Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Tengger Caldera (Indonesia) Ash emissions on 19 and 28 July 2019; lahar on the SW flank of Bromo

Unnamed (Tonga) Submarine eruption in early August creates pumice rafts that drifted west to Fiji

Popocatepetl (Mexico) Frequent explosions continue during March-August 2019

Semeru (Indonesia) Intermittent activity continues during March-August 2019; ash plumes and thermal anomalies

Saunders (United Kingdom) Intermittent activity most months, October 2018-June 2019; photographs during February and May 2019

Pacaya (Guatemala) Lava flows and Strombolian explosions continued during February-July 2019

Colima (Mexico) Renewed volcanism after two years of quiet; explosion on 11 May 2019

Masaya (Nicaragua) Lava lake activity declined during March-July 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions during March-July 2019

Aira (Japan) Explosions with ejecta and ash plumes continue weekly during January-June 2019

Agung (Indonesia) Continued explosions with ash plumes and incandescent ejecta, February-May 2019

Kerinci (Indonesia) Intermittent explosions with ash plumes, February-May 2019



Tengger Caldera (Indonesia) — August 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Ash emissions on 19 and 28 July 2019; lahar on the SW flank of Bromo

The Mount Bromo pyroclastic cone within the Tengger Caldera erupts frequently, typically producing gas-and-steam plumes, ash plumes, and explosions (BGVN 44:05). Information compiled for the reporting period of May-July 2019 is from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The eruptive activity at Tengger Caldera that began in mid-February continued through late July 2019, including white-and-brown ash plumes, ash emissions, and tremors. During the months of May through June 2019, white plumes rose between 50 to 600 m above the summit. Satellite imagery captured a small gas-and-steam plume from Bromo on 5 June (figure 18). Low-frequency tremors were recorded by a seismograph from May through July 2019.

Figure (see Caption) Figure 18. Sentinel-2 satellite image showing a small gas-and-steam plume rising from the Bromo cone (center) in the Tengger Caldera on 5 June 2019. Thermal (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

According to PVMBG and a Volcano Observatory Notice for Aviation (VONA), an ash eruption occurred on 19 July 2019; however, no ash column was observed due to weather conditions. A seismograph recorded five earthquakes and three shallow volcanic tremors the same day. In addition, rainfall triggered a lahar on the SW flank of Bromo.

On 28 July the Darwin VAAC reported that ash plumes originating from Bromo rose to a maximum altitude of about 3.9 km and drifted NW from the summit, based on webcam images and pilot reports. PVMBG reported that lower altitude ash plumes (2.4 km) on the same day were also recorded by webcam images, satellite imagery (Himawari-8), and weather models.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Unnamed (Tonga) — November 2019 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Submarine eruption in early August creates pumice rafts that drifted west to Fiji

Large areas of floating pumice, termed rafts, were encountered by sailors in the northern Tonga region approximately 80 km NW of Vava'u starting around 9 August 2019; the pumice reached the western islands of Fiji by 9 October (figure 7). Pumice rafts are floating masses of individual clasts ranging from millimeters to meters in diameter. The pumice clasts form when silicic magma is degassing, forming bubbles as it rises to the surface, which then rapidly cools to form solid rock. The isolated vesicles formed by the bubbles provide buoyancy to the rock and in turn, the entire pumice raft. These rafts are spread and carried by currents across the ocean; rafts originating in the Tonga area can eventually reach Australia. This report summarizes the pumice raft eruption from early August 2019 using witness accounts and satellite images (acquisition dates are given in UTC). Pending further research, the presumed source is the unnamed Tongan seamount (volcano number 243091) about 45 km NW of Vava'u, the origin of an earlier pumice raft produced during an eruption in 2001.

Figure (see Caption) Figure 7. The path of the pumice from the unnamed Tongan seamount from 9 August to 9 October 2019 based on eye-witness accounts and satellite data discussed below, as well as additional Aqua/MODIS satellite images from NASA Worldview. Blue Marble MODIS/NASA Earth Observatory base map courtesy of NASA Worldview.

The first sighting of pumice was around 1430 on 9 August NW of Vava'u in Tonga (18° 22.068' S, 174° 50.800' W), when Shannon Lenz and Tom Whitehead on board SV Finely Finished initially encountered isolated rocks and smaller streaks of pumice clasts. The area covered by rock increasing to a raft with an estimated thickness of at least 15 cm that extended to the horizon in different directions, and which took 6-8 hours to cross (figure 8). There was no sulfur smell and the sound was described as a "cement mixer, especially below deck." There was also no plume or incandescence observed. Their video, posted to YouTube on 17 August, showed a thin surface layer of cohesive interconnected irregular streaks of pumice with the ocean surface still visible between them. Later footage showed a continuous, undulating mass of pumice entirely covering the ocean surface. Larger clasts are visible scattered throughout the raft. The pumice raft was visible in satellite imagery on this day NW of Late Island (figure 9). By 11 August the raft had evolved into a largely linear feature with smaller rafts to the SW (figure 10). Approximately four hours later, about 15 km to the WSW, Rachel Mackie encountered the pumice. Initially the pumice was "ribbons several hundred meters long and up to 20m wide. It was quite fine and like a slick across the surface of the water." By 2130 they were surrounded by the pumice, and around 25 km away the smell of sulfur was noted.

Figure (see Caption) Figure 8. The pumice raft from the unnamed Tongan seamount on 9 August 2019 taken by Shannon Lenz and Tom Whitehead on board SV Finely Finished. The photos show the pumice raft extending to the horizon in different directions. Scattered larger clasts protrude from the relatively smooth surface that entirely obscures the ocean surface. Courtesy of Shannon Lenz and Tom Whitehead via noonsite.
Figure (see Caption) Figure 9. The pumice raft from the unnamed Tongan seamount on 9 August 2019 (UTC) can be seen NW of Late Island of Tonga in this Aqua/MODIS satellite image. The dashed white line encompasses the visible pumice. The location of the pumice in this image is shown in figure 7. Courtesy of NASA WorldView.
Figure (see Caption) Figure 10. The Sentinel-2 satellite first imaged the pumice from the unnamed Tongan seamount on 11 August 2019 (UTC). This image indicates the pumice distribution with the main raft towards the W and the easternmost area of pumice approximately 45 km away. The eastern tip of the pumice area is located approximately 30 km WNW of Lake islands in Tonga. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.

Michael and Larissa Hoult aboard the catamaran ROAM encountered the raft on 15 August (figure 11). They initially saw isolated clasts ranging from marble to tennis ball size (15-70 mm) at 18° 46′S, 174° 55'W. At around 0700 UTC (1900 local time) they noted the smell of sulfur at 18° 55′S, 175° 21′W, and by 0800 UTC they were immersed in the raft with visible clasts ranging from marble to basketball (25 cm) sizes. At this point the raft was entirely obscuring the ocean surface. On 16 and 21 August the pumice continued to disperse and drift NW (figures 12 and 13). On 20 August Scott Bryan calculated an average drift rate of around 13 km/day, with the pumice on this date about 164 km W of the unnamed seamount.

Figure (see Caption) Figure 11. Images of pumice from the unnamed Tongan seamount encountered by Michael and Larissa Hoult aboard the catamaran Roam on 15 August. Left: Larissa takes photographs with scale of pumice clasts; top right: a closeup of a pumice clast showing the vesicle network preserving the degassing structures of the magma; bottom left: Michael holding several larger pumice clasts. The location of their encounter with the pumice is shown in figure 7. Courtesy of SailSurfROAM.
Figure (see Caption) Figure 12. The pumice from the unnamed Tongan seamount (volcano number 243091) on 16 August 2019 UTC. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 13. On 21 August 2019 (UTC) the pumice from the unnamed Tongan seamount (volcano number 243091) had drifted at least 120 km WNW of Late Island in Tonga. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.

An online article published by Brad Scott at GeoNet on 9 September reported the preliminary size of the raft to be 60 km2, significantly smaller than the 2012 Havre seamount pumice raft that was 400 km2. Satellite identification of pumice-covered areas by GNS scientists showed the material moving SSW through 14 August (figure 14).

Figure (see Caption) Figure 14. A compilation of mapped pumice raft extents from 9 August (red line) through to 14 August (dark blue) from Suomi NPP, Terra, Aqua, and Sentinel-2 satellite images. The progression of the pumice raft is towards the SW. Courtesy of Salman Ashraf, GNS Science.

On 5 September the Maritime Safety Authority of Fiji (MSAF) issued a notice to mariners stating that the pumice was sighted in the vicinity of Lakeba, Oneata, and Aiwa Islands and was moving to the W. On 6 September a Planet Labs satellite image shows pumice encompassing the Fijian island of Lakeba over 450 km W of the Tongan islands (figure 15). The pumice entered the lagoon within the barrier reef and drifted around the island to continue towards the W. The pumice was imaged by the Landsat 8 satellite on 26 September as it moved through the Fijian islands, approximately 760 km away from its source (figure 16). The pumice is segmented into numerous smaller rafts of varying sizes that stretch over at least 140 km. On 12 September the Fiji Sun reported that the pumice had reached some of the Lau islands and was thick enough near the shore for people to stand on it.

Figure (see Caption) Figure 15. Planet Labs satellite images show Lakeba Island to the E of the larger Viti Levu Island in the Fiji archipelago. The top image shows the island on 7 July 2019 prior to the pumice raft from the unnamed Tongan seamount. The bottom image shows pumice on the sea surface almost entirely encompassing the island on 6 September. The location of the pumice in this image is shown in figure 7. Courtesy of Planet Labs.
Figure (see Caption) Figure 16. Landsat 8 satellite images show the visible extent of the unnamed seamount pumice on 26 September 2019 (UTC), up to approximately 760 km from the Tongan islands. The pumice seen here extends over a distance of 140 km. The top image shows the locations of the other three images in the white boxes, with a, b, and c indicating the locations. White arrows point to examples of the light brown pumice rafts in these images, seen through light cloud cover. The island in the lower right is Koro Island, the island to the lower left is Viti Levu, and the island to the top right is Vanua Levu. The location of the pumice in this image is shown in figure 7. Landsat 8 true color-pansharpened satellite images courtesy of Sentinel Hub.

Pumice had reached the Yasawa islands in western Fiji by 29 September and was beginning to fill the eastern bays (figure 17). By 9 October bays had been filled out to 500-600 m from the shore, and pumice had also passed through the islands to continue towards the W (figure 18). At this point the pumice beyond the islands had broken up into linear segments that continued towards the NW.

Figure (see Caption) Figure 17. These Sentinel-2 satellite images show the pumice from the unnamed Tongan seamount drifting towards the Yasawa islands of Fiji. The 24 September 2019 (UTC) image shows the beaches without the pumice, the 29 September image shows pumice drifting westward towards the islands, and the 9 October image shows the bays partly filled with pumice out to a maximum of 500-600 m from the shore. These islands are approximately 850 km from the Tongan islands. The Yasawa islands coastline impacted by the pumice shown in these images stretches approximately 48 km. The location of the pumice in this image is shown in figure 7. Sentinel-2 natural color (bands 4, 3, 2) satellite images courtesy of Sentinel Hub.
Figure (see Caption) Figure 18. This Sentinel-2 satellite image acquired on 9 October 2019 (UTC) shows expanses of pumice from the unnamed Tongan seamount that passed through the Yasawa islands of Fiji and was continuing NWW, seen in the center of the image. The location of the pumice in this image is shown in figure 7. Sentinel-2 natural color (bands 4, 3, 2) satellite images courtesy of Sentinel Hub.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Salman Ashraf, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/, https://www.geonet.org.nz/news/8RnSKdhaWOEABBIh0bHDj); Brad Scott, New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/, https://www.geonet.org.nz/news/8RnSKdhaWOEABBIh0bHDj); Scott Bryan, School of Earth, Environmental & Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, R Block Level 2, 204, Gardens Point (URL: https://staff.qut.edu.au/staff/scott.bryan); Shannon Lenz and Tom Whitehead, SV Finely Finished (URL: https://www.noonsite.com/news/south-pacific-tonga-to-fiji-navigation-alert-dangerous-slick-of-volcanic-rubble/, YouTube: https://www.youtube.com/watch?v=PEsHLSFFQhQ); Michael and Larissa Hoult, Sail Surf ROAM (URL: https://www.facebook.com/sailsurfroam/); Rachel Mackie, OLIVE (URL: http://www.oliveocean.com/, https://www.facebook.com/rachel.mackie.718); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Fiji Sun (URL: https://fijisun.com.fj/2019/09/12/pumice-menace-hits-parts-of-lau-group/).


Popocatepetl (Mexico) — September 2019 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Frequent explosions continue during March-August 2019

The current eruptive period of Popocatépetl began on 9 January 2005 and it has since been producing frequent explosions accompanied by ash plumes, gas emissions, and ballistic ejecta that can impact several kilometers away from the crater, as well as dome growth and destruction. This activity continued through March-August 2019 with an increase in volcano alert level during 28 March-6 May. This report summarizes activity during this period and is based on information from Centro Nacional de Prevención de Desastres (CENAPRED), Universidad Nacional Autónoma de México (UNAM), and various webcam and remote sensing data.

An overflight on 28 February confirmed that dome 82, which was first observed on 14 February, was still present and was 200 m in diameter. During March there were 3,291 observed low-intensity emissions, and 33 larger explosions that produced ash plumes to a maximum height of 5 km, accompanied by near-continuous emission of water vapor and volcanic gases. Explosions ejected blocks that fell on the flanks out to 1.2-2 km on 1, 10, 13, 17, 26, 27, and 29 March. The events on the 17th and 27th resulted in vegetation fires. Frequent sulfur dioxide (SO2) plumes were detected by TropOMI (figure 130). An overflight on 7 March showed intense degassing and an ash plume at 1142, preventing visibility into the crater (figure 131). On 13 March Strombolian activity was observed for approximately 15 minutes at 0500, accompanied by incandescent ejecta that deposited mainly on the ESE flank.

An overflight on 15 March was taken by CENAPRED and UNAM personnel to observe changes to the crater after explosions on the 13th and 14th. They reported that dome 82 had been destroyed and the crater maintained its previous dimensions of 300 m in diameter and 130 m deep. An explosion on the 27th ejected incandescent rocks out to 2 km from the crater and produced a 3-km-high ash plume that dispersed to the NE. Ashfall was reported in Santa Cruz, Atlixco, San Pedro, San Andrés, Santa Isabel Cholula, San Pedro Benito Juárez, and in the municipalities of Puebla, Hueyapan, Tetela del Volcán, and Morelos.

On 28 March an explosion at 0650 generated a 2.5-km-high ash plume and ejecta out to 1 km from the crater, and a 130-minute-long event produced gas and ah plumes (figure 132). On this day the volcano alert level was increased from Yellow Phase 2 to Yellow Phase 3. On the 29th an ash plume rose to 3 km and was accompanied by ejecta that reached 2 km away from the crater. Later that day a 20-minute-long event produced ash and gas. During a surveillance flight on 30 March a view into the crater showed no dome present, and the crater size had increased to 350 m in width and 250-300 m in depth after recent explosions (figure 131). On this day Strombolian activity was also observed lasting for 14 minutes, producing an ash plume to 800 m and ejecta out to 300 m from the crater. Incandescence at the crater was often seen during nighttime throughout the month.

