Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ibu (Indonesia) Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Dukono (Indonesia) Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Sabancaya (Peru) Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sheveluch (Russia) Significant explosions destroyed part of the lava-dome complex during April 2023

Bezymianny (Russia) Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Chikurachki (Russia) New explosive eruption during late January-early February 2023



Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ibu (Indonesia) — June 2023 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Persistent eruptive activity since April 2008 at Ibu, a stratovolcano on Indonesian’s Halmahera Island, has consisted of daily explosive ash emissions and plumes, along with observations of thermal anomalies (BGVN 47:04). The current eruption continued during October 2022-May 2023, described below, based on advisories issued by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), daily reports by MAGMA Indonesia (a PVMBG platform), and the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data. The Alert Level during the reporting period remained at 2 (on a scale of 1-4), except raised briefly to 3 on 27 May, and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side of the volcano.

According to MAGMA Indonesia, during October 2022-May 2023, daily gray-and-white ash plumes of variable densities rose 200-1,000 m above the summit and drifted in multiple directions. On 30 October and 11 November, plumes rose a maximum of 2 km and 1.5 km above the summit, respectively (figures 42 and 43). According to the Darwin VAAC, discrete ash emissions on 13 November rose to 2.1 km altitude, or 800 m above the summit, and drifted W, and multiple ash emissions on 15 November rose 1.4 km above the summit and drifted NE. Occasional larger ash explosions through May 2023 prompted PVMBG to issue Volcano Observatory Notice for Aviation (VONA) alerts (table 6); the Aviation Color Code remained at Orange throughout this period.

Figure (see Caption) Figure 42. Larger explosion from Ibu’s summit crater on 30 October 2022 that generated a plume that rose 2 km above the summit. Photo has been color corrected. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 43. Larger explosion from Ibu’s summit crater on 11 November 2022 that generated a plume that rose 1.5 km above the summit. Courtesy of MAGMA Indonesia.

Table 6. Volcano Observatory Notice for Aviation (VONA) ash plume alerts for Ibu issued by PVMBG during October 2022-May 2023. Maximum height above the summit was estimated by a ground observer. VONAs in January-May 2023 all described the ash plumes as dense.

Date Time (local) Max height above summit Direction
17 Oct 2022 0858 800 m SW
18 Oct 2022 1425 800 m S
19 Oct 2022 2017 600 m SW
21 Oct 2022 0916 800 m NW
16 Jan 2023 1959 600 m NE
22 Jan 2023 0942 1,000 m E
29 Jan 2023 2138 1,000 m E
10 May 2023 0940 800 m NW
10 May 2023 2035 600 m E
21 May 2023 2021 600 m W
21 May 2023 2140 1,000 m W
29 May 2023 1342 800 m N
31 May 2023 1011 1,000 m SW

Sentinel-2 L1C satellite images throughout the reporting period show two, sometimes three persistent thermal anomalies in the summit crater, with the most prominent hotspot from the top of a cone within the crater. Clear views were more common during March-April 2023, when a vent and lava flows on the NE flank of the intra-crater cone could be distinguished (figure 44). White-to-grayish emissions were also observed during brief periods when weather clouds allowed clear views.

Figure (see Caption) Figure 44. Sentinel-2 L2A satellite images of Ibu on 10 April 2023. The central cone within the summit crater (1.3 km diameter) and lava flows (gray) can be seen in the true color image (left, bands 4, 3, 2). Thermal anomalies from the small crater of the intra-crater cone, a NE-flank vent, and the end of the lava flow are apparent in the infrared image (right, bands 12, 11, 8A). Courtesy of Copernicus Browser.

The MIROVA space-based volcano hotspot detection system recorded almost daily thermal anomalies throughout the reporting period, though cloud cover often interfered with detections. Data from imaging spectroradiometers aboard NASA’s Aqua and Terra satellites and processed using the MODVOLC algorithm (MODIS-MODVOLC) recorded hotspots on one day during October 2022 and December 2022, two days in April 2023, three days in November 2022 and May 2023, and four days in March 2023.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Dukono (Indonesia) — June 2023 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Dukono, a remote volcano on Indonesia’s Halmahera Island, has been erupting continuously since 1933, with frequent ash explosions and sulfur dioxide plumes (BGVN 46:11, 47:10). This activity continued during October 2022 through May 2023, based on reports from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG; also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data. During this period, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone. The highest reported plume of the period reached 9.4 km above the summit on 14 November 2022.

According to MAGMA Indonesia (a platform developed by PVMBG), white, gray, or dark plumes of variable densities were observed almost every day during the reporting period, except when fog obscured the volcano (figure 33). Plumes generally rose 25-450 m above the summit, but rose as high as 700-800 m on several days, somewhat lower than the maximum heights reached earlier in 2022 when plumes reached as high as 1 km. However, the Darwin VAAC reported that on 14 November 2022, a discrete ash plume rose 9.4 km above the summit (10.7 km altitude), accompanied by a strong hotspot and a sulfur dioxide signal observed in satellite imagery; a continuous ash plume that day and through the 15th rose to 2.1-2.4 km altitude and drifted NE.

Figure (see Caption) Figure 33. Webcam photo of a gas-and-steam plume rising from Dukono on the morning of 28 January 2023. Courtesy of MAGMA Indonesia.

Sentinel-2 images were obscured by weather clouds almost every viewing day during the reporting period. However, the few reasonably clear images showed a hotspot and white or gray emissions and plumes. Strong SO2 plumes from Dukono were present on many days during October 2022-May 2023, as detected using the TROPOMI instrument on the Sentinel-5P satellite (figure 34).

Figure (see Caption) Figure 34. A strong SO2 signal from Dukono on 23 April 2023 was the most extensive plume detected during the reporting period. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the N-flank Gunung Mamuya cone. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — May 2023 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sabancaya is located in Peru, NE of Ampato and SE of Hualca Hualca. Eruptions date back to 1750 and have been characterized by explosions, phreatic activity, ash plumes, and ashfall. The current eruption period began in November 2016 and has more recently consisted of daily explosions, gas-and-ash plumes, and thermal activity (BGVN 47:11). This report updates activity during November 2022 through April 2023 using information from Instituto Geophysico del Peru (IGP) that use weekly activity reports and various satellite data.

Intermittent low-to-moderate power thermal anomalies were reported by the MIROVA project during November 2022 through April 2023 (figure 119). There were few short gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. According to data recorded by the MODVOLC thermal algorithm, there were a total of eight thermal hotspots: three in November 2022, three in February 2023, one in March, and one in April. On clear weather days, some of this thermal anomaly was visible in infrared satellite imagery showing the active lava dome in the summit crater (figure 120). Almost daily moderate-to-strong sulfur dioxide plumes were recorded during the reporting period by the TROPOMI instrument on the Sentinel-5P satellite (figure 121). Many of these plumes exceeded 2 Dobson Units (DU) and drifted in multiple directions.

Figure (see Caption) Figure 119. Intermittent low-to-moderate thermal anomalies were detected during November 2022 through April 2023 at Sabancaya, as shown in this MIROVA graph (Log Radiative Power). There were brief gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. Courtesy of MIROVA.
Figure (see Caption) Figure 120. Infrared (bands 12, 11, 8A) satellite images showed a constant thermal anomaly in the summit crater of Sabancaya on 14 January 2023 (top left), 28 February 2023 (top right), 5 March 2023 (bottom left), and 19 April 2023 (bottom right), represented by the active lava dome. Sometimes gas-and-steam and ash emissions also accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 121. Moderate-to-strong sulfur dioxide plumes were detected almost every day, rising from Sabancaya by the TROPOMI instrument on the Sentinel-5P satellite throughout the reporting period; the DU (Dobson Unit) density values were often greater than 2. Plumes from 23 November 2022 (top left), 26 December 2022 (top middle), 10 January 2023 (top right), 15 February 2023 (bottom left), 13 March 2023 (bottom middle), and 21 April 2023 (bottom right) that drifted SW, SW, W, SE, W, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

IGP reported that moderate activity during November and December 2022 continued; during November, an average number of explosions were reported each week: 30, 33, 36, and 35, and during December, it was 32, 40, 47, 52, and 67. Gas-and-ash plumes in November rose 3-3.5 km above the summit and drifted E, NE, SE, S, N, W, and SW. During December the gas-and-ash plumes rose 2-4 km above the summit and drifted in different directions. There were 1,259 volcanic earthquakes recorded during November and 1,693 during December. Seismicity also included volcano-tectonic-type events that indicate rock fracturing events. Slight inflation was observed in the N part of the volcano near Hualca Hualca (4 km N). Thermal activity was frequently reported in the crater at the active lava dome (figure 120).

Explosive activity continued during January and February 2023. The average number of explosions were reported each week during January (51, 50, 60, and 59) and February (43, 54, 51, and 50). Gas-and-ash plumes rose 1.6-2.9 km above the summit and drifted NW, SW, and W during January and rose 1.4-2.8 above the summit and drifted W, SW, E, SE, N, S, NW, and NE during February. IGP also detected 1,881 volcanic earthquakes during January and 1,661 during February. VT-type earthquakes were also reported. Minor inflation persisted near Hualca Hualca. Satellite imagery showed continuous thermal activity in the crater at the lava dome (figure 120).

During March, the average number of explosions each week was 46, 48, 31, 35, and 22 and during April, it was 29, 41, 31, and 27. Accompanying gas-and-ash plumes rose 1.7-2.6 km above the summit crater and drifted W, SW, NW, S, and SE during March. According to a Buenos Aires Volcano Ash Advisory Center (VAAC) notice, on 22 March at 1800 through 23 March an ash plume rose to 7 km altitude and drifted NW. By 0430 an ash plume rose to 7.6 km altitude and drifted W. On 24 and 26 March continuous ash emissions rose to 7.3 km altitude and drifted SW and on 28 March ash emissions rose to 7.6 km altitude. During April, gas-and-ash plumes rose 1.6-2.5 km above the summit and drifted W, SW, S, NW, NE, and E. Frequent volcanic earthquakes were recorded, with 1,828 in March and 1,077 in April, in addition to VT-type events. Thermal activity continued to be reported in the summit crater at the lava dome (figure 120).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Centro Vulcanológico Nacional (CENVUL), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Sheveluch (Russia) — May 2023 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Significant explosions destroyed part of the lava-dome complex during April 2023

Sheveluch (also spelled Shiveluch) in Kamchatka, has had at least 60 large eruptions during the last 10,000 years. The summit is truncated by a broad 9-km-wide caldera that is breached to the S, and many lava domes occur on the outer flanks. The lava dome complex was constructed within the large open caldera. Frequent collapses of the dome complex have produced debris avalanches; the resulting deposits cover much of the caldera floor. A major south-flank collapse during a 1964 Plinian explosion produced a scarp in which a “Young Sheveluch” dome began to form in 1980. Repeated episodes of dome formation and destruction since then have produced major and minor ash plumes, pyroclastic flows, block-and-ash flows, and “whaleback domes” of spine-like extrusions in 1993 and 2020 (BGVN 45:11). The current eruption period began in August 1999 and has more recently consisted of lava dome growth, explosions, ash plumes, and avalanches (BGVN 48:01). This report covers a significant explosive eruption during early-to-mid-April 2023 that generated a 20 km altitude ash plume, produced a strong sulfur dioxide plume, and destroyed part of the lava-dome complex; activity described during January through April 2023 use information primarily from the Kamchatka Volcanic Eruptions Response Team (KVERT) and various satellite data.

Satellite data. Activity during the majority of this reporting period was characterized by continued lava dome growth, strong fumarole activity, explosions, and hot avalanches. According to the MODVOLC Thermal Alerts System, 140 hotspots were detected through the reporting period, with 33 recorded in January 2023, 29 in February, 44 in March, and 34 in April. Frequent strong thermal activity was recorded during January 2023 through April, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph and resulted from the continuously growing lava dome (figure 94). A slightly stronger pulse in thermal activity was detected in early-to-mid-April, which represented the significant eruption that destroyed part of the lava-dome complex. Thermal anomalies were also visible in infrared satellite imagery at the summit crater (figure 95).

Figure (see Caption) Figure 94. Strong and frequent thermal activity was detected at Sheveluch during January through April 2023, according to this MIROVA graph (Log Radiative Power). These thermal anomalies represented the continuously growing lava dome and frequent hot avalanches that affected the flanks. During early-to-mid-April a slightly stronger pulse represented the notable explosive eruption. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite imagery showed persistent thermal anomalies at the lava dome of Sheveluch on 14 January 2023 (top left), 26 February 2023 (top right), and 15 March 2023 (bottom left). The true color image on 12 April 2023 (bottom right) showed a strong ash plume that drifted SW; this activity was a result of the strong explosive eruption during 11-12 April 2023. Courtesy of Copernicus Browser.

