Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

San Miguel (El Salvador) Small ash emissions during 22 February 2020

Cleveland (United States) Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Ambrym (Vanuatu) Fissure eruption in December 2018 produces an offshore pumice eruption after lava lakes drain

Copahue (Chile-Argentina) Ash emissions end on 12 November; lake returns to El Agrio Crater in December 2019

Nishinoshima (Japan) Ongoing activity enlarges island with lava flows, ash plumes, and incandescent ejecta, December 2019-February 2020

Krakatau (Indonesia) Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Mayotte (France) Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Fernandina (Ecuador) Fissure eruption produced lava flows during 12-13 January 2020

Masaya (Nicaragua) Lava lake persists with lower temperatures during August 2019-January 2020

Reventador (Ecuador) Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Pacaya (Guatemala) Continuous explosions, small cone, and lava flows during August 2019-January 2020

Kikai (Japan) Single explosion with steam and minor ash, 2 November 2019



San Miguel (El Salvador) — March 2020 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small ash emissions during 22 February 2020

San Miguel, locally known as Chaparrastique, is a stratovolcano located in El Salvador. Recent activity has consisted of occasional small ash explosions and ash emissions. Infrequent gas-and-steam and ash emissions were observed during this reporting period of June 2018-March 2020. The primary source of information for this report comes from El Salvador's Servicio Nacional de Estudios Territoriales (SNET) and special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN) in addition to various satellite data.

Based on Sentinel-2 satellite imagery and analyses of infrared MODIS data, volcanism at San Miguel from June 2018 to mid-February was relatively low, consisting of occasional gas-and-steam emissions. During 2019, a weak thermal anomaly in the summit crater was registered in thermal satellite imagery (figure 27). This thermal anomaly persisted during a majority of the year but was not visible after September 2019; faint gas-and-steam emissions could sometimes be seen rising from the summit crater.

Figure (see Caption) Figure 27. Sentinel-2 satellite imagery of a faint but consistent thermal anomaly at San Miguel during 2019. Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Volcanism was prominent beginning on 13-20 February 2020 when SO2 emissions exceeded 620 tons/day (typical low SO2 values are less than 400 tons/day). During 20-21 February the amplitude of microearthquakes increased and minor emissions of gas-and-steam and SO2 were visible within the crater (figure 28). According to SNET and special reports from MARN, on 22 February at 1055 an ash cloud was visible rising 400 m above the crater rim (figure 29), resulting in minor ashfall in Piedra Azul (5 km SW). That same day RSAM values peaked at 550 units as recorded by the VSM station on the upper N flank, which is above normal values of about 150. Seismicity increased the day after the eruptive activity. Minor gas-and-steam emissions continued to rise 400 m above the crater rim during 23-24 February; the RSAM values fell to 33-97 units. Activity in March was relatively low; some seismicity, including small magnitude earthquakes, occurred during the month in addition to SO2 emissions ranging from 517 to 808 tons/day.

Figure (see Caption) Figure 28. Minor gas-and-steam emissions rising from the crater at San Miguel on 21 February 2020. Courtesy of Ministero de Medio Ambiente y Recursos Naturales (MARN).
Figure (see Caption) Figure 29. Gas-and-steam and ash emissions rising from the crater at San Miguel on 22 February 2020. Courtesy of Ministero de Medio Ambiente y Recursos Naturales (MARN).

Geologic Background. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. The unvegetated summit rises above slopes draped with coffee plantations. A broad, deep crater complex that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit, also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic-andesitic volcano have fed a series of historical lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, NE, and SE sides. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. The location of flank vents has migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Servicio Nacional de Estudios Territoriales (SNET), Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Cleveland (United States) — March 2020 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Cleveland is a stratovolcano located in the western portion of Chuginadak Island, a remote island part of the east central Aleutians. Common volcanism has included small lava flows, explosions, and ash clouds. Intermittent lava dome growth, small ash explosions, and thermal anomalies have characterized more recent activity (BGVN 44:02). For this reporting period during February 2019-January 2020, activity largely consisted of gas-and-steam emissions and intermittent thermal anomalies within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) and various satellite data.

Low levels of unrest occurred intermittently throughout this reporting period with gas-and-steam emissions and thermal anomalies as the dominant type of activity (figures 30 and 31). An explosion on 9 January 2019 was followed by lava dome growth observed during 12-16 January. Suomi NPP/VIIRS sensor data showed two hotspots on 8 and 14 February 2019, though there was no evidence of lava within the summit crater at that time. According to satellite imagery from AVO, the lava dome was slowly subsiding during February into early March. Elevated surface temperatures were detected on 17 and 24 March in conjunction with degassing; another gas-and-steam plume was observed rising from the summit on 30 March. Thermal anomalies were again seen on 15 and 28 April using Suomi NPP/VIIRS sensor data. Intermittent gas-and-steam emissions continued as the number of detected thermal anomalies slightly increased during the next month, occurring on 1, 7, 15, 18, and 23 May. A gas-and-steam plume was observed on 9 May.

Figure (see Caption) Figure 30. The MIROVA graph of thermal activity (log radiative power) at Cleveland during 4 February 2019 through January 2020 shows increased thermal anomalies between mid-April to late November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed intermittent thermal signatures occurring in the summit crater during March 2019 through October 2019. Some gas-and-steam plumes were observed accompanying the thermal anomaly, as seen on 17 March 2019 and 8 May 2019. Courtesy of Sentinel Hub Playground.

There were 10 thermal anomalies observed in June, and 11 each in July and August. Typical mild degassing was visible when photographed on 9 August (figure 32). On 14 August, seismicity increased, which included a swarm of a dozen local earthquakes. The lava dome emplaced in January was clearly visible in satellite imagery (figure 33). The number of thermal anomalies decreased the next month, occurring on 10, 21, and 25 September. During this month, a gas-and-steam plume was observed in a webcam image on 6, 8, 20, and 25 September. On 3-6, 10, and 21 October elevated surface temperatures were recorded as well as small gas-and-steam plumes on 4, 7, 13, and 20-25 October.

Figure (see Caption) Figure 32. Photograph of Cleveland showing mild degassing from the summit vent taken on 9 August 2019. Photo by Max Kaufman; courtesy of AVO/USGS.
Figure (see Caption) Figure 33. Satellite image of Cleveland showing faint gas-and-steam emissions rising from the summit crater. High-resolution image taken on 17 August 2019 showing the lava dome from January 2019 inside the crater (dark ring). Image created by Hannah Dietterich; courtesy of AVO/USGS and DigitalGlobe.

Four thermal anomalies were detected on 3, 6, and 8-9 November. According to a VONA report from AVO on 8 November, satellite data suggested possible slow lava effusion in the summit crater; however, by the 15th no evidence of eruptive activity had been seen in any data sources. Another thermal anomaly was observed on 14 January 2020. Gas-and-steam emissions observed in webcam images continued intermittently.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent weak thermal anomalies within 5 km of the crater summit during mid-April through November 2019 with a larger cluster of activity in early June, late July and early October (figure 30). Thermal satellite imagery from Sentinel-2 also detected weak thermal anomalies within the summit crater throughout the reporting period, occasionally accompanied by gas-and-steam plumes (figure 31).