Figure (see Caption) Figure 130. Significant SO2 plumes at Popocatépetl detected by the TROPOMI instrument on the Sentinel-5P satellite during 3-11 March 2019. SO2 plumes are frequently observed and these images show examples of plume drift directions on 3 March 2019 (top left), 6 March 2019 (top right), 7 March 2019 (bottom left), and 11 March 2019 (bottom right). Date, time, and measurements are provided at the top of each image. Courtesy of NASA Goddard Flight Center.
Figure (see Caption) Figure 131. Activity at Popocatépetl and views of the crater during surveillance flights in March 2019. The top images show an ash plume (left) and a gas-and-steam plume (right) on 7 March. On 30 March (bottom left and right) no lava dome was observed in the crater, which was measured to be 350 m in diameter and 250-300 m deep. Courtesy of CENAPRED and Geophysics Institute of UNAM.
Figure (see Caption) Figure 132. Explosive activity at Popocatépetl on 28 March 2019 producing ash plumes (top and bottom left) and ejecting incandescent ejecta out to 2 km from the crater at 1948. Courtesy of Carlos Sanchez/AFP (top), CENAPRED (bottom left and right), and Webcams de Mexico (bottom left).

There was a decrease in events during the next two months with 1,119 recorded low-intensity emissions and no larger ash explosions throughout April, followed by 1,210 low-intensity emissions and seven larger ash explosions through May (figure 133). Water vapor and volcanic gas emissions were frequently observed through this time and incandescence was observed some nights. A surveillance overflight on 26 April noted no new dome within the crater. On 6 May the alert level was lowered back to Yellow Phase 2. Another overflight on 9 May showed no change in the crater. An explosion at 1910 on 22 May produced an ash plume to 3.5 km above the crater with ashfall reported in Ozumba, Temamatla, Atlautla, Cocotitlán, Ayapango, Ecatzingo, Tenango del Aire and Tepetlixpa.

Figure (see Caption) Figure 133. Graph showing the number of daily ash explosions and low-intensity emissions at Popocatépetl during March-August 2019. There was a decrease in the number of events during April and March, with an increase from March onwards. Data courtesy of CENAPRED.

Through the month of June there were 2,820 low-intensity emissions and 21 larger ash explosions recorded. Gas emissions were observed throughout the month. Two explosions on 3 June produced ash plumes up to 3.5 and 2.8 km, with ejecta out to 2 km S during the first explosion. On 11 June an explosion produced an ash plume to 1 km above the crater and ballistic ejecta out to 1 km E. Observers on a surveillance overflight on the 12th reported no changes within the crater

Explosions with estimated plume heights of 5 km occurred on the 14th and 15th, with the latter producing ashfall in the municipalities of San Pablo del Monte, Tenancingo, Papantla, San Cosme Mazatencocho, San Luis Teolocholco, Acuamanala, Nativitas, Tepetitla, Santa Apolonia Teacalco, Santa Isabel Tetlatlahuaca, and Huamantla, in the state of Tlaxcala, as well as in Nealtican, San Nicolás de los Ranchos, Calpan, San Pedro Cholula, Juan C. Bonilla, Coronango, Atoyatempan, and Coatzingo, in the state of Puebla.

On 17 June an explosion produced an ash plume that reached 8 km above the crater and dispersed towards the SW. An ash plume rising 2.5 km high was accompanied by incandescent ejecta impacting a short distance from the crater on the 21st, and another ash plume reached 2.5 km on the 22nd. Explosions on 26, 29, and 30 June resulted in ash plumes reaching 1.5 km above the crater and ballistic ejecta impacting on the flanks out to 1 km.

For the month of July there was an increased total of 5,637 recorded low-intensity emissions, and 173 larger ash explosions (figure 134). On 8 July an explosion produced ballistic ejecta out to 1.5 km and an ash plume up to 1 km above the crater. An ash plume up to 2.6 km was produced on the 12th. On 19 July a surveillance overflight observed a new dome (dome 83) with a diameter of 70 m and a thickness of 15 m (figure 135). Explosions on 20 July produced ashfall, and minor explosions that ejected incandescent ballistics onto the slopes. An event on the 24th produced an ash plume that reached 1.2 km, and ash plumes the following day reached 1 km. An overflight on 27 July confirmed that these explosions destroyed dome 83, and the crater dimensions remained the same (figure 136). The following day, ash plumes reached up to 1.6 km above the crater, and up to 2 km on the 29th. Minor ashfall was reported in the municipality of Ozumba on 30 June.

Figure (see Caption) Figure 134. Examples of ash plumes at Popocatépetl on 1 July (top left), 18 July (top right and bottom left), and 30 July (bottom right) 2019. In the night time image taken on 18 July hot rocks are visible on the flank. Webcam images courtesy of CENAPRED and Webcams de Mexico.
Figure (see Caption) Figure 135. A surveillance overflight at Popocatépetl on 19 July 2019 confirmed a new dome, dome number 83, with a width of 70 m and a thickness of 15 m. Courtesy of CENAPRED and Geophysics Institute of UNAM.
Figure (see Caption) Figure 136. Photos of the summit crater of Popocatépetl taken during a surveillance flight on 27 July 2019 confirmed that the 83rd lava dome was destroyed by recent explosions and the crater maintained the same dimensions as previously measured. Courtesy of CENAPRED and Geophysics Institute of UNAM.

Throughout August the number of recorded events was higher than previous months, with 5,091 low-intensity emissions and 204 larger ash explosions (figure 137). Two explosions generated ash plumes and incandescent ejecta on 2 August, the first with a plume up to 1.5 km with ejecta impacting the slopes, and the second with an 800 m plume and ejecta landing back in the crater. Ashfall from the events was reported in in the municipalities of Tenango del Aire, Ayapango and Amecameca. On the 14th ashfall was reported in Juchitepec, Ayapango, and Ozumba. Explosions on 16 August produced ash plumes up to 2 km that dispersed to the WSW. Over the following two days ash plumes reached 1.2 km and resulted in ashfall in Cuernavaca, Tepoztlán, Tlalnepantla, Morelos, Ozumba, and Ecatzingo. Over 30-31 August ash plumes reached between 1-2 km above the crater and ashfall was reported in Amecameca, Atlautla, Ozumba, and Tlalmanalco. Incandescence was sometimes observed at the crater through the month.

Figure (see Caption) Figure 137. Ash plumes at Popocatépetl on 7 August (top) and 26 August 2019 (bottom). Courtesy of CENAPRED and Webcams de Mexico.

The MODVOLC algorithm for MODIS thermal anomalies registered thermal alerts through this period, with 22 in March, three in May, five in July, and one in August. The MIROVA system showed that the frequency of thermal anomalies at Popocatépetl was higher in March, sporadic in April and May, low in June, and had increased again in July and August (figure 138). Elevated temperatures were frequently visible in Sentinel-2 thermal satellite data when clouds and plumes were not covering the crater (figure 139).

Figure (see Caption) Figure 138. Thermal activity at Popocatépetl detected by the MIROVA system showed frequent anomalies in March, intermittent anomalies through April-May, low activity in June, and an increase in July-August 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 139. Sentinel-2 thermal satellite images frequently showed elevated temperatures in the crater of Popocatépetl during March-August 2019, as seen in this representative image from 7 May 2019. Sentinel2- atmospheric penetration (bands 12, 11, 8A) scene courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/); Universidad Nacional Autónoma de México (UNAM), University City, 04510 Mexico City, Mexico (URL: https://www.unam.mx/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Webcams de Mexico (URL: http://www.webcamsdemexico.com/); Agence France-Presse (URL: http://www.afp.com/).


Semeru (Indonesia) — September 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Intermittent activity continues during March-August 2019; ash plumes and thermal anomalies

The ongoing eruption at Semeru weakened in intensity during 2018, with occasional ash plumes and thermal anomalies (BGVN 44:04); this reduced but ongoing level of activity continued through August 2019. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC). The current report summarizes activity from 1 March to 31 August 2019. The Alert Level remained at 2 (on a scale from 1-4); the public was warned to stay 1 km away from the active crater and 4 km away on the SSE flank.

Based on analysis of satellite images, the Darwin VAAC reported that ash plumes rose to an altitude of 4-4.3 km on 19 April, 20 June, 10 July, and 13 July, drifting in various directions. In addition, PVMBG reported that at 0830 on 26 June an explosion produced an ash plume that rose around 600 m above the summit and drifted SW. A news article (Tempo.com) dated 12 August cited PVMBG as stating that the volcano had erupted 17 times since 8 August.

During March-August 2019 thermal anomalies were detected with the MODIS satellite instruments analyzed using the MODVOLC algorithm only on 5 July and 22 August. No explosions were recorded on those two days. Scattered thermal anomalies within 5 km of the volcano were detected by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system, also based on analysis of MODIS data: one at the end of March and 3-6 hotspots over the following months, almost all of low radiative power. Satellite imagery intermittently showed thermal activity in the Jonggring-Seloko crater (figure 37), sometimes with material moving down the SE-flank ravine.

Figure (see Caption) Figure 37. Sentinel-2 satellite images showing the persistent elevated thermal anomaly in the Jonggring-Seloko crater of Semeru were common through August 2019, as seen in this view on 20 July. Hot material could sometimes be identified in the SE-flank ravine. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tempo.com (URL: https://www.tempo.com/).


Saunders (United Kingdom) — August 2019 Citation iconCite this Report

Saunders

United Kingdom

57.8°S, 26.483°W; summit elev. 843 m

All times are local (unless otherwise noted)


Intermittent activity most months, October 2018-June 2019; photographs during February and May 2019

Historical observations of eruptive activity from the glacier-covered Mount Michael stratovolcano on Saunders Island in the South Sandwich Islands were not recorded until the early 19th century at this remote site in the southernmost Atlantic Ocean, and remain extremely rare. With the advent of satellite observation technology, indications of more frequent eruptive activity have become apparent. Vapor emission is frequently reported from the summit crater, and AVHRR and MODIS satellite imagery has revealed evidence for lava lake activity in the summit crater (Lachlan-Cope and others, 2001). Limited thermal anomaly data and satellite imagery indicated at least intermittent activity during May 2000-November 2013, and from November 2014 through April 2018 (Gray and others, 2019). Ongoing observations, including photographs from two site visits in February and May 2019 suggest continued activity at the summit during most months through May 2019, the period covered in this report. Information, in addition to on-site photographs, comes from MIROVA thermal anomaly data, NASA SO2 instruments, and Sentinel-2 and Landsat satellite imagery.

Near-constant cloud coverage for much of the year makes satellite data intermittent and creates difficulty in interpreting the ongoing nature of the activity. Gray and others (2019) concluded recently after a detailed study of shortwave and infrared satellite images that there was continued evidence for the previously identified lava lake on Mount Michael since January 1989. MIROVA thermal anomaly data suggest intermittent pulses of thermal energy in September, November, and December 2018, and April 2019 (figure 17). Satellite imagery confirmed some type of activity, either a dense steam plume, evidence of ash, or a thermal anomaly, each month during December 2018-March 2019. Sulfur dioxide anomalies were recorded in January, February, and March 2019. Photographic evidence of fresh ash was captured in February 2019, and images from May 2019 showed dense steam rising from the summit crater.

Figure (see Caption) Figure 17. MIROVA thermal anomaly data from 19 September 2018 through June 2019 showed sporadic, low-level pulses of thermal energy in late September, November, and December 2018, and April 2019. Courtesy of MIROVA.

After satellite imagery and thermal anomaly data in late September 2018 showed evidence for eruptive activity (BGVN 43:10, figure 16), a single thermal anomaly in MIROVA data was recorded in mid-November 2018 (figure 17). A rare, clear Sentinel-2 image on 2 December revealed a dense steam plume over the active summit crater; the steam obscured the presence of any possible thermal anomalies beneath (figure 18).

Figure (see Caption) Figure 18. Sentinel-2 images of Mount Michael on Saunders Island on 2 December 2018 revealed a dense steam plume over the summit crater that was difficult to distinguish from the surrounding snow in Natural Color rendering (bands 4,3,2) (left), but was clearly visible in Atmospheric Penetration rendering (bands 12,11, 8a) (right). Courtesy of Sentinel Hub Playground.

Clear evidence of recent activity appeared on 1 January 2019 with both a thermal anomaly at the summit crater and a streak of ash on the snow (figure 19). Steam was also present within the summit crater. A distinct SO2 anomaly appeared in data from the TROPOMI instrument on 14 January (figure 20).

Figure (see Caption) Figure 19. A thermal anomaly and dense steam were recorded at the summit of Mount Michael on Saunders Island on 1 January 2019 in Sentinel-2 Satellite imagery with Atmospheric Penetration rendering (bands 12, 11, 8a) (left). The same image shown with Natural Color rendering (bands 4,3,2) (right) shows a recent streak of brown particulates drifting SE from the summit crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. A distinct SO2 plume was recorded drifting NW from Saunders Island by the TROPOMI instrument on the Sentinel 5-P satellite on 14 January 2019. Courtesy of NASA Goddard Space Flight Center.

Multiple sources of satellite data and sea-based visual observation confirmed activity during February 2019. SO2 emissions were recorded with the TROPOMI instrument on 10, 11, 15, and 16 February (figure 21). A Landsat image from 10 February showed a dense steam plume drifting NW from the summit crater, with the dark rim of the summit crater well exposed (figure 22). Sentinel-2 images in natural color and atmospheric penetration renderings identified a dense steam plume drifting S and a thermal anomaly within the summit crater on 15 February (figure 23). An expedition to the South Sandwich Islands between 15 February and 8 March 2019 sponsored by the UK government sailed by Saunders in late February and observed a stream of ash on the NNE flank beneath the cloud cover (figure 24).

Figure (see Caption) Figure 21. Faint but distinct SO2 plumes were recorded drifting away from Saunders Island in various directions on 10, 11, 15, and 16 February 2019. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 22. The dark summit crater of Mount Michael on Saunders Island was visible in Landsat imagery on 10 February 2019. A dense steam plume drifted NW and cast a dark shadow on the underlying cloud cover. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. At the summit of Mount Michael on Saunders Island, Sentinel-2 images in Natural Color (bands 4,3,2) (left) and Atmospheric Penetration (bands 12, 11, 8a) (right) renderings identified a dense steam plume drifting S and a thermal anomaly within the summit crater on 15 February 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 24. Recent ash covered the NNE flank of Mount Michael on Saunders Island in late February 2019 when observed by an expedition to the South Sandwich Islands sponsored by the UK government. Courtesy of Chris Darby.

Faint SO2 emissions were recorded twice during March 2019 (figure 25), and a dense steam plume near the summit crater was visible in Landsat imagery on 23 March (figure 26). Two thermal anomalies were captured in the MIROVA data during April 2019 (figure 17).

Figure (see Caption) Figure 25. Faint SO2 plumes were recorded on 1 and 11 March 2019 emerging from Saunders Island. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 26. A dense steam plume drifted E from the summit crater of Mount Michael at Saunders Island on 25 March 2019. Landsat-8 image courtesy of Sentinel Hub Playground.

A volcano-related research project "SSIVOLC" explored the South Sandwich Islands volcanoes during 15 April-31 May 2019. A major aim of SSIVOLC was to collect photogrammetric data of the glacier-covered Mount Michael (Derrien and others, 2019). A number of still images were acquired on 17 and 22 May 2019 showing various features of the island (figures 27-30). The researchers visually observed brief, recurrent, and very weak glow at the summit of Mount Michael after dark on 17 May, which they interpreted as reflecting light from an active lava lake within the summit crater.

Figure (see Caption) Figure 27. The steep slopes of an older eroded crater on the E end of Saunders island in the 'Ashen Hills' shows layers of volcanic deposits dipping away from the open half crater. In the background, steam and gas flow out of the summit crater of Mount Michael and drift down the far slope. Drone image PA-IS-03 taken during 17-22 May 2019, courtesy of Derrien and others (2019) used under Creative Commons Attribution 4.0 International (CC-BY 4.0) License.
Figure (see Caption) Figure 28. A dense steam plume drifts away from the summit of Mount Michael on Saunders Island in this drone image taken during 17-22 May 2019. The older summit crater is to the left of the dark patch in the middle of the summit. North is to the right. Image SU-3 courtesy of Derrien and others (2019) used under Creative Commons Attribution 4.0 International (CC-BY 4.0) License.
Figure (see Caption) Figure 29. This close-up image of the summit of Mount Michael on Saunders Island shows steam plumes billowing from the summit crater, and large crevasses in the glacier covered flank, taken during 17-22 May 2019. The old crater is to the left. Image TL-SU-1 courtesy of Derrien and others (2019) used under Creative Commons Attribution 4.0 International (CC-BY 4.0) License.
Figure (see Caption) Figure 30. A dense plume of steam rises from the summit crater of Mount Michael on Saunders Island and drifts over mounds of frozen material during 17-22 May 2019. The older crater is to the left, and part of the Ashen Hills is in the foreground. Image TL-SU-2 courtesy of Derrien and others (2019) used under Creative Commons Attribution 4.0 International (CC-BY 4.0) License.

References: Lachlan-Cope T, Smellie J L, Ladkin R, 2001. Discovery of a recurrent lava lake on Saunders Island (South Sandwich Islands) using AVHRR imagery. J. Volcanol. Geotherm. Res., 112: 105-116.

Gray D M, Burton-Johnson A, Fretwell P T, 2019. Evidence for a lava lake on Mt. Michael volcano, Saunders Island (South Sandwich Islands) from Landsat, Sentinel-2 and ASTER satellite imagery. J. Volcanol. Geotherm. Res., 379:60-71. https://doi.org/10.1016/j.volgeores.2019.05.002.

Derrien A, Richter N, Meschede M, Walter T, 2019. Optical DSLR camera- and UAV footage of the remote Mount Michael Volcano, Saunders Island (South Sandwich Islands), acquired in May 2019. GFZ Data Services. http://doi.org/10.5880/GFZ.2.1..2019.003

Geologic Background. Saunders Island is a volcanic structure consisting of a large central edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young constructional Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of parasitic cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Analysis of satellite imagery available since 1989 (Gray et al., 2019; MODVOLC) suggests frequent eruptive activity (when weatehr conditions allow), volcanic clouds, steam plumes, and thermal anomalies indicative of a persistent, or at least frequently active, lava lake in the summit crater. Due to this observational bias, there has been a presumption when defining eruptive periods that activity has been ongoing unless there is no evidence for at least 10 months.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Chris Darby (URL: https://twitter.com/ChrisDDarby, image at https://twitter.com/ChrisDDarby/status/1100686838568812544).


Pacaya (Guatemala) — August 2019 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Lava flows and Strombolian explosions continued during February-July 2019

Pacaya is one of the most active volcanoes in Guatemala, with activity largely consisting of frequent lava flows and Strombolian activity at the Mackenney crater. This report summarizes continued activity during February through July 2019 based on reports by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) and Sistema de la Coordinadora Nacional para la Reducción de Desastres (CONRED), visiting scientists, and satellite data.

At the beginning of February activity included Strombolian explosions ejecting material up to 5 to 30 m above the Mackenney crater and a degassing plume up to 300 m. Multiple lava flows were observed throughout the month on the N, NW, and W flanks, reaching 350 m from the crater and resulting in avalanches from the flow fronts. Strombolian activity continued with sporadic to continuous explosions ejecting material 5-75 m above the Mackenney crater. Degassing produced plumes up to 300 m above the crater, and incandescence from the crater and lava flows were seen at night. Daniel Sturgess of Bristol University observed activity on the 24th, noting a 70-m-long lava flow with individual blocks from the front of the flow rolling down the flanks (figure 108). He reported that mild Strombolian explosions occurred every 10-20 minutes and ejected blocks, up to approximately 4 m in diameter, as high as 5-30 m above the crater and towards the northern flank.

Figure (see Caption) Figure 108. An active lava flow on the NW flank of Pacaya on 24 February 2019 with incandescence visible in lower light conditions. Courtesy of Daniel Sturgess, University of Bristol.

Similar activity continued through March with multiple lava flows reaching a maximum of 200 m N and NW, and avalanches descending from the flow fronts. Ongoing Strombolian explosions expelled material up to 75 m above the Mackenney crater. Degassing produced a white-blue plume to a maximum of 900 m above the crater (figure 109) and incandescence was noted some nights.

Figure (see Caption) Figure 109. A degassing plume at Pacaya reaching 350 m above the crater and dispersing to the S on 19 March 2019. Courtesy of CONRED.

During April lava flows continued on the N and NW flanks, reaching a maximum length of 300 m, with avalanches forming from the flow fronts. Degassing formed plumes up to 600 m above the crater that dispersed with various wind directions. Strombolian activity continued with explosions ejecting material up to 40 m above the crater. On the 2nd and 3rd weak rumbles were heard at distances of 4-5 km. Similar activity continued through May with lava flows reaching 300 m to the N, degassing producing plumes up to 600 m above the crater, and Strombolian explosions ejecting material up to 15 m above the crater.

Lava flows continued out to 300 m in length to the N and NW during June (figures 110 and 111). Strombolian activity ejected material up to 30 m above the crater and degassing resulted in plumes that reached 300 m. During July there were multiple active lava flows that reached a maximum of 300 m in length on the N and NW flanks (figure 112). Avalanches generated by the collapse of material at the front of the lava flows were accompanied by explosions ejecting material up to 30 m above the crater.

Figure (see Caption) Figure 110. An active lava flow on Pacaya on 9 June 2019 with incandescent blocks rolling down the flank from the flow front. Courtesy of Paul Wallace, University of Liverpool.
Figure (see Caption) Figure 111. Activity at Pacaya on 22 June 2019 with a degassing plume dispersed to the W and a 300-m-long lava flow. Photos by Miguel Morales, courtesy of CONRED.
Figure (see Caption) Figure 112. Two lava flows were active to the N and NW at Pacaya on 20 July 2019. Photos courtesy of CONRED.

During February through July multiple lava flows and crater activity were detected in Sentinel-2 satellite thermal images (figures 113 and 114) and relatively constant thermal energy was detected by the MIROVA system with a slight decrease in the energy and frequency of anomalies during June (figure 115). The thermal anomalies detected by the MODVOLC system for each month from February through July spanned 6-30, with six during June and 30 during April.

Figure (see Caption) Figure 113. Sentinel-2 thermal satellite images of Pacaya show lava flows to the N and NW during February through April 2019. There was a reduction in visible activity in early March. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 114. Sentinel-2 thermal satellite images of Pacaya showing lava flow and hot avalanche activity during June and July 2019. False color (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 115. MIROVA log radiative power plot of MODIS thermal infrared at Pacaya during October 2018 through July 2019. Detected thermal energy is relatively stable with a decrease through June and subsequent increase during July. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Daniel Sturgess, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom (URL: http://www.bristol.ac.uk/earthsciences/); Paul Wallace, Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom (URL: https://www.liverpool.ac.uk/environmental-sciences/staff/paul-wallace/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Colima (Mexico) — August 2019 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Renewed volcanism after two years of quiet; explosion on 11 May 2019

Frequent historical eruptions at Volcán de Colima date back to the 16th century and include explosive activity, lava flows, and large debris avalanches. The most recent eruptive episode began in January 2013 and continued through March 2017. Previous reports have covered activity involving ash plumes with extensive ashfall, lava flows, lahars, and pyroclastic flows (BGVN 41:01 and 42:08). In late April 2019, increased seismicity related to volcanic activity began again. This report covers activity through July 2019. The primary source of information was the Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC).

On 11 May 2019, CUEIV-UdC reported an explosion that was recorded by several monitoring stations. A thermal camera located south of Colima captured thermal anomalies associated with the explosion as well as intermittent degassing, which mainly consisted of water vapor (figure 131). A report from the Unidad Estatal de Protección Civil de Colima (UEPCC), and seismic and infrasound network data from CUEIV-UdC, recorded about 60 high-frequency events, 16 landslides, and 14 low-magnitude explosions occurring on the NE side of the crater during 11-24 May. Drone imagery showed fumarolic activity occurring on the inner wall of this crater on 22 May (figure 132).

Figure (see Caption) Figure 131. Gas emissions from Colima during the 11 May 2019 eruption as seen from the Naranjal station. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 17 mayo 2019 no 121).
Figure (see Caption) Figure 132. A drone photo showing fumarolic activity occurring within the NE wall of the crater at Colima on 22 May 2019. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 24 mayo 2019 no 122).

Small explosions and gas-and-steam emissions continued intermittently through mid-July 2019 concentrated on the NE side of the crater. An overflight on 9 July 2019 revealed that subsidence from the consistent activity slightly increased the diameter of the vent; other areas within the crater also showed evidence of subsidence and some collapsed material on the outer W wall (figure 133). During the weeks of 19 and 26 July 2019, monitoring cameras and seismic data recorded eight lahars.

Figure (see Caption) Figure 133. A drone photo of the crater at Colima on 8 July 2019 shows continuing fumarolic activity and evidence of a collapsed wall on the W exterior side. Courtesy of CUEIV-UdC (Boletin Seminal de la Actividad del Volcan de Colima 12 julio 2019 no 129).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Centro Universitario de Estudios e Investigaciones de Vulcanologia, Universidad de Colima (CUEIV-UdC), Colima, Col. 28045, Mexico; Centro Universitario de Estudios Vulcanologicos y Facultad de Ciencias de la Universidad de Colima, Avenida Universidad 333, Colima, Col. 28045, Mexico (URL: http://portal.ucol.mx/cueiv/); Unidad Estatal de Protección Civil, Colima, Roberto Esperón No. 1170 Col. de los Trabajadores, C.P. 28020, Mexico (URL: http://www.proteccioncivil.col.gob.mx/).


Masaya (Nicaragua) — August 2019 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake activity declined during March-July 2019

Masaya, in Nicaragua, contains a lava lake found in the Santiago Crater which has remained active since its return in December 2015 (BGVN 41:08). In addition to this lava lake, previous volcanism included explosive eruptions, lava flows, and gas emissions. Activity generally decreased during March-July 2019, including the number and frequency of thermal anomalies, lava lake levels, and gas emissions. The primary source of information for this report comes from the Instituto Nicareguense de Estudios Territoriales (INETER).

On 21 July 2019 a small explosion in the Santiago Crater resulted in some gas emissions and an ash cloud drifting WNW. In addition to the active lava lake (figure 77), monthly reports from INETER noted that thermal activity and gas emissions (figure 78) were decreasing.

Figure (see Caption) Figure 77. Active lava lake visible in the Santiago Crater at Masaya on 27 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).
Figure (see Caption) Figure 78. Gas emissions coming from the Santiago Crater at Masaya on 29 June 2019. Photo by Sheila DeForest (Creative Commons BY-SA license).

On 15 May and 22 July 2019, INETER scientists used a FLIR SC620 thermal infrared camera to measure temperatures of fumaroles on the Santiago Crater. In May 2019 the temperature of fumaroles had decreased by 48°C since the previous month. Between May and July 2019 fumarole temperatures continued to decline; temperatures ranged from 90° to 136°C (figure 79). Compared to May 2019 these temperatures are 3°C lower. INETER reports that the level of the lava lake has been slowly dropping during this reporting period.

Figure (see Caption) Figure 79. FLIR (forward-looking infrared) and visible images of the Santiago Crater at Masaya showing fumarole temperatures ranging from 90° to 136°C. The scale in the center shows the range of temperatures in the FLIR image. Courtesy of INETER (March 2019 report).

According to MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS satellite instruments, frequent thermal anomalies were recorded from mid-March through early May 2019, with little to no activity from mid-May to July 2019 (figure 80). Sentinel-2 thermal images show high temperatures in the active lava lake on 10 March 2019 (figure 81). Thermal energy detected by the MODVOLC algorithm showed 14 hotspot pixels with the most number of hotspots (7) occurring in March 2019.

Figure (see Caption) Figure 80. Thermal anomalies were relatively constant at Masaya from early September 2018 through early May 2019 and then abruptly decreased until mid-June 2019 as recorded by MIROVA. Courtesy of MIROVA.
Figure (see Caption) Figure 81. Sentinel-2 thermal satellite image showing a detected heat signature from the active lava lake at Masaya on 10 March 2019. The lava lake is visible (bright yellow-orange). Approximate diameter of the crater containing the lava lake is 500 m. Thermal (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Sheila DeForest (URL: https://www.facebook.com/sheila.deforest).


Rincon de la Vieja (Costa Rica) — August 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions during March-July 2019

The acid lake of Rincón de la Vieja's active crater has generated intermittent weak phreatic explosions regularly since 2011, continuing during the past year through at least August 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 4 March and 2 September 2019. Clouds often prevented webcam and satellite views. The current report describes activity from March through July 2019.

OVSICORI-UNA reported that weak events occurred on 19 March at 1851 and on 29 March 2019 at 2043. A two-minute-long phreatic explosion on 1 April at 0802 produced a plume that rose 600 m above the crater rim. Continuous emissions were visible during 3-4 April, rising 200 m above the crater rim. On 3 April, at 1437, a small explosion was detected. An explosion on 10 April at 0617 produced a gas-and-steam plume that rose 1 km above the crater rim and drifted SE. On 12 April at 0643, a plume rose 500 m. Another event took place at 0700 on 13 April, although poor weather conditions prevented visual observations. On 14 April, OVSICORI-UNA noted that aerial photographs showed a milky-gray acid lake at a relatively low water level with convection cells of several tens meters of diameter in the center and eastern parts of the lake.

According to an OVSICORI-UNA bulletin, a small phreatic explosion occurred on 1 May. Another explosion on 11 May at 0720 produced a white gas-and-steam plume that rose 600 m above the crater rim. Phreatic explosions were recorded on 14 May at 1703 and on 17 May at 0357, though dense fog prevented visual confirmation of both events with webcams. On 15 May a local observer noted a diffuse plume of steam and gas, material rising from the crater, and photographed milky-gray deposits on the N part of the crater rim ejected from the event the day before. A major explosion occurred on 24 May.

OVSICORI-UNA recorded a significant phreatic 10-minute-long explosion that began on 11 June at 0343, but plumes were not visible due to weather conditions. No further phreatic events were reported in July.

Seismic activity was very low during the reporting period, and there was no significant deformation. Short tremors were frequent toward the end of April, but were only periodic in May and June; tremor almost disappeared in July. A few long-period earthquakes were recorded, and volcano-tectonic earthquakes were even less frequent.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/).


Aira (Japan) — July 2019 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions with ejecta and ash plumes continue weekly during January-June 2019

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity from January through June 2019; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

From January to June 2019, ash plumes and explosions were usually reported multiple times each week. The quietest month was June with only five eruptive events; the most active was March with 29 (table 21). Ash plumes rose from a few hundred meters to 3,500 m above the summit during the period. Large blocks of incandescent ejecta traveled as far as 1,700 m from the Minamidake crater during explosions in February and April. All the activity originated in the Minamidake crater; the adjacent Showa crater only had a mild thermal anomaly and fumarole throughout the period. Satellite imagery identified thermal anomalies inside the Minamidake crater several times each month.

Table 21. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in Aira caldera, January-June 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Data courtesy of JMA (January to June 2019 monthly reports).

Month Ash emissions (explosive) Max. plume height above crater Max. ejecta distance from crater
Jan 2019 8 (6) 2.1 km 1.1 km
Feb 2019 15 (11) 2.3 km 1.7 km
Mar 2019 29 (12) 3.5 km 1.3 km
Apr 2019 10 (5) 2.2 km 1.7 km
May 2019 15 (9) 2.9 km 1.3 km
Jun 2019 5 (2) 2.2 km 1.3 km

There were eight eruptive events reported by JMA during January 2019 at the Minamidake summit crater of Sakurajima. They occurred on 3, 6, 7, 9, 17, and 19 January (figure 76). Ash plume heights ranged from 600 to 2,100 m above the summit. The largest explosion, on 9 January, generated an ash plume that rose 2,100 m above the summit crater and drifted E. In addition, incandescent ejecta was sent 800-1,100 m from the summit. Incandescence was visible at the summit on most clear nights. During an overflight on 18 January no significant changes were noted at the crater (figure 77). Infrared thermal imaging done on 29 January indicated a weak thermal anomaly in the vicinity of the Showa crater on the SE side of Minamidake crater. The Kagoshima Regional Meteorological Observatory (KRMO) (11 km WSW) recorded ashfall there during four days of the month. Satellite imagery indicated thermal anomalies inside Minamidake on 7 and 27 January (figure 77).

Figure (see Caption) Figure 76. Incandescent ejecta and ash emissions characterized activity from Sakurajima volcano at Aira during January 2019. Left: A webcam image showed incandescent ejecta on the flanks on 9 January 2019, courtesy of JMA (Explanation of volcanic activity in Sakurajima, January 2019). Right: An ash plume rose hundreds of meters above the summit, likely also on 9 January, posted on 10 January 2019, courtesy of Mike Day.
Figure (see Caption) Figure 77. The summit of Sakurajima consists of the larger Minamidake crater and the smaller Showa crater on the E flank. Left: The Minamidake crater at the summit of Sakurajima volcano at Aira on 18 January 2019 seen in an overflight courtesy of JMA (Explanation of volcanic activity in Sakurajima, March 2019). Right: Two areas of thermal anomaly were visible in Sentinel-2 satellite imagery on 27 January 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

Activity increased during February 2019, with 15 eruptive events reported on days 1, 3, 7, 8, 10, 13, 14, 17, 22, 24, and 27. Ash plume heights ranged from 600-2,300 m above the summit, and ejecta was reported 300 to 1,700 m from the crater in various events (figure 78). KRMO reported two days of ashfall during February. Satellite imagery identified thermal anomalies at the crater on 6 and 26 February, and ash plumes on 21 and 26 February (figure 79).

Figure (see Caption) Figure 78. An explosion from Sakurajima at Aira on 7 February 2019 sent ejecta up to 1,700 m from the Minamidake summit crater. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, February 2019).
Figure (see Caption) Figure 79. Thermal anomalies and ash emissions were captured in Sentinel-2 satellite imagery on 6, 21, and 26 February 2019 originating from Sakurajima volcano at Aira. Top: Thermal anomalies within the summit crater were visible underneath steam and ash plumes on 6 and 26 February (closeup of bottom right photo). Bottom: Ash emissions on 21 and 26 February drifted SE from the volcano. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

The number of eruptive events continued to increase during March 2019; there were 29 events reported on numerous days (figures 80 and 81). An explosion on 14 March produced an ash plume that rose 3,500 m above the summit and drifted E. It also produced ejecta that landed 800-1,100 m from the crater. During an overflight on 26 March a fumarole was the only activity in Showa crater. KRMO reported 14 days of ashfall during the month. Satellite imagery identified an ash plume on 13 March and a thermal anomaly on 18 March (figure 82).

Figure (see Caption) Figure 80. A large ash emission from Sakurajima volcano at Aira was photographed by a tourist on the W flank and posted on 1 March 2019. Courtesy of Kratü.
Figure (see Caption) Figure 81. An ash plume from Sakurajima volcano at Aira on 18 March 2019 produced enough ashfall to disrupt the trains in the nearby city of Kagoshima according to the photographer. Image taken from about 20 km away. Courtesy of Tim Board.
Figure (see Caption) Figure 82. An ash plume drifted SE from the summit of Sakurajima volcano at Aira on 13 March (left) and a thermal anomaly was visible inside the Minamidake crater on 18 March 2019 (right). "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

A decline in activity to only ten eruptive events on days 7, 13, 17, 22, and 25 was reported by JMA for April 2019. An explosion on 7 April sent ejecta up to 1,700 m from the crater. Another explosion on 13 April produced an ash plume that rose 2,200 m above the summit. Most of the eruptive events at Sakurajima last for less than 30 minutes; on 22 April two events lasted for almost an hour each producing ash plumes that rose 1,400 m above the summit. Ashfall at KRMO was reported during seven days in April. Two distinct thermal anomalies were visible inside the Minamidake crater on both 12 and 27 April (figure 83).

Figure (see Caption) Figure 83. Two thermal anomalies were present inside Minamidake crater at the summit of Sakurajima volcano at Aira on 12 (left) and 27 (right) April 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

There were 15 eruptive events during May 2019. An event that lasted for two hours on 12 May produced an ash plume that rose 2,900 m from the summit and drifted NE (figure 84). The Meteorological Observatory reported 14 days with ashfall during the month. Two thermal anomalies were present in satellite imagery in the Minamidake crater on both 17 and 22 May.

Figure (see Caption) Figure 84. An ash plume rose 2,900 m above the summit of Sakurajima at Aira on 12 May 2019 (left); incandescent ejecta went 1,300 m from the summit crater on 13 May. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, May 2019).

During June 2019 five eruptive events were reported, on 11, 13, and 24 June; the event on 11 June lasted for almost two hours, sent ash 2,200 m above the summit, and produced ejecta that landed up to 1,100 m from the crater (figure 85). Five days of ashfall were reported by KRMO.

Figure (see Caption) Figure 85. A large ash plume on 11 June 2019 rose 2,200 m above the summit of Sakurajima volcano at Aira. Courtesy of Aone Wakatsuki.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Mike Day, Minnesota, Twitter (URL: https://twitter.com/MikeDaySMM, photo at https://twitter.com/MikeDaySMM/status/1083489400451989505/photo/1); Kratü, Twitter (URL: https://twitter.com/TalesOfKratue, photo at https://twitter.com/TalesOfKratue/status/1101469595414589441/photo/1); Tim Board, Japan, Twitter (URL: https://twitter.com/Hawkworld_, photo at https://twitter.com/Hawkworld_/status/1107789108754038789); Aone Wakatsuke, Twitter (URL: https://twitter.com/AoneWakatsuki, photo at https://twitter.com/AoneWakatsuki/status/1138420031258210305/photo/3).


Agung (Indonesia) — June 2019 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Continued explosions with ash plumes and incandescent ejecta, February-May 2019

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung on Bali remained quiet until a new eruption began in November 2017 (BGVN 43:01). Lava emerged into the summit crater at the end of November and intermittent ash plumes rose as high as 3 km above the summit through the end of the year. Activity continued throughout 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the slow effusion of the lava within the summit crater (BGVN 43:08, 44:02). Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from February through May 2019.

Intermittent but increasingly frequent and intense explosions with ash emissions and incandescent ejecta characterized activity at Agung during February through May 2019. During February, explosions were reported three times; events on seven days in March were documented with ash plumes and ashfall in surrounding villages. Five significant events occurred during April; two involved incandescent ejecta that traveled several kilometers from the summit, and ashfall tens of kilometers from the volcano. Most of the five significant events reported in May involved incandescent ejecta and ashfall in adjacent villages; air traffic was disrupted during the 24 May event. Ash plumes in May reached altitudes over 7 km multiple times. Thermal activity increased steadily during the period, according to both the MIROVA project (figure 44) and MODVOLC thermal alert data. MAGMA Indonesia reported at the end of May 2019 that the volume of lava within the summit crater remained at about 25 million m3; satellite information indicated continued thermal activity within the crater. Alert Level III (of four levels) remained in effect throughout the period with a 4 km exclusion radius around the volcano.

Figure (see Caption) Figure 44. Thermal activity at Agung from 4 September 2018 through May 2019 was variable. The increasing frequency and intensity of thermal events was apparent from February-May. Courtesy of MIROVA.

Steam plumes rose 30-300 m high daily during February 2019. The Agung Volcano Observatory (AVO) and PVMBG issued a VONA on 7 February (UTC) reporting an ash plume, although it was not visible due to meteoric cloud cover. Incandescence, however, was observed at the summit from webcams in both Rendang and Karangasem City (16 km SE). The seismic event associated with the explosion lasted for 97 seconds. A similar event on 13 February was also obscured by clouds but produced a seismic event that lasted for 3 minutes and 40 seconds, and ashfall was reported in the village of Bugbug, about 20 km SE. On 22 February a gray ash plume rose 700 m from the summit during a seismic event that lasted for 6 minutes and 20 seconds (figure 45). The Darwin VAAC reported the plume visible in satellite imagery moving W at 4.3 km altitude. It dissipated after a few hours, but a hotspot remained visible about 10 hours later.

Figure (see Caption) Figure 45. An ash plume rose from the summit of Agung on 22 February 2019, viewed from the Besakih temple, 7 km SW of the summit. Courtesy of PunapiBali.

Persistent steam plumes rose 50-500 m from the summit during March 2019. An explosion on 4 March was recorded for just under three minutes and produced ashfall in Besakih (7 km SW); no ash plume was observed due to fog. A short-lived ash plume rose to 3.7 km altitude and drifted SE on 8 March (UTC) 2019. The seismic event lasted for just under 4 minutes. Ash emissions were reported on 15 and 17 March to 4.3 and 3.7 km altitude, respectively, drifting W (figure 46). Ashfall from the 15 March event spread NNW and was reported in the villages of Kubu (6 km N), Tianyar (14 km NNW), Ban, Kadundung, and Sukadana. MAGMA Indonesia noted that two explosions on the morning of 17 March (local time) produced gray plumes; the first sent a plume to 500 m above the summit drifting E and lasted for about 40 seconds, while the second plume a few hours later rose 600 m above the crater and lasted for 1 minute and 16 seconds. On 18 March an ash plume rose 1 km and drifted W and NW. An event on 20 March was measured only seismically by PVMBG because fog prevented observations. An eruption on 28 March produced an ash plume 2 km high that drifted W and NW. The seismic signal for this event lasted for about two and a half minutes. The Darwin VAAC reported the ash plume at 5.5 km altitude, dissipating quickly to the NW. No ash was visible four hours later, but a thermal anomaly remained at the summit (figure 47). Ashfall was reported in nearby villages.

Figure (see Caption) Figure 46. Ash plumes from Agung on 15 (left) and 17 (right) March 2019 resulted in ashfall in communities 10-20 km from the volcano. Courtesy of PVMBG and MAGMA Indonesia (Information on G. Agung Eruption, 15 March 2019 and Gunung Agung Eruption Press Release March 17, 2019).
Figure (see Caption) Figure 47. A thermal anomaly was visible through thick cloud cover at the summit of Agung on 29 March 2019 less than 24 hours after a gray ash plume was reported 2,000 m above the summit. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

The first explosion of April 2019 occurred on the 3rd (UTC); PVMBG reported the dense gray ash plume 2 km above the summit drifting W. A few hours later the Darwin VAAC raised the altitude to 6.1 km based on infrared temperatures in satellite imagery. The seismic signal lasted for three and a half minutes and the explosion was heard at the PGA Post in Rendang (12 km SW). Incandescent material fell within a radius of 2-3 km, mainly on the S flank (figure 48). Ashfall was reported in the villages of Telungbuana, Badeg, Besakih, Pempatan, Teges, and Puregai on the W and S flanks (figure 49). An explosion on 11 April also produced a dense gray ash plume that rose 2 km above the summit and drifted W. A hotspot remained about six hours later after the ash dissipated.

Figure (see Caption) Figure 48. Incandescent ejecta appeared on the flanks of Agung after an eruption on 4 April 2019 (local time) as viewed from the observation post in Rendang (8 km SW). Courtesy of Jamie Sincioco.
Figure (see Caption) Figure 49. Ashfall in a nearby town dusted mustard plants on 4 April 2019 from an explosion at Agung the previous day. Courtesy of Pantau.com (Photo: Antara / Nyoman Hendra).

PVMBG reported an eruption visible in the webcam early on 21 April (local time) that rose to 5.5 km altitude and drifted SW. The ash spread W and S and ash fell around Besakih (7 km SW), Rendang (8 km SW), Klungkung (25 km S), Gianyar (20 km WSW), Bangli (17 km WNW), Tabanan (50 km WSW), and at the Ngurah Rai-Denpasar Airport (60 km SW). About 15 hours later a new explosion produced a dense gray ash plume that rose to 3 km above the summit and produced incandescent ejecta in all directions as far as 3 km away (figure 50). The ash spread to the S and ashfall was reported in Besakih, Rendang, Sebudi (6 km SW), and Selat (12 km SSW). Both of the explosions were heard in Rendang and Batulompeh. The incandescent ejecta from the explosions remained within the 4-km exclusion zone. A satellite image on 23 April showed multiple thermal anomalies within the summit crater (figure 51). A dense gray plume drifted E from Agung on 29 April (30 April local time) at 4.6 km altitude. It was initially reported by ground observers, but was also visible in multispectral satellite imagery for about six hours before dissipating.

Figure (see Caption) Figure 50. An explosion at Agung on 21 April 2019 sent incandescent eject 3,000 m from the summit. Courtesy of MAGMA Indonesia (Gunung Agung Eruption Press Release April 21, 2019).
Figure (see Caption) Figure 51. Multiple thermal anomalies were still present within the summit crater of Agung on 23 April 2019 after two substantial explosions produced ash and incandescent ejecta around the summit two days earlier. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG reported an eruption on 3 May 2019 that was recorded on a seismogram with a signal that lasted for about a minute. Satellite imagery reported by the Darwin VAAC showed a growing hotspot and possible ash near the summit at 4.3 km altitude moving NE. A few days later, on 6 May, a gray ash plume rose to 5.2 km altitude and drifted slowly W before dissipating; it was accompanied by a seismic signal that lasted for about two minutes. Explosions on 12 and 18 May produced significant amounts of incandescent ejecta (figure 52). The seismic signal for the 12 May event lasted for about two minutes; no plume was observed due to fog, but incandescent ejecta was visible on the flanks and the explosion was heard at Rendang. The Darwin VAAC reported an ash plume from the explosion on 17 May (18 May local time) at 6.1 km altitude in satellite imagery moving E. They revised the altitude a short while later to 7.6 km based on IR temperature and movement; the plume drifted N, NE, and E in light and variable winds. A few hours after that it was moving NE at 7.6 km altitude and SE at 5.5 km altitude; this lasted for about 12 hours until it dissipated. Ashfall was reported in villages downwind including Cutcut, Tongtongan, Bonyoh (20 km WNW), and Temakung.

Figure (see Caption) Figure 52. Explosions on 12 (left) and 18 (right) May (local time) 2019 produced substantial ejecta on the flanks of Agung visible from a distance of 10 km or more in PVMBG webcams. The ash plume from the 18 May event resulted in ashfall in numerous communities downwind. Courtesy of PVMBG (Information Eruption G. Agung, May 13, 2019, Information Eruption G. Agung, May 18, 2019).

The initial explosion on 18 May was captured by a webcam at a nearby resort and sent incandescent ejecta hundreds of meters down the NE flank within 20 seconds (figure 53). Satellite imagery on 3, 8, 13, and 18 May indicated multiple thermal anomalies growing stronger at the summit. All of the images were captured within 24 hours of an explosive event reported by PVMBG (figure 54).

Figure (see Caption) Figure 53. The 18 May 2019 explosion at Agung produced an ash plume that rose to over 7 km altitude and large bombs of incandescent material that traveled hundreds of meters down the NE flank within the first 20 seconds of the explosion. Images taken from a private webcam located 12 km NE. Courtesy of Volcanoverse, used with permission.
Figure (see Caption) Figure 54. Satellite images from 3, 8, 13, and 18 May 2019 at Agung showed persistent and increasing thermal anomalies within the summit crater. All images were captured within 24 hours of explosions reported by PVMBG. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG issued a VONA on 24 May 2019 reporting a new ash emission. They indicated that incandescent fragments were ejected 2.5-3 km in all directions from the summit, and the seismic signal lasted for four and a half minutes (figure 55). A dense gray ash plume was observed from Tulamben on the NE flank rising 2 km above the summit. Satellite imagery indicated that the plume drifted SW and ashfall was reported in the villages of Besakih, Pempatan, Menanga, Sebudi, Muncan, Amerta Bhuana, Nongan, Rendang, and at the Ngurah Rai Airport in Denpassar. Additionally, ashfall was reported in the districts of Tembuku, Bangli, and Susut (20 km SW). The Darwin VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude along with a thermal anomaly and incandescent lava visible in webcam imagery. The remains of the ash plume were about 170 km S of the airport in Denpasar (60 km SW) and had nearly dissipated 18 hours after the event. According to a news article several flights to and from Australia were cancelled or diverted, though the International Gusti Ngurah Rai (IGNR) airport was not closed. On 31 May another large explosion produced the largest ash plume of the report period, rising more than 2 km above the summit (figure 56). The Darwin VAAC reported its altitude as 8.2 km drifting ESE visible in satellite data. It split into two plumes, one drifted E at 8.2 km and the other ESE at 6.1 km altitude, dissipating after about 20 hours.

Figure (see Caption) Figure 55. A large explosion at Agung on 24 May 2019 produced incandescent ejecta that covered all the flanks and dispersed ash to many communities to the SW. Courtesy of PVMBG (Gunung Agung Eruption Press Release 24 May 2019 20:38 WIB, Kasbani, Ir., M.Sc.).
Figure (see Caption) Figure 56. An explosion at Agung on 31 May 2019 sent an ash plume to 8.2 km altitude, the highest for the report period. Courtesy of Sutopo Purwo Nugroho, BNPB.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); The Jakarta Post, Mount Agung eruption disrupts Australian flights, (URL: https://www.thejakartapost.com/news/2019/05/25/mount-agung-eruption-disrupts-australian-flights.html); PunapiBali (URL: http://punapibali.com/, Twitter: https://twitter.com/punapibali, image at https://twitter.com/punapibali/status/1098869352588288000/photo/1); Jamie S. Sincioco, Phillipines (URL: Twitter: https://twitter.com/jaimessincioco. Image at https://twitter.com/jaimessincioco/status/1113765842557104130/photo/1); Pantau.com (URL: https://www.pantau.com/berita/erupsi-gunung-agung-sebagian-wilayah-bali-terpapar-hujan-abu?utm_source=dlvr.it&utm_medium=twitter); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ).


Kerinci (Indonesia) — June 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent explosions with ash plumes, February-May 2019

Frequently active, Indonesia's Mount Kerinci on Sumatra has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Intermittent explosions with ash plumes, usually multiple times per month, have characterized activity since April 2018. Similar activity continued during February-May 2019, the period covered in this report with information provided primarily by the Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, notices from the Darwin Volcano Ash Advisory Center (Darwin VAAC), and satellite data. PVMBG has maintained an Alert Level II (of 4) at Kerinci for several years.

On 13 February 2019 the Kerinci Volcano Observatory (KVO), part of PVMBG, noted a brownish-white ash emission that was drifting NE about 400 m above the summit. The seismicity during the event was dominated by continuous volcanic tremor. A brown ash emission was reported on 7 March 2019 that rose to 3.9 km altitude and drifted NE. Ash also drifted 1,300 m down the SE flank. Another ash plume the next morning drifted W at 4.5 km altitude, according to KVO. On 10, 11, and 13 March KVO reported brown ash plumes drifting NE from the summit at about 4.0-4.3 km altitude. The Darwin VAAC observed continuous ash emissions in satellite imagery on 15 March drifting W at 4.3 m altitude that dissipated after about 3 hours (figure 10). A gray ash emission was reported on 19 March about 600 m above the summit drifting NE; local news media noted that residents of Kayo Aro reported emissions on both 18 and 19 March (figure 11). An ash emission appeared in satellite imagery on 25 March (figure 10). On 30 March the observatory reported two ash plumes; a brown emission at 0351 UTC and a gray emission at 0746 UTC that both drifted NE at about 4.4 km altitude and dissipated within a few hours. PVMBG reported another gray ash plume the following day at a similar altitude.

Figure (see Caption) Figure 10. Sentinel-2 satellite imagery of Kerinci from 15 (left) and 25 (right) March 2019 showed evidence of ash plumes rising from the summit. Kerinci's summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Dense ash plumes from Kerinci were reported by local news media on 18 and 19 March 2019. Courtesy of Nusana Jambi.

Activity continued during April with a brown ash emission reported on 3 April by several different agencies; the Darwin VAAC and PVMBG daily reports noted that the plume was about 500 m above the summit (4.3 km altitude) drifting NE. KVO observed two brown ash emissions on 13 April (UTC) that rose to 4.2 km altitude and drifted NE. Satellite imagery showed minor ash emissions from the summit on 14 April; steam plumes 100-500 m above the summit characterized activity for the remainder of April (figure 12).

Figure (see Caption) Figure 12. A dilute ash emission rose from the summit of Kerinci on 14 April 2019 (left); only steam emissions were present on a clear 29 April in Sentinel-2 imagery (right). "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.

Ashfall on the NE and S flanks within 7 km of the volcano was reported on 2 May 2019. According to a news article, at least five villages were affected late on 2 May, including Tanjung Bungo, Sangir, Sangir Tengah, Sungai Rumpun, and Bendung Air (figures 13 and 14). The smell of sulfur was apparent in the villages. Brown ash emissions were observed on 3 and 4 May that rose to 4.6 and 4.1 km altitude and drifted SE. The Darwin VAAC reported an emission on 5 May, based on a pilot report, that rose to 6.7 km altitude and drifted NE for about an hour before dissipating. A brown ash emission on 10 May rose 700 m above the summit and drifted SE. Satellite imagery captured ash emissions from the summit on 14 and 24 May (figure 15). For the remainder of the month, 300-700-m-high dense steam plumes were noted daily until PVMBG reported white and brown plumes on 26 and 27 May rising 500-1,000 m above the summit. Although thermal anomalies were not reported during the period, persistent weak SO2 emissions were identified in TROPOMI instrument satellite data multiple times per month (figure 16).

Figure (see Caption) Figure 13. Ashfall was reported from five villages on the flanks of Kerinci on 2 May 2019. Courtesy of Uzone.
Figure (see Caption) Figure 14. An ash plume at Kerinci rose hundreds of meters on 2 May 2019; ashfall was reported in several nearby villages. Courtesy of Kerinci Time.
Figure (see Caption) Figure 15. Ash emissions from Kerinci were captured in Sentinel-2 satellite imagery on 14 (left) and 24 (right) May 2019. The summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. Weak SO2 anomalies from Kerinci emissions were captured by the TROPOMI instrument on the Sentinel-5P satellite multiple times each month from February to May 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nuansa Jambi, Informasi Utama Jambi: (URL: https://nuansajambi.com/2019/03/20/gunung-kerinci-semburkan-asap-tebal/); Kerinci Time (URL: https://kerincitime.co.id/gunung-kerinci-semburkan-abu-vulkanik.html); Uzone.id (URL: https://news.uzone.id/gunung-kerinci-erupsi-5-desa-tertutup-abu-tebal).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 30, Number 06 (June 2005)

Managing Editor: Richard Wunderman

Colima (Mexico)

Explosions through June 2005, with repeated dome growth and destruction

Ebeko (Russia)

Small ash deposits in January 2005 but plumes later became infrequent

Kanlaon (Philippines)

May 2005 ash ejections ceasing after the 25th as monitored parameters declined

Karymsky (Russia)

Several ash plumes, including two to ~ 8 km altitude, during mid-2005

Kilauea (United States)

During November 2004-January 2005 lava flows continued to enter the sea

McDonald Islands (Australia)

Satellite infrared data suggests a new unwitnessed eruption

Sheveluch (Russia)

Lava dome growth, ash falls, pyroclastic flows during early to mid-2005

Soufriere Hills (United Kingdom)

Abundant ash-laden plumes, pyroclastic flows, and local ashfall

St. Helens (United States)

Extrusion of smooth-surfaced dome lavas that later crumbled; explosions

Tungurahua (Ecuador)

Ash plumes and LP earthquakes still common in 2004-2005



Colima (Mexico) — June 2005 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Explosions through June 2005, with repeated dome growth and destruction

Small to moderate explosive eruptions have been common at Colima since 1999, some blasting material as high as 11 km altitude and at times sending pyroclastic flows to 5 km runout distances. Between these explosive eruptions, andesitic lava from the main intracrater vent sometimes formed small, short-lived lava domes. The feeder lavas, cryptodomes, and occasional domes were blasted out during subsequent eruptions. A table of significant eruptive events at Colima during July 1999 to June 2005 (Luhr and others, in press) produced this tally for the number of days where plumes went over 2 km above the summit (~6 km altitude): in the latter half of 1999, three days; 2000, one day; 2001, four days; 2002, four days; 2003, 15 days; 2004, ~ 24 days; and in the first half of 2005, 31 days. Eruptions discussed in aviation reports from the Washington Volcanic Ash Advisory Center (VAAC) became a significant source of data starting in 2003, and formed the basis of many entries in the subsequent years.

Extrusions during September-November 2004 formed a new lava dome in the active crater, and two lava flows descended from that crater along the N and WNW flanks (BGVN 30:01). After lava effusion ceased, intermittent explosions and exhalations followed. In the same pattern mentioned above, the dome was later destroyed by Vulcanian-style explosions that produced eruption plumes and in some cases, pyroclastic flows (BGVN 30:03).

The number of seismic events decreased during December 2004-February 2005 (figure 77), and with some important exceptions, remained under 10 events per day until as late as the end of June 2005. During this reporting interval, April-June 2005, intermittent explosions continued (figure 77). Explosions that generated pyroclastic flows were known to have continued through at least 5 July.

Figure (see Caption) Figure 77. The number of daily earthquakes ascribed to rockfalls and pyroclastic flows (heavy line) and to explosions and exhalations (dashed line) at Colima during September 2004-June 2005. Double arrows show the beginning (B) and the end (E) of the lava extrusion in late 2004. A label indicates the period when occasional large explosions took place (an interval that began on 10 March and continued through June 2005). Courtesy of Colima Volcano Observatory.

Comparatively large explosions began to occur starting 10 March 2005 (BGVN 30:03). The largest, accompanied by pyroclastic flows, were particularly vigorous from 24 May to 5 June. As in March 2004 the explosions consisted of Vulcanian-style gas-and-ash explosions. Some of the April-June explosions issued material that reached as high as ~ 10 km altitude, and pyroclastic flow runout distances reached up to ~ 5.1 km, an increase over those in March 2004 (when maximum runout distances only reached ~ 2.8 km).

When photographed on 25 May 2005 the dome and unconsolidated material filled much of the crater, although the intracrater area was anything but flat (figure 78). By comparison, a photo of the crater taken on 16 June 2005, following many large Vulcanian explosions, shows its upper portion to be essentially empty (figure 79).

Figure (see Caption) Figure 78. At Colima on 25 May 2005 the crater contained considerable dome and unconsolidated material, filling it to near the rim. Several weeks later, after further explosions had driven considerable material out, the upper crater was left with substantial open space (see next photo). Courtesy of Colima Volcano Observatory.
Figure (see Caption) Figure 79. Photo of Colima's crater after the comparatively large explosions that began in March 2005. This photo was taken on 16 June looking from the S. Eruptions had removed much of the crater fill and a small dome from the upper crater. Small impact craters pocked the crater floor. An erosion channel had developed across crater's S rim, presumably due to the passage of pyroclastic flows associated with the recent explosions. The notch in the rim has been prominent since 2004 and has emptied and perhaps grown considerably since the photo taken 25 May 2005. Despite the changes seen in this photo, the explosions had left the crater walls intact and without evidence of fractures. Courtesy of Colima Volcano Observatory.

The March-June explosive sequence removed the 2004 lava dome, and left a crater ~ 260 m across and ~ 30 m deep (figure 79). No significant deformation of the volcanic edifice was recorded before or during the large explosions (table 17). After the explosion of 5 June, residents were evacuated from Juan Barragán, a small village ~ 10 km SE of the summit. Smaller explosions at Colima typically take place at the rate of several per day.

Table 17. Main characteristics of the largest explosions seen at Colima during May-June 2005. Column heights and ash cloud velocities came from remote-sensing data and reports furnished by the Washington VAAC. The highest velocity, 15 m/s, corresponds to 54 km/hour. Courtesy of Colima Volcano Observatory.

Date Time (UTC) Altitude of the column Direction and average horizontal velocity of plume Length of plume Length of pyroclastic flows
24 May 2005 0009 9.7 km W (7.7 m/s) 204 km 3.5 km
30 May 2005 0826 8.5 km SE (15 m/s) 102 km 4 km
02 Jun 2005 0449 6 km S (5.1 m/s) 74 km 4.5 km
05 Jun 2005 1920 7.6 km W-SE (7.7 m/s) 222 km 5.1 km

Reference. Luhr, J., Navarro-Ochoa, C., and Savov, I., (in press), Petrology and mineralogy of lava and ash erupted from Volcán Colima, México, during 1999-2005: Special Volume on the Colima Volcano, from the University of Guadalajara (edited by Francisco Nuñez-Cornú).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Observatorio Vulcanológico de la Universidad de Colima, Colima, Col., 28045, México; Washington Volcanic Ash Advisory Center (VAAC), NOAA-NESDES, Satellite Analysis Branch, 5200 Auth Road, Camp Springs, MD 20746, USA.


Ebeko (Russia) — June 2005 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Small ash deposits in January 2005 but plumes later became infrequent

A few gas-and-steam plumes from Ebeko were reported during February-April 2004 (BGVN 29:04). The most recent previous eruption was in January 1991. On 30 January 2005 the Kamchatka Volcanic Eruptions Response Team (KVERT) raised the Concern Color Code at Ebeko from Green to Yellow after reports of a strong smell of sulfur on 27 and 28 January in the town of Severo-Kurilsk, ~ 7 km from Ebeko. Observations by Leonid and Tatiana Kotenko in Severo-Kurilsk during May-July 2004 included occasional gas-and-steam plume rising as high as 250 m above the volcano during clear weather and fumarolic plumes moving close to the ground. There was no visible activity in August, but a few plumes were seen again from September to November.

During 28 January, a white gas-and-steam plume was seen from Severo-Kurilsk rising 400 m above the volcano. Summit observations the next day revealed a yellow-gray, 5-m-diameter, column rising 300 m from a vent on the NE side of the active crater. Three ash layers 2-3 mm thick were noted 10 m from the vent, and ash extended ~ 500 m E into the crater. At this time a new 7 x 12 m turquoise lake had developed in the SW part of the active crater. The lake disappeared on 30 January, and there was intensive fumarolic activity where it had been. Shallow earthquakes were recorded at the Severo-Kurilsk seismic station.

On 1 February gas-and-steam plumes rose to 450 m above Ebeko's crater and drifted NE. On 7 February a small emission of steam, gas, and possibly ash rose ~ 1 km above the crater and drifted ~ 12 km SE. On 8 and 9 February plumes rose to 600 m and thin ash deposits were noted in the town of Severo-Kurilsk.

The following information came to KVERT from observers in Severo-Kurilsk (Leonid and Tatiana Kotenko). On 15-16 February a dark-gray column rose up to 500 m above the crater. A dark-gray plume extended 6 km E and a light-gray plume 7 km SE. On 16 February ashfall together with snowfall was noted over the strait to the E of Paramushir Island. On 17 February a white column up to 250 m above the crater was observed. On 12 February and 16-17 February a strong smell of a H2S was noted at Severo-Kurilsk. On 18-19 February white gas-and-steam columns 5 m in diameter rose from the two vents up to 450 m above the crater and a new lake (10 x 10 m) on the floor of the active crater was observed. On 25 February white gas-and-steam plumes rose to 450 m and 1,000 m above the crater. Gas-and-steam plumes were also observed on 1-2, 4-5, and 9 March. No ash was seen. A strong smell of H2S was noted at Severo-Kurilsk on 25 February and 2 March.

About 20 seismic events of less than Ml 2.0 were observed during 1-9 March at the Severo-Kurilsk seismic station. No seismic activity was observed from 12 to 14 March. On 15 March two seismic events were noted. There was no seismicity during 18-25 March, so KVERT reduced the hazard status from Yellow to Green, the lowest level.

The Russian Emergency Situations Ministry's Sakhalin department reported renewed activity on 27 June in the form of emission clouds rising to a maximum height of 200 m above the crater and drifting SW. KVERT did not report any activity, and the Concern Color Code for Ebeko remained at Green.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Alaska Volcano Observatory (AVO), cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Kanlaon (Philippines) — June 2005 Citation iconCite this Report

Kanlaon

Philippines

10.412°N, 123.132°E; summit elev. 2435 m

All times are local (unless otherwise noted)


May 2005 ash ejections ceasing after the 25th as monitored parameters declined

Throughout May 2005, PHIVOLCS noted that ash-and-steam emissions from Canlaon produced plumes to 500-1,000 m above the volcano. The hazard status remained at Alert Level 1. The SO2 flux remained above the 'normal' level of 500 metric tons/day (t/d) with values of 2,700 t/d on 1 May, 2,080 on 22 May, and 1,400 on 26 May. According to news reports, flights to and from nearby Kalibo airport were suspended on 3 May due to reduced visibility.

Although voluminous white steam continued to be discharged from the active vent early in June 2005, after 25 May ash ejections stopped and ash contents in the steam plume were significantly reduced. On [30 June] PHIVOLCS lowered the hazard status of Canlaon from Alert Level 1 to Alert Level Zero, listing a variety of reasons. For one, they noted the downtrend in the SO2 gas emission rate from a high of about 4,900 t/d, to the prevailing level of 1,500 t/d. For another, they noted the absence of significant seismic activity before, during, and after the ash emissions. And finally, they cited a lack of significant observations indicating near-surface hydrothermal activity. Since Canlaon has a history of sudden outbursts, the public was reminded to refrain from entering the 4-km-radius Permanent Danger Zone (PDZ) and to coordinate with PHIVOLCS and Disaster Management Councils in any attempt to climb the volcano.

Geologic Background. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros. The massive andesitic stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The largest debris avalanche known in the Philippines traveled 33 km SW from Kanlaon. The summit contains a 2-km-wide, elongated northern caldera with a crater lake and a smaller, but higher, historically active vent, Lugud crater, to the south. Historical eruptions, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, PHIVOLCS Building, C.P. Garcia Avenue, Univ. of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Chris Newhall, USGS, Box 351310, University of Washington, Seattle, WA 98195-1310, USA; Philippine Star (URL: http://www.philstar.com/).


Karymsky (Russia) — June 2005 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Several ash plumes, including two to ~ 8 km altitude, during mid-2005

During 1 January to mid-April 2004 (BGVN 29:04), ash-and-gas explosions and gas plumes were observed and seismicity remained generally above background levels. From May to the beginning of September 2004, seismic activity remained above background levels, varying over this time from 100-800 small shallow earthquakes per day. Ash-and-gas explosions and gas plumes to a maximum height of 7.5 km were frequent. On 1 September 2004 an increase in activity led the Kamchatka Volcanic Eruptions Response Team (KVERT) to raise the Concern Color Code from Yellow to Orange. From September to December 2004, seismicity remained above background levels, and ash-and-gas explosions and ash plumes were frequent. On 12 November the hazard status was lowered to Yellow.

Increasing seismicity, rock avalanches and possible ash plumes to 2.5 km altitude led KVERT to raise the Concern Color Code to Orange again on 7 December 2004. On 28 December, an observed eruption at Karymsky produced a plume composed primarily of gas and steam, but with some ash, that rose to ~ 1 km above the crater. Thermal anomalies were also visible on satellite imagery on 27 and 28 December. On 30 December the Tokyo VAAC reported that a plume was present up to ~ 8 km altitude extending SW.

There were no seismic data from 12 December 2004 till late January 2005. Through January and February thermal anomalies were frequently visible on satellite imagery. Seismicity remained above background levels from February 2005 through July 2005.

Through March and April 2005, ash-and-gas explosions and gas plumes were frequent. Ash deposits extended 10-15 km S and SW of the volcano. On 20 April, volcanic bombs rose to 50 m above the crater, and ash fell to the NE on 21 April. On 26 and 27 April, Strombolian activity was seen in two of the volcano's craters; volcanic bombs rose to ~ 300 m above the craters. Ash fell to the SE on 22-23 April and pyroclastic-flow deposits were seen on the NNW flank of the volcano. During May 2005, ash-and-gas explosions and plumes were again frequent, and a thermal anomaly continued to be visible on satellite imagery.

Due to a decrease in seismic and volcanic activity during 3-10 June, KVERT decreased the alert level from Orange to Yellow. Seismic activity increased starting on 22 June. Ash explosions up to 3,000 m altitude traveling SW were observed by pilots. According to seismic data, about 10 ash-and-gas plumes and avalanches occurred at the volcano. On 23 June KVERT increased the alert level to Orange. Satellite imagery of Karymsky showed a narrow ash-and-gas plume at a height of ~ 3.5 km altitude on 30 June. Based on interpretations of seismic data, ash-and-gas plumes may have reached 3 km above the crater.

The Tokyo VAAC posted four messages on Karymsky during the 90 days prior to 8 August 2005; in each, ash was not identifiable from satellite. The earliest, 18 May was similar to the last one, on 23 June. Both noted a reported plume to FL100 ('flight level 100' signifies 10,000 feet; 3.05 km altitude). Reports on 22 and 24 May both noted ash to FL 120 (3.65 km altitude).

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: KVERT (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), Japan Meteorological Agency, Tokyo Aviation Weather Service Center, Haneda Airport 3-3-1, Ota-ku, Tokyo 144-0041, Japan (URL: https://ds.data.jma.go.jp/svd/vaac/data/).


Kilauea (United States) — June 2005 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


During November 2004-January 2005 lava flows continued to enter the sea

Activity at Kilauea through October 2004 was previously reviewed in reports that included maps showing the extent of key lava flows through most of August 2004 (BGVN 29:09). During November 2004 through January 2005, lava flows were abundant and made complex patterns. Their overall advance can be seen by comparing maps of the extent of the lava flows as of late August 2004 (figure 169) and 2 February 2005 (figure 170).

Figure (see Caption) Figure 169. Kilauea lava flows erupted during activity from 1983-August 2004 of Pu`u `O`o and Kupaianaha. Note the location of Kupaianaha, the active vent area during 1986-1992, ~ 4 km ENE of Pu`u `O`o. Courtesy of the U.S. Geological Survey's Hawaiian Volcano Observatory.
Figure (see Caption) Figure 170. Kilauea lava flows erupted during activity from 1983-2 February 2005 of Pu`u `O`o and Kupaianaha. Courtesy of the U.S. Geological Survey's Hawaiian Volcano Observatory.

On 4 November 2004 lava from the Prince Kuhio Kalaniana `ole (PKK) flow entered the sea, forming a new delta seaward of the E end of the old Lae'apuki delta. The PKK flow has been continuously active since 26 July 2004, and lava continued to enter the sea through 26 November 2004. This was the first time lava entered the sea since the Banana lava flow ceased in early August 2004. The Banana flow developed from breakouts when lava escaped from the confines of the Mother's Day lava tube, emerging near the former Banana Tree kipuka. This flow stagnated early in September 2004, and the Mother's Day tube ceased carrying lava late in 2004.

During the first week in December 2004, the lava flow at Lae'apuki abated. Activity resumed during the second week along all areas of the PKK flow from high on the Pulama pali fault scarp. By 13 December lava again entered the sea at the East Lae'apuki delta. The flow moderated during the second half of December with only several areas of visible surface lava apparent on the Pulama pali fault scarp and on the coast.

New vents opened at the southern base of Pu`u `O`o on 19 January 2004 and fed the Martin Luther King (MLK) flows (figure 11). The PKK flow originated from two vents ~ 250 m S of the base of Pu `u `O`o. By 2 February 2005 the PKK flow had entered the sea at West Highcastle, Lae'apuki, and Ka`ili`ili (figure 11).

During January 2005, surface lava was visible along the three main arms of the PKK flow as they advanced downslope towards the coast (figure11). The middle arm of the PKK flow was comparatively small, and it failed to reach the ocean during this reporting interval; it remained high on Pulama pali. In contrast, lava from the E and W arms of the PKK flow began to enter the ocean on 31 January. The large E arm of the PKK lava flow fed the larger Ka`ili`ili entry. The W branch of the PKK lava flow once supplied lava to Lae'apuki (an E branch of the W arm), but later also began feeding the West Highcastle ocean entry (the W branch of the W arm, figure 11).

Seismicity. After seven months of relative quiescence renewed seismicity and numerous small long-period (LP) events again became visible in November 2004 on the North Pit seismogram. Elevated activity began on 16 November, peaking at over 2,000 events a day by late November (figure 171). Nearly all of these earthquakes were too small to catalog. To obtain this plot, a daily event count was extrapolated from a representative part of the North Pit (NPT) seismogram. Scientists combined the counts for two shallow (0-5 km deep) earthquake types, those designated by HVO as short-period summit or short-period caldera (SPC) and those designated as shallow, long-period (long-period caldera A, LPC-A) earthquakes. The similar frequency content of these two kinds of earthquakes make them difficult to distinguish on the drum record. In addition, small-magnitude deeper earthquakes, designated as long-period earthquakes originating at depths over 5 km, may have also registered within the summit caldera to appear on the plot, although they would be expected to contain a lower dominant frequency of oscillation than the LPC-A earthquakes. Tremor episodes were rare or absent.

Figure (see Caption) Figure 171. A time series of Kilauea's daily earthquakes (SPC, LPC-A, and possibly LPC-C types) registered at the summit during October 2004 through January 2005. Courtesy of U.S. Geological Survey's Hawaiian Volcano Observatory.

A minor peak in seismicity occurred in later January, during the two days before and after the 25 January inflation-deflation event. Most of the events on 25 January appeared to be of the SPC variety.

Tilt and deformation. The tiltmeter record at Kilauea summit (UWE) and Pu`u `O`o (POC) showed numerous correlated tilt changes, with a short time delay between UWE and POC stations and larger magnitude delays at POC (figure 172). One of the largest of these deformations took place on 25-26 November and resulted in about 3 microradians of tilt at UWE, and 5 microradians at POC. This was similar in character to the tilt events of recent months, starting with fairly rapid deflation, followed by a similar rate and magnitude of inflation. Though they differ in character from the deflation-inflation-deflation (DID) cycles of the past few years, they seem to be originating from the same shallow storage area near Halemaumau, the crater at Kilauea's summit.

Figure (see Caption) Figure 172. Electronic tiltmeter records from the N flank of Pu`u `O`o cone (POC) and NW rim of Kilauea caldera (UWE) for (A) October and November 2004 and (B) December 2004 through January 2005. Only the radial component is plotted, i.e., the direction that maximizes signal from the most common sources of tilt at both locations. Courtesy of U.S. Geological Survey's Hawaiian Volcano Observatory.

Kilauea continued to inflate over this reporting period. The extension rate across the summit increased dramatically in early January 2005, from an average rate of about 8 cm/yr to over 40 cm/yr. There was a short inflation-deflation event on 25 January, followed by about 2-3 days of extremely rapid movement of the S flank; continuous GPS stations on the S coast were displaced by up to 2 cm. The pattern and rate of motion are very similar to the slow earthquake of November 2000. The slip event occurred during a swarm of earthquakes (see seismic section above), but the cumulative magnitude of these earthquakes was not nearly as great as the estimated equivalent moment magnitude of the slip.

Other large episodes of correlated multistation tilt occurred on 14 December 2004 and 25 January 2005. In December, both UWE and POC recorded deflationary tilts of about 4 and 2.5 microradians, respectively, over about 12 hours. In mid-January, the summit started showing a high rate of inflationary tilt, coinciding with the increase in cross-summit extension, measured by continuously recording GPS. In the early morning of 25 January, summit tiltmeters and POC recorded a rapid inflation (about 5.5 microradians in an hour at UWE, 2 at POC) followed by an equal amount of deflation over the next day. The event was similar to the fairly frequent deflation-inflation-deflation (DID) events at Kilauea. Similarities included the apparent source regions of the inflation, the seismic signature, the delay time between the summit and the rift zone, and the timing of increased activity.

SO2 emission rate measurements. Summit SO2 emission rates for October/November ranged from 80 to 130 metric tons per day (t/d) with an average of 105 t/d (standard deviation, s.d.=20 t/d for 36 measurements made over 6 days). Although this represents a slight decrease over emission rates measured during the previous reporting period, it does not represent a significant change. Correlation spectrometer (COSPEC) SO2 measurements along the Chain of Craters Road yielded SO2 flux rates of 1,080-1,660 t/d with a mean value of 1,270 t/d (s.d. of 260 t/d for 27 measurements made over 4 days). The drop in emissions, which began in May 2004, had continued through November 2004. A lack of trade winds hindered SO2 flux measurements during November and December. Six traverses on 6 December yielded an emission rate of 105 t/d (s.d.=10 t/d) consistent with the more frequent measurements made during September-October 2004. The return of the tradewinds in early February allowed measurements to resume and showed that summit emissions had decreased markedly, likely due to the heavy rainfall on 4 February.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


McDonald Islands (Australia) — June 2005 Citation iconCite this Report

McDonald Islands

Australia

53.03°S, 72.6°E; summit elev. 230 m

All times are local (unless otherwise noted)


Satellite infrared data suggests a new unwitnessed eruption

The following report comes from Matt Patrick of the HIGP Thermal Alerts Team. Two night-time ASTER images (Band 10, 8.3 microns, at 90 m pixel size) of McDonald Island show activity centered on the NW shore of the island. The December 2002 image was examined some months ago, but it was not determined whether the long-wave infrared (IR) anomaly was genuine, since it was relatively low intensity and there was no anomaly in the shortwave IR. The most recent ASTER image (12 July 2005) shows a somewhat larger long-wave IR anomaly, but more importantly, there are five pixels in the shortwave IR (Band 9, 2.4 microns; not shown) which are saturated, indicating this is a significantly hot target. Based upon McDonald's typical activity, the anomaly probably reflects low-level effusive activity.

The first and only MODVOLC alert pixel showed up in November 2004 (BGVN 29:12). These ASTER images show that recent activity is centered around the NW flank of the island, very close to shore. Comparing the July 2005 image with the December 2002 image, there might be an indication of the shoreline growing westward, but it is hard to tell for sure with this resolution (90 meters). The location of this activity is generally consistent with recent BGVN reports: in 1999 steaming was observed on the N-NE part of the island (BGVN 24:01), and a recent Landsat ETM image indicated that island construction over the last two decades has expanded the northern portion of the volcano (BGVN 26:02 and 27:12).

Andrew Tupper noted that he found the hot spot identification plausible. The question of edifice collapse and possible tsunami generation associated with McDonald Islands has recently been a subject of interest but little technical information is available on topics such as edifice morphology and slope stability.

Geologic Background. Historical eruptions have greatly modified the morphology of the McDonald Islands, located on the Kerguelen Plateau about 75 km W of Heard Island. The largest island, McDonald, is composed of a layered phonolitic tuff plateau cut by phonolitic dikes and lava domes. A possible nearby active submarine center was inferred from phonolitic pumice that washed up on Heard Island in 1992. Volcanic plumes were observed in December 1996 and January 1997 from McDonald Island. During March of 1997 the crew of a vessel that sailed near the island noted vigorous steaming from a vent on the N side of the island along with possible pyroclastic deposits and lava flows. A satellite image taken in November 2001 showed the island to have more than doubled in area since previous reported observations in November 2000. The high point of the island group had shifted to the McDonald's N end, which had merged with Flat Island.

Information Contacts: Matt Patrick, HIGP Thermal Alerts Team, Hawai'i Institute of Geophysics and Planetology (HIGP) / School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Andrew Tupper, Darwin Volcanic Ash Advisory Centre (VAAC), Commonwealth Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Sheveluch (Russia) — June 2005 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth, ash falls, pyroclastic flows during early to mid-2005

Following explosions from Shiveluch during 25 February to 4 March 2005 ash fell in Ust'-Hairyuzovo, about 250 km W (BGVN 30:02). From March 2005 until July 2005, Shiveluch remained at Concern Color Code Orange. Throughout March 2005 the lava dome at Shiveluch continued to grow and on several days ash-and-gas plumes and gas-and-steam plumes rose to a maximum of ~ 2.8 km above the dome. Satellite imagery showed a thermal anomaly at the dome during the first week of March and a large thermal anomaly over the recent pyroclastic-flow deposit during 11-12 March. Between 5-28 March a new lava extrusion added ~ 50 m height to the SW part of the dome.

During April 2005, intensive growth of the new extrusion at the W part of the dome continued, and the E and W parts of the lava dome became nearly level. Gas-and-steam plumes rose to a maximum of ~ 1.2 km above the dome during April 2005. Satellite imagery showed a large thermal anomaly at the dome during mid-April and a small anomaly associated with a pyroclastic flow on 19 April. On 25 April, a hot avalanche on the dome's W side produced an ash plume that rose ~ 2 km above the 2.5-km-high lava dome. Growth of the dome continued during May 2005 with a new extrusion to the W. Ash-and-gas plumes, some rising 2 km above the dome, were frequent. Satellite imagery showed a persistent thermal anomaly at the lava dome throughout May.

The dome continued to grow during June 2005. During 3-10 June, two shallow M 1.6-1.7 earthquakes occurred 0-5 km beneath the active dome. Gas-and-steam plumes rose as high as 400 m above the dome during June. A persistent thermal anomaly was visible throughout June. Fumarolic activity was reported during the week of 18-24 June. During the last week of June, satellite imagery showed a persistent thermal anomaly, and fumarolic activity produced steam to 4-5 km altitude. On 30 June, ash-and-gas plumes rose 3-5 km altitude. and drifted NW. Hot avalanches of volcanic material were also recorded. On 6 July ash-and-gas plumes rose to ~ 7 km altitude and drifted NW. On 7 July an 11-minute-long seismic event occurred, and ash-and-gas plumes may have reached a height of 10 km altitude. Around 8 July, KVERT raised the Concern Color Code from Orange to Red, the highest level. On 8 July 2005, video footage showed weak gas-and-steam plumes rising to ~ 5 km altitude. On 9 July 2005, the Concern Color Code was reduced to Orange.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga A. Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — June 2005 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Abundant ash-laden plumes, pyroclastic flows, and local ashfall

Soufrière Hills was last reported on in BGVN 30:03, covering November 2004 to March 2005, during which time the volcano remained quiet, with seismic signals, gas emissions and rockfalls all decreasing. This report, from Montserrat Volcano Observatory (MVO), covers the period from late March 2005 to July 2005. The volcano continued to be relatively quiet through April and early May, with activity increasing somewhat through June and several explosive events in late June and in July. Table 60 summarizes the seismicity and SO2 emissions during the period of this report.

Table 60. Geophysical and geochemical data recorded at Soufrière Hills, 25 March 2005 to 15 July 2005. * Only measurement during report period. **12-hour system failure may have caused events to be missed. Courtesy of MVO.

Date Seismicity Level Hybrid EQ's Volcano-tectonic EQ's Long-period EQ's Rockfalls SO2 Range (tons/day) SO2 Daily Avg (tons/day)
25 Mar-01 Apr 2005 low 1 5 1 -- 186-369 290
01 Apr-08 Apr 2005 low 1 7 1 -- 280-650 400
08 Apr-15 Apr 2005 low -- 19 -- -- 261-1877 619
15 Apr-22 Apr 2005 -- 7 37 -- 1 122-957 365
22 Apr-29 Apr 2005 -- 7 31 -- -- 112-330 304
29 Apr-06 May 2005 -- 1 4 -- 1 276-644 439
06 May-13 May 2005 -- 1 38 -- 1 221-537 398
13 May-20 May 2005 -- 3 18 -- -- 222-363 286
20 May-27 May 2005 -- -- 67 -- -- 880* --
27 May-03 Jun 2005 -- -- 8** -- -- 167-392 261
03 Jun-10 Jun 2005 -- -- 17 -- 1 142-671 399
10 Jun-17 Jun 2005 elevated 17 46 20 7 170-750 460
17 Jun-24 Jun 2005 elevated 8 4 5 3 430-1150 627
24 Jun-01 Jul 2005 elevated 19 15 5 -- 300-700 470
01 Jul-08 Jul 2005 elevated 15 9 11 11 241-1700 767

Seismic activity at Soufrière Hills remained at low levels throughout March and most of April 2005. Beginning on 15 April, vigorous steam-and-ash venting occurred on the NW side of Soufrière Hills crater and continued throughout the period of this report. Average daily SO2 emissions were generally lower than the long-term eruption average of 500 tons/day, but increased in July to above the average.

On 13 June at 0600 an ash plume reached a height of ~ 2.4 km altitude and drifted NE, depositing light ash in Lookout, Geralds, and St. Peters.

Starting around 10 June, seismic and volcanic activity were at elevated levels. The ash venting that began on 13 June declined in intensity during the following week. The ash venting was caused by the rapid release of steam and other volcanic gases, possibly triggered by intense rainfall on the night of 12 June. Ash analyses from this episode did not indicate fresh magma.

On 27 June a steam and ash cloud at ~ 3 km altitude was reported to be drifting W. By 28 June satellite imagery showed a plume of ash and steam at ~ 1.8 km altitude extending NW. Periodic episodes of intense ash venting continued, culminating in an explosive event on 28 June at 1306. During the event, ballistics were ejected onto the Farrell's plain (to the NW), and a column collapse produced pyroclastic flows. The pyroclastic flows reached the sea at the Tar River delta (to the NE), and a smaller volume of material flowed into the top of Tyre's Ghaut (to the N). Ash showed no evidence of fresh magma.

Preliminary analysis of recent ground deformation data from the GPS network at the volcano showed that deflation during April to mid June 2005 had later reversed, and the volcano appeared to be inflating. Periodic ash venting continued and an explosion occurred on 3 July at 0130, which was similar to the explosion on 28 June.

An explosive event at 0301 on 18 July caused widespread ash fallout between Fogarty Hill on the island's NW and Brodericks Yard on the island's SW and almost certainly led to pyroclastic flows to the sea in Tar River. This explosion was similar to, but slightly bigger than, the explosion on 3 July, and ash venting and pyroclastic flows combined to cause dramatic ash clouds which reached to at least 6 km. Winds blew the ash plume in a NW direction causing significant ash fall in Old Towne, Iles Bay, Salem, Olveston, Woodlands and St Peters. The maximum depth of ash measured by scientists in inhabited areas was 1.5 to 2.0 mm; the deepest ash was recorded at Weekes. Activity subsequently returned to background levels.

The MVO collected ash samples from the affected areas to determine whether it was new material from depth or older material from the dome. Ash collected after the 28 June and 3 July 2005 events showed no evidence of new magmatic material.

On 28 July 2005, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard the Aqua satellite acquired an image of a plume of volcanic ash drifting westward in a slightly curving shape as it departs Soufriere Hills (in the middle of the image, figure 61).

Figure (see Caption) Figure 61. A MODIS image of an ash plume from Soufrière Hills acquired on 28 July 2005. N is towards the top. The plume was visible for over 100 km, but conspicuous portions of the plume continued beyond the W (left) side of this image between the arrows. A Washington VAAC report from that day suggested a plume to ~ 5 km altitude and 70-300 km long, blown W. Several islands neighboring Montserrat (M) are labeled: A, Antigua; B, Barbuda; G, Guadeloupe; N, Nevis; and SK, St. Kitts. For scale, the distance between the centers of the islands of Montserrat and Antigua is ~ 55 km. Some islands are ringed in bright blue-green, the possible result of coral reefs in shallow water, sediment, phytoplankton, or some combination of these conditions. Image and some elements of the caption courtesy of Jeff Schmaltz, MODIS Rapid Response Team, NASA.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Fleming, Montserrat, West Indies (URL: http://www.mvo.ms/).


St. Helens (United States) — June 2005 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Extrusion of smooth-surfaced dome lavas that later crumbled; explosions

Throughout the period covered by this report, March 2005 to July 2005, growth of the new lava dome inside the crater of St. Helens continued, accompanied by low rates of both seismicity and gas and ash emissions. The hazard status remained at 'Volcano Advisory' (Alert Level 2); aviation color code Orange. Results from a digital elevation model produced from imagery taken on 21 February showed the highest part of the new lava dome was 12 m higher than on 1 February; during that 3 week period the volume of dome and surrounding uplift had increased by 3 million cubic meters. The average rate of growth continued at ~2 m3/s. Figure 52 shows four views of changes to the lava dome during the period of this report. Figure 53 shows the seismicity and the time of the larger recognized explosions.

Figure (see Caption) Figure 52. Four views into St. Helens's crater from different perspectives and dates, focusing on the new dome. A: 15 March 2005, view from NE. The whaleback is close to its maximum length of 500 m. Note that the glacier's heavily crevassed, half-moon shaped, E (left) arm lies squeezed between the growing dome and crater wall. Vent is steaming at lower-right whaleback. B: 3 May 2005, view from N. The whaleback has been breaking apart for several weeks. Note the large slab of smooth gouge-covered surface moving E (left). C: 21 June 2005, view from NW. Note the development of broad talus on W (right) flank of dome. An isolated body of smooth gouge-covered surface to the right of the main spine is emerging from talus. D: 26 July 2005, view from E crater rim. The smooth, gouge-covered spine continues to crumble as a result of M > 3 earthquakes and rockfalls. A large slab of March whaleback is visible at left. Most of the dome surface is now talus and disintegrating older whalebacks. By the end of July, the spine had been reduced to a highly fractured stump. All photos courtesy of USGS CVO.
Figure (see Caption) Figure 53. Magnitude of located earthquakes at Mount St. Helens through 27 July 2005 (Pacific Northwest Seismograph Network). Vertical lines represent the time of moderate explosions. Note periods of earthquakes M > 3 that accompanied dome break-ups in December, April, and July. Courtesy of CVO and the Pacific Northwest Seismograph Network.

During 2-7 March, dome growth accompanied low rates of both seismicity and gas and ash emissions. Parts of the growing lava dome continued to crumble, forming rockfalls and generating small ash clouds that drifted out of the crater. The bulging ice on the deformed E arm of the glacier in the crater continued to move rapidly N at about 1.2 m per day (figure 54).

Figure (see Caption) Figure 54. A view of the growing dome at St. Helens from the Sugar Bowl camera just before the 8 March 2005 explosion. The Sugar Bowl digital camera takes a picture every hour from its housing on the NE flanks. The image data are transmitted to a more accessible spot immediately after the pictures are taken. Courtesy of CVO.

A small explosive event began at approximately 1725 on 8 March. The eruption lasted about 30 minutes with intensity gradually declining throughout; a fine dusting of ash from this event later fell ~ 100 km to NW (in Yakima, and Toppenish, Washington). By 0200 on 9 March, the leading edge of the faint, diffuse plume had reached ~ 300 km to the E (over western Montana). After the explosion scientists found the lava dome intact. They recognized ballistics (up to ~ 1 m in diameter) as far as the N flank of the old lava dome and a lack of them along or beyond the crater rim. The explosion vented from the NNW side of the new lava dome, very near the source of the 1 October 2004 and 16 January 2005 explosions (figure 55).

Figure (see Caption) Figure 55. The 8 March 2005 explosion at St. Helens viewed from the Sugar Bowl camera. This shot was taken at about 1727 hours and 42 seconds on 8 March. Courtesy of CVO.

The explosion on 8 March was one of the largest steam-and-ash emissions to occur since renewed activity began in October 2004. The Cascades Volcano Observatory (CVO) lost radio signals from three monitoring stations in the crater soon after the event started. The event followed a few hours of slightly increased seismicity not then interpreted as precursory. There were no other indications of an imminent change in activity.

After the 8 March explosion, St. Helens only emitted steam, and seismicity dropped to a level similar to that during the several hours prior to the explosion. Gas emissions were very low, essentially unchanged from those measured in late February. The hazard status for the ongoing eruption, 'Volcano Advisory (Alert Level 2),' mentioned the possibility of events like the 8 March explosion occurring without warning. That assessment remained unchanged and the hazard status stayed the same.

Analysis of aerial photographs indicated that as of 10 March the topographic changes in the crater resulting from growth of the new dome and consequent glacier deformation had a combined volume of about 45 million m3. The current eruption contributed new materials amounting to about two-thirds the volume of the old lava dome.

From March 2005 through July 2005, growth of the new lava dome continued. Rates remained low for both seismicity and gas and ash emissions. CVO noted that during such eruptions, episodic changes in the level of activity can occur over days to months. During about 26-27 March, a group of M 2 to M 3 earthquakes occurred beneath the volcano, a level of activity considered normal during dome-emplacing volcanism.

A series of large (M >=3) earthquakes occurred during 3-4 April, in addition to the typical array of smaller events. Observations on 6 April revealed that the smooth whaleback-shaped portion of the growing lava dome was broken by numerous fractures, and the edges had crumbled greatly. Several deep gashes on the E, N, and W sides frequently produced rockfalls and accompanying ash clouds. On 10 April the new dome continued to fracture and spread laterally. As a consequence, the dome's summit dropped by a few tens of meters over 2-3 weeks, leaving isolated high-standing remnants. This broken pattern was apparent in a photograph on 3 May (figure 5B).

Earthquakes steadily decreased in magnitude and number through mid-April. A GPS receiver 200 m N of the new dome crept steadily NNW at ~ 10 cm per day. The combination of the GPS measurements adjacent to the lava dome and the qualitative estimate of lateral spreading suggested that extrusion of new lava continued during April.

On the morning of 28 April there were reports of minor amounts of ashfall in the eastern part of the Portland metropolitan area, ~ 80 km SSW of St. Helens. There was no evidence of a new explosion. CVO scientists determined that large convective storms over the Cascades on 27 April entrained ash generated by the frequent hot rockfalls from the growing lava dome and kept it in suspension to fall out as far away as Portland.

During early May poor weather obscured the volcano. Seismic and ground deformation activity remained unchanged. Through much of the night of 4-5 May, however, VolcanoCam images detected intermittent glow from the new dome. The camera is mounted at the Johnston Ridge Observatory at an elevation of 1,400 m and ~ 6.5 km NNW of the volcano, a spot W of the S part of Spirit Lake. During 11-12 May images from the mouth of the crater showed the new spine of lava at the N end of the dome continuing to grow. Data from seismic and GPS instruments in the crater and on the outer flanks continued to lack significant changes over the past few weeks. Through the end of May, lava extrusion continued at the N end of the new lava dome, while the high spines continued to crumble. Other parts of the lava dome moved at the relatively low velocity of about 30 cm/day or remained stagnant. Table 7 compares the older dome with the new one as of 3 May 2005.

Table 7. A comparison of the old (1980-86) and new (2004-) domes at St. Helens. The new dome (unofficially called "the whaleback") started in October 2004, and the reported data reflects conditions seen until 1 February 2005. Courtesy of CVO.

Feature Old dome New dome
Growth period 1980-1986 (six years) October 2004-February 2005 (and ongoing)
Size - length ~1.1 km in diameter ~475 m long
Size - width ~1.1 km in diameter ~152 m wide
Elevation / vertical height 2.2 km, nearly 267 m above the 1980 crater floor. As of 1 February 2005, 2.3 km, nearly 415 m above the 1980 crater floor, 152 m above the top of the old 1980-86 lava dome, and 213 m above the 2000 glacier surface. The new dome's top reached an elevation ~40 m below Shoestring Notch on the crater's SE rim.
Volume ~75 x 106 m3 ~44 x 106 m3

Around 4 June the rate of motion of a GPS unit on the NE part of the new dome slowed slightly, continuing to creep eastward and northward at a rate of several centimeters per day, but no longer rising vertically. The lava spine, however, continued to grow. Through the end of June 2005, seismic and deformation data continued trends similar to the previous few weeks, with small earthquakes approximately every 5 minutes, little to no movement of the old lava dome, minor movement of the N end of the new lava dome, and continued growth of the lava spine. Observations made on 15 June revealed that the lava spine continued to grow and that temperatures in cracks near the base of the spine were near 700°C. Thermal data from 15 June suggested that much of the W part of the dome was moving upward, as well as southward. During the last week of June, the smooth lava spine continued to grow at a rate of about 1.8-3.7 m per day. Rockfalls from the top of the spine kept its height from increasing by that same rate. Analysis of a digital elevation model made from imagery acquired on 15 June showed that the total volume addition to the crater since September 2004 had reached almost 60 million cubic meters.

On 2 July at 0630 a rockfall from the growing lava dome removed a large piece of the dome's top, producing an ash plume that rose above the crater rim and generating a substantial seismic signal. Persistent smaller rockfalls from the growing lava dome built talus aprons on the W and NE flanks of the dome.

On 12 July, CVO reported that rates of seismicity and ground deformation at Mount St. Helens had declined during the previous two weeks to some of the lowest levels since the eruption began in September 2004. A similar lull occurred in December 2004.

Beginning 15 July and continuing through the end of the month, the growing spine and other high areas of the dome to the south produced numerous large rockfalls, most of which were associated with earthquakes of about M 3 (figure 56). Diffuse ash plumes that rose hundreds of meters above the rim were produced by the larger rockfalls. By the end of July most of the smooth gouge-covered surface of the spine had disintegrated, and the spine was reduced to a highly fractured, but still-extruding, stump surrounded by rapidly growing aprons of rockfall debris.

Figure (see Caption) Figure 56. Rockfall and accompanying ash cloud on 26 July 2005 as viewed from station Brutus on the crater's E rim. Rockfall originated from the steep, fractured top of an inclined spine. Note boulders (light-colored specks against shadow) shooting ahead of ash cloud. Another spine is extruding from ground just behind the lower end of the ash cloud. Courtesy USGS and CVO.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: Cascades Volcano Observatory (CVO), U.S. Geological Survey, 1300 SE Cardinal Court, Building 10, Suite 100, Vancouver, WA 98683-9589, USA (URL: https://volcanoes.usgs.gov/observatories/cvo/); Pacific Northwest Seismograph Network (PNSN), Seismology Lab, University of Washington, Department of Earth and Space Sciences, Box 351310, Seattle, WA 98195-1310, USA (URL: http://www.pnsn.org/).


Tungurahua (Ecuador) — June 2005 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Ash plumes and LP earthquakes still common in 2004-2005

The eruption of Tungurahua that began at the end of December 2003 (BGVN 28:11) continued through January 2004 (BGVN 29:01). Figure 25 shows an ash plume emitted on January 2004 in a Moderate Resolution Imaging Spectroradiometer (MODIS) image.

Figure (see Caption) Figure 25. A NASA MODIS image showing an ash plume from Tungurahua acquired 14 January 2004. N is up; the plume's height and length were undisclosed. Arrow points to Tungurahua and is along the approximate trend of the densest portion of the plume. The plume blew NE across the Andes and remained visible well over the thickly vegetated lowlands farther E. (Visible Earth v1 ID 26233.) Courtesy of NASA. Inset map showing major active Ecuadorian volcanoes courtesy of the USGS.

On 5 February 2004 there was a slight increase in seismic activity at Tungurahua; steam emissions rose to low levels, and small lahars traveled down the volcano's W flank via the Achupashal and Chontapamba gorges. On 9 February emissions of steam, gas, and moderate amounts of ash occurred, deposited to the W in the sectors of Pillate and San Juan. During mid February, several avalanches of incandescent volcanic blocks traveled ~ 1 km down the volcano's flank. During late February through mid April 2004, degassing continued at Tungurahua with occasional explosions of steam, gas, and ash, producing plumes to ~ 500 m above the volcano.

On 2, 11, and 15 March lahars traveled through the Pampas sector. During the night of 28-29 March incandescent material was observed avalanching on the upper slopes. From 30 March to 3 April, volcanic activity was at relatively low levels, but emissions of steam and ash occurred, and incandescence was visible in the crater. On 4 April at 1902 an explosion produced a plume containing a moderate amount of ash that rose to 800 m above the crater, and on the evenings of 10 and 11 April, incandescence was visible in the crater.

Sulfur-dioxide flux measurements taken on 11 April were the highest measured for several weeks; 1,600-1,700 metric tons per day. Heavy rain during the afternoon and night of 13 April triggered a lahar that cut the La Pampa section of the Baños-Pelileo road.

Volcanic activity at Tungurahua at the end of April 2004 was at moderate levels. On 21 April, a column of steam, gas, and ash rose to a height of ~ 1 km above the volcano and drifted NW. Ash fell in Bilbao, Cusúa, San Juan, Cotaló, Pillate, and Juive sectors. A plume reached ~ 0.5 km on 22 April and deposited ash in the towns of Ambato (to the NW) and Baños (to the N). During the evening of 24 April, incandescence was visible in the crater, and incandescent blocks rolled a few meters down the volcano's NW flank.

Volcano-tectonic earthquakes on 27 and 28 April preceded a slight increase in the number of sudden explosions at Tungurahua on 30 April. According to news reports, ash fell in the towns of Cotaló, and San Juan (W of the volcano) on 1 and 2 May. The level of seismicity at Tungurahua decreased on 4 May. On 12 May, an explosion produced an ash cloud to ~ 3 km above the volcano that drifted SW, and on 13 May seismicity increased moderately, related to the increased numbers of emissions. Incandescence was visible at the lava dome during some nights.

From mid May through June, small-to-moderate emissions of gas, steam, and ash continued at Tungurahua. The highest rising plume reached ~ 2.5 km above the volcano on 23 May. On the morning of 19 May a mudflow occurred in the Pampas sector, but it did not affect the highway. Strombolian activity was visible in the crater on the evening of 23 May. During 2-8 June, activity remained moderate with several weak to moderate explosions recorded per day. Sporadically observed gas-and-ash and gas-and-steam plumes rose up to 1 km above the summit. A strong explosion on 5 June produced a gas-and-ash plume that rose 2 km above the summit. All plumes drifted W. Seismicity remained at moderate levels. On 3 June, possible lahars were noted on the N and NW flanks.

Several explosions occurred on 10 June, with the largest rising ~ 3 km above Tungurahua's summit and drifting W. A small amount of ash fell in the Pillate area, and a lahar destroyed a bridge in the Bibao zone. During mid to late June, there was a slight increase in volcanic activity at Tungurahua in comparison to the previous weeks. There were several emissions of steam, gas, and moderate amounts of ash, and 5-10 explosions occurred daily. Seismicity was characterized by long-period earthquakes.

From July through December 2004 the level of volcanic and seismic activity diminished at Tungurahua, with sporadic moderate explosions of ash and gas. The highest rising plume reached ~ 1.5 km above the volcano. Seismicity was at relatively low levels. Incandescence in the crater was observed at night on several occasions. Some explosions on 20 September generated plumes with ash, causing ashfall in Bilbao and Pondoa, and on the evening of 21 September, Strombolian activity was seen, with volcanic blocks thrown as high as 200 m above the volcano. On 27 October an explosion produced an ash column to a height of ~ 3.5 km above the volcano. During the evening, ash fell in the towns of Baños, Runtón, and El Salado. Explosions on 31 October also deposited small amounts of ash in Bilbao and Motilone, and on 15 November, incandescence was observed in the crater of the volcano and explosions generated steam columns with moderate ash content that rose ~ 2 km above the crater and drifted S. During 22-27 December, activity at Tungurahua consisted of small-to-moderate explosions, several long- period earthquakes, and episodes of tremor. Emissions of steam, gas, and small amounts of ash rose a maximum of 1.5 km on 22 December.

Increased seismicity and volcanic tremor registered at Tungurahua during early January 2005. There were eleven signals suggesting volcanic emissions and one small explosion. Seismicity then returned to a low level. On 11 January, steam plumes rose ~ 300 m above the volcano and extended WNW, and incandescence was observed emanating from the crater during 12-13 January. On 14 January, a white column of steam-and-gas was observed that reached a height of 500 m above the crater and extended to the NW. A steam- and-gas plume reached a height of 200-300 m above the crater on 16 January, and extended SE.

The Washington Volcanic Ash Advisory Center (VAAC) reported 18 January that an ash plume reached ~ 5.5 km altitude and extended to the E of Tungurahua's summit for ~ 15 km. During 19-24 January 2005, there were several emissions from Tungurahua of steam, gas, and ash. The plumes that were produced rose to a maximum height of ~ 1 km above the volcano and drifted in multiple directions, small amounts of ash falling in the sectors of Agoyán, San Francisco, Runtón, Pondoa, and Baños. Seismicity was at relatively low levels. Ash emission from Tungurahua on the evening of 25 January 2005 deposited a small amount of ash in the sector of Puela; ash was deposited on the volcano's N and W flanks on 26 January. The character of the eruption changed on 30 January to low-energy emissions of predominately steam. This type of activity continued through 31 January.

Volcanic and seismic activity was at low levels at Tungurahua during the period of February-mid July 2005. Low- energy plumes were emitted, and long-period earthquakes were recorded. Ashfall was reported in towns near the volcano, including Puela (SW of the volcano), San Juan de Pillate, Cusúaua, and Quern. On 23 February the daily sulfur-dioxide flux was 1,200 tons/day. On 27 and 28 February, rains generated lahars in the W zone of the volcano into the gorges of Cusúa and Bilbao. A moderate explosion occurred 18 April at 2057 that sent incandescent volcanic blocks rolling down the volcano's flanks. Ash fell S of the city of Ambato. On 20 and 21 April rain generated lahars that traveled down the volcano's W flank near the settlement of Bilbao (8 km W). An emission on 19 May around 1200 produced an ash-and- steam plume to ~ 500 m altitude that drifted N. On 7 June fine ash fell in the Puela sector, ~ 8 km SW of the volcano. On 24 June a narrow plume was identified in multispectal satellite imagery about an hour after an ash eruption was observed by the Instituto Geofisica. The ash plume was at an altitude of ~ 5.5 km and extended 35-45 km W from the summit. On 4 July 2005, low-energy plumes were emitted that rose to a maximum of ~ 5.8 km altitude.

Table 9 gives examples of some seismic statistics for several months during the reporting period from the Instituto Geofísico-Escuela Politécnica Nacional (IG).

Table 9. Summary of available seismicity (number of events) at Tungurahua during January 2004-March 2005 as published in IG monthly reports of March 2004, October 2004, and April 2005. Courtesy of the Instituto Geofísico-Escuela Politécnica Nacional (IG).

Month/Year Long-period Volcano-tectonic Emission Explosions Hybrid
Jan 2004 365 6 217 28 0
Feb 2004 255 8 147 16 0
Mar 2004 123 7 123 2 0
Aug 2004 620 5 142 22 0
Sep 2004 674 9 119 43 0
Oct 2004 390 14 168 53 0
Jan 2005 138 8 92 6 0
Feb 2005 113 20 29 0 0
Mar 2005 54 20 1 0 0

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771, USA (URL: http://earthobservatory.nasa.gov/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).