During January 2023 KVERT reported continued growth of the lava dome, accompanied by strong fumarolic activity, incandescence from the lava dome, explosions, ash plumes, and avalanches. Satellite data showed a daily thermal anomaly over the volcano. Video data showed ash plumes associated with collapses at the dome that generated avalanches that in turn produced ash plumes rising to 3.5 km altitude and drifting 40 km W on 4 January and rising to 7-7.5 km altitude and drifting 15 km SW on 5 January. A gas-and-steam plume containing some ash that was associated with avalanches rose to 5-6 km altitude and extended 52-92 km W on 7 January. Explosions that same day produced ash plumes that rose to 7-7.5 km altitude and drifted 10 km W. According to a Volcano Observatory Notice for Aviation (VONA) issued at 1344 on 19 January, explosions produced an ash cloud that was 15 x 25 km in size and rose to 9.6-10 km altitude, drifting 21-25 km W; as a result, the Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). Another VONA issued at 1635 reported that no more ash plumes were observed, and the ACC was lowered to Orange (the second highest level on a four-color scale). On 22 January an ash plume from collapses and avalanches rose to 5 km altitude and drifted 25 km NE and SW; ash plumes associated with collapses extended 70 km NE on 27 and 31 January.

Lava dome growth, fumarolic activity, dome incandescence, and occasional explosions and avalanches continued during February and March. A daily thermal anomaly was visible in satellite data. Explosions on 1 February generated ash plumes that rose to 6.3-6.5 km altitude and extended 15 km NE. Video data showed an ash cloud from avalanches rising to 5.5 km altitude and drifting 5 km SE on 2 February. Satellite data showed gas-and-steam plumes containing some ash rose to 5-5.5 km altitude and drifted 68-110 km ENE and NE on 6 February, to 4.5-5 km altitude and drifted 35 km WNW on 22 February, and to 3.7-4 km altitude and drifted 47 km NE on 28 February. Scientists from the Kamchatka Volcanological Station (KVS) went on a field excursion on 25 February to document the growing lava dome, and although it was cloudy most of the day, nighttime incandescence was visible. Satellite data showed an ash plume extending up to 118 km E during 4-5 March. Video data from 1150 showed an ash cloud from avalanches rose to 3.7-5.5 km altitude and drifted 5-10 km ENE and E on 5 March. On 11 March an ash plume drifted 62 km E. On 27 March ash plumes rose to 3.5 km altitude and drifted 100 km E. Avalanches and constant incandescence at the lava dome was focused on the E and NE slopes on 28 March. A gas-and-steam plume containing some ash rose to 3.5 km altitude and moved 40 km E on 29 March. Ash plumes on 30 March rose to 3.5-3.7 km altitude and drifted 70 km NE.

Similar activity continued during April, with lava dome growth, strong fumarolic activity, incandescence in the dome, occasional explosions, and avalanches. A thermal anomaly persisted throughout the month. During 1-4 April weak ash plumes rose to 2.5-3 km altitude and extended 13-65 km SE and E.

Activity during 11 April 2023. The Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS) reported a significant increase in seismicity around 0054 on 11 April, as reported by strong explosions detected on 11 April beginning at 0110 that sent ash plumes up to 7-10 km altitude and extended 100-435 km W, WNW, NNW, WSW, and SW. According to a Tokyo VAAC report the ash plume rose to 15.8 km altitude. By 0158 the plume extended over a 75 x 100 km area. According to an IVS FEB RAS report, the eruptive column was not vertical: the initial plume at 0120 on 11 April deviated to the NNE, at 0000 on 12 April, it drifted NW, and by 1900 it drifted SW. KVS reported that significant pulses of activity occurred at around 0200, 0320, and then a stronger phase around 0600. Levin Dmitry took a video from near Békés (3 km away) at around 0600 showing a rising plume; he also reported that a pyroclastic flow traveled across the road behind him as he left the area. According to IVS FEB RAS, the pyroclastic flow traveled several kilometers SSE, stopping a few hundred meters from a bridge on the road between Klyuchi and Petropavlovsk-Kamchatsky.

Ashfall was first observed in Klyuchi (45 km SW) at 0630, and a large, black ash plume blocked light by 0700. At 0729 KVERT issued a Volcano Observatory Notice for Aviation (VONA) raising the Aviation Color Code to Red (the highest level on a four-color scale). It also stated that a large ash plume had risen to 10 km altitude and drifted 100 km W. Near-constant lightning strikes were reported in the plume and sounds like thunderclaps were heard until about 1000. According to IVS FEB RAS the cloud was 200 km long and 76 km wide by 0830, and was spreading W at altitudes of 6-12 km. In the Klyuchi Village, the layer of both ash and snow reached 8.5 cm (figure 96); ashfall was also reported in Kozyrevsk (112 km SW) at 0930, Mayskoye, Anavgay, Atlasovo, Lazo, and Esso. Residents in Klyuchi reported continued darkness and ashfall at 1100. In some areas, ashfall was 6 cm deep and some residents reported dirty water coming from their plumbing. According to IVS FEB RAS, an ash cloud at 1150 rose to 5-20 km altitude and was 400 km long and 250 km wide, extending W. A VONA issued at 1155 reported that ash had risen to 10 km and drifted 340 km NNW and 240 km WSW. According to Simon Carn (Michigan Technological University), about 0.2 Tg of sulfur dioxide in the plume was measured in a satellite image from the TROPOMI instrument on the Sentinel-5P satellite acquired at 1343 that covered an area of about 189,000 km2 (figure 97). Satellite data at 1748 showed an ash plume that rose to 8 km altitude and drifted 430 km WSW and S, according to a VONA.

Figure (see Caption) Figure 96. Photo of ash deposited in Klyuchi village on 11 April 2023 by the eruption of Sheveluch. About 8.5 cm of ash was measured. Courtesy of Kam 24 News Agency.
Figure (see Caption) Figure 97. A strong sulfur dioxide plume from the 11 April 2023 eruption at Sheveluch was visible in satellite data from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of Simon Carn, MTU.

Activity during 12-15 April 2023. On 12 April at 0730 satellite images showed ash plumes rose to 7-8 km altitude and extended 600 km SW, 1,050 km ESE, and 1,300-3,000 km E. By 1710 that day, the explosions weakened. According to news sources, the ash-and-gas plumes drifted E toward the Aleutian Islands and reached the Gulf of Alaska by 13 April, causing flight disruptions. More than 100 flights involving Alaska airspace were cancelled due to the plume. Satellite data showed ash plumes rising to 4-5.5 km altitude and drifted 400-415 km SE and ESE on 13 April. KVS volcanologists observed the pyroclastic flow deposits and noted that steam rose from downed, smoldering trees. They also noted that the deposits were thin with very few large fragments, which differed from previous flows. The ash clouds traveled across the Pacific Ocean. Flight cancellations were also reported in NW Canada (British Columbia) during 13-14 April. During 14-15 April ash plumes rose to 6 km altitude and drifted 700 km NW.

Alaskan flight schedules were mostly back to normal by 15 April, with only minor delays and far less cancellations; a few cancellations continued to be reported in Canada. Clear weather on 15 April showed that most of the previous lava-dome complex was gone and a new crater roughly 1 km in diameter was observed (figure 98); gas-and-steam emissions were rising from this crater. Evidence suggested that there had been a directed blast to the SE, and pyroclastic flows traveled more than 20 km. An ash plume rose to 4.5-5.2 km altitude and drifted 93-870 km NW on 15 April.

Figure (see Caption) Figure 98. A comparison of the crater at Sheveluch showing the previous lava dome (top) taken on 29 November 2022 and a large crater in place of the dome (bottom) due to strong explosions during 10-13 April 2023, accompanied by gas-and-ash plumes. The bottom photo was taken on 15 April 2023. Photos has been color corrected. Both photos are courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Activity during 16-30 April 2023. Resuspended ash was lifted by the wind from the slopes and rose to 4 km altitude and drifted 224 km NW on 17 April. KVERT reported a plume of resuspended ash from the activity during 10-13 April on 19 April that rose to 3.5-4 km altitude and drifted 146-204 km WNW. During 21-22 April a plume stretched over the Scandinavian Peninsula. A gas-and-steam plume containing some ash rose to 3-3.5 km altitude and drifted 60 km SE on 30 April. A possible new lava dome was visible on the W slope of the volcano on 29-30 April (figure 99); satellite data showed two thermal anomalies, a bright one over the existing lava dome and a weaker one over the possible new one.

Figure (see Caption) Figure 99. Photo showing new lava dome growth at Sheveluch after a previous explosion destroyed much of the complex, accompanied by a white gas-and-steam plume. Photo has been color corrected. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

References. Girina, O., Loupian, E., Horvath, A., Melnikov, D., Manevich, A., Nuzhdaev, A., Bril, A., Ozerov, A., Kramareva, L., Sorokin, A., 2023, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, ??????????? ???????? ??? ?? ???????, 20(2).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Kam 24 News Agency, 683032, Kamchatka Territory, Petropavlovsk-Kamchatsky, Vysotnaya St., 2A (URL: https://kam24.ru/news/main/20230411/96657.html#.Cj5Jrky6.dpuf); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Bezymianny (Russia) — May 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Bezymianny is located on the Kamchatka Peninsula of Russia as part of the Klyuchevskoy volcano group. Historic eruptions began in 1955 and have been characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. During the 1955-56 eruption a large open crater was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. The current eruption period began in December 2016 and more recent activity has consisted of strong explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023, based on weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during November and March 2023 was relatively low and mostly consisted of gas-and-steam emissions, occasional small collapses that generated avalanches along the lava dome slopes, and a persistent thermal anomaly over the volcano that was observed in satellite data on clear weather days. According to the Tokyo VAAC and KVERT, an explosion produced an ash plume that rose to 6 km altitude and drifted 25 km NE at 1825 on 29 March.

Gas-and-steam emissions, collapses generating avalanches, and thermal activity continued during April. According to two Volcano Observatory Notice for Aviation (VONA) issued on 2 and 6 April (local time) ash plumes rose to 3 km and 3.5-3.8 km altitude and drifted 35 km E and 140 km E, respectively. Satellite data from KVERT showed weak ash plumes extending up to 550 km E on 2 and 5-6 April.

A VONA issued at 0843 on 7 April described an ash plume that rose to 4.5-5 km altitude and drifted 250 km ESE. Later that day at 1326 satellite data showed an ash plume that rose to 5.5-6 km altitude and drifted 150 km ESE. A satellite image from 1600 showed an ash plume extending as far as 230 km ESE; KVERT noted that ash emissions were intensifying, likely due to avalanches from the growing lava dome. The Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). At 1520 satellite data showed an ash plume rising to 5-5.5 km altitude and drifting 230 km ESE. That same day, Kamchatka Volcanological Station (KVS) volcanologists traveled to Ambon to collect ash; they reported that a notable eruption began at 1730, and within 20 minutes a large ash plume rose to 10 km altitude and drifted NW. KVERT reported that the strong explosive phase began at 1738. Video and satellite data taken at 1738 showed an ash plume that rose to 10-12 km altitude and drifted up to 2,800 km SE and E. Explosions were clearly audible 20 km away for 90 minutes, according to KVS. Significant amounts of ash fell at the Apakhonchich station, which turned the snow gray; ash continued to fall until the morning of 8 April. In a VONA issued at 0906 on 8 April, KVERT stated that the explosive eruption had ended; ash plumes had drifted 2,000 km E. The ACC was lowered to Orange (the third highest level on a four-color scale). The KVS team saw a lava flow on the active dome once the conditions were clear that same day (figure 53). On 20 April lava dome extrusion was reported; lava flows were noted on the flanks of the dome, and according to KVERT satellite data, a thermal anomaly was observed in the area. The ACC was lowered to Yellow (the second lowest on a four-color scale).

Figure (see Caption) Figure 53. Photo showing an active lava flow descending the SE flank of Bezymianny from the lava dome on 8 April 2023. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Satellite data showed an increase in thermal activity beginning in early April 2023. A total of 31 thermal hotspots were detected by the MODVOLC thermal algorithm on 4, 5, 7, and 12 April 2023. The elevated thermal activity resulted from an increase in explosive activity and the start of an active lava flow. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data also showed a pulse in thermal activity during the same time (figure 54). Infrared satellite imagery captured a continuous thermal anomaly at the summit crater, often accompanied by white gas-and-steam emissions (figure 55). On 4 April 2023 an active lava flow was observed descending the SE flank.