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Ambrym (Vanuatu) — March 2020 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


Fissure eruption in December 2018 produces an offshore pumice eruption after lava lakes drain

Ambrym is an active volcanic island in the Vanuatu archipelago consisting of a 12 km-wide summit caldera. Benbow and Marum are two currently active craters within the caldera that have produced lava lakes, explosions, lava flows, ash, and gas emissions, in addition to fissure eruptions. More recently, a submarine fissure eruption in December 2018 produced lava fountains and lava flows, which resulted in the drainage of the active lava lakes in both the Benbow and Marum craters (BGVN 44:01). This report updates information from January 2019 through March 2020, including the submarine pumice eruption during December 2018 using information from the Vanuatu Meteorology and Geohazards Department (VMGD) and research by Shreve et al. (2019).

Activity on 14 December 2018 consisted of thermal anomalies located in the lava lake that disappeared over a 12-hour time period; a helicopter flight on 16 December confirmed the drainage of the summit lava lakes as well as a partial collapse of the Benbow and Marum craters (figure 49). During 14-15 December, a lava flow (figure 49), accompanied by lava fountaining, was observed originating from the SE flank of Marum, producing SO2 and ash emissions. A Mw 5.6 earthquake on 15 December at 2021 marked the beginning of a dike intrusion into the SE rift zone as well as a sharp increase in seismicity (Shreve et al., 2019). This intrusion extended more than 30 km from within the caldera to beyond the east coast, with a total volume of 419-532 x 106 m3 of magma. More than 2 m of coastal uplift was observed along the SE coast due to the asymmetry of the dike from December, resulting in onshore fractures.

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite images of Ambrym before the December 2018 eruption (left), and during the eruption (right). Before the eruption, the thermal signatures within both summit craters were strong and after the eruption, the thermal signatures were no longer detected. A lava flow was observed during the eruption on 15 December. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Shreve et al. (2019) state that although the dike almost reached the surface, magma did not erupt from the onshore fractures; only minor gas emissions were detected until 17 December. An abrupt decrease in the seismic moment release on 17 December at 1600 marked the end of the dike propagation (figure 50). InSAR-derived models suggested an offshore eruption (Shreve et al., 2019). This was confirmed on 18-19 December when basaltic pumice, indicating a subaqueous eruption, was collected on the beach near Pamal and Ulei. Though the depth and exact location of the fissure has not been mapped, the nature of the basaltic pumice would suggest it was a relatively shallow offshore eruption, according to Shreve et al. (2019).

Figure (see Caption) Figure 50. Geographical timeline summary of the December 2018 eruptive events at Ambrym. The lava lake level began to drop on 14 December, with fissure-fed lava flows during 14-15 December. After an earthquake on 15 December, a dike was detected, causing coastal uplift as it moved E. As the dike continued to propagate upwards, faulting was observed, though magma did not breach the surface. Eventually a submarine fissure eruption was confirmed offshore on 18-19 December. Image modified from Shreve et al. (2019).

In the weeks following the dike emplacement, there was more than 2 m of subsidence measured at both summit craters identified using ALOS-2 and Sentinel-1 InSAR data. After 22 December, no additional large-scale deformation was observed, though a localized discontinuity (less than 12 cm) measured across the fractures along the SE coast in addition to seismicity suggested a continuation of the distal submarine eruption into late 2019. Additional pumice was observed on 3 February 2019 near Pamal village, suggesting possible ongoing activity. These surveys also noted that no gas-and-steam emissions, lava flows, or volcanic gases were emitted from the recently active cracks and faults on the SE cost of Ambrym.

During February-October 2019, onshore activity at Ambrym declined to low levels of unrest, according to VMGD. The only activity within the summit caldera consisted of gas-and-steam emissions, with no evidence of the previous lava lakes (figure 51). Intermittent seismicity and gas-and-steam emissions continued to be observed at Ambrym and offshore of the SE coast. Mével et al. (2019) installed three Trillium Compact 120s posthole seismometers in the S and E part of Ambrym from 25 May to 5 June 2019. They found that there were multiple seismic events, including a Deep-Long Period event and mixed up/down first motions at two stations near the tip of the dike intrusion and offshore of Pamal at depths of 15-20 km below sea level. Based on a preliminary analysis of these data, Mével et al. (2019) interpreted the observations as indicative of ongoing volcanic seismicity in the region of the offshore dike intrusion and eruption.

Figure (see Caption) Figure 51. Aerial photograph of Ambrym on 12 August 2019 showing gas-and-steam emissions rising from the summit caldera. Courtesy of VMGD.

Seismicity was no longer reported from 10 October 2019 through March 2020. Thermal anomalies were not detected in satellite data except for one in late April and one in early September 2019, according to MODIS thermal infrared data analyzed by the MIROVA system. The most recent report from VMGD was issued on 27 March 2020, which noted low-level unrest consisting of dominantly gas-and-steam emissions.

References:

Shreve T, Grandin R, Boichu M, Garaebiti E, Moussallam Y, Ballu V, Delgado F, Leclerc F, Vallée M, Henriot N, Cevuard S, Tari D, Lebellegard P, Pelletier B, 2019. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci. Rep. 9, 18868. https://doi.org/10.1038/s41598-019-55141-7.

Mével H, Roman D, Brothelande E, Shimizu K, William R, Cevuard S, Garaebiti E, 2019. The CAVA (Carnegie Ambrym Volcano Analysis) Project - a Multidisciplinary Characterization of the Structure and Dynamics of Ambrym Volcano, Vanuatu. American Geophysical Union, Fall 2019 Meeting, Abstract and Poster V43C-0201.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Copahue (Chile-Argentina) — March 2020 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


Ash emissions end on 12 November; lake returns to El Agrio Crater in December 2019

Most of the large edifice of Copahue lies high in the central Chilean Andes, but the active El Agrio crater lies on the Argentinian side of the border at the W edge of the Pliocene Caviahue caldera. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. The most recent eruptive episode began with phreatic explosions and ash emissions on 2 August 2019 that continued until mid-November 2019. This report summarizes activity from November 2019 through February 2020 and is based on reports issued by Servicio Nacional de Geología y Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS), Buenos Aires Volcanic Ash Advisory Center (VAAC), satellite data, and photographs from nearby residents.

MIROVA data indicated a few weak thermal anomalies during mid-October to mid-November 2019. Multiple continuous ash emissions were reported daily until mid-November when activity declined significantly. By mid-December the lake inside El Agrio crater had reappeared and occasional steam plumes were the only reported surface activity at Copahue through February 2020.

The Buenos Aires VAAC and SERNAGEOMIN both reported continuous ash emissions during 1-9 November 2019 that were visible in the webcam. Satellite imagery recorded the plumes drifting generally E or NE at 3.0-4.3 km altitude (figure 49). Most of the emissions on 10 November were steam (figure 50). The last pulse of ash emissions occurred on 12 November with an ash plume visible moving SE at 3 km altitude in satellite imagery and a strong thermal anomaly (figure 51). The following day emissions were primarily steam and gas. SERNAGEOMIN noted the ash emissions rising around 800 m above El Agrio crater and also reported incandescence visible during most nights through mid-November. During the second half of November the constant degassing was primarily water vapor with occasional nighttime incandescence. Steam plumes rose 450 m above the crater on 27 November.

Figure (see Caption) Figure 49. Continuous ash emissions at Copahue during 1-9 November 2019 were visible in Sentinel-2 satellite imagery on 2 and 7 November 2019 drifting NE. Natural color rendering uses bands 4,3, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Most of the emissions from Copahue on 10 November 2019 were steam. Left image courtesy of Valentina Sepulveda, taken from Caviahue, Argentina. Right image courtesy of Sentinel Hub Playground, natural color rendering using bands 4, 3, and 2.
Figure (see Caption) Figure 51. A strong thermal anomaly and an ash plume at Copahue were visible in Sentinel-2 satellite imagery on 12 November 2019. Courtesy of Sentinel Hub Playground, Atmospheric penetration rendering bands 12, 11, and 8A.

Nighttime incandescence was last observed in the SERNAGEOMIN webcam on 1 December; SERNAGEOMIN lowered the alert level from Yellow to Green on 15 December 2019. Throughout December degassing consisted mainly of minor steam plumes (figure 52), the highest plume rose to 300 m above the crater on 18 December, and minor SO2 plumes persisted through the 21st (figure 53),. By mid-December the El Agrio crater lake was returning and satellite images clearly showed the increase in size of the lake through February (figure 54). The only surface activity reported during January and February 2020 was occasional white steam plumes rising near El Agrio crater.

Figure (see Caption) Figure 52. Small wisps of steam were the only emissions from Copahue on 3 December 2019. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.
Figure (see Caption) Figure 53. Small plumes of SO2 were recorded at Copahue during November and December 2019. Top row: 7, 9, and 30 November. Bottom row: 1, 20, and 21 December. Courtesy of Global Sulfur Dioxide Monitoring Page, NASA.
Figure (see Caption) Figure 54. The lake within El Agrio crater reappeared between 5 and 12 December 2019 and continued to grow in size through the end of January 2020. Top row (left to right): There was no lake inside the crater on 5 December 2019, only a small steam plume rising from the vent. The first water was visible on 12 December and was slightly larger a few days later on 17 December. Bottom row (left to right): the lake was significantly larger on 4 January 2020 filling an embayment close to the steam vent. Fingers of water filled in areas of the crater as the water level rose on 24 and 29 January. Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Valentina Sepulveda, Hotel Caviahue, Caviahue, Argentina (URL: https://twitter.com/valecaviahue, Twitter:@valecaviahue).


Nishinoshima (Japan) — March 2020 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Ongoing activity enlarges island with lava flows, ash plumes, and incandescent ejecta, December 2019-February 2020

After 40 years of dormancy, Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013. Lava flows were active through November 2015, emerging from a central pyroclastic cone. A new eruption in mid-2017 continued the growth of the island with ash plumes, ejecta, and lava flows. A short eruptive event in July 2018 produced a new lava flow and vent on the side of the pyroclastic cone. The next eruption of ash plumes, incandescent ejecta, and lava flows, covered in this report, began in early December 2019 and was ongoing through February 2020. Information is provided primarily from the Japan Meteorological Agency (JMA) monthly reports.

Nishinoshima remained quiet after a short eruptive event in July 2018 until MODVOLC thermal alerts appeared on 5 December 2019. Multiple near-daily alerts continued through February 2020. The intermittent low-level thermal anomalies seen in the MIROVA data beginning in May and June 2019 may reflect areas with increased temperatures and fumarolic activity reported by the Japan Coast Guard during overflights in June and July. The significant increase in thermal anomalies in the MIROVA data on 5 December correlates with the beginning of extrusive and explosive activity (figure 63). Eruptive activity included ash emissions, incandescent ejecta, and numerous lava flows from multiple vents that flowed into the sea down several flanks, significantly enlarging the island.

Figure (see Caption) Figure 63. The MIROVA graph of thermal energy from Nishinoshima from 13 April 2019 through February 2020 shows low-level thermal activity beginning in mid-2019; there were reports of increased temperatures and fumarolic activity during that time. Eruptive activity including ash emissions, incandescent ejecta, and numerous lava flows began on 5 December 2019 and was ongoing through February 2020. Courtesy of MIROVA.

A brief period of activity during 12-21 July 2018 produced explosive activity with blocks and bombs ejected 500 m from a new vent on the E flank of the pyroclastic cone, and a 700-m-long lava flow that stopped about 100 m before reaching the ocean (BGVN 43:09). No further activity was reported during 2018. During overflights on 29 and 31 January, and 7 February 2019, white steam plumes drifted from the E crater margin and inner wall of the pyroclastic cone and discolored waters were present around the island, but no other signs of activity were reported. A survey carried out by the Japan Coast Guard during 7-8 June 2019 reported minor fumarolic activity from the summit crater, and high-temperature areas were noted on the hillsides, measured by infrared thermal imaging equipment. Sulfur dioxide emissions were below the detection limit. In an overflight on 12 July 2019, Coast Guard personnel noted a small white plume rising from the E edge of the summit crater of the pyroclastic cone (figure 64).

Figure (see Caption) Figure 64. The Japan Coast Guard noted a small white plume at the summit of Nishinoshima during an overflight on 12 July 2019, but no other signs of activity. Courtesy of JMA (Volcanic activity monthly report, July 2019).

The white plume was still present during an overflight on 14 August 2019. Greenish yellow areas of water about 500 m wide were distributed around the island, and a plume of green water extended 1.8 km from the NW coast. Similar conditions were observed on 15 October 2019; pale yellow-green discolored water was about 100 m wide and concentrated on the N shore of Nishinoshima. No steam plume from the summit was present during a visit on 19 November 2019, but yellow-white discolored water on the N shore was about 100 m wide and 700 m long. Along the NE and SE coasts, yellow-white water was 100-200 m wide and about 1,000 m long.

A MODVOLC thermal alert appeared at Nishinoshima on 5 December 2019. An eruption was observed by the Japan Coast Guard the following day. A pulsating light gray ash plume rose from the summit crater accompanied by tephra ejected 200 m above the crater rim every few minutes (figure 65). In addition, ash and tephra rose intermittently from a crater on the E flank of the pyroclastic cone, from which lava also flowed down towards the E coast (figure 66). By 1300 on 7 December the lava was flowing into the sea (figure 67).

Figure (see Caption) Figure 65. The eruption observed at Nishinoshima on 6 December 2019 included ash and tephra emissions from the summit vent, and ash, tephra, and a lava flow from the vent on the E flank of the pyroclastic cone. Courtesy of JMA (Volcanic activity monthly report, November 2019).
Figure (see Caption) Figure 66. Thermal infrared imagery revealed incandescent ejecta from the summit crater and lava flowing from the E flank vent at Nishinoshima on 6 December 2019. Courtesy of JMA (Volcanic activity monthly report, November 2019).
Figure (see Caption) Figure 67. By 1300 on 7 December 2019 lava from the E-flank vent at Nishinoshima was flowing into the sea. Courtesy of JMA (Volcanic activity monthly report, November 2019).

Observations by the Japan Coast Guard on 15 December 2019 confirmed that vigorous eruptive activity was ongoing; incandescent ejecta and ash plumes rose 300 m above the summit crater rim (figure 68). A new vent had opened on the N flank of the cone from which lava flowed NW to the sea (figure 69). The lava flow from the E-flank crater also remained active and continued flowing into the sea. The Tokyo VAAC reported an ash emission on 24 December that rose to 1,000 m altitude and drifted S. On 31 December, explosions at the summit continued every few seconds with ash and ejecta rising 300 m high. In addition, lava from the NE flank of the pyroclastic cone flowed NE to the sea (figure 70).

Figure (see Caption) Figure 68. Incandescent ejecta and ash rose 300 m above the summit crater rim at Nishinoshima on 15 December 2019. Courtesy of JMA (Volcanic activity monthly report, December 2019).
Figure (see Caption) Figure 69. Lava from a new vent on the NW flank of Nishinoshima was entering the sea on 15 December 2019, producing vigorous steam plumes. Courtesy of JMA (Volcanic activity monthly report, December 2019).
Figure (see Caption) Figure 70. At Nishinoshima on 31 December 2019 lava flowed down the NE flank of the pyroclastic cone into the sea, and incandescent ejecta rose 300 m above summit. Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, December 2019).

Satellite data from JAXA (Japan Aerospace Exploration Agency) made it possible for JMA to produce maps showing the rapid changes in topography at Nishinoshima resulting from the new lava flows. The new E-flank lava flow was readily seen when comparing imagery from 22 November with 6 December 2019 (figure 71a). An image from 6 December compared with 20 December 2019 shows the flow on the E flank splitting and entering the sea at two locations (figure 71b), the flow on the NW flank traveling briefly N before turning W and forming a large fan into the ocean on the W flank, and a new flow heading NE from the summit area of the pyroclastic cone.

Figure (see Caption) Figure 71. Satellite data from JAXA (Japan Aerospace Exploration Agency) made it possible to produce maps showing the changes in topography at Nishinoshima resulting from the new lava flows (shown in blue). In comparing 22 November with 6 December 2019 (A, left), the new lava flow on the E flank was visible. A new image from 20 December compared with 6 December (B, right) showed the flow on the E flank splitting and entering the sea at two locations, the NW-flank flow building a large fan into the ocean on the W flank, and a new flow heading NE from the summit area of the pyroclastic cone. Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, December 2019).

The Tokyo VAAC reported an ash plume visible in satellite imagery on 15 January 2020 that rose to 1.8 km altitude and drifted SE. The Japan Coast Guard conducted an overflight on 17 January that confirmed the continued eruptions of ash, incandescent ejecta, and lava. Dark gray ash plumes were observed at 1.8 km altitude, with ashfall and tephra concentrated around the pyroclastic cone (figure 72). Plumes of steam were visible where the NE lava flow entered the ocean; the E and NW lava entry areas did not appear active but were still hot. Satellite data from ALOS-2 prepared by JAXA confirmed ongoing activity around the summit vent and on the NE flank, while activity on the W flank had ceased (figure 73). An ash plume was reported by the Tokyo VAAC on 25 January; it rose to 1.5 km altitude and drifted SW for most of the day.

Figure (see Caption) Figure 72. Dense, dark gray ash plumes rose from the summit of Nishinoshima on 17 January 2020. Small plumes of steam from lava-seawater interactions were visible on the NE shore of the island as well (far right). Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, January 2020).
Figure (see Caption) Figure 73. JAXA satellite data from 3 January 2020 (left) showed the growth of a new lava delta on the NE flank of Nishinoshima and minor activity occuring on the W flank compared with the previous image from 20 December 2019. By 17 January 2020 (right), the lava flow activity was concentrated on the NE flank with multiple deltas extending out into the sea. The ‘low correlation areas’ shown in blue represent changes in topography caused by new material from lava flows and ejecta added between the dates shown above the images. Courtesy of JMA (Volcanic activity monthly report, January 2020).

On 3 Feburary 2020 the Tokyo VAAC reported an ash plume visible in satellite imagery that rose to 2.1 km altitude and drifted E. The following day the Japan Coast Guard observed eruptions from the summit crater at five minute intervals that produced grayish white plumes. The plumes rose to 2.7 km altitude (figure 74). Large bombs were scattered around the pyroclastic cone, and the summit crater appeared filled with lava except for the active vent. The lava deltas on the NE flank were only active at the tips of the flows producing a few steam jets where lava entered the sea. The active flows were on the SE flank, and a new 200-m-long lava flow was flowing down the N flank of the pyroclastic cone (figure 75). The lava flowing from the E flank of the pyroclastic cone to the SE into the sea, produced larger jets of steam (figure 76). Yellow-brown discolored water appeared around the island in several places.

Figure (see Caption) Figure 74. Ash emissions at Nishinoshima rose to 2.7 km altitude on 4 February 2020; steam jets from lava entering the ocean were active on the SE flank (far side of the island, right). Courtesy of JMA (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 75. The lava deltas on the NE flank of Nishinoshima (bottom center) were much less active on 4 February 2020 than the lava flow and growing delta on the SE flank (left). The newest flow headed N from the summit and was 200 m long (right of center). Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 76. The most active lava flows at Nishinoshima on 4 February 2020 were on the E flank; significant steam plumes rose in multiple locations along the coast where they entered the sea. Intermittent ash plumes also rose from the summit crater. Courtesy of JMA and Japan Coast Guard (Volcanic activity monthly report, February 2020).

JAXA satellite data confirmed that the flow activity was concentrated on the NE flank and shore during the second half of January 2020, but also recorded the new flow down the SE flank that was observed by the Coast Guard in early February. By mid-February the satellite topographic data indicated the decrease in activity in the NE flank flows, the increased activity on the SE and E flank, and the extension of the flow moving due N to the coast (figure 77). Observations on 17 February 2020 by the Japan Coast Guard revealed eruptions from the summit crater every few seconds, and steam-and-ash plumes rising about 600 m. Vigorous white emissions rose from fractures near the top of the W flank of the pyroclastic cone, but thermal data indicated the area was no hotter than the surrounding area (figure 78). The lava flow on the SE coast still had steam emissions rising from the ocean entry point, but activity was weaker than on 4 February. The newest flow moving due N from the summit produced steam emissions where the flow front entered the ocean.

Figure (see Caption) Figure 77. Constantly changing lava flows at Nishinoshima reshaped the island during late January and February 2020. During the second half of January, flows were active on the NE flank, creating deltas into the sea off the NE coast and also on the SE flank into the sea at the SE coast (left). The ‘low correlation areas’ shown in blue represent changes in topography caused by new material from lava flows and ejecta added between the dates shown above the images. By 14 February (right) activity had slowed on the NE flank and expanded on the SE flank and N flank. Data is from the Land Observing Satellite-2 "Daichi-2" (ALOS-2). Courtesy of JMA and JAXA (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 78. Vigorous white emissions rose from fractures near the top of the W flank of the pyroclastic cone at Nishinoshima on 17 February 2020, but thermal data indicated the area was no hotter than the surrounding area. Courtesy of JMA and Japan Coast Guard (Volcanic activity monthly report, February 2020).

Sulfur dioxide plumes from Nishinoshima have been small and infrequent in recent years, but the renewed and increased eruptive activity beginning in December 2019 produced several small SO2 plumes that were recorded in daily satellite data (figure 79).

Figure (see Caption) Figure 79. Small sulfur dioxide plumes from Nishinoshima were captured by the TROPOMI instrument on the Sentinel 5P satellite a few times during December 2019-February 2020 as the eruptive activity increased. The large red streak in the 3 February 2020 image is SO2 from an eruption of Kuchinoerabujima volcano (Ryukyu Islands) on the same day. Courtesy of NASA Goddard Space Flight Center and Simon Carn.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan (URL: http://www.eorc.jaxa.jp/); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Krakatau (Indonesia) — February 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Krakatau volcano in the Sunda Strait between Indonesia’s Java and Sumatra Islands experienced a major caldera collapse around 535 CE; it formed a 7-km-wide caldera ringed by three islands. Remnants of this volcano joined to create the pre-1883 Krakatau Island which collapsed during the major 1883 eruption. Anak Krakatau (Child of Krakatau), constructed beginning in late 1927 within the 1883 caldera (BGVN 44:03, figure 56), was the site of over 40 eruptive episodes until 22 December 2018 when a large explosion and flank collapse destroyed most of the 338-m-high edifice and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions from February (BGVN 44:08) through November 2019. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake. Activity from August 2019 through January 2020 is covered in this report with information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG). Aviation reports are provided by the Darwin Volcanic Ash Advisory Center (VAAC), and photographs are from the PVMBG webcam and visitors to the island.

Explosions were reported on more than ten days each month from August to October 2019. They were recorded based on seismicity, but webcam images also showed black tephra and steam being ejected from the crater lake to heights up to 450 m. Activity decreased significantly after the middle of November, although smaller explosions were witnessed by visitors to the island. After a period of relative quiet, a larger series of explosions at the end of December produced ash plumes that rose up to 3 km above the crater; the crater lake was largely filled with tephra after these explosions. Thermal activity persisted throughout the period of August 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020 (figure 96).

Figure (see Caption) Figure 96. Thermal activity persisted at Anak Krakatau from 20 March 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020. Courtesy of MIROVA.

Activity during August-November 2019. The new profile of Anak Krakatau rose to about 155 m elevation as of August 2019, almost 100 m less than prior to the December 2018 explosions and flank collapse (figure 97). Smaller explosions continued during August 2019 and were reported by PVMBG in 12 different VONAs (Volcano Observatory Notice to Aviation) on days 1, 3, 6, 17, 19, 22, 23, 25, and 28. Most of the explosions lasted for less than two minutes, according to the seismic data. PVMBG reported steam plumes of 25-50 m height above the sea-level crater on 20 and 21 August. They reported a visible ash cloud on 22 August; it rose to an altitude of 457 m and drifted NNE according to the VONA. In their daily update, they noted that the eruption plume of 250-400 m on 22 August was white, gray, and black. The Darwin VAAC reported that the ash plume was discernable on HIMAWARI-8 satellite imagery for a short period of time. PVMBG noted ten eruptions on 24 August with white, gray, and black ejecta rising 100-300 m. A webcam installed at month’s end provided evidence of diffuse steam plumes rising 25-150 m above the crater during 28-31 August.

Figure (see Caption) Figure 97. Only one tree survived on the once tree-covered spit off the NE end of Sertung Island after the December 2018 tsunami from Anak Krakatau covered it with ash and debris. The elevation of Anak Krakatau (center) was about 155 m on 8 August 2019, almost 100 m less than before the explosions and flank collapse. Panjang Island is on the left, and 746-m-high Rakata, the remnant of the 1883 volcanic island, is behind Anak Krakatau on the right. Courtesy of Amber Madden-Nadeau.

VONAs were issued for explosions on 1-3, 11, 13, 17, 18, 21, 24-27 and 29 September 2019. The explosion on 2 September produced a steam plume that rose 350 m, and dense black ash and ejecta which rose 200 m from the crater and drifted N. Gray and white tephra and steam rose 450 m on 13 and 17 September; ejecta was black and gray and rose 200 m on 21 September (figure 98). During 24-27 and 29 September tephra rose at least 200 m each day; some days it was mostly white with gray, other days it was primarily gray and black. All of the ejecta plumes drifted N. On days without explosions, the webcam recorded steam plumes rising 50-150 m above the crater.

Figure (see Caption) Figure 98. Explosions of steam and dark ejecta were captured by the webcam on Anak Krakatau on 21 (left) and 26 (right) September 2019. Courtesy of MAGMA Indonesia and PVMBG.

Explosions were reported daily during 12-14, 16-20, 25-27, and 29 October (figure 99). PVMBG reported eight explosions on 19 October and seven explosions the next day. Most explosions produced gray and black tephra that rose 200 m from the crater and drifted N. On many of the days an ash plume also rose 350 m from the crater and drifted N. The seismic events that accompanied the explosions varied in duration from 45 to 1,232 seconds (about 20 minutes). The Darwin VAAC reported the 12 October eruption as visible briefly in satellite imagery before dissipating near the volcano. The first of four explosions on 26 October also appeared in visible satellite imagery moving NNW for a short time. The webcam recorded diffuse steam plumes rising 25-150 m above the crater on most days during the month.

Figure (see Caption) Figure 99. A number of explosions at Anak Krakatau were captured by the webcam and visitors near the island during October 2019, shown here on the 12th, 14th, 17th, and 29th. Black and gray ejecta and steam plumes jetted several hundred meters high from the crater lake during the explosions. Webcam images courtesy of PVMBG and MAGMA Indonesia, with 12 October 2019 (top left) via VolcanoYT. Bottom left photo on 17 October courtesy of Christoph Sator.

Five VONAs were issued for explosions during 5-7 November, and one on 13 November 2019. The three explosions on 5 November produced 200-m-high plumes of steam and gray and black ejecta and ash plumes that rose 200, 450, and 550 m respectively; they all drifted N (figure 100). The Darwin VAAC reported ash drifting N in visible imagery for a brief period also. A 350-m-high ash plume accompanied 200-m-high ejecta on 6 November. Tephra rose 150-300 m from the crater during a 43 second explosion on 7 November. The explosion reported by PVMBG on 13 November produced black tephra and white steam 200 m high that drifted N. For the remainder of the month, when not obscured by fog, steam plumes rose daily 25-150 m from the crater.

Figure (see Caption) Figure 100. PVMBG’s KAWAH webcam captured an explosion with steam and dark ejecta from the crater lake at Anak Krakatau on 5 November 2019. Courtesy of PVMBG and MAGMA Indonesia.

A joint expedition with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata during 12 and 13 November 2019 (figure 101). Visitors to the island during 19-23 and 22-24 November recorded the short-lived landscape and continuing small explosions of steam and black tephra from the crater lake (figures 102 and 103).

Figure (see Caption) Figure 101. A joint expedition to Anak Krakatau with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata (background, left) during 12 and 13 November 2019. Images of the crater lake from the same spot (left) in December and January show the changes at the island (figure 108). Monitoring equipment installed near the shore sits over the many layers of ash and tephra that make up the island (right). Courtesy of Anna Perttu.
Figure (see Caption) Figure 102.The crater lake at Anak Krakatau during a 19-23 November 2019 visit was the site of continued explosions with jets of steam and tephra that rose as high as 30 m. Courtesy of Andrey Nikiforov and Volcano Discovery, used with permission.
Figure (see Caption) Figure 103. The landscape of Anak Krakatau recorded the rapidly evolving sequence of volcanic events during November 2019. Fresh ash covered recent lava near the shoreline on 22 November 2019 (top left). Large blocks of gray tephra (composed of other tephra fragments) were surrounded by reddish brown smaller fragments in the area between the crater and the ocean on 23 November 2019 (top right). Explosions of steam and black tephra rose tens of meters from the crater lake on 23 November 2019 (bottom). Courtesy of and copyright by Pascal Blondé.

Activity during December 2019-January 2020. Very little activity was recorded for most of December 2019. The webcam captured daily images of diffuse steam plumes rising 25-50 m above the crater which occasionally rose to 150 m. A new explosion on 28 December produced black and gray ejecta 200 m high that drifted N; the explosion was similar to those reported during August-November. A new series of explosions from 30 December 2019 to 1 January 2020 produced ash plumes which rose significantly higher than the previous explosions, reaching 2.4-3.0 km altitude and drifting S, E, and SE according to PVMBG (figure 104). They were initially visible in satellite imagery and reported drifting SW by the Darwin VAAC. By 31 December meteorological clouds prevented observation of the ash plume but a hotspot remained visible for part of that day.

Figure (see Caption) Figure 104.The KAWAH webcam at Anak Krakatau captured this image of incandescent ejecta exploding from the crater lake on 30 December 2019 near the start of a new sequence of large explosions. Courtesy of PVMBG and Alex Bogár.

The explosions on 30 and 31 December 2019 were captured in satellite imagery (figure 105) and appeared to indicate that the crater lake was largely destroyed and filled with tephra from a new growing cone, according to Simon Carn. This was confirmed in both satellite imagery and ground-based photography in early January (figures 106 and 107).

Figure (see Caption) Figure 105. Satellite imagery of the explosions at Anak Krakatau on 30 and 31 December 2019 showed dense steam rising from the crater (left) and a thermal anomaly visible through moderate cloud cover (right). Left image courtesy of Simon Carn, and copyright by Planet Labs, Inc. Right image uses Atmospheric Penetration rendering (bands 12, 11, and 8a) to show the thermal anomaly at the base of the steam plume, courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 106. Sentinel-2 images of Anak Krakatau before (left, 21 December 2019) and after (right, 13 January 2020) explosions on 30 and 31 December 2019 show the filling in of the crater lake with new volcanic material. Natural color rendering based on bands 4,3, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 107. The crater lake at Anak Krakatau changed significantly between the first week of December 2019 (left) and 8 January 2020 (right) after explosions on 30 and 31 December 2019. Compare with figure 101, taken from the same location in mid-November 2019. Left image courtesy of Piotr Smieszek. Right image courtesy of Peter Rendezvous.

Steam plumes rose 50-200 m above the crater during the first week of January 2020. An explosion on 7 January produced dense gray ash that rose 200 m from the crater and drifted E. Steam plume heights varied during the second week, with some plumes reaching 300 m above the crater. Multiple explosions on 15 January produced dense, gray and black ejecta that rose 150 m. Fog obscured the crater for most of the second half of the month; for a brief period, diffuse steam plumes were observed 25-1,000 m above the crater.

General Reference: Perttu A, Caudron C, Assink J D, Metz D, Tailpied D, Perttu B, Hibert C, Nurfiani D, Pilger C, Muzli M, Fee D, Andersen O L, Taisne B, 2020, Reconstruction of the 2018 tsunamigenic flank collapse and eruptive activity at Anak Krakatau based on eyewitness reports, seismo-acoustic and satellite observations, Earth and Planetary Science Letters, 541:116268. https://doi.org/10.1016/j.epsl.2020.116268.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Amber Madden-Nadeau, Oxford University (URL: https://www.earth.ox.ac.uk/people/amber-madden-nadeau/, https://twitter.com/AMaddenNadeau/status/1159458288406151169); Anna Perttu, Earth Observatory of Singapore (URL: https://earthobservatory.sg/people/anna-perttu); Simon Carn, Michigan Tech University (URL: https://www.mtu.edu/geo/department/faculty/carn/; https://twitter.com/simoncarn/status/1211793124089044994); VolcanoYT, Indonesia (URL: https://volcanoyt.com/, https://twitter.com/VolcanoYTz/status/1182882409445904386/photo/1; Christoph Sator (URL: https://twitter.com/ChristophSator/status/1184713192670281728/photo/1); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Pascal Blondé, France (URL: https://pascal-blonde.info/portefolio-krakatau/, https://twitter.com/rajo_ameh/status/1199219837265960960); Alex Bogár, Budapest (URL: https://twitter.com/AlexEtna/status/1211396913699991557); Piotr (Piter) Smieszek, Yogyakarta, Java, Indonesia (URL: http://www.lombok.pl/, https://twitter.com/piotr_smieszek/status/1204545970962231296); Peter Rendezvous (URL: https://www.facebook.com/peter.rendezvous ); Wulkany swiata, Poland (URL: http://wulkanyswiata.blogspot.com/, https://twitter.com/Wulkany1/status/1214841708862693376).


Mayotte (France) — March 2020 Citation iconCite this Report

Mayotte

France

12.83°S, 45.17°E; summit elev. 660 m

All times are local (unless otherwise noted)


Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Mayotte is a volcanic island in the Comoros archipelago between the eastern coast of Africa and the northern tip of Madagascar. A chain of basaltic volcanism began 10-20 million years ago and migrating W, making up four principal volcanic islands, according to the Institut de Physique du Globe de Paris (IPGP) and Cesca et al. (2020). Before May 2010, only two seismic events had been felt by the nearby community within recent decades. New activity since May 2018 consists of dominantly seismic events and lava effusion. The primary source of information for this report through February 2020 comes from semi-monthly reports from the Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program between the Institut de Physique du Globe de Paris (IPGP), the Bureau de Recherches Géologiques et Minières (BRGM), and the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); Lemoine et al. (2019), the Centre National de la Recherche Scientifique (CNRS), and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER).

Seismicity was the dominant type of activity recorded in association with a new submarine eruption. On 10 May 2018, the first seismic event occurred at 0814, detected by the YTMZ accelerometer from the French RAP Network, according to BRGM and Lemoine et al. (2019). Seismicity continued to increase during 13-15 May 2018, with the strongest recorded event for the Comoros area occurring on 15 May at 1848 and two more events on 20-21 May (figure 1). At the time, no surface effusion were directly observed; however, Global Navigation Satellite System (GNSS) instruments were deployed to monitor any ground motion (Lemoine et al. 2019).

Figure (see Caption) Figure 1. A graph showing the number of daily seismic events greater than M 3.5 occurring offshore of Mayotte from 10 May 2018 through 15 February 2020. Seismicity significantly decreased in July 2018, but continued intermittently through February 2020, with relatively higher seismicity recorded in late August and mid-September 2018. Courtesy of IPGP and REVOSIMA.

Seismicity decreased dramatically after June 2018, with two spikes in August and September (see figure 1). Much of this seismicity occurred offshore 50 km E of Mayotte Island (figure 2). The École Normale Supérieure, the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP), and the REVOSIMA August 2019 bulletin reported that measurements from the GNSS stations and Teria GPS network data indicated eastward surface deformation and subsidence beginning in July 2018. Based on this ground deformation data Lemoine et al. (2019) determined that the eruptive phase began fifty days after the initial seismic events occurred, on 3 July 2018.

Figure (see Caption) Figure 2. Maps of seismic activity offshore near Mayotte during May 2019. Seismic swarms occurred E of Mayotte Island (top) and continued in multiple phases through October 2019. New lava effusions were observed 50 km E of Petite Terre (bottom). Bottom image has been modified with annotations; courtesy of IPGP, BRGM, IFREMER, CNRS, and University of Paris.

Between 2 and 18 May 2019, an oceanographic campaign (MAYOBS 1) discovered a new submarine eruption site 50 km E from the island of Mayotte (figure 2). The director of IPGP, Marc Chaussidon, stated in an interview with Science Magazine that multibeam sonar waves were used to determine the elevation (800 m) and diameter (5 km) of the new submarine cone (figure 3). In addition, this multibeam sonar image showed fluid plumes within the water column rising from the center and flanks of the structure. According to REVOSIMA, these plumes rose to 1 km above the summit of the cone but did not breach the ocean surface. The seafloor image (figure 3) also indicated that as much as 5 km3 of magma erupted onto the seafloor from this new edifice during May 2019, according to Science Magazine.

Figure (see Caption) Figure 3. Seafloor image of the submarine vent offshore of Mayotte created with multibeam sonar from 2 to 18 May 2019. The red line is the outline of the volcanic cone located at approximately 3.5 km depth. The blue-green color rising from the peak of the red outline represents fluid plumes within the water column. Courtesy of IPGP.

On 17 May 2019, a second oceanographic campaign (MAYOBS 2) discovered new lava flows located 5 km S of the new eruptive site. BRGM reported that in June a new lava flow had been identified on the W flank of the cone measuring 150 m thick with an estimated volume of 0.3 km3 (figure 4). According to REVOSIMA, the presence of multiple new lava flows would suggest multiple effusion points. Over a period of 11 months (July 2018-June 2019) the rate of lava effusion was at least 150-200 m3/s; between 18 May to 17 June 2019, 0.2 km3 of lava was produced, and from 17 June to 30 July 2019, 0.3 km3 of lava was produced. The MAYOBS 4 (19 July 2019-4 August 2019) and SHOM (20-21 August 2019) missions revealed a new lava flow formed between 31 July and 20 August to the NW of the eruptive site with a volume of 0.08 km3 and covering 3.25 km2.

Figure (see Caption) Figure 4. Bathymetric map showing the location of the new lava flow on the W flank of the submarine cone offshore to the E of Mayotte Island. The MAYOBS 2 campaign was launched in June 2019 (left) and MAYOBS 4 was launched in late July 2019 (right). Courtesy of BRGM.

During the MAYOBS 4 campaign in late July 2019, scientists dredged the NE flank of the cone for samples and took photographs of the newly erupted lava (figure 5). Two dives found the presence of pillow lavas. When samples were brought up to the surface, they exploded due to the large amount of gas and rapid decompression.

Figure (see Caption) Figure 5. Photographs taken using the submersible interactive camera system (SCAMPI) of newly formed pillow lavas (top) and a vesicular sample (bottom) dredged near the new submarine eruptive site at Mayotte in late July 2019. Courtesy of BRGM.

During April-May 2019 the rate of ground deformation slowed. Deflation was also observed up to 90 km E of Mayotte in late October 2019 and consistently between August 2019 and February 2020. Seismicity continued intermittently through February 2020 offshore E of Mayotte Island, though the number of detected events started to decrease in July 2018 (see figure 1). Though seismicity and deformation continued, the most recent observation of new lava flows occurred during the MAYOBS 4 and SHOM campaigns on 20 August 2019, as reported in REVOSIMA bulletins.

References: Cesca S, Heimann S, Letort J, Razafindrakoto H N T, Dahm T, Cotton F, 2020. Seismic catalogues of the 2018-2019 volcano-seismic crisis offshore Mayotte, Comoro Islands. Nat. Geosci. 13, 87-93. https://doi.org/10.1038/s41561-019-0505-5.

Lemoine A, Bertil D, Roulle A, Briole P, 2019. The volcano-tectonic crisis of 2018 east of Mayotte, Comoros islands. Preprint submitted to EarthArXiv, 28 February 2019. https://doi.org/10.31223/osf.io/d46xj.

Geologic Background. Mayotte, located in the Mozambique Channel between the northern tip of Madagascar and the eastern coast of Africa, consists two main volcanic islands, Grande Terre and Petite Terre, and roughly twenty islets within a barrier-reef lagoon complex (Zinke et al., 2005; Pelleter et al., 2014). Volcanism began roughly 15-10 million years ago (Pelleter et al., 2014; Nougier et al., 1986), and has included basaltic lava flows, nephelinite, tephrite, phonolitic domes, and pyroclastic deposits (Nehlig et al., 2013). Lavas on the NE were active from about 4.7 to 1.4 million years and on the south from about 7.7 to 2.7 million years. Mafic activity resumed on the north from about 2.9 to 1.2 million years and on the south from about 2 to 1.5 million years. Several pumice layers found in cores on the barrier reef-lagoon complex indicate that volcanism likely occurred less than 7,000 years ago (Zinke et al., 2003). More recent activity that began in May 2018 consisted of seismicity and ground deformation occurring offshore E of Mayotte Island (Lemoine et al., 2019). One year later, in May 2019, a new subaqueous edifice and associated lava flows were observed 50 km E of Petite Terre during an oceanographic campaign.

Information Contacts: Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program of a) Institut de Physique du Globe de Paris (IPGP), b) Bureau de Recherches Géologiques et Minières (BRGM), c) Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); (URL: http://www.ipgp.fr/fr/reseau-de-surveillance-volcanologique-sismologique-de-mayotte); Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); Bureau de Recherches Géologiques et Minières (BRGM), 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France (URL: https://www.brgm.fr/); Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), 1625 route de Sainte-Anne, CS 10070, 29280 Plouzané, France (URL: https://wwz.ifremer.fr/); Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France (URL: http://www.cnrs.fr/); École Normale Supérieure, 45 rue d'Ulm, F-75230 Paris Cedex 05, France (URL: https://www.ens.psl.eu/); Université de Paris, 85 boulevard Saint-Germain, 75006 Paris, France (URL: https://u-paris.fr/en/498-2/); Roland Pease, Science Magazine (URL: https://science.sciencemag.org/, article at https://www.sciencemag.org/news/2019/05/ship-spies-largest-underwater-eruption-ever) published 21 May 2019.


Fernandina (Ecuador) — March 2020 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Fissure eruption produced lava flows during 12-13 January 2020

Fernandina is a volcanic island in the Galapagos islands, around 1,000 km W from the coast of mainland Ecuador. It has produced nearly 30 recorded eruptions since 1800, with the most recent events having occurred along radial or circumferential fissures around the summit crater. The most recent previous eruption, starting on 16 June 2018, lasted two days and produced lava flows from a radial fissure on the northern flank. Monitoring and scientific reports come from the Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN).

A report from IG-EPN on 12 January 2020 stated that there had been an increase in seismicity and deformation occurring during the previous weeks. On the day of the report, 11 seismic events had occurred, with the largest magnitude of 4.7 at a depth of 5 km. Shortly before 1810 that day a circumferential fissure formed below the eastern rim of the La Cumbre crater, at about 1.3-1.4 km elevation, and produced lava flows down the flank (figure 39). A rapid-onset seismic swarm reached maximum intensity at 1650 on 12 January (figure 40); a second increase in seismicity indicating the start of the eruption began around 70 minutes later (1800). A hotspot was observed in NOAA / CIMSS data between 1800 and 1810, and a gas plume rising up to 2 km above the fissure dispersed W to NW. The eruption lasted 9 hours, until about 0300 on 13 January.

Figure (see Caption) Figure 39. Lava flows erupting from a circumferential fissure on the eastern flank of Fernandina on 12 January 2020. Photos courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 40. Graph showing the Root-Mean-Square (RMS) amplitude of the seismic signals from the FER-1 station at Fernandina on 12-13 January 2020. The graph shows the increase in seismicity leading to the eruption on the 12th (left star), a decrease in the seismicity, and then another increase during the event (right star). Courtesy of S. Hernandez, IG-EPN (Report on 13 January 2020).

A report issued at 1159 local time on 13 January 2020 described a rapid decrease in seismicity, gas emissions, and thermal anomalies, indicating a rapid decline in eruptive activity similar to previous events in 2017 and 2018. An overflight that day confirmed that the eruption had ended, after lava flows had extended around 500 m from the crater and covered an area of 3.8 km2 (figures 41 and 42). Seismicity continued on the 14th, with small volcano-tectonic (VT) earthquakes occurring less than 500 m below the surface. Periodic seismicity was recorded through 13-15 January, though there was an increase in seismicity during 17-22 January with deformation also detected (figure 43). No volcanic activity followed, and no additional gas or thermal anomalies were detected.

Figure (see Caption) Figure 41. The lava flow extents at Fernandina of the previous two eruptions (4-7 September 2017 and 16-21 June 2018) and the 12-13 January 2020 eruption as detected by FIRMS thermal anomalies. Thermal data courtesy of NASA; figure prepared by F. Vásconez, IG-EPN (Report on 13 January 2020).
Figure (see Caption) Figure 42. This fissure vent that formed on the E flank of Fernandina on 12 January 2020 produced several lava flows. A weak gas plume was still rising when this photo was taken the next day, but the eruption had ceased. Courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 43. Soil displacement map for Fernandina during 10 and 16 January 2020, with the deformation generated by the 12 January eruption shown. Courtesy of IG-EPN (Report on 23 January 2020).

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Dirección del Parque Nacional Galápagos (DPNG), Isla Santa Cruz, Galápagos, Ecuador (URL: http://www.galapagos.gob.ec/).


Masaya (Nicaragua) — February 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake persists with lower temperatures during August 2019-January 2020

Masaya is a basaltic caldera located in Nicaragua and contains the Nindirí, San Pedro, San Juan, and Santiago craters. The currently active Santiago crater hosts a lava lake, which has remained active since December 2015 (BGVN 41:08). The primary source of information for this August 2019-January 2020 report comes from the Instituto Nicareguense de Estudios Territoriales (INETER) and satellite -based imagery and thermal data.

On 16 August, 13 September, and 11 November 2019, INETER took SO2 measurements by making a transect using a mobile DOAS spectrometer that sampled for gases downwind of the volcano. Average values during these months were 2,095 tons/day, 1,416 tons/day, and 1,037 tons/day, respectively. August had the highest SO2 measurements while those during September and November were more typical values.

Satellite imagery showed a constant thermal anomaly in the Santiago crater at the lava lake during August 2019 through January 2020 (figure 82). According to a news report, ash was expelled from Masaya on 15 October 2019, resulting in minor ashfall in Colonia 4 de Mayo (6 km NW). On 21 November thermal measurements were taken at the fumaroles and near the lava lake using a FLIR SC620 thermal camera (figure 83). The temperature measured 287°C, which was 53° cooler than the last time thermal temperatures were taken in May 2019.

Figure (see Caption) Figure 82. Sentinel-2 thermal satellite imagery showed the consistent presence of an active lava lake within the Santiago crater at Masaya during August 2019 through January 2020. Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 83. Thermal measurements taken at Masaya on 21 November 2019 with a FLIR SC620 thermal camera that recorded a temperature of 287°C. Courtesy of INETER (Boletin Sismos y Volcanes de Nicaragