak Strombolian intracrater activity. Slow gas emissions appeared from the VOR.

Two strong episodes occurred at SEC on 23 and 27 May. Activity at the other craters consisted of above normal ash emissions from NEC, intense gas emissions at BN, and weak fumarolic activity at VOR. The 57th eruptive episode of the series began on 23 May with strong explosive activity between 0301 and 0329 accompanied by lava flows down the S flank of the volcano. An episode on 27 May was obscured by poor meteorological conditions.

Activity through June 2000. Two eruptive episodes occurred at SEC on 1 June. First, at 0814, sustained lava fountains began, with some reaching an altitude of 600-700 m before ending around 0832. The column of ash and steam rose for several thousands of meters over the summit and produced a fall of fine pyroclastic material over much of the countryside on Etna's S slope, as far as Catania. At 1930 on 1 June another episode began with a considerable increase in the flow of lava.

On 5 June a strong gas emission at SEC went on for about thirty minutes, during which an ash-and-steam cloud rose to ~3-4 km. The ashfall covered an ample sector of the SE and S region, extending to the Plain of Catania and creating difficulties in air traffic to and from Fonatanrossa and Sigonella airports. As with preceding episodes, the gas emissions were associated with lava flows, primarily on the N slope of the SEC. Just after 1230 on 8 June, an increase in this same lava flow announced another strong gas emission phase beginning with a Strombolian eruption. There was a progressive increase in the explosive activity which reached its peak between 1356 and 1426. The fallout from the eruptive cloud was distributed toward the N.

Another strong gas emission began on 14 June at about 0700 with Strombolian characteristics. Ash emissions reached a climax between 0920 and 0940. On 24 June the 64th episode of activity at SEC occurred when a strong gas emission issued from NEC and VOR. This episode began with an increase of lava flow activity from the fracture on the N flank of the SEC. Later, Strombolian activity at the SEC's summit crater made a transition at about 2130 to a more violent, continuous gas emission phase which reached a peak about 2144, before ending shortly thereafter. After the 24 June activity there were no eruptions the rest of the month, but sporadic ash emissions occurred at all summit craters, particularly at BN and VOR.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sistema Poseidon, a cooperative project supported by both the Italian Government and the Sicilian Regional Government, and operated by several scientific institutions (URL: http://www.ct.ingv.it/en/chi-siamo/la-sezione.html).


Guagua Pichincha (Ecuador) — June 2000 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Minor ash eruptions; partial collapse of January 2000 dome on 12 July

This report discusses activity at Guagua Pichincha during the months of June and July 2000. A Washington Volcanic Ash Advisory Center (VAAC) advisory was issued at 1337 on 2 June after a minor ash explosion propelled a plume to 7.3 km altitude above the summit. Another small eruption occurred one week later at 0941 on 9 June. Emissions from this second eruption did not rise more than 5 km, but more earthquakes and rockfalls indicated increasing instability of the January 2000 lava dome.

At 0953 on 12 July the dome experienced a partial collapse on its W side. This is the area of the dome closest to the W opening of the horseshoe-shaped caldera. High on the slope of the volcano's W flank, just below the caldera's opening, is the origin of the Cristál river. A long-period (LP) earthquake with a reduced displacement of 14.5 cm2 probably destabilized the dome and caused the partial collapse. Judging by seismic data, the ash plume may have risen ~12 km above the crater, but cloud cover inhibited visual observations. A strong wind blew most ash W, away from the city of Quito, and very fine ash blanketed the caldera. Seismicity remained low after the eruption, but a slight increase in the number of rockfalls indicated that the dome was still unstable.

Two other events occurred during July. An ash plume was also sighted at 0900 on 23 July at an estimated height of 6.1 km moving W. An aviation notice at 0900 on 24 July described ash from six emissions over the course of the previous night that reached 4.8 km altitude, a height comparable to the volcano's summit elevation.

Over 14,530 LP events were registered in the month of March and this number decreased to 6,892 in April; there was a reported average of 271 LP events daily for the year 2000. The number of monthly explosions dropped to almost zero during the period of January to April; this was the first time there have been so few explosions since the month of July 1998. Volcano-tectonic seismicity also dropped dramatically during January-July 2000, averaging approximately the same number of monthly events as seen prior to activity that began in October 1999. The number of rockfall events has remained high since dome growth began in January 2000; thus far in the year 2000 there has been an average of 72 daily rockfalls. Beginning around June 2000 these events have occurred 100-200 times per day. Two main seismic centers have been inferred at Guagua Pichincha from data; one center is less than 1 km below the crater surface and the second ~2-4 km deeper. Continued fumarolic activity has been moderate but variable.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch, NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Associated Press.


Hekla (Iceland) — June 2000 Citation iconCite this Report

Hekla

Iceland

63.983°N, 19.666°W; summit elev. 1490 m

All times are local (unless otherwise noted)


Clarification of NASA airborne plume experiments on 29 February 2000

NASA's Dryden Flight Research Center (DFRC) advised that information concerning two flights of their DC-8 aircraft as reported in BGVN 25:02 contained errors and requested that the information be corrected with additional details as follows:

"For approximately seven minutes starting at 0510 during a transit flight on 29 February to Kiruna, Sweden, a NASA DC-8 aircraft with a payload of SOLVE (SAGE III Ozone Loss and Validation Experiment) sensors flew through the plume ~11.3 km NNE of Iceland at 76 °N and 5 °W, just off the Greenland coastline. The plume extended up to ~13 km altitude, well into the lower stratosphere. The aircraft passed thorough the volcanic ash far N and W, and at a flight level much higher, than the predictions reported by the Volcanic Ash Advisory Center (VAAC), London. Instruments measured many in situ trace gases, SO2, HNO3, NO, NOy, O3, volatile and non-volatile aerosols, and aerosol size distribution. The scientific team reported substantial increases in CN, NOy, HNO3, CO, and particle counts, O3 went to nearly zero, H2O increased, and strong scattering layers up to 13 km were detected.

"A flight on 5 March detected enhanced aerosols and SO2 at 1301, but by that time the plume was so diluted that it represented no danger to the aircraft. During the three weeks following the initial encounter the DC-8 detected remnants of the plume trapped within the polar vortex. The resulting analysis concluded that volatile aerosols increased and the sizes of non-volatile large aerosols decreased."

NASA-DFRC also advised that the statement about the plume being a "very impressive, orange, airfoil-shaped feature in the pre-dawn sky" was erroneous. Post-flight interviews with the pilot indicated that there was no moon out, therefore pitch black sky conditions existed at the time of the encounter. The pilots had no visual evidence of flying into the plume.

Geologic Background. One of Iceland's most prominent and active volcanoes, Hekla lies near the southern end of the eastern rift zone. Hekla occupies a rift-transform junction, and has produced basaltic andesites, in contrast to the tholeiitic basalts typical of Icelandic rift zone volcanoes. Vatnafjöll, a 40-km-long, 9-km-wide group of basaltic fissures and crater rows immediately SE of Hekla forms a part of the Hekla-Vatnafjöll volcanic system. A 5.5-km-long fissure, Heklugjá, cuts across the 1491-m-high Hekla volcano and is often active along its full length during major eruptions. Repeated eruptions along this rift, which is oblique to most rifting structures in the eastern volcanic zone, are responsible for Hekla's elongated ENE-WSW profile. Frequent large silicic explosive eruptions during historical time have deposited tephra throughout Iceland, providing valuable time markers used to date eruptions from other Icelandic volcanoes. Hekla tephras are generally rich in fluorine and are consequently very hazardous to grazing animals. Extensive lava flows from historical eruptions, which date back to 1104 CE, cover much of the volcano's flanks.

Information Contacts: Gary Shelton, NASA, Dryden Flight Research Center, P.O. Box 273, Edwards, CA 93523-0273 USA.


Irazu (Costa Rica) — June 2000 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Feeble microseismicity continues into early 2000

This report covers January-June 2000. In January seismographic station IRZ2 (5 km SW of the active crater) recorded seven small-magnitude earthquakes. During February and March no activity was recorded. In April, May, and June, respectively, IRZ2 recorded 10, 12, and 30 earthquakes. The latter month included low-frequency events.

During May the level of the crater lake decreased by 50 cm. During the dry period, the lake's color was yellow/green, and a significant amount of algae covered its surface. On the lake's NE and S shore lines constant bubbling continued; the temperature of the lake was 18°C. The E, N, and W crater walls continued sliding toward the lake. Fumarolic activity on the NE flank continued at a low level.

In June the crater lake's surface rose 40 cm in comparison to May. The lake color was now green and its surface was still covered by abundant algae. The NE crater wall continued sliding, partly covering some fumaroles while others completely disappeared. Also, along the NE wall three new thermal features appeared with temperatures that fluctuated between 22 and 54°C. On the NE and S shore the bubbling stopped during June.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Kilauea (United States) — June 2000 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


During May-July 2000, continued frequent surface flows and earthquakes

The period from 1 May through 17 July 2000 was characterized by frequent surface flows and earthquakes. On 9 May a thick steam and sulfur dioxide fume formed SW of Pu`u `O`o; such fumes, or vog, have often obscured the crater for the past few months. The prominent fumes came from skylights (holes in roofs of lava tubes) along the active tubes leading to a narrow dark aa flow that emerged onto the surface on 6-7 May.

On 15 May lava broke frequently onto the surface, widening the active flow field toward the E. During 16-25 May very little activity took place. On 26 May at 0457, heavy vog hung over Pulama pali and slowly drifted downslope. The ocean entry at Waha`ula remained vigorous over the past several weeks, building a bench 40-45 m seaward of the former coastline (figure 147).

Figure (see Caption) Figure 147. Map of Kilauea showing lava flows (black) on Pulama pali and the coastal plain active since October 1999 through 1 July 2000, as well as flows erupted earlier from Pu`u `O`o and Kupaianaha. Courtesy of the USGS Hawaiian Volcano Observatory.

On the afternoon of 29 May two successive earthquakes occurred on Kilauea's S flank. The earthquakes had a preliminary magnitude of 4 and were felt in the town of Hilo 45 km NW of Kilauea.

Observations of the Pu`u `O`o cone on 1 June revealed no significant changes in the crater or collapse pits on the S and W flanks (figure 148). On the E crater rim, gentle "sloshing" sounds were heard, indicating lava at a shallow level. Direct observation into the vent was prevented by heavy fume. The Pu`u `O`o crater contains three pond vents and two hornitos. Most of these originated during September-November 1999 intracrater activity. Since then the crater has often been obscured by fume, but occasionally HVO observers have witnessed active lava within these vents.

Figure (see Caption) Figure 148. A diagram of the Pu`u `O`o cone and surroundings at Kilauea as of March 2000 showing the area covered by lava since February 1997 during episode 55 (light gray). Inside the crater of Pu`u `O`o, the "trough" is the drained lava pond of September-October 1999. The central portion of the trough was briefly filled with active lava in February 2000. Puka Nui is the prominent collapse pit on the SW flank of Pu`u `O`o, which was floored with lava during September-October 1999. Puka Nui is a slowly expanding collapse crater that has consumed part of the tephra cone and surrounding shield on Pu`u `O`o's SW flank. Flank vents active in 1997 have built the south shield, minishield, and 55 cone. Courtesy of Steven Brantley and Christina Heliker, USGS Hawaiian Volcano Observatory.

The S shield (figure 148) has about 20 m of relief; the minishield, less than 10 m. The episode 55 cone was about 10 m high; yet has subsided into a slowly expanding collapse crater. The cracks adjacent to the pit wall show the expansion of the 55 cone's pit. These cracks are as wide as 1-2 m and some have slight vertical offsets. Major subsidence occurs in abrupt stages. Entire collapse craters 10-30 m deep and 50 m across form in a few hours or less. The cracked ground then remains stable for weeks or months. The W gap, which formed in January 1997, is the result of the subsidence along the E-rift axis. An E-rift intrusion in September 1999 led to a temporary shutdown of volcanic activity at Pu`u `O`o. When activity resumed, new small spatter cones were active briefly, shedding the lava flows shown as 1999 flows on the sketch map.

Throughout the week of 11-17 June activity remained stable. Lava continued to flow to the sea from Waha`ula entry, and from the entry to its W. Surface lava flows were visible sporadically on Pulama pali and elsewhere. Volcanic tremor near Pu`u `O`o remained weak to moderate.

On 13 June rain cleared vog from Holei Pali and enabled good views of the flow field in the morning. Lava continued to enter the ocean, not only at the Waha`ula entry but also at other entries a few hundred meters to the W (figure 147). Surface flows were apparent several hundred meters inland, and visitors reported breakouts near the western edge of the present flow field for the past several days. Pulama pali remained dark, but the fumes rolling down the pali came from active lava tubes feeding the active ocean entries and surface breakouts. Due to rain clouds and volcanic gas in the crater center, Pu`u `O`o was dark on the morning of 14 June. Seismicity was low across the island. Volcanic tremor near Pu`u `O`o remained weak to moderate. Kilauea's summit tilt and the tilt near and on Pu`u `O`o and all along the E rift zone were flat and stable.

Two moderate steam plumes rose from coastal entries on the afternoon of 15 June. Summit and rift-zone tilt remained steady, volcanic tremor at Pu`u `O`o was moderate and continued, and there was no unusual earthquake activity. Apparently on 15 June the eruption continued through tubes, with relatively little entering the sea.

On 16-17 June the lava bench at the Waha`ula entry was 30-50 m wide. On top of Pulama pali lava moved through the tube at a speed of ~10 km/hour. On 17 June, from 1330 to 1415, observations during a helicopter flight revealed more lava on the flow field a few hundred meters inland of Waha`ula. As movement of lava continued in Waha`ula, for the first time in several weeks a surface breakout was visible on Pulama pali between 1830 and 2030 on the evening of 17 June. The lava appeared from a distance to be aa and moved slowly down the middle third of the pali, near the eastern edge of the flow field W of Royal Gardens. On the evening of 17 June the Waha`ula entry , and another entry ~800 m to the W became active for several hours.

No breakouts were visible on 20 June on Waha`ula, Pulama pali, or the coastal flat. Fume continued to blanket the flow path down the pali. Above Pulama pali a new ledge was observed on 25 June, only ~1 m below the surface, at 642 m elevation. The ledge indicated that the level of lava in the tube rose temporarily and then subsided, and a breakout was observed at 686 m elevation.

During July there were frequent surface flows. On 6 July a substantial new pahoehoe flow began from a breakout point at about 200 m elevation on Pulama pali. The flow was ~500 m long and 150-200 m wide. Lava continued to spill into the sea at three sites. The most vigorous entry remained at Waha`ula, which generated two steam plumes on 6 July. The Kamokuna entry, the westernmost active bench, was less vigorous than Waha`ula but created a substantially larger steam plume. During mid-day 16 July, several entries were active: Waha`ula was the most active and Kamokuna the second most active. Several moderate-size surface flows were active in the eastern part of the flow field, between Royal Gardens and the coast. Heavy fume continued to flow down Pulama pali above the lava tube system.

Overall the seismicity and volcanic tremor for the months of May through July remained moderate and stable in the area around Kilauea's summit. Within the summit of Kilauea activity has remained slightly elevated.

Background. Kilauea is one of five coalescing volcanoes that comprise the island of Hawaii. Historically its eruptions originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. The latest Kilauea eruption began in January 1983 along the E rift zone. The eruption's early phases, or episodes, occurred along a portion of the rift zone that extends from Napau Crater on the uprift end (towards the summit) to ~8 km E on the downrift end (towards the sea). Activity eventually centered on the area and crater that was later named Pu`u `O`o.

Between July 1986 and January 1992, the Kupaianaha lava lake was active ~3 km NE of Pu`u `O`o. It was during this period that the town of Kalapana and a majority of the 181 homes lost were destroyed. In December 1991, one month prior to the shutdown of Kupaianaha, eruptive activity returned to Pu`u `O`o. More than 1 km3 of lava has erupted during the 14 years of activity (January 1983-January 1997).

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Lascar (Chile) — June 2000 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Ash eruption on 20-21 July

At about 1044 on 20 July 2000, an eruption began at Lascar volcano that lasted until 1509. The Washington VAAC reported an ash advisory at 1509 for an ash plume that extended 660 km to the E, stretching from N Chile across S Bolivia and N Argentina and into W central Paraguay. At that time, the plume was traveling at speeds of up to 130 km/hour, reached altitudes of 10.7-13.7 km, and was reported to be 103 km wide.

Residents of the village of Jama, located 60 km ENE of the volcano on the Argentina-Chile border, reported feeling an earthquake before seeing a white mushroom cloud that rose 4-5 km high and rapidly blew E, depositing 1-2 mm of ash over the village. Several explosions were felt and heard 160 km ESE in San Antonio de los Cobres, but there were no reports of any injuries or damage. Activity continued into 21 July with small explosions producing plumes 200-300 m above the summit. The volcano is in a sparsely populated area so no evacuations were necessary.

According to Matthews and others (1997) Lascar has undergone four recognized cycles between 1984 and 1993. In each of these cycles, a lava dome is extruded in the active crater accompanied by vigorous degassing through high-temperature, high-velocity fumaroles on and around the dome. The dome then subsides into the conduit while the velocity and gas output of the fumaroles decrease; the cycle ends with violent explosive activity. No new lava was immediately extruded after the dome collapsed in the explosive 1993 eruption, thus breaking the previous pattern.

Background. Lascar is the most active volcano of the northern Chilean Andes; it is characterized by its persistent fumarolic activity, steam eruptions, and occasional vulcanian eruptions. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters along a NE-SW trend.

Matthews and others (1997) discussed Lascar's evolution in four phases starting at ~50 ka. During phase I, an edifice was established on the E side, and pyroxene andesite lavas erupted. Phase II saw the development of the W edifice with a subglacial andesitic eruption, and the destruction of a substantial dome, arguably the volcano's most explosive event. In Phase III, a stratocone was constructed and a major andesitic explosive eruption generated scoria flows, known as the Tumbres deposits, dated at 9.2 ka. Phase IV activity shifted back to the E, leaving pyroclastic deposits dated at 7.1 ka. Prominent Phase IV lava flows extended NW and were later truncated by the formation of three deep collapse craters that mark the W migration of the active center. The current active vent discharges in the deepest of these craters, which is 800 m in diameter and 300 m deep. Frequent explosive eruptions have been recorded since the mid-19th century.

Reference. Matthews, S.J., Gardeweg, M.C., and Sparks, R.S.J., 1997, The 1894 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions: Bulletin of Volcanology, v. 59, p. 72-82.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: José Viramonte, Universidad Nacional de Salta and CONICET, Buenos Aires 177 -4400 Salta, Argentina; George Stephens, NOAA Operational Significant Events Imagery Support Team, World Weather Bldg., 5200 Auth Road, Rm. 510, NOAA/NESDIS, Camp Springs, MD 20748 (URL: https://www.nnvl.noaa.gov/); Associated Press.


Miyakejima (Japan) — June 2000 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Magma intrusion within W flank and explosive eruption on 7 July

The 27 June 2000 water discoloration ~1 km off the W shore of the island of Miyake-jima (BGVN 25:05) prompted considerable investigation. Remote Operation Vehicle (ROV) work and multi-beam side-scan sonar revealed fractures and what appeared to be three ocean-floor craters around the area of discoloration. Crustal deformation found in this region implies that cracks have opened under the W flank of the volcano. Magma intrusion was confirmed to have occurred in the W flank of the volcano around the time of the 27 June event. The absence of scoria or other eruptive products makes it likely that the event was thermal water released due to intrusion.

Magma intrusion is also thought to be the cause of a series of earthquakes that began on 26 June. Hypocenters migrated from a central position under the island in a curve to the W, NW, and N, reaching a position ~70 km NNW of the island by 21 July (figure 5).

Figure (see Caption) Figure 5. A map showing Miyake-jima (lower right-hand corner) and the NW migration of hypocenters, 26 June-21 July 2000. Hypocenters were centered under the summit when activity began and then migrated to a submarine location ~ 10 km NW. This movement was thought to be related to magma intruding to the W. Labels for the higher-magnitude events indicate the month/day, magnitude, and hypocenter depth. Courtesy of the Japan Meteorological Agency.

Miyake-jima's mayor, Naoyuki Hirose, lifted the evacuation order for the SE district of Tsubota on 29 June, permitting hundreds of the almost 2,000 evacuees to return home. Approximately half of the island's population of 4,000 had been evacuated on 26 June.

At 0414 on 7 July, an eruption from the summit crater sent ash and rock into the sky; plumes dispersed ash over wide areas of the island. The eruption continued until 1110 and about 140 residents had to be evacuated from the N sector of the island to protect them from heavy ashfall. A second eruption at 1550 sent an ash column 1 km above the crater, ejected rocks, and produced loud booming noises. On 8 July there was a weak yellow-colored emission. Closer inspection of this last eruption revealed that very little material had been ejected, but a pit crater ~200 m in diameter and 100-200 m deep had formed. It is thought that the pit crater marked an empty cavity left when magma progressed from the summit area and intruded to the W.

The month-long crisis (figure 5) involved more than 17,500 earthquakes, including 5,480 strong enough to be felt by humans. The Miyake-jima earthquake swarm included a 7 July, M 5.2 event centered 25 km NW of Miyake-jima under the young volcanic islands of Nii-jima and Kozu-shima at 10 km depth, and a 1 July, M 6.4 event that killed one man on Kozu-shima by rockfall.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2500 years ago. Parasitic craters and vents, including maars near the coast and radially oriented fissure vents, dot the flanks of the volcano. Frequent historical eruptions have occurred since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit caldera was slowly formed by subsidence during an eruption in 2000; by October of that year the crater floor had dropped to only 230 m above sea level.

Information Contacts: Geological Survey of Japan, Higashi 1-1-3, Tsukuba, Ibaraki 305 Japan; Japan Meteorological Agency, Tokyo, Japan; Associated Press; Reuters.


Momotombo (Nicaragua) — June 2000 Citation iconCite this Report

Momotombo

Nicaragua

12.423°N, 86.539°W; summit elev. 1270 m

All times are local (unless otherwise noted)


Increased seismic activity in June

Seismicity remained stable between November 1999 and April 2000. In May 2000 a seismic swarm began near the volcano, and in June there was heightened seismicity.

During 9-11 June the INETER seismic network registered over 500 earthquakes near Momotombo, 100 of which were located. Many of the earthquakes were between M 3.4 and 4.1 (figure 8), and occurred at depths less than 5 km. The small epicentral area was directly under a geothermal plant on the S slope of the volcano, between Momotombo's crater and the coast of Lake Managua. A similar area was the site of seismic swarms in past years, with the most recent occurrence in May 2000. Some of the earthquakes on 9 June were felt by the personnel of the geothermal plant 5 km SW of the crater and one was felt by several people in the town of Nagarote. INETER stated that an eruption could affect the geothermal plant's 96 employees, as well as residents of towns bordering the volcano. Continuous seismic tremor was also observed at the volcano, which was attributed to volcanic processes rather than movements at tectonic faults. The number of seismic events began to decrease on 11 June. From 12 to 13 June, 60 earthquakes occurred with seven epicenters located. In comparison, 150 earthquakes occurred from 9 to 10 June with 38 epicenters located. After 13 June the number of earthquakes gradually decreased to normal levels.

Figure (see Caption) Figure 8. Locations of earthquake epicenters at Momotombo with magnitudes less than 3.8 (circles), and magnitudes between 3.8 and 4.1 (stars) from 9 to 16 June 2000. Courtesy of INETER.

Julio Alvarez, Jorge Cross, Arming Saballos (all INETER/Vulcanología), and Eduardo Mayorga visited the volcano on 15 June to measure the temperature of fumaroles in the crater zone. Temperature measurements conducted at fumaroles in the volcano's dome yielded values between 255 and 933 °C (figure 9). The highest temperature was found near the N edge of the crater.

Figure (see Caption) Figure 9. Sketch of Momotombo's active crater showing fumarole temperatures on 15 June 2000. Areas of fumarolic activity are gray. View is towards the S; the crater is ~ 150 m wide. Courtesy of INETER.

Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Santa Maria (Guatemala) — June 2000 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


January 2000 lava flow goes 2.5 km down S flank

A blocky lava flow fed from the Caliente vent, active since July 1999 (see BGVN 24:12), had advanced nearly 2.5 km by the end of January 2000. The thermal anomaly related to this flow as measured on the 23 January Landsat 7 Enhanced Thematic Mapper (ETM+) is ~2,370 m long and 60-120 m wide. The flow extended S down the flank of the Santiaguito dome complex before being deflected SW by a low ridge and moving over the top of the 1986-89 flow (figure 29). A ~50 m-wide axial zone of the flow was very steep with a front slope of 60-70°. This ~30-m high axial zone advanced downward and collapsed into the sheer-sided ravine that forms the upper reaches of the Río Nimá II. The marginal flow front is ~18 m thick and its slope is smaller (~32°). As 2- to 5-m-wide sections of the flow front moved, minor collapses occurred at a rate of 1 to 2 per minute. Ash clouds generated by these collapses had temperatures of 185°C, and flow temperatures as high as 531°C were measured at a freshly exposed section of the axial zone. Temperatures for the blocky crust capping the flow front were lower, typically 34-76°C.

Figure (see Caption) Figure 29. Sketch map of Santiaguito showing the January 2000 location of the blocky lava flow that began in July 1999. Also marked are lava flows emplaced between 1990 and 1999, as identified from an analysis of a Thematic Mapper time-series of 13 images. Using this time series the blocky flow which breached the 1902 crater rim is believed to have occurred during 1996-97, where "a" indicates the new aggradation load supply to Río Nimá I. Courtesy of Eddie Sánchez, Otoniel Matías, Andy Harris, Luke Flynn, Bill Rose, James Vallance, Edouard Gegout.

On 23 January, the Caliente vent was full. The 23 January ETM+ image shows this zone as an intense, thermal anomaly, 120-150 m in diameter. Small ash eruptions occurred at a rate of 1-2 events per hour producing ash plumes that extended kilometers above the vent. More powerful events generated small pyroclastic flows as well as rock falls. Both the dome and upper flow area collapse frequently produced audible rock falls that could be heard from a distance of ~1.5 km. Thirty-seven (37) rockfalls were heard on 23 January; 7 of which were incandescent as hot blocks from the dome and upper flow bounced down the flank of the dome.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Eddie Sánchez and Otoniel Matías, Instituto Nacional de Sismología, Vulcanología, Meteorología e Hydrología (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala; Andy Harris and Luke Flynn, IGP/SOEST, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA; Bill Rose, Department of Geological Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA; James Vallance, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec H3A 2K6, Canada; Edouard Gegout, c/o European Volcanological Society, C.P.1-1211 Geneva 17, Switzerland.


Sheveluch (Russia) — June 2000 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Short-lived explosive eruptions 30 June-3 July

During June-July 2000 seismicity was generally at background levels with occasional weak fumarolic activity; the hazard level was Green. However at 0447 on 30 June, visual reports indicated a short-lived explosive eruption and an ash-gas plume that rose to about 8 km altitude; in response, the hazard status was raised to Yellow. Similar reports indicated that a short-lived explosive eruption at 1644 on 1 July sent and an ash-gas plume to ~6 km altitude. The mushroom-shaped plume extended to the W and at 2034, satellite imagery showed the arched plume extending 70 km NW. At 1728 on 1 July seismic data indicated a less intensive short-lived explosion, and on 2 July several weak explosions occurred and a gas-steam plume rose 300-700 m extending 3-5 km to the W and E. On 3 July seismicity under the volcano returned to background levels and the hazard status was reduced to Green.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508, USA (URL: http://www.avo.alaska.edu/).


Soputan (Indonesia) — June 2000 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


During May-July 2000, continued dome growth, lava flows, and several explosions

This report covers the period of 1 May to 3 July 2000. Tiltmeter readings from 1-3 May showed a decrease in both the x-axis (25 µrad) and y-axis (40 µrad on the SW side of the summit, indicating deformation due to magma rising towards the surface. Magma continued to rise, but there was no increase in earthquakes registered at the Soputan Post Observatory (SPO) in Maliku. Nevertheless, seismic data from both satellite-telemetered and SPO's instruments contained an increasing trend in cumulative energy that could have been the result of tectonic earthquakes. A 5 May MR 6.5 earthquake in Banggai, ~325 km SW of Soputan, is thought to have been a precursor to a 13 May eruption.

At 1250 on 13 May, an eruption began with the ejection of incandescent materials and the emission of a thick, black ash cloud that rose 1,000 m above the summit and drifted NE. There were reports of ashfall up to 2 cm thick in the towns of Malompar and Tombatu, ~9 km S of the summit.

In the weeks following this event, seismicity remained elevated, with tectonic earthquakes dominating activity. Sporadic emissions of thin, white ash-and-steam plumes rose up to 100 m, but no explosions were reported. By 22 June, scientists were reporting several small explosions and avalanches, as well as a significant increase in the number of volcanic tremors and avalanche earthquakes.

At 1200 on 1 July, continuous tremor earthquakes reached amplitudes of 20-50 mm. Later that day, at 2232, two loud booms were heard and at 2255, lava was seen flowing up to 200 m to the W of Soputan's summit, covering over 13-14 May lava flows. Lightning was also seen around the crater and the rising plume. At 0200 on 2 July, Strombolian lava fountains were seen spewing lava 10-50 m above the crater. Later in the day, a thick gray ash plume was seen as it reached ~1,000 m altitude and slowly changed color to a dark brown. The volcano continued to produce ash plumes and persistent booming that indicated explosions were taking place although they could not be seen. The number of earthquakes reached over 100 events per day, indicating that lava dome growth continued. Observations made at both SPO and the Lokon Post Observatory, ~30 km N in Tomohon, gave the government reason to have concern for inhabitants' safety and, on 3 July, the alert level was raised from 2 to 3 (on a scale of 4).

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Soufriere Hills (United Kingdom) — June 2000 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Dome growth continues, reaches 950 m high during May-July 2000

This report covers activity from 26 May to 21 July 2000. During this interval, the lava dome continued to grow; however, between 26 May and 2 June, the direction of the dome's growth changed. Although it continued to grow vertically, the majority of growth appears to have redirected from the E and NE to the S and possibly the W.

Visual observations were severely limited due to clouds throughout the early part of this period. However, during the week of 23-30 June a "rough, spiny area" appeared high on the E face of the dome at the top of the Tar River Valley. The week of 9-16 June, the dome grew to about 914 m. By 25 June, the dome had surpassed the height attained prior to the 20 March 2000 collapse. During this event, instruments for measuring dome volume were damaged. Observations from 30 June through 7 July showed that the area of dome growth had changed to a more slab-like appearance. A new area of spiny growth was first seen on 10 July. This growth appeared on the NE flank at 940 m elevation, which was thought to be the highest point on the dome. On 17 July, a large area of new growth was reported on the S and W sectors of the dome, attaining a height of 950 m.

Pyroclastic flows were reported to the ENE in the Tar River, between 9 and 16 June. The following week, pyroclastic flows were reported in the Gages valley to the W. Additional pyroclastic flows during the week of 7 July went NE into the upper Tar valley; some, if not all, of the flow material originated from the remains of the 1995-98 dome. On 21 July at 0620, there was a small pyroclastic flow with an explosive start. During an observation flight later that day, evidence of pyroclastic flows was observed to the SW in the upper region of the White River valley.

Rockfalls occurred throughout the reporting period (table 34). However, the week of 23 to 30 June was characterized by nearly constant rockfalls and small pyroclastic flows. These rockfalls were concentrated on the E side of the dome and talus accumulated much more slowly to the S above the White River. Prior to this, during the week of 9 to 16 June, the rockfalls occurred almost exclusively in the Tar River valley. During 30 June to 14 July, rockfalls occurring to the E of the dome were infrequent despite the presence of large blocks at the top of the steep E slope. The majority of the rockfall events at this point were occurring to the S and to the W of the dome.

Table 34. Seismic data for Soufriere Hills during 26 May-21 July 2000. Courtesy of MVO.

Week Rockfall signals Hybrid Volcano-tectonic Long-period Total
26 May-02 Jun 2000 131 54 3 2 190
02 Jun-09 Jun 2000 243 172 1 78 494
09 Jun-16 Jun 2000 326 49 1 76 452
16 Jun-23 Jun 2000 147 11 1 77 236
23 Jun-30 Jun 2000 315 4 4 157 480
30 Jun-07 Jul 2000 264 47 1 114 426
07 Jul-14 Jul 2000 131 103 5 68 307
14 Jul-21 Jul 2000 189 24 4 15 232

Seismic records (table 1) revealed a sharp increase in the number of long-period (LP) earthquakes after 2 June. The frequency of LP events continued to increase until its peak during 23-30 June. This same week marked the low point in the number of hybrid earthquakes. The number of volcano-tectonic earthquakes increased towards the end of the reporting period.

A steady production of ash during the week of 9-16 June maintained a dilute ash plume that moved W towards Plymouth and off the coast. Neither this ash plume nor the smaller ash clouds produced by rockfalls during the preceding weeks affected the inhabited parts of the island. During the week of 30 June to 7 July, abundant steaming was observed on the W flanks of the dome. The following week, steaming occurred on the N side between the main masses of the old dome. During this same week, ash venting was also observed from the S side of the dome.

The sharp increase in the number of LP and hybrid earthquakes after 2 June was taken to indicate increasing pressure in the dome. In addition, the dome's filling in of the crater on all sides suggests that rockfalls and pyroclastic flows will increase in the future. These events are expected to affect not only the Tar River valley, but also several other surrounding valleys, particularly Tuitt's Ghaut, White River valley, and Gages valley. These observations also lead to increased concern over the possibility of a substantial dome collapse in the near future.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvomrat.com/).


Toya (Japan) — June 2000 Citation iconCite this Report

Toya

Japan

42.544°N, 140.839°E; summit elev. 733 m

All times are local (unless otherwise noted)


Eruption decreasing in intensity; precursors to 31 March eruption

Usu's multi-vent NW-flank eruption that began on 31 March 2000 continued until at least 10 July (see previous report and map in BGVN 25:03). By 10 July the eruption had lost considerable vigor. The last noteworthy ash fall took place on 6 April; a small one occurred on 7 April. Several excellent reports were published rapidly by the Geological Survey of Hokkaido (GSH, 2000a, b). This article provides a summary of those Japanese-language reports as well as excerpts from a formal statement discussing Usu's behavior through 10 July. Satellite imagery also provided ashfall data. The active dome and associated vent group was incorrectly spelled "Konpira-yama" in previous Bulletin reports. According to formal rules of translation this name should be "Kompira-yama."

Prior to the eruption, geological mapping and bore holes had delineated portions of Usu's edifice and surrounding subsurface, enabling workers to draw a generalized cross section (figure 22). In addition to these background studies, as Usu entered an eruptive phase on 31 March a comprehensive suite of monitoring instruments were in place.

Figure (see Caption) Figure 22. A schematic cross section across the flank of Usu showing boreholes, subsurface rock units (unlabeled), and areas of the two active vent groups with their plumes. The schematic illustrates the inferred zone of phreatic eruptions, estimated at 200-1000 m in depth. The groundwater surface was drawn as the distinctly heavier line connecting to the Toya lake on the right and at a depth of a few tens of meters above the "0" datum on the left). Arrows show the idealized paths of groundwater moving through the rock. After GSH (2000a, b).

Four days prior to the eruption, groundwater levels in instrumented wells (the potentiometric surface) around the volcano began to change (figure 23). A day or two later, these perturbations escalated rapidly. Data from five wells (figure 23) show that at least four underwent roughly synchronous offsets that grew to reach the 2- to 10-m range. These dramatic offsets were inferred to have been driven by the influx of magma. Also, water temperatures increased at hot springs. The level of the groundwater surface in the instrumented wells peaked near the time the eruption started. For the wells with post-eruptive data on figure 23, the groundwater surface began a comparatively gradual steady decrease soon after the eruption started. Ancillary details on well locations and behavior appear in the cited reports.

Figure (see Caption) Figure 23. Perturbations to the groundwater surface level in monitored water wells around the time of the initial Usu eruptions; common vertical scale bar at upper right shows relative magnitude of displacement with strong offset beginning around 27 March 2000. Small arrow labeled "3/31" indicates the point of initial eruption (31 March 2000). After GSH (2000a, b).

Global Positioning System (GPS) data helped predict the 31 March eruption. GPS station KMK is near Hokkaido's N coast and ~7 km E of Usu's active vent groups. KMK was compared with three other stations near Usu beginning around 30 March (figure 24). The comparison revealed large vertical motions-tens of centimeters per day- including some beginning on 29 March (not shown). Figure 24 shows how the rates of vertical motion declined in early April at all three close-in stations. The reports also noted horizontal motions measuring tens of centimeters per day.

Figure (see Caption) Figure 24. Relative vertical position of the land surface near Usu during 30 March-9 May 2000. The comparison is between three close-in GPS stations with respect to station KMK, ~ 7 km E of the Kompira-yama and western Nishi-yama vent groups. After GSH (2000a, b).

Clear precursory seismicity appeared at Usu (figure 25). The maxima, ~150 earthquakes in a 2-hour interval (i.e., ~75 earthquakes/hour), occurred ~1 day prior to the eruption. The eruptive pulses on 1 April took place during an interval with comparatively low seismicity.

Figure (see Caption) Figure 25. Seismic overview of Usu for 28 March to 7 April 2000 portraying multifold increases in the number of earthquakes prior to the 31 March eruption. Bars are for 2-hour intervals with the maximum values representing ~75 earthquakes/hour. The arrows indicate the date of the first three eruptions of the episode. For comparison, the perturbations of hydraulic head were strongest during 27-31 March. After GSH (2000a, b).

Figure 26 provides a graphical summary of the episode's eight modest but identifiable ash falls. Most of the ash blew E, but an eruption on 1 April blew SE and one on 4 April blew N. GSH (2000a) features a time line for the two vent groups in eruption, graphically portraying 31 March-7 April plume observation. Figure 27 presents a sample of this larger time line: the portion for 1 April 2000. Figures such as this provide a particularly apt summary of complex phenomena.

Figure (see Caption) Figure 26. Limits of ash fall distribution seen for Usu's outbursts (31 March-7 April 2000). The date convention is month/day. After GSH, 2000a, b.
Figure (see Caption) Figure 27. A time line of activity at Usu on 1 April 2000 portraying the character of eruptive plumes from the Kompira-yama (upper line) and western Nishi-yama (lower line) vent groups. Plume symbols are shown in two sizes and colors, representing larger (>1-km-tall), smaller (< 1-km-tall), black, and white plumes. The shaded area bracketed by a solid line above (about 1145-1545) indicates an interval of dominantly visual plume observations. The arrow at 11:30 represents the time of onset for an eruption. The given compass directions (eg., E~SE) indicate the direction of ashfall from the vent groups. The original full-length version (31 March-7 April, in Japanese) includes numerous other notes and comments. After GSH (2000a).

Committee's announcement. The Usu eruption committee chaired byYoshiaki Ida made a formal announcement on 10 July. They noted that on this date Usu's phreatic eruption continued at the Kompira-yama and western Nishi-yama vent groups, but the supply of magma from depth had almost ceased. Accordingly, they anticipated a gradual decrease in volcanism.

The committee indicated that the current eruption occurred due to upward movement of magma from depths of ~10 km reaching a shallow reservoir around 4-5 km. Portions of the shallow reservoir traveled NW and then to the vents where magma escaped. The committee noted that on 10 July uplift still continued at western Nishi-yama (~5 cm/day) but that its areal extent and rate were decreasing. The committee noted that by 10 July small faults associated with the eruption ceased moving. They appeared as visible fault traces cutting across roads and other infrastructure (see photos in GSH, 2000a, b).

The committee also noted that the early phases of the eruption had ejected portions of juvenile material, whereas by 10 July the eruptions mainly discharged steam. Similarly, with time, cloud height and explosive vigor decreased. On 10 July Nishi-yama still gave off intermittent weak ash; Kompira-yama still emitted loud blasts with glowing volcanic rocks. But by this time such activities had decreased and ballistic bombs continued to fall several hundred meters from the Kompira-yama vent group. Earthquakes continued on the SW flank of Usu, but by 10 July they became increasingly scarce. The committee suggested a pyroclastic surge was unlikely in the near future .

Satellite imagery. A satellite image from 3 April shows Usu's ash blanketing parts of the largely snow-covered landscape (figure 28). The image caption states that the team planned to image Usu every 3-4 days. The images were captured on ASTER (The Advanced Spaceborne Thermal Emission and Reflection Radiometer), a Japanese-built instrument that obtains high-resolution (15-90 m2/pixel) images at 14 wavelengths from visible to thermal infrared. ASTER registers land surface temperature, emissivity, reflectance, and elevation; it flies on the Terra platform where it serves as a zoom lens for the other Terra instruments. ASTER has the ability to change viewing angles, enabling it to make stereoscopic images and detailed terrain height models. NASA terms the Terra satellite the flagship of the EOS mission. The latter is an effort to better understand planet Earth's atmosphere, land, and oceans, as well as their interactions with solar radiation and with one another.

Figure (see Caption) Figure 28. A false-color image taken on 3 April by the Terra satellite's ASTER instrument showing the ash-darkened snow resulting from complex eruptions at Usu volcano's multiple vents. N is towards the top of the image. Usu and many of the visible deposits lie immediately S of Lake Toya, a circular 10-km-diameter caldera lake with a central island. The Pacific Ocean lies towards the S (the image's lower left-hand corner) and in this region enters Uchiura-Wan bay. (ASTER record identification, 257). Courtesy of NASA.

References. Geological Survey of Hokkaido (GSH), 2000a, Observations of Usu's volcanic eruption, 2000, Preliminary Report (in Japanese), 53 p. (in color on the GSH website and available as a 47 M file.

Geological Survey of Hokkaido (GSH), 2000b, Usu eruption in 2000, GSH News, 2000, 5, vol. 16, (ISSN 1345-1138), (text and captions in Japanese), 4 p. (1 additional sheet with 8 color plates)

Geologic Background. Usuzan, one of Hokkaido's most well-known volcanoes, is a small stratovolcano located astride the southern topographic rim of the 110,000-year-old Toya caldera. The center of the 10-km-wide, lake-filled caldera contains Nakajima, a group of forested Pleistocene andesitic lava domes. The summit of the basaltic-to-andesitic edifice of Usu is cut by a somma formed about 20-30,000 years ago when collapse of the volcano produced a debris avalanche that reached the sea. Dacitic domes erupted along two NW-SE-trending lines fill and flank the summit caldera. Three of these domes, O-Usu, Ko-Usu and Showashinzan, along with seven crypto-domes, were erupted during historical time. The 1663 eruption of Usu was one of the largest in Hokkaido during historical time. The war-time growth of Showashinzan from 1943-45 was painstakingly documented by the local postmaster, who created the first detailed record of growth of a lava dome.

Information Contacts: Masahiro Yahata, Geological Survey of Hokkaido, Kita 19, Nishi 12, Kita-Ku, Sapporo, 060-0819, Japan; Yoshiaki Ida, University of Tokyo, Earthquake Research Institute, Yayoi 1-1-1 Bunkyo-Ku, Tokyo 113, Japan; NASA Terra Project, NASA Goddard SFC, MC 613, Greenbelt, MD 20771 USA (URL: https://terra.nasa.gov/); Yasushi Yamaguchi, Japan Outreach Center for ASTER, Nagoya University, Earth & Planetary Sci Dept/Faculty Sci, Furou-cho Chikusa-ku, Nagoya 464-01; Usu Volcano Observatory, Institute of Seismology and Volcanology, Graduate School of Science, Hokkaido University, Sohbetsu-cho, Usu-gun, Hokkaido, 052-0103, Japan (URL: http://www.sci.hokudai.ac.jp/isv/english/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).