Figure (see Caption) Figure 54. Intermittent and low-power thermal anomalies were detected at Bezymianny during December 2022 through mid-March 2023, according to this MIROVA graph (Log Radiative Power). In early April 2023, an increase in explosive activity and eruption of a lava flow resulted in a marked increase in thermal activity. Courtesy of MIROVA.
Figure (see Caption) Figure 55. Infrared satellite images of Bezymianny showed a persistent thermal anomaly over the lava dome on 18 November 2022 (top left), 28 December 2022 (top right), 15 March 2023 (bottom left), and 4 April 2023 (bottom right), often accompanied by white gas-and-steam plumes. On 4 April a lava flow was active and descending the SE flank. Images using infrared (bands 12, 11, 8a). Courtesy of Copernicus Browser.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Chikurachki (Russia) — May 2023 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


New explosive eruption during late January-early February 2023

Chikurachki, located on Paramushir Island in the northern Kuriles, has had Plinian eruptions during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. Reported eruptions date back to 1690, with the most recent eruption period occurring during January through October 2022, characterized by occasional explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers a new eruptive period during January through February 2023 that consisted of ash explosions and ash plumes, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

According to reports from KVERT, an explosive eruption began around 0630 on 29 January. Explosions generated ash plumes that rose to 3-3.5 km altitude and drifted 6-75 km SE and E, based on satellite data. As a result, the Aviation Color Code (ACC) was raised to Orange (the second highest level on a four-color scale). At 1406 and 1720 ash plumes were identified in satellite images that rose to 4.3 km altitude and extended 70 km E. By 2320 the ash plume had dissipated. A thermal anomaly was visible at the volcano on 31 January, according to a satellite image, and an ash plume was observed drifting 66 km NE.

Occasional explosions and ash plumes continued during early February. At 0850 on 1 February an ash plume rose to 3.5 km altitude and drifted 35 km NE. Satellite data showed an ash plume that rose to 3.2-3.5 km altitude and drifted 50 km NE at 1222 later that day (figure 22). A thermal anomaly was detected over the volcano during 5-6 February and ash plumes drifted as far as 125 km SE, E, and NE. Explosive events were reported at 0330 on 6 February that produced ash plumes rising to 4-4.5 km altitude and drifting 72-90 km N, NE, and ENE. KVERT noted that the last gas-and steam plume that contained some ash was observed on 8 February and drifted 55 km NE before the explosive eruption ended. The ACC was lowered to Yellow and then Green (the lowest level on a four-color scale) on 18 February.

Figure (see Caption) Figure 22. Satellite image showing a true color view of a strong ash plume rising above Chikurachki on 1 February 2023. The plume drifted NE and ash deposits (dark brown-to-gray) are visible on the NE flank due to explosive activity. Courtesy of Copernicus Browser.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 38, Number 02 (February 2013)

Managing Editor: Richard Wunderman

Cumbal (Colombia)

Non-eruptive activity: swarms and increased emissions during 2011-2012

Izu-Tobu (Japan)

Quiet prevails despite the Tohoku megathrust of March 2011

Kilauea (United States)

2009 highlights: Waikupanaha ocean entry ceases, lava enters Halema`uma`u

Kusatsu-Shiranesan (Japan)

Minor tremor and small earthquakes during 2011-2012

Sabancaya (Peru)

Increased seismic and fumarolic activity in late 2012 and early 2013

Saunders (United Kingdom)

Eruption from ‘new’ vent

Telica (Nicaragua)

Degassing continues in 2012; increased micro-earthquake activity in March 2013

Turrialba (Costa Rica)

Decreased seismicity and emissions in 2012



Cumbal (Colombia) — February 2013 Citation iconCite this Report

Cumbal

Colombia

0.95°N, 77.87°W; summit elev. 4764 m

All times are local (unless otherwise noted)


Non-eruptive activity: swarms and increased emissions during 2011-2012

Our last report on Cumbal volcano (BGVN 19:07) highlighted fumarolic activity from the NE craters, and monitoring efforts by scientists collaborating with the Servicio Geológico Colombiano (SGC). The SGC (formerly known as Instituto Colombiano de Geología y Minería, “INGEOMINAS”) monitors the volcano from Pasto, ~72 km NE of Cumbal (figure 3). In this report we describe field observations during 2005-2012, significant new monitoring instruments installed during 2008-2012, and episodes of seismic unrest. Earthquake swarms during 2011 and 2012 accompanied increased fumarolic activity.

see figure caption Figure 3. This 2008 map of the Cumbal region indicates locations of telemetered monitoring instruments (see legend), major towns (black labels), and nearby volcanoes (yellow text; red text for Cumbal). Yellow text is also used for the radio repeater at “Cruz de Amarillo” ~65 km ENE of Cumbal volcano. More instruments were added to the system later. Courtesy of SGC.

SGC maintained Alert Level Green (Level IV, the lowest status on a 4-step system; figure 4) with two exceptions. Reduced monitoring during May-July 2010 caused the status to be unassigned during that time. Elevated seismicity and emissions noted in June 2012 raised the status from Green (Level IV) to Yellow (Level III) signifying detected “changes in behavior of the volcanic system.”

see figure caption Figure 4. This pictogram describes the volcano Alert Levels used for communicating hazards in Colombia (translated from original in Spanish). This is a four-step system similar to the USGS volcanic activity alert-notification system (Gardner and Guffanti, 2006), except that each step is numbered in addition to having a color code: Green (Level IV), Yellow (Level III), Orange (Level II), and Red (Level I). All SGC observatories (based in Pasto, Popayán, and Manizales) apply this qualitative system. Courtesy of SGC.

Local hazard map. SGC published a hazard map in 1988 for the region surrounding Cumbal (figure 5). The three asymmetrical hazard zones, high (red), medium (orange), and low (yellow), are at risk for ashfall and pyroclastic flows.

see figure caption Figure 5. This hazard map for Cumbal volcano was developed in 1988 by Ricardo Méndez and María Luisa Monsalve of INGEOMINAS (now the Servicio Geológico Colombiano). Three major zones delineate high, medium, and low risk. Note that ashfall could occur in any of the three zones. Courtesy of SGC.

Areas at highest risk, in the red zone, could be affected by lava and pyroclastic flows, especially within the narrow valleys of Chiquito, Blanco, and Río Grande. Ashfall, ballistics, mudflows, and gas emissions could also occur as far away as ~8 km from the summit. Areas at medium risk, the orange zone, could also be affected by pyroclastic flows, ashfall, and mudflows over an area extending up to 14 km SE from the summit, encompassing the town of Cumbal. Areas at lowest risk, yellow zone, is located primarily downwind of the volcano where pyroclastic flows and ashfall could occur; this zone extends beyond the view of the map.

Monitoring efforts. Aerial investigations conducted since 2005 revealed persistent plumes rising from Cumbal’s NE craters, El Verde and La Plazuela (figure 6; see also figure 2 in BGVN 19:07 for an annotated sketch map of the summit craters). In their online Technical Bulletins, SGC emphasized the frequency of plumes from this region that were documented since at least 1988.

see figure caption Figure 6. Cumbal is an elongate volcano with multiple peaks. In 2005 and 2007, clear conditions provided views of plumes rising from Cumbal’s summit craters, El Verde and La Plazuela. (top) On 29 January 2007, white plumes rose from the fumaroles El Verde and Rastrojo; the look direction is N. (bottom) On 29 December 2005, discrete plumes were visible from the fumaroles El Verde (1), El Tábano (2), and La Desfondada (3); the look direction is NNW. Some snow had collected along the ridges and a small pond of water was visible within La Plazuela crater that day. Courtesy of SGC.

To help understand Cumbal’s state, SGC installed seismic and electronic tilt equipment in late 2008 (figure 3). The La Mesa (2.5 km ESE) and Limones (2 km SE) stations had electronic tilt and short-period seismic instrumentation (figure 7). During installation on 24 September 2008, technicians observed steam plumes rising from the fumarolic areas El Verde and La Plazuela (figure 8).

see figure caption Figure 7. This satellite image-based map includes upgrades in Cumbal’s monitoring network as of 2012. Courtesy of SGC.
see figure caption Figure 8. Clear conditions revealed the pale, fumarolic summit area of Cumbal during the mornings of two days in September 2008. (top) Two white plumes seen at 0704 on 24 September 2008; the smaller plume (center) rose from La Plazuela crater while the larger plume (to the right) rose from El Verde. Emissions from these sites have been noted since the late 1980s. This photograph was taken from a location ~6.5 km SE from the summit. (bottom) From the center of town, near the Cumbal Nariño Temple, the view NW toward Cumbal’s summit and fumarolic sites was clear on 25 September 2008. Courtesy of SGC.

In June 2009, SGC installed a broadband seismometer at Limones station, upgrading from the short-period sensor. Unfortunately, monitoring capabilities were significantly reduced when, in December 2009, vandals stole station instrumentation at this site.

Data from the remaining station, La Mesa, was only acquired intermittently during January-June 2010 owing to radio repeater problems. From May to July, the Alert Level status went unassigned, but upon repair of the system, later returned back to Green (Level IV).

In August 2010 a short-period seismic station (CUMZ) came online (figure 7). This station was maintained by the National Seismological Network of Colombia (RSNC). The electronic tiltmeter at La Mesa was offline during August-November 2010 due to electronic malfunctions.

In November and December 2011, SGC collaborated with the Colombia Air Force (FAC) to conduct overflights of the volcanic complex. In addition to aerial photos and observations, a thermal camera was used to determine the hotspot distribution and measure temperatures for those sites (figure 9).

see figure caption Figure 9. This thermal image was taken during an overflight of Cumbal’s summit on 27 November 2011. The look direction was approximately S with El Verde (43.6°C) and the highest part of La Plazuela’s rim (34.5°C) showing the highest temperatures. Steam plumes rising from the craters partly obscured the view. Courtesy of FAC and SGC.

Monitoring capabilities were expanded when SGC installed an infrasound sensor at the La Mesa monitoring site in March 2012 and a webcamera was installed in the town of Cumbal (~11 km SE) in May (figure 10). During March-December 2012, white plumes were frequently observed rising from Cumbal’s fumarolic sites.

see figure caption Figure 10. An image taken by the new Cumbal webcamera on 23 May 2012. The black arrow points to the source of the strongest plumes, El Verde crater. Courtesy of SGC.

The Limones short-period seismometer was back online in October 2012. Additionally, two new stations, Nieve and Punta Vieja (figure 7), were added to the network in December; these stations had broadband seismic and electronic tilt equipment.

Summit fumarole monitoring. During 2010-2012, SGC conducted field campaigns to monitor Cumbal’s summit fumarolic sites. Three fumaroles (Desfondada, El Verde, and El Rastrojo) were visited during this time period with repeat observations and measurements. Lab analyses were conducted at the Manizales Volcanological and Seismological Observatory.

The Desfondada fumarole, located near the W rim of La Plazuela crater (see the sketch map in figure 2 in BGVN 19:07), was visited only once for sampling with the Giggenbach bottle method in August 2010; this site had a relatively high temperature, 278.4°C. The other sites were visited frequently and also sampled to determine gas species and condensates (table 1).

Table 1. Maximum temperatures measured from Cumbal's fumaroles during 2010-2012 at Desfondada, El Rastrojo, and El Verde. Site locations appear in figure 2 of BGVN 19:07, while the location of El Rastrojo is closest to the S-most crater of the complex, Mundo Nuevo. Courtesy of SGC.

Date Site Temperature (°C)
Aug 2010 Desfondada 278.4
Aug 2010 El Rastrojo 177.6
Sep 2011 El Rastrojo 153.3
Dec 2011 El Rastrojo 178.9
Mar 2012 El Rastrojo 148.5
Apr 2012 El Rastrojo 104.0
Aug 2010 El Verde 313.0
Mar 2012 El Verde 122.3
Apr 2012 El Verde 115.6

The earliest measured temperature from El Verde (in August 2010) yielded the highest value of the three fumaroles (313°C). Compared with temperatures measured in 1994 (378°C, BGVN 19:07), El Verde’s values were slightly lower; however, the three available temperatures from 2010 and 2012 were within the measured range determined by SGC field campaigns conducted during previous years (BGVN 19:07).

The El Rastrojo site was located ~1.6 km SW of the summit (figure 11); this fumarolic area, on the outer edge of Mundo Nuevo crater regularly emitted plumes and had temperatures in the range 104-178.9°C.

see figure caption Figure 11. On 27 November 2011, white plumes were visible rising from fumarolic features along the ridge of Cumbal volcano. (top) This oblique view of Cumbal is centered on Mundo Nuevo crater, the SW crater of the ~2 km-long volcanic complex. The area highlighted in red shows the location of El Rastrojo, an active fumarolic site that frequently emitted white plumes and was monitored by SGC. White plumes also emerge from La Plazuela and El Verde craters in the middle-ground (near the right edge of the image). (bottom) In this zoomed image (clipped from the top image), a short column of white vapor rises from El Rastrojo fumarole. This area is a scree slope where several large boulders are discolored by yellow sulfur deposits. Courtesy of SGC.

Hot spring investigations. Inferred magmatic compositions were detected from hot springs during 1988-1996 (Lewiki and others, 2000). Field investigators sampled from sites located within the central crater and from sites along the SE flank, up to 10 km from the summit and towards the town of Cumbal (figure 12). However, they concluded that “from 1995 to 1996, geochemical data show increasing hydrothermal signatures, suggesting a decline in magmatic volatile input.”

see figure caption Figure 12. This sketch map of Cumbal and the surrounding area highlights the locations of hot springs. During 2010-2012, SGC monitored four of these sites: El Salado (“S”), Cuetial (“C”), El Zapatero (“Z”), and Hueco Grande (also known as Quebrada el Corral, “QC”). Note that the generalized name “Cumbal Crater” is assigned to the area of La Plazuela and El Verde craters. Modified from Lewiki and others (2000).

During 2010, SGC monitored four hot springs for temperature and chemical changes. Results from sampling during May, August, and November 2010 determined chemical classifications for the springs El Salado, Cuetial, El Zapatero, and Hueco Grande (figure 13).

see figure caption Figure 13. Based on geochemical results from investigations in May (triangles), August (squares), and November 2010 (circles), SGC scientists classified four of Cumbal’s hot springs. Within this ternary diagram, the datapoints were generally well within the “Periferal Water” (Aguas Periféricas, significant HCO3) class. Datapoints from Hueco Grande, approached the “Volcanic Water” (translated from Spanish “Aguas Calentadas por Vapor,” significant SO4) class than the others. No datapoints were within the “Mature Water” (Aguas Maduras, significant Cl) class. Courtesy of SGC.

Sampling and analysis of the four hot springs continued during 2011-2012. SGC maintained a growing database of characteristics from these springs and released the results in online bulletins. In particular pH, temperature, conductivity, and concentrations of carbonates were repeatedly measured. During this time period, pH values measured from the hot springs were in the range of 5.9-7.3; temperatures were 26.4-34.4°C (the highest values were from Cuetial spring); conductivity values (Oxidation-Reduction Potential, “ORP”) ranged from 7.7-42.2 mV (highest values were from Cuetial and the lowest was from Hueco Grande springs); bicarbonate (HCO3) concentrations were 271.7-1,008.0 mg/L (the highest value was obtained from El Zapatero spring).

Cumbal seismicity. When the seismic stations Limones and La Mesa came online in late 2008, SGC began characterizing Cumbal’s seismicity based on the following interpretive scheme:

• Hybrid (HYB): Seismicity associated with signals characterizing fracturing and fluid movement.

• Long period (LPS): Seismicity associated with unsteady fluid movement (magma or hydrothermal fluids, for example).

• Tremor (TRE): Seismicity associated with fluid movement in which the source behaves in a sustained manner.

• Tornillo (TOR): Seismicity associated with fluid movement in which subterranean structures are linked with special conditions in such a manner that makes the cavities resonate. In their January 2009 online bulletin, SGC acknowledged that tornillo earthquakes have been an important indicator of eruptive activity at Galeras volcano, but the occurrence of the same signature at Cumbal volcano required additional analysis before associating specific unrest with this seismicity.

• Volcano-tectonic (VT): Earthquakes associated with brittle failure events caused by magma movement.

• Unclassified volcanic (VOL): Earthquakes from the region of Cumbal that do not correspond with the other classes; SGC stated that these events will be analyzed in more detail after more baseline data is collected. This category was also applied to seismic analyses of Doña Juana, a volcano that was instrumented around the same time (see report on Doña Juana in BGVN 38:01).

Seismicity in 2009. During 2009, as SGC began to establish baseline data for Cumbal’s seismicity, a wide range of earthquake classes was detected (figure 14). LPS and VT events dominated the records and TRE, HYB, and TOR earthquakes were also detected (in order of decreasing occurrence). TOR earthquakes occurred more frequently during August to early December. Due to vandalism, the 2009 record ended on 13 December 2009.

see figure caption Figure 14. The daily seismicity detected from Cumbal during 2009 in three plots that display January-August, August-November, and 1-13 December. Five different classes of earthquakes were tallied daily (VT, HYB, TRE, LPS, and TOR). Data gaps are attributed to station outages and time periods requiring re-processing; gray regions signify the reporting period in which the plots appear. Courtesy of SGC.

Seismicity in 2010. From January to July 2010, La Mesa station detected earthquakes intermittently and the Limones seismic station remained offline. When the network connection was re-established for La Mesa in late July, LPS earthquakes again dominated the records through the end of December (figure 15).

see figure caption Figure 15. Daily seismicity from Cumbal during 1 September-31 December 2010 was dominated by LPS events. Six different classes of earthquakes were tallied daily (VT, LP, TRE, HYB, TOR, and VOL); the gray region highlights the month when the plot was released online. Courtesy of SGC.

Seismicity in 2011. LPS, VT, and HYB events dominated seismicity at Cumbal for most of 2011; more VOL events occurred than HYB, but this category was described as temporary until more analysis is possible (table 2 and figure 16). Data quality enabled some events to be located and some swarms were apparently driving a several-fold increase in monthly counts. Until November 2011, TOR events were occurring ~5 times per month and TRE were occurring ~13 times per month. In November, seismicity increased significantly and SGC reported that several earthquake swarms had occurred; in particular, one event occurred on 18 November. A swarm of LPS earthquakes also occurred during 20-21 and on 31 December. Epicenters could not be calculated from the data and there were no reports of felt earthquakes.

Table 2. Monthly seismicity at Cumbal was tabulated by the occurrence of events: VT, LPS, TRE, HYB, TOR, VOL, and the overall total. Courtesy of SGC.

Date VT LPS TRE HYB TOR VOL Total Notes
Jan 2011 165 906 14 109 8 111 1313 --
Feb 2011 188 453 5 5 5 104 760 --
Mar 2011 96 743 9 76 12 136 1072 --
Apr 2011 52 476 3 45 1 76 653 --
May 2011 80 575 10 37 5 38 745 --
Jun 2011 88 659 2 31 2 36 818 --
Jul 2011 76 726 9 29 4 30 874 --
Aug 2011 53 560 7 40 2 9 671 --
Sep 2011 75 524 8 70 7 47 731 --
Oct 2011 64 678 61 65 0 90 958 --
Nov 2011 300 1967 385 279 4 326 3261 Swarms
Dec 2011 160 2028 453 228 4 130 3003 Swarms
Jan 2012 103 1657 252 159 2 8 2181 Swarms
Feb 2012 176 758 73 167 1 6 1181 --
Mar 2012 78 678 47 105 5 0 913 --
Apr 2012 80 619 32 60 0 1 792 --
May 2012 54 625 35 45 0 0 759 Swarms
Jun 2012 56 858 29 34 5 0 982 --
Jul 2012 98 1306 29 54 5 0 1492 Swarms, 13 EQs located
Aug 2012 101 855 46 42 4 0 1048 Swarms, 11 EQs located
Sep 2012 117 1344 31 60 4 0 1556 Swarms, 3 EQs located
Oct 2012 135 1080 62 51 14 0 1342 Swarms, 92 EQs located
Nov 2012 235 1017 15 99 2 1 1369 Swarms, 89 EQs located
Dec 2012 260 1001 10 180 3 24 1478 Swarms, 97 EQs located
see figure caption Figure 16. Cumbal earthquakes tallied by month based on event class during 2011-2012. Elevated seismicity persisted during November 2011-January 2012, particularly VT, LPS, and TRE. The “TOTAL” class is the sum of VT, LPS, TRE, HYB, TOR, and VOL earthquakes for each month (see table 2 for values). Courtesy of SGC.

Seismicity in 2012. SGC reported that seismic swarms continued to occur in January 2012. The swarm that began at 2200 on 31 December 2011 continued until 1 January 2012 and a total of 211 LPS events were detected. Two more swarms occurred later that month, amounting to a total of 274 earthquakes. Seismicity declined during February-April but swarms reappeared: in May, one; in July, five; in August, two; in September, six; in October, six; in November, seven.

Due to elevated seismicity, persistent swarms, and observations of increased emissions from El Verde and La Plazuela, SGC announced on 10 July that the Alert Level was raised to Yellow (Level III). This status was maintained through December 2012. In their online July 2012 Activity Report, SGC noted that residents in the area had also reported notable gas emissions, seismicity, and possible noises associated with earthquakes.

Epicenters of Cumbal’s VT earthquakes were calculated during July-December 2012 and located on regional maps (table 3). Earthquake locations tended to be dispersed throughout the region, although some clustering was notable between 2 and 6 km of the summit region and at depths less than 12 km (as measured from the summit elevation) (figure 17).

Table 3. VT earthquakes from Cumbal during July-December 2012 tended to be low-magnitude events at shallow depths. This table compiles announcements from weekly activity reports; the date listed corresponds to the release date of the information. During the listed weeks, VT events were often clustered; SGC made special note of events that were clustered between La Plazuelas and Mundo Nuevo (“Cent.”) and events that were dispersed (“Disp.”). Depths were measured as km below the summit. Magnitudes were not available (“na”) during the week of 18 December. Courtesy of SGC.

Date Location Magnitude Depth
31 Jul 2012 SW less than 2.1 ≤ 10
06 Aug 2012 N, S, Disp. less than 1.3 ≤ 6
16 Oct 2012 ≤10 km N less than 1.3 ≤ 9
23 Oct 2012 ≤ 2 km SE less than 1 ≤ 3
30 Oct 2012 ≤ 4 km E less than 1.2 ≤ 4
06 Nov 2012 ≤ 5 km SE less than 0.2 ≤ 9
13 Nov 2012 ≤ 3 km E less than 0.6 ≤ 2
20 Nov 2012 ≤ 3 km E less than 1.9 ≤ 6
04 Dec 2012 ≤ 13 km Disp. less than 1.6 ≤ 12
11 Dec 2012 ≤ 5 km Disp. less than 0.6 ≤ 10
18 Dec 2012 ≤ 6 km Cent. -- less than 1
26 Dec 2012 Cent. less than 1.1 less than 2
26 Dec 2012 N less than 1.1 ≤ 9
see figure caption Figure 17. A total of 97 volcano-tectonic earthquakes were located during December 2012 within the region of Cumbal volcano. Five seismic stations (dark red squares) were online near the volcano: LIMC (Limones), MEVZ (La Mesa), NIEV (Nieve), VIEZ (Punta Vieja), and CUMZ (the RSNC Cumbal station). Earlier in the month, VTs were primarily dispersed in the region while later in the month, they were more clustered around the edifice and N (table 3). Courtesy of SGC.

In September, October, and November 2012, during field investigations at various locations around Cumbal’s flanks, SGC scientists also noted increased emissions from the summit fumaroles. In particular, white plumes were strong from El Verde and El Rastrojo fumaroles.

Geodetic monitoring during 2009-2010. Electronic tilt data available during 2009 showed oscillations within the expected range of the instruments. During 2010, while instrumentation was reduced and electronic problems persisted, tilt records continued to show minor variations. In July, a decreasing trend was observed from the tangential component of La Mesa tiltmeter (figure 18). Unfortunately, the instrument was offline from August through November. When monitoring resumed in December, no deformation trends were noted.

see figure caption Figure 18. The two components of the La Mesa electronic tiltmeter recorded stable conditions from Cumbal’s SW flank (in the Mundo Nuevo region) during 1 January-31 July 2010. The four plots, from top to bottom, contain radial tilt component (in µrad), tangential tilt component (in µrad), temperature (°C), and voltage (V) data. Note that minor variations in temperature and daily variations in the voltage correspond to the recharging cycle controlled by the solar panels and consequent voltage drain at night. The gray shaded section represents the reporting period when the data was published online. Courtesy of SGC.

Geodetic monitoring during 2011-2012. In their April 2011 Technical Bulletin, SGC highlighted the onset of a decreasing trend in La Mesa’s tangential data; the trend began on 30 April and continued to 30 June for a total decrease of ~25 µrad (figure 19); this trend ended in July. A period of increasing tilt began on 29 September and ended on 30 November 2011 (total increase was ~35 µrad). The signal from La Mesa station (effecting electronic tilt as well as seismic records) was intermittent in August. From December 2011 through December 2012, fluctuations persisted in the tilt data; however, stable conditions were characteristic of 2012 deformation.

see figure caption Figure 19. Tilt record of Cumbal during 2011 (tangential component on top plot, radial on bottom). In their Technical Bulletins, SGC highlighted several trends that became apparent in the tangential data from La Mesa station; a decreasing event began at the end of April reaching a total decrease of ~25 µrad by late June. The station detected an increase in tilt of equal magnitude in late September and ending by late November. Courtesy of SGC.

References. Gardner, C.A., and Guffanti, M.C., 2006, U.S. Geological Survey’s Alert Notification System for Volcanic Activity, U.S. Geological Survey, Fact Sheet 2006-3139, Version 1.0.

Lewiki, J.L., Fischer, T., and Williams, S.N., 2000, Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution, Bulletin of Volcanology, 62: 347-361.

Geologic Background. Many youthful lava flows extend from the glacier-capped Cumbal volcano, the southernmost historically active volcano of Colombia. The volcano is elongated in a NE-SW direction and is composed primarily of andesitic-dacitic lava flows. Two fumarolically active craters occupy the summit ridge: the main crater on the NE side and Mundo Nuevo crater on the SW. A young lava dome occupies the 250-m-wide summit crater, and eruptions from the upper E flank produced a 6-km-long lava field. The oldest crater lies NNE of the summit crater, suggesting SW-ward migration of activity. Explosive eruptions in 1877 and 1926 are the only known historical activity. Thermal springs are located on the SE flanks.

Information Contacts: Servicio Geológico Colombiano (SGC), Observatorio Vulcanológico y Sismológico de Pasto, Pasto, Colombia (URL: http://www.SGC.gov.co/Pasto.aspx).


Izu-Tobu (Japan) — February 2013 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Quiet prevails despite the Tohoku megathrust of March 2011

Our previous report on Izu-Tobu (BGVN 23:04) summarized the elevated seismicity that began on 20 April 1998 in the eastern Izu Peninsula and started declining around 10 May. The activity included crustal deformation, indicating inflation likely linked to shallow magmatic activity. Izu-Tobu is located 100 km SW of Tokyo and just inland from the coast on the Izu peninsula.

Recent reports from the Japan Meteorological Agency (JMA) noted the Tohoku megathrust of March 2011, centered 400 km to the NE of Izu-Tobu, and that Izu-Tobu lacked any signs of correlated behavior as a result of that M 9.0 earthquake event and the numerous aftershocks.

Izu-Tobu had been quiet since March 2011 until 17 July when seismicity increased and small earthquakes with epicenters around Ito city (8.5 km N) were detected. Earthquakes on 18 July were M 2.5 and M 2.8 (interim values). A maximum seismic intensity of 1 on the JMA scale was observed in Ito-city and Higashi-Izu town (15 km SSW). Seismicity declined to the usual background level the following day. Ground deformation was observed around seismically active areas.

Seismicity along an area from Arai (8 km N) through offshore Shiofuki-zaki (2 km E of Ito-city), increased during 18-23 August 2011, then declined after 24 August. No earthquakes were observed until 22 September when the number of earthquakes temporarily increased at a shallower area around Usami; this activity was interpreted as not being directly related to magma intrusion.

Prior to the 22 September 2011 seismic activity, the volumetric strainmeter at Higashi-Izu town (15 km SSW) showed continuous contraction; the tiltmeter at Ito-city showed an apparent change on 18 September. The trend slowed as seismicity decreased; no change was observed after 23 September. GPS measurements did not exhibit remarkable changes and low-frequency earthquakes and tremor were not observed. The Alert Level at Izu-Tobu remained at 1.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3,000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/).


Kilauea (United States) — February 2013 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


2009 highlights: Waikupanaha ocean entry ceases, lava enters Halema`uma`u

This report discusses eruptive highlights at Kīlauea during 2009, with occasional reference to earlier and later events. Within the E rift zone, Pu`u `O`o crater was relatively quiet during 2009, while lava flows escaping from the Thanksgiving Eve Breakout (TEB) tube system continued to feed emissions along the SE coast. Along the E portion of the TEB system, the Waikupanaha ocean entry remained active for up to 363 days during 2009 before ceasing altogether on 4 January 2010. Along the W branches and ocean entries of the TEB tube system, lava emissions halted in July 2009.

At Kīlauea's summit, lava returned to the active vent within Halema`uma`u crater in January 2009, ending a pause in lava emissions there that began in December 2008. The active vent's shape was explored using Lidar, and in mid-2009 the lava lake's surface sat ~200 m below the floor of Halema`uma`u crater. The active vent underwent numerous cycles of lava rise, surface cooling, and collapse. Unless otherwise noted, all information in this report is from USGS Hawaiian Volcano Observatory (HVO) reports.

Pu`u `O`o crater quiescence. During the first four months of 2009, heavy fuming at Pu`u `O`o prevented visual observation of areas within the crater. HVO reported gas-rushing noises, but nothing unusual in available views from Forward Looking Infrared Radiometer (FLIR) thermal imaging. FLIR instruments detect infrared radiation, and produce calibrated thermal videos and still images.

On 15 May, favorable wind directions provided clear views of the crater floor. Observers reported patches of less broken, ponded surfaces near locations previously observed as spattering vents, as well as a V-shaped trough that ran SW-NE traversing the length of the crater (figure 197). They also observed an incandescent, fuming vent emitting puffing sounds in the NE part of the crater (also heard during a later visit in June), and an unseen vent distinguished by sounds on the W end of the crater floor (figure 197). Until October, further observation was limited to FLIR imagery, showing a few small, hot vents on the crater floor.

Figure (see Caption) Figure 197. Map of Pu`u `O`o crater (dark gray) and vicinity showing active vents during 2009 (red dots) and the V-shaped trough (dashed line) that was observed on 15 May 2009. The webcam (POcam) location on the crater's rim is indicated by the yellow triangle. Other mapped units correspond to previous flow fields emplaced in 1983-1986 (light gray), 1992-2007 (tan and orange), and 2008 (pink, top right); during 1986-1992, lava flows were emplaced outside of the mapped area. A small lithic debris field observed on the NE rim on 2 December 2009 is also indicated. Courtesy of USGS-HVO.

Crater glow at Pu`u `O`o was observed via webcam on most nights during the last three months of 2009. Ground observation on 2 December revealed a small (estimated3) surficial deposit of lithic lapilli and small blocks on the NE rim from a small explosion estimated to have occurred as early as 23 September (figure 197). The lithic debris was most likely sourced from one of the nearby vents on the NE crater wall.

During 2009 (and possibly since August 2007), a series of collapses removed a significant portion of the N crater rim. HVO reported that the series of collapses removed some of the highest points of the summit of the Pu`u `O`o rim, thus lowering the local elevation by a few meters.

Flow field and coastal plain breakouts and changes. Lava flows emplaced during 2009 covered an area of 6.5 km2, most of which covered previous lava flows; only 0.8 km2 of vegetated land (chiefly forested kipukas within the flow field) was overrun by lava (2009 flow field changes are shown in figure 198).

Figure (see Caption) Figure 198. Map of the changes to Pu`u `O`o's 21 July 2007 eruption flow field during 2009. The pre-existing (July 2007-2008) extent of the flow field is shown in pink, and the 2009 flow field additions are shown in red. Note that the portions of 2009 lava flows that overran the 2008 flow field extent are not represented, only changes to the extent of the July 2007-2008 flow field in 2009. The TEB tube system is shown in yellow with points where lava escaped to the surface, breakout points, indicated ('B/O points'). Ocean entries are indicated and labeled along the coast. Pool 1 (green) indicates the location of a lava lake roof collapse (discussed in text). Flow fields active during 1983-86 are shown in light gray, 1986-92 shown in light yellow, and 1992-2007 shown in orange. Courtesy of USGS-HVO.

The TEB vent and rootless shields (a pile of lava flows built over a known lava tube rather than over a conduit feeding magma; explained in BGVN 27:03) showed little change in early 2009, with small (most <300 m long) breakout-fed lava flows occurring occasionally during February and March on the fault scarp and cliffs (pali) in the Royal Gardens subdivision (figure 198) and the upper flow field. In early March, a breakout-fed lava flow reached the ocean, establishing the Kupapa`u ocean entry, which was active for a few months (discussed below) and consisted of several points where lava entered the sea (entry points). The long-lived Waikupanaha ocean entry (active since 5 March 2008) frequently produced littoral explosions and underwent delta collapses.

Other short-lived ocean entries occurred during this time, stemming from coastal plain breakouts from the W branch of the TEB tube system. These breakouts often slowed or stopped in harmony with deflation-inflation (DI) events at the summit. DI events, measured by tiltmeters at Kīlauea's summit, are thought to result from changes in magma supply to a storage reservoir less than 1 km deep and just E of Halema`uma`u crater. These fluctuations often propagate through the magmatic system, and are usually measured by another tiltmeter at Pu`u `O`o crater a few hours later. Typically occurring over weekly timescales during 2009 (up to a few days of deflation, followed by up to a few days of inflation; figure 199), DI events often correlate to pulses and/or pauses in lava emission at E rift zone vents.

Figure (see Caption) Figure 199. Radial deformation recorded by tiltmeters at Kīlauea's summit (blue) and Pu`u `O`o crater (pink) during 2009. The sawtooth patterns delineate what have come to be called deflation-inflation (DI) events, which typically occurred over weekly timescales during 2009. The timing and behavior of DI events often coincided with vent collapses at Kīlauea's summit and decreases or pauses in lava effusion along the E rift zone. Courtesy of USGS-HVO.

On 8 March 2009, the pool 1 lava lake roof (labeled in figure 198, feeding a perched lava channel - a lava channel with walls built up from previous overflows - from the 21 July 2007 fissure eruption, BGVN 34:03) collapsed. Subsequent cooling and further collapses during 11-19 March caused the channel to seal. No further active lava was observed in pool 1.

By 29 April, surface lava flows leading to the Kupapa`u ocean entry were no longer visible. This observation was taken to indicate that a tube branch leading to the Kupapa`u entry had been established. Later, during May-June, the multiple entries at Kupapa`u coalesced into one entry point. This entry was weaker and less persistant than the Waikupanaha entry and never formed a significant delta. Lava flows at the Kupapa`u entry pulsated in a manner closely correlated to DI events, unlike flows at the Waikupanaha entry, and the Kupapa`u ocean entry ceased by 21 July.

The onset of a strong DI event correlated with a breakout on June 1 from the Waikupanaha branch of the TEB tube system. Although beginning slowly, it remained active through mid-August. As is common, the flows slowed during deflation stages of DI events, and advanced further during inflation stages.

The Waikupanaha entry underwent common delta collapses throughout the year. The vigor of lava effusion at the entry, however, made up for the area lost to collapses, and the size of the delta continued to increase. The only known pause in lava entering the sea at Waikupanaha during 2009 occurred during a DI event, when the entry stopped for two days during 28-29 September.

On 31 October, surface lava flows reached the ocean ~700 m W of Waikupanaha, and established the W Waikupanaha entry. The new entry point was fed by an inferred secondary lava tube crossing over the main Waikupanaha tube branch (see the dashed portion of the yellow line labeled 'E Tube Branch', figure 198). Following the termination of the W Waikupanaha entry on 17 December, HVO concluded that its feeder tube had eroded down into the main Waikupanaha tube, thus tapping off its supply. Breakouts and surface flows during the end of the year continued to be affected by DI events.

Second longest ocean entry ceases. A large and prolonged DI event at Kīlauea's summit in December correlated with a brief pause in lava effusion at the E rift zone. As a result, by 4 January 2010, lava ceased entering the ocean at Waikupanaha after 22 months of near-continuous lava entry. This was the second longest ocean entry in the history of the eruption, being about half a month shorter than the 2005-2007 E Lae`apuki entry.

Lava lake returns to Kīlauea's summit. A lull in activity at Halema`uma`u crater began in mid-December 2008; on 14 January 2009, rockfall sounds returned to the summit, attributed to rising lava digesting talus slopes along the steep walled vent. Four days later, gas-rushing sounds, increased temperature, and collapses of the vent rim (figure 200) occurred, dusting nearby areas with ash and further marking the summit's re-awakening.

Figure (see Caption) Figure 200. Time lapse photographs of a collapse of a portion of the Halema`uma`u vent rim, Kīlauea, taken one minute apart (at 1528 and 1529) on 18 January 2009. The black line in the left frame indicates the area of collapse, which is absent in the right frame. Courtesy of USGS-HVO.

Vent glow, temperature increases, gas-rushing noises, and production of vitric ash continued during early 2009, indicating fresh lava had ascended to a shallow level in the vent. These eruption related processes fluctuated in a manner that suggested that they were moderated by in-falling crater walls burying the vent bottom.

Onset of a DI event on 3 February correlated with the retreat of the lava within the vent, removing support for the rubble clogging the vent cavity and collapsing the rubble into the cavity. This disturbance was accompanied by an ash plume that was sustained for 8 minutes. FLIR images captured the following day disclosed a lava lake situated deep within the vent (the rubble clogging the vent cavity was gone). HVO noted upwelling on the lake's E side, draining and filling events (figure 201) and spattering from the lake. Similar fluctuations at Halema`uma`u occurred in concert with DI events through late April.

Figure (see Caption) Figure 201. Observational and geophysical data highlight filling (pink) and draining (gray) cycles at Kīlauea's summit vent within Halema`uma`u crater. (a) Filling and draining cycles over 3 hours on 6 February 2009 were observed with FLIR, and compared with seismicity (Realtime Seismic Amplitude Measurement - RSAM - , top) and infrasound (sound at lower than audible frequencies, bottom). RSAM provides rapid analysis of ground-motion amplitudes across multiple stations; measurements are unitless and usually reported as 'RSAM units'. (b) Filling and draining cycles over ~1 hour on 7 February 2009 were observed via acoustic noises and compared with tilt (top), seismicity (middle, reported in instrument counts, here representing the seismometer response to the vertical component of ground motion velocity), and infrasound (bottom). Courtesy of USGS-HVO.

On 28-29 April 2009, a series of collapses at the vent within Halema`uma`u dislodged rubble and tephra covering the lava surface within the vent. As a result, for the next two months, particle emissions became > 50% juvenile (figure 202). Tephra emissions (juvenile, or glassy, and lithic components) have been measured nearly daily at Halema`uma`u since April 2008 by collecting passively emitted tephra (i.e. derived from non-explosive activity) in an array of buckets deployed around the vent. The resulting assessments led to the compilation of isomass maps and calculations of the total mass emitted (Swanson and others, 2009). By 6 May, bubbling and churning at the lava lake surface was visible with the naked eye.

Figure (see Caption) Figure 202. Calculated monthly ejected mass of tephra from Kīlauea's summit during April 2008-January 2010. The histogram excludes any explosive eruptions during that period. Collected tephra were assigned to one of two components: juvenile (glass, shown in black) and lithic (lava, shown in gray). Note that more than half of the mass ejected during May-June 2009 was juvenile, following a series of collapses on 28-29 April. See text or Swanson and others (2009) for a description of the daily tephra emission measurement technique. Courtesy of USGS-HVO.

A strong DI event in early June (reflected in the E rift zone by breakouts on the pali on 1 June, see above) marked the peak of lava activity within Halema`uma`u crater during 2009. The vent's lava lake showed strong upwelling in the NE, at times forming a dome-shaped fountain. The surface of the lava lake was circulating rapidly enough to prevent any significant crust from forming. The lava lake's circulation and activity slowed near the end of June and its surface appeared almost completely crusted over. A tripod mounted Lidar (T-Lidar) survey of the vent during 10-12 June indicated that the lava surface was ~207 m below the floor of Halema`uma`u crater (figure 203).

Figure (see Caption) Figure 203. 2-D projection of 3-D reconstruction of the Halema`uma`u crater vent as measured by a T-Lidar survey on 10-12 June 2009. The reconstruction (gray) is shown on a black background. The T-Lidar was shot from the Halema`uma`u crater rim, adjacent to the active vent. The plane projected here trends approximately NNE-SSW. The lava surface (indicated in purple at the bottom) was measured to be ~207 m below the floor of Halema`uma`u crater (indicated in green). Various other dimensions of the vent's geometry are shown. Image by Todd Ericksen, University of Hawaii-Manoa; courtesy of USGS-HVO.

On 30 June, a series of significant collapses of the vent wall again clogged the vent with rubble. For the following several days, lava appeared through the rubble and established a ponded surface. The lava retreated during a DI event on 4 July, and the vent became very quiet until mid-August. On the night of 9 August, the vent emitted a faint glow. Areas of degassing appeared within days, but the vent floor lacked visible molten material.

On 13 September, lava reappeared briefly, but a DI event a few days later coincided with another vent-wall collapse, again covering the lava surface. The vent floor collapsed further on 26 September, and two days later, lava had re-entered the vent and webcam videos confirmed the filling and draining behavior of the lava surface. This collapse coincided with a strong hybrid earthquake with large very-long-period waveforms. Hybrid earthquakes at Kīlauea typically begin as high-frequency earthquakes (similar to local earthquakes or rockfalls), then transition to long- and sometimes very-long-period oscillations. During 2009, hybrid earthquakes (i.e. the 26 September event) and ongoing very-long-period tremor at Kīlauea's summit suggested a source location beneath the summit, and within ~500 m above or below sea level.

The lava level within the vent fluctuated until the lava surface froze and sealed shut. It collapsed again on 18 November, revealing a fresh and mobile lava surface. Similar fluctuations and crusting of the lava surface continued through the end of 2009, when the lava level again dropped out of view deep below the Halema`uma`u crater floor.

2009 deformation trends. Satellite based radar interferometry determined that broad-scale deformation at Kīlauea during 2009 was marked by subsidence of the summit and E rift zone (figure 204; see the report on Mauna Loa, BGVN 37:05, for an explanation of the technique). This pattern was interpreted as deflation of the magma system, with displacement of the S flank towards the sea. Deflation also occurred in the E rift zone, but ceased by September. 64 DI events were recorded during 2009, a record number of short-lived DI events since they have been monitored. The largest and longest DI events tended to coincide with decreases or pauses in lava effusion in the E rift zone, and vent collapses at the summit (discussed above, figure 199).

Figure (see Caption) Figure 204. Subsidence and deflation of Kīlauea and the E rift zone during 2009, as seen in an ENVISAT interferrogram spanning 12 January 2009 to 3 February 2010. Approximately 8 cm of subsidence occurred at Kīlauea's summit (Halema`uma`u crater, which is labeled), and ~6 cm of subsidence occurred in the E rift zone near Pu`u `O`o crater. Colored stripes indicate offsets as shown in the scale, top right (see Mauna Loa report in BGVN 37:05 for an explanation of the technique). The image was acquired with an incidence angle of 18° with the ground, looking W to E. Courtesy of USGS-HVO.

Hexahydrite spherules discovered at Kīlauea's summit.While collecting Pele's hair on 30 March, HVO scientists discovered and collected small (less than 3 mm diameter), extremely fragile, white spherules that were stuck into wads of Pele's hair (figure 205).

Figure (see Caption) Figure 205. Hexahydrite (MgSO4·6H2O) spherules discovered and collected from just S of Kīlauea's summit vent in 2009. Photomicrographs (a, b) with scales show surface and textural details of the spherules. An in-situ photograph (c, key for scale) shows the spherules as they were found, within wads of Pele's hair. From Hon and Orr (2011).

X-ray diffraction revealed that the spherules were nearly pure magnesium-sulfate hexahydrite (MgSO4·6H2O). Hon and Orr (2011) proposed that the spherules form from the percolation of rainwater through vesicular vent rocks, enriching the water in soluble sulfates. Magnesium sulfate resists precipitation owing to its higher solubility, and most other hydrothermal minerals would precipitate from the enriched fluid sooner. Hon and Orr (2011) suggested that boiling of the residual magnesium sulfate enriched fluids formed a foam of magnesium sulfate-coated bubbles, which formed the spherules when the bubbles were subsequently entrained into the eruptive plume.

Petrologic trends, shallow magma mixing. Through long-term petrologic monitoring and analysis of Kīlauea's summit and E rift zone lavas, HVO scientists noted that the weight percent MgO (an indicator of the temperature of tapped magmas) of E rift zone lavas indicated well-buffered, shallow magma conditions that were maintained by "near-continuous recharge and eruption." Similarly, textural and compositional evidence highlighted pre-eruptive magma mixing between a shallow, cooler, degassed component and a gaseous, hotter, recharge magma component. Combined, the two components are erupted as a hybrid lava at the E rift zone.

Interestingly, since 2001, increased magma supply (interpreted from cross-summit extension distance) has correlated with an increase in the shallower, degassed magma component in the E rift zone lavas (interpreted from MgO weight percent; figure 206). HVO reported that this inverse relationship (higher magma supply coincident with cooler erupted lavas) is explained by more efficient flushing of the shallow edifice during times of increased magma supply.

Figure (see Caption) Figure 206. MgO weight percent (green points and blue trend, left axis) plotted versus Kīlauea's cross-summit extension distance (red, right axis) during 2000-2009 shows an inverse relationship between magma supply (i.e. variations in cross-summit extension) and the temperature of erupted lavas (i.e. variation in MgO weight percent). Courtesy of USGS-HVO.

Summit gas emissions exceed health standards. Based on Flyspec measurements, the total SO2 emissions from Kīlauea in 2009 (~0.72 x 106 tons) were 35% less than in 2008 (the highest annual SO2 emissions since measurements began in 1979, correlating to the opening of a new vent in Halema`uma`u crater; BGVN 35:01). Of the total 2009 emissions, ~60% and ~40% were attributed to the E rift and the summit, respectively (figure 207). Although 2009 emissions were down from the previous year, a record number of Ambient Air Quality exceedences occurred at the summit during 2009 (figure 208).

Figure (see Caption) Figure 207. Daily average SO2 emissions from Kīlauea's summit (green) and from the E rift (pink) during 1992-2009. The total daily average emissions are shown in blue. 2008 marked an increase in emissions from the summit (and the highest annual SO2 emissions since measurements began in 1979) correlating with the opening of a new vent in Halema`uma`u crater (BGVN 35:01). In 2009, although total emissions were down 35% from 2008, summit emissions remained elevated. Courtesy of USGS-HVO.
Figure (see Caption) Figure 208. Histograms show the number of days per year that the Ambient Air Quality standard was exeeded, as monitored at the HVO building (left) and at the Kīlauea Visitor Center (right) since 2001. Since air quality monitoring began, the standard was exceeded most often in 2009. Courtesy of USGS-HVO.

Vog health concerns. A recent clinic study by Longo and others (2010) highlighted the health effects of increased volcanic air pollution (volcanic smog, or 'vog') exposure at Kīlauea, and identified population subgroups who are more susceptible to the effects of vog. They found that periods of increased vog emission and exposure coincide with increases in medical visits for "cough, headache, acute pharyngitis, and acute airway problems." Among previously identified population subgroups with increased susceptibility to health problems from exposure to vog, Longo and others (2010) found a specific correlation with Pacific Islander children living in exposed rural communities. The native children showed higher rates of acute respiratory effects both in times of low- and high-vog emissions. Longo and others (2010) suggested that this unique population showed the highest vulnerability due to physiological and genetic contributions, as well as the built environment and a lack of prevention efforts for vog exposure.

References. Hon, K., and Orr, T., 2011, Hydrothermal hexahydrite spherules erupted during the 2008-2010 summit eruption of Kīlauea Volcano, Hawai`i, Bulletin of Volcanology, 73(9), pgs. 1369-1375.

Longo, B.M., Yang, W., Green, J.B., Crosby, F.L., and Crosby, V.L., 2010, Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kīlauea in 2008, Journal of Toxicology and Environmental Health, Part A, 73(20), pgs. 1370-1381.

Swanson, D., Wooten, K., and Orr, T.R., 2009, Mass flux of tephra sampled frequently during the ongoing Halema'uma'u eruption [abs.], Eos, Transactions, American Geophysical Union, v. 90, no. 52 (fall meeting supplement), abstract no. V52B-01.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Michael Poland, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Kusatsu-Shiranesan (Japan) — February 2013 Citation iconCite this Report

Kusatsu-Shiranesan

Japan

36.618°N, 138.528°E; summit elev. 2165 m

All times are local (unless otherwise noted)


Minor tremor and small earthquakes during 2011-2012

On 7 February 1996, hydrophone data and water level changes suggested that a small hydrothermal ejection may have occurred at Kusatsu-Shirane (also known as Kusatsu-Shiranesan) at Yugama crater's pond (BGVN 21:02). Several months later, on 8 July, numerous small earthquakes were detected by the Kusatsu-Shirane Volcano Observatory (BGVN 21:07). The volcano is about 150 km NW of Tokyo (figures 6 and 7; also refer to the sketch map in figure 1, SEAN 07:10). This report summarizes seismicity between May 2011 and February 2013 based on available reports from the Japan Meteorological Agency (JMA).

Figure (see Caption) Figure 6. A sketch map showing the location of Kusatsu-Shirane (Kusatsu-Shiranesan) in Honsho, Japan. Courtesy of JMA.
Figure (see Caption) Figure 7. An aerial photo of Kusatsu-Shirane, as viewed from the S. The photo, taken on 29 May 2008, shows the overlapping pyroclastic cones and two of the three crater lakes. Courtesy of Flickr user rangaku1976.

On 27 May 2011, tremor was detected at Kusatsu-Shirane; no further information was provided. During 5-7 June 2011, an elevated number of microearthquakes with low amplitude occurred around Yugama crater (the main crater). No volcanic tremor or significant deformation was detected during this time. Thereafter, activity gradually diminished to background levels.

Field surveys during 27-29 June and 12-13 July 2011 revealed that elevated thermal anomalies persisted inside Yugama crater's N flank, the N fumarole area, and the slope located N to NE of Mizunuma crater. Ground temperatures around fumaroles remained high.

On 18 July 2011, a short period of tremor (duration 2.5 min) was detected. No change in fumarole activity was observed.

On 10 August 2011, an aerial survey was conducted in cooperation with Gunma prefecture. The survey found that the distribution of thermal anomalies and fumaroles in Yugama crater and the N fumarole area had not changed.

During 16-18 August, an elevated number of microearthquakes with low amplitude occurred near and to the S of Yugama crater. Significant deformation was not detected. Seismicity remained at background levels during the other days in August. High temperatures persisted on the N flank inside the main crater.

A field survey on 8 March 2012 found that the high temperatures on the N slope of Mizugama crater and the N fumarole area were the same as those found during a previous survey conducted during 27-29 June 2011. Very weak steam plumes at the N fumarole area of Yugama were sometimes observed by a camera at Okuyamada, though bad weather and mechanical trouble prevented their observation for long periods. The ground temperature in the fumarole area NE of Yugama crater remained elevated since its rapid rise in May 2009, despite occasional fluctuations.

According to JMA, the occurrence of small amplitude volcanic earthquakes occasionally increased during March 2012. The hypocenters were located just beneath the S part of Yugama crater. No tremor or significant crustal change was noted in GPS data.

During 1-2 April 2012, seismicity increased slightly, then subsided. No tremor, change in fumarole activity, or crustal change was observed, and no further reports have been issued on activity at Kusatsu-Shirane as of February 2013.

Geologic Background. The Kusatsu-Shiranesan complex, located immediately north of Asama volcano, consists of a series of overlapping pyroclastic cones and three crater lakes. The andesitic-to-dacitic volcano was formed in three eruptive stages beginning in the early to mid-Pleistocene. The Pleistocene Oshi pyroclastic flow produced extensive welded tuffs and non-welded pumice that covers much of the E, S, and SW flanks. The latest eruptive stage began about 14,000 years ago. Historical eruptions have consisted of phreatic explosions from the acidic crater lakes or their margins. Fumaroles and hot springs that dot the flanks have strongly acidified many rivers draining from the volcano. The crater was the site of active sulfur mining for many years during the 19th and 20th centuries.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); rangaku1976, Flickr (URL: http://www.flickr.com/photos/rangaku1976/).


Sabancaya (Peru) — February 2013 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Increased seismic and fumarolic activity in late 2012 and early 2013

Sabancaya volcano, located 72 km NW of Arequipa city, is one of the most active volcanoes of the Central Andes (figure 10). Our last report of Sabancaya described ashfall during July 2003 (BGVN 29:01). This report describes an increase in anomalous seismic and fumarolic activity, beginning in late 2012 and continuing through the end of March 2013. The restlessness spurred increased monitoring of the volcano.

Figure (see Caption) Figure 10. A map illustrating hazards at the Ampato-Sabancaya volcanic complex (high danger, red; moderate danger, orange; and low danger, yellow). Types of volcanic hazards include pyroclastic flows (including debris flows), mudflows, lava flows, and avalanches. The overall thickness of ash deposits from eruptions during 1990-1998 is indicated by 1 and 0.1 cm isopachs. Major roads and highways are shown as thick, dark red lines; thin lighter red lines are elevation contours. The map shown is featured on a poster with more details. From Mariño and others (2013).

Between 1988 and 1997, activity at Sabancaya was intermittent and characterized by low to moderate Vulcanian eruptions (VEI 2) and mainly modest eruption columns (less than 5 km above the summit) with local ashfall (e.g., SEAN 13:06; BGVN 19:03). After this eruptive episode, between 1998 and 2012, minor and intermittent fumarolic emissions rose from the active crater. During the last months of 2012, a slight increase of fumarolic activity was observed during a field campaign by Peru's Instituto Geológico Minero y Metalúrgico (INGEMMET) volcanologists and their counterparts from the Laboratoire Magmas et Volcans (Clermont-Ferrand, France).

The Instituto Geofisico del Peru (IGP) reported that inhabitants from Sallalli hamlet, ~ 11 km S of Sabancaya, observed an increase in fumarolic emissions beginning 5 December 2012. Meteorological conditions prevented IGP scientists from visiting the area during the rainy season.

In mid-February 2013, local residents reported an increase in fumarolic activity, which was confirmed by INGEMMET scientists that visited the volcano on 15 and 22-23 February (figure 11). Scientists also reported a strong sulfur odor within an 8-km radius, and felt several strong earthquakes probably associated with the volcano's unrest.

Figure (see Caption) Figure 11. Photograph taken of a gas plume above the active vent of Sabancaya, as seen from the SE flank on 17 February 2013. Courtesy of Pablo Samaniego, IRD.

IGP reported that within a span of 95 minutes on 22 February 2013, three earthquakes, of M 4.6, 5.2, and 5.0 respectively, were registered at Sabancaya (figure 12). This activity prompted IGP to install a network of close proximity seismic stations. Earthquakes continued through the following day (23 February) and caused damage at Maca village, 20 km NE of the crater.

Figure (see Caption) Figure 12. The principal earthquakes (red dots) registered at Sabancaya on 22 February 2013. Of these, three earthquakes of M 4.6, 5.2, and 5.0 occurred within a span of 95 minutes. Courtesy of IGP.

During 22-23 February, a seismic station installed by INGEMMET registered more than 500 small volcano tectonic (VT) seismic events at Sabancaya. On 23 February IGP separately reported 560 events at the Cajamarcana seismic station (CAJ on figure 13b) on the SE flank. According to a Reuters article from 27 February, 80 homes were damaged by the seismicity during 22-23 February, leading to some evacuations. During that seismicity, a plume rose ~100 m above Sabancaya. After 24 February, VT, long period (LP), and hybrid seismicity continued (figure 13).

Figure (see Caption) Figure 13. (a) Plot of daily earthquakes at Sabancaya, showing the number of volcano tectonic, long period, and hybrid events that occurred during 24 February-27 March 2013. (b) The locations of earthquake epicenters on 27 March 2013 (red dots) and the seismic stations that were monitoring the volcano as of that date (yellow triangles). Courtesy of IGP.

Reference. Mariño J., Samaniego P., Rivera M., Bellot N., Manrique N., Macedo L., Delgado R., 2013, Mapa de peligros del Complejo Volcánico Ampato-Sabancaya, Esc. 1:50.000. Edit. INGEMMET-IRD.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geológico Minero y Metalúrgico (INGEMMET), Av. Dolores (Urb. Las Begonias B-3), J.L. Bustamante y Rivero, Arequipa, Perú (URL: http://www.ingemmet.gob.pe); Pablo Samaniego Eguiguren, Laboratoire Magmas et Volcans, Université Blaise Pascal, Le Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Casilla 18-1209, Calle Teruel 357 - Miraflores, Lima 18 - PERU (URL: https://lmv.univ-bpclermont.fr/en/); Reuters, report by Lima Newsroom; Orlando Macedo, PhD, Chief of Volcanology Research Department, Instituto Geofisico del Peru, (IGP), Arequipa Volcano Observatory, Urb. La Marina B-19, Cayma, Arequipa, Peru.


Saunders (United Kingdom) — February 2013 Citation iconCite this Report

Saunders

United Kingdom

57.8°S, 26.483°W; summit elev. 843 m

All times are local (unless otherwise noted)


Eruption from ‘new’ vent

Matthew Patrick (USGS-HVO) notified Bulletin editors that in late 2012 images from thermal sensing satellites showed a 'new' active vent on Mount Michael on Saunders Island in the South Sandwich Islands (see location map, figure 1 in BGVN 28:02). This prompted scrutiny of the same vent in earlier images. Patrick noted that, although the vent was first identified in the 2012 images, it also appeared as activity in satellite images starting in 2006. The South Sandwich Islands are generally devoid of vegetation and habitants, and are largely ice-bound. Thus, satellite thermal alerts are strong evidence of volcanism.

Patrick shared with us the following information from a paper by Patrick and Smellie (2013) about the vent, labeled as Old Crater (SE and outside of main crater, see figure 2 in BGVN 28:02). ASTER [Advance Spaceborne Thermal Emission and Reflection Radiometer] imagery provided "new information on the small subordinate crater, marked as 'Old Crater' by Holdgate and Baker (1979), presumably because it was inactive at the time of their observations." An ASTER image on 28 October 2006 showed an apparent SWIR [short-wave infrared] anomaly at Old Crater. The crater itself appeared to be snow-free and was approximately 150 m in diameter. An ASTER image from 5 January 2008, showed a steam plume coming from this vent, which appeared to be about 190 m wide, as well as a TIR [thermal infrared] anomaly. A very high resolution image from November 2009 available on Google Earth showed a small steam plume emanating from the crater, which is about 190 m wide (figure 8). An ASTER image from 17 November 2010, showed apparently recent eruptive activity in Old Crater, evidenced by tephra fallout emanating from the crater and a small TIR anomaly (at the time there was also a TIR anomaly in the main crater). According to Patrick and Smellie, the plume, tephra fall, SWIR anomalies, and crater enlargement (from 150 to 190 m) indicated that this vent had reactivated by late 2006.

Figure (see Caption) Figure 8. Annotated Google Earth imagery of Michael volcano (Saunders Island) acquired on 19 November 2009. (a) Saunders Island is mostly glacier covered, and steam plumes rose from the summit area. The scale bar indicates a distance of ~2.4 km. (b) A close up of the summit area that clearly shows steam plumes emanating from both the summit crater as well as the snow-filled 'Old Crater' (as termed by Holdgate and Baker, 1979). The scale bar indicates a distance of ~0.5 km. Courtesy of Google Earth.

MODVOLC satellite thermal alerts measured from the volcano since our last Bulletin report (BGVN 33:04, activity through May 2008) and to 4 April 2013 are shown in Table 3. A solitary alert appeared 25 October 2008, followed by a four year period of apparent inactivity. Then, another solitary alert was measured in late June 2012, followed by alerts for two days in October 2012 and two days in November 2012. Patrick noted that occasional and sporadic alerts are very typical for Michael.

Table 3. Satellite thermal alerts measured by MODVOLC over Michael from 2008-February 2013. Pixel sizes generally range from 1-1.5 km2. Note that previous satellite thermal alerts for Michael were listed in BGVN 31:10 (October 2005-November 2006) and 33:04 (August 2000-May 2008). Courtesy of MODVOLC.

Date Time (UTC) Number of pixels Satellite
25 Oct 2008 0100 1 Terra
30 Jun 2012 0100 1 Terra
02 Oct 2012 0110 1 Terra
28 Oct 2012 0200 2 Aqua
28 Oct 2012 1125 2 Terra
14 Nov 2012 0055 3 Terra
22 Nov 2012 1120 2 Terra

References. Patrick, M.R., and Smellie, J.L., 2013, A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-2010, Antarctic Science, v. 25, no. 4, p. 475-500.

Holdgate, M.W., and Baker, P.E., 1979. The South Sandwich Islands: I. General description, British Antarctic Survey Scientific Reports, No. 91, pp. 1-76.

Geologic Background. Saunders Island consists of a large central volcanic edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Analysis of satellite imagery available since 1989 (Gray et al., 2019; MODVOLC) suggests frequent eruptive activity (when weather conditions allow), volcanic clouds, steam plumes, and thermal anomalies indicative of a persistent, or at least frequently active, lava lake in the summit crater. Due to this observational bias, there has been a presumption when defining eruptive periods that activity has been ongoing unless there is no evidence for at least 10 months.

Information Contacts: Matthew Patrick, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); MODVOLC, Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Telica (Nicaragua) — February 2013 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Degassing continues in 2012; increased micro-earthquake activity in March 2013

Degassing that followed the May 2011 explosive eruption of Telica (figure 29; see also BGVN 36:11) continued through 2012 and into 2013. The following information summarizes observations by the Nicaraguan Institute of Territorial Studies (INETER) for 2012 and through March 2013.

Figure (see Caption) Figure 29. A location map of Telica, Nicaragua, in Central America. Telica (red triangle) is located ~105 km NW of the capitol, Managua. It last erupted in May 2011 (BGVN 36:11), but no major damage was reported. Gases emitted by Telica normally affect communities in the nearby provinces of Leon and Chinandega. Small black triangles in the figure depict other known Holocene volcanos in the region. Courtesy of USGS.

INETER issues a monthly bulletin, Boletín mensual Sismos y Volcanes de Nicaragua (Newsletter, Earthquakes and Volcanoes in Nicaragua), reporting on monitoring of Nicaraguan volcanoes including San Cristóbal, Telica, Cerro Negro, Momotombo, Masaya, and Concepcion (figure 30). In the Boletín, INETER presents monitoring data for Telica crater and adjacent fumarol temperatures, seismic activity, and sulfur dioxide (SO2) fluxes. In addition, visual observations are made during periodic field trips. Generally, the time difference between the arrival of P (primary) and S (secondary) waves from local earthquakes ranges from 0.5 to 2 sec, suggesting a source depth of 4 to 10 km.

Figure (see Caption) Figure 30. An oblique view of a schematic map of Nicaragua with high vertical exaggeration highlights the locations of Nicaraguan volcanoes. Courtesy of INETER.

As an example of normal ongoing activity at Telica, INETER reported that during 10-11 September 2012, 'jet' sounds were heard from the volcano, and two incandescent fumaroles were observed, along with gas-and-steam plumes rising 100-200 m above the crater. On 11 September two small explosions occurred in the crater. During 12-14 and 17 September gas plumes rose 30-150 m and incandescence from the crater was observed. Gas measurements on 14 and 17 September showed normal levels of SO2 flux.

2012 Sulfur dioxide flux. Average daily SO2 flux measurements made using the Mini-DOAS (differential optical absorption spectroscopy) mobile technique in 2012 were 303 metric tons per day in April, 627 metric tons per day in June, 377 metric tons per day in August, and 130 metric tons per day in October.

2012 Seismic Events. INETER has developed some novel ways for grouping seismic events at Telica. The types of seismic events monitored at Telica and activity during 2012 are shown in tables 5 and 6, respectively.

Table 5. Types of seismic activity monitored at Telica volcano, with characteristics as recorded and interpreted during 2012. Courtesy of Virginia Tenorio, INETER.

Activity type nomenclature (abbreviations) Frequency range/peak (Hz) Duration Possible explanation for 2012 events
Long period (LP) 1.0-4.5/4.0 20-40 sec Magma movement at depth 6-10 km
Tremor 5.0-7.0 short Degassing and magma movement
Volcano-tectonic (VT; VTA+VTB) 10.0-20.0+/12 1+ min Rupture of rock at depth 6-10 km
Double earthquake (S.DO) 4.0-7.0/4.0 and 7.0 40-60 sec Fracture of brittle soil followed by magma displacement
Gas explosion (E.G) 4.0-10.0 Hz 1-2 min Release of gas in volcano duct
Swarms of seismic events (trenes de sismos) (TS) 5.0-7.0 Hz 1-3 min Breaking rocks combined with LP-type events (average of 10 events per swarm)
Degasification signal (S.D) 5.0-10.0 1 min --

Table 6. Total volcano-seismic events and numbers of various types of events (see table 5 for descriptions) that were reported at Telica during 2012; percentages indicate the contribution of each type of event to the total recorded number of events during that month. Courtesy of INETER.

Activity type 18-31 March April May June July
Total events 1,986 3,222 3,544 5,754 4,112
LP 535 (27%) 953 (30%) 1,077 (30%) 827 (14%) 332 (8%)
S.DO 658 (33%) 638 (20%) 635 (18%) -- --
Tremor 0 (0%) 72 (2%) 78 (2%) 0 (0%) 125 (3%)
E.G 625 (32%) 609 (19%) 686 (19%) -- --
VT (VTA + VTB) 168 (8%) 299 (9%) 315 (9%) 2,418 (42%) 997 (24%)
S.D -- 651 (20%) 753 (21%) -- --
TS -- -- -- 2,519 (44%) 2,658 (65%)

2012 Temperature measurements. Figure 31 shows INETER staff members measuring crater and fumarole vent temperatures at Telica; temperatures are measured approximately once per month (figure 32). Temperatures measured during 2012 at the 4 fumaroles (figure 33), vents located E and outside of Telica crater, ranged between 52° and 79°C.

Figure (see Caption) Figure 31. INETER staff measuring temparatures at the Telica crater using a thermal imaging camera (left) and one of the fumarole vents using an IR thermometer (right). Courtesy of INETER.
Figure (see Caption) Figure 32. (a) Maximum monthly temperatures for Telica crater during January 2011-February 2012, and (b) average monthly temperatures during 2012. Courtesy of INETER.
Figure (see Caption) Figure 33. A W looking Google Earth view of Telica showing the approximate location of the fumarole vents E of Telica crater (lower arrow) and the location of temperature measurements in the crater (upper arrow). Courtesy of INETER.

2013 activity. The Costa Rica News reported on 24 March 2013 that Virginia Tenorio of INETER announced that Telica was experiencing increased micro-earthquakes. According to the INETER report, dozens of micro-earthquakes had occurred per day since 17 March. The increase continued to at least 24 March; 20 earthquakes occurred on 22 March, but only one reached as high as M 2.1. Tenorio was reported to state that, although earthquakes were located within the volcano's structure, an imminent eruption was not indicated. She further stated that while some changes may occur in the magmatic system and in the expulsion of gases, conditions were stable. Local observers reported elevated vapor and gas emissions associated with the spike in seismicity and incandescence in a fissure at the bottom of the active crater. Since 21 March 2013, the member institutions of the National System for Prevention, Mitigation and Attention to Disasters (SINAPRED), have been ordered to monitor Telica's activity and keep it under close observation.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Virginia Tenorio, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni); Costa Rica News, San Jose, Costa Rica (URL: http://thecostaricanews.com); Sistema Nacional para la Prevención, Mitigación y Atención de Desastres (SINAPRED), Managua, Nicaragua (URL: http://www.sinapred.gob.ni/); MODVOLC, Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Turrialba (Costa Rica) — February 2013 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Decreased seismicity and emissions in 2012

As noted by our previous report (BGVN 37:06), on 12 January 2012 Turrialba emitted ash for a few hours due to the opening of a vent, named 2012 Vent, on the SW inside slope of Central Crater. Since then, 2012 Vent has been an active contributor to the regular plume generation at the volcano. Our previous report noted activity through May 2012. This report primarily highlights activity through December 2012, based on online documents from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) showing a diminution in activity during 2012 compared to 2010 and 2011.

Seismicity. According to OVSICORI-UNA, the seismic activity at Turrialba in 2012 was characterized primarily by shallow and volcano-tectonic events concentrated in the upper part of the edifice, and minor seismicity in nearby faults. In general, seismicity was lower in 2012 than in 2011, and notably lower than that in 2010. Seismic activity climbed slightly during September-October 2012 (from about 20/day, peaking at 150/day on 13 October, and then declining back to normal values after 1 November; figure 30). OVSICORI-UNA noted that seismic activity in 2012 was caused by water and heat interactions causing gas pressure.

Figure (see Caption) Figure 30. The number of seismic events registered per day at Turrialba during 2012. Courtesy of OVSICORI-UNA.

Deformation. OVSICORI-UNA reported that during 2012 the distances between the Electronic Distance Measurement (EDM) station "Pilar" and several nearby reflectors contracted from 2 to 7 cm/year, with the highest value at the N reflector and lowest at the ENE and NE reflectors (see figure 31 for EDM station locations).

Figure (see Caption) Figure 31. The location of geodetic monitoring stations at Turriabla during 2012. Red circles are reflectors of the EDM network, and measurements were made from the Pilar station (red square). Blue circles are permanent GPS stations (CAPI and GIBE). Courtesy of OVSICORI-UNA.

Emissions. According to OVSICORI-UNA, the opening of the 2012 vent was not associated with new magmatic activity. Vent temperatures measured with a thermocouple were similar during 2010-2012, suggesting to OVSICORI-UNA a sustained and common magmatic source. Measured vent temperatures also correlated with CO2 and H2S gas emissions (figure 32).

Figure (see Caption) Figure 32. (Background image) Thermal image of Turrialba's W wall in Cráter Central (Central Crater) on 27 October 2012. Two vents are indicated, Boca 2012 (2012 Vent) and Cráter Oeste (West Crater). (Plots) For the measurement locations indicated by arrows, plots compare CO2 flux measurements (black) to both H2S flux measurements (blue) and thermal measurements acquired at 10-cm depth (red). Courtesy of OVSICORI-UNA; thermal photo taken by G. Avard.

OVSICORI-UNA noted that gas emissions during 2012 had decreased considerably compared to those during 2010 and 2011. OVSICORI-UNA suggested that this decrease might be due to various factors, including a decline in rainfall that resulted in less water vapor, the primary component of the emissions. In a report discussing activity during January-February 2013, OVSICORI-UNA noted that the emissions from 2012 Vent had decreased, even though nighttime incandescence could be observed. Emissions drifted primarily NW during 2012.

Figures 33 and 34 summarize SO2 measurements from both miniature Differential Optical Absorption Spectrometer (mini-DOAS, fluxes) and OMI satellite data (masses). SO2 fluxes were lower than those in 2010-2011 when fluxes often reached above 1,000 tons/day (and in one case, nearly 4,000 tons/day; figure 34).

Figure (see Caption) Figure 33. (Left) Daily SO2 flux (metric tons/day) at Turrialba measured by a mini-DOAS station at La Central school, ~2.2 km SW of West Crater, between 1 May 2012 and 1 January 2013. (Right) SO2 mass (uncorrected for any noise) emitted by Turrialba as recorded by NASA's Ozone Monitoring Instrument (OMI) aboard the AURA satellite during 2012. The SO2 mass corresponds to the total mass detected by the OMI sensor in the Central America area at 1800-1900 UTC. According to OVSICORI, both mini-DOAS and OMI measurements were consistent and of the same magnitude. The red-shaded area in the satellite data represents the time period corresponding to that of the mini DOAS data. Courtesy of OVSICORI-UNA and NASA-OMI.
Figure (see Caption) Figure 34. SO2 mass emitted by Turrialba as recorded by NASA's OMI instrument aboard the AURA satellite between 1 October 2008 and 6 November 2012. These represent masses in the atmospheric column that are thought to have roughly 1 day residence times. Courtesy of NASA-OMI.

As in previous years, rain and fog absorbed volcanic gases in 2011 and 2012, producing acid rain with consequent damage and destruction to vegetation, especially in downwind areas in the sector sweeping clockwise from SW to N from the vents (figure 35).

Figure (see Caption) Figure 35. Annotated photo of Turrialba taken on 26 August 2012. The vegetation on the top and on the flanks of the edifice (zone 1) showed severe effects such as necrosis. The pasture vegetation (zone 2), used for milk production, turned yellowish (chlorosis). Interestingly, part of the native vegetation such as the tall trees (Quercus species) showed a stronger resistance to environmental acidification. Courtesy of OVSICORI-UNA; photo taken by G. Avard.

OVSICORI-UNA observed that hydrothermal activity modified the mineralogy and decreased the cohesion of the rocks in contact with the fluids, which alter and reduce the stability of the slopes of the volcanic edifice, triggering gravitational collapses, rockfalls, and strong erosion during the main rain events. These phenomena were especially observed after storms on 15 August and in November 2012, when coarse and fine material was transported from the walls to the bottom of Central Crater, deepening the W and NW gullies.

In an M.S. thesis, Rivera (2011) compared SO2 concentrations in Turriabla's volcanic plume using a ground-based mini-DOAS and three new data analysis techniques using NASA's OMI instrument. The three new techniques were the MODIS smoke estimation, OMI SO2 lifetime, and OMI SO2 transect techniques. All four techniques involve UV sensor analysis. She found that the OMI SO2 lifetime technique provided qualitative agreement between the ground-based and satellite-based data, while the OMI transect technique provided occasional quantitative agreements with the mini-DOAS measurements. The MODIS smoke estimation technique was inaccurate in estimating SO2 emission rates.

Reference. Rivera, A.M., 2011, Comparisons between OMI SO2 data and ground-based SO2 measurements at Turrialba volcano, M.S. Thesis, Michigan Technological University.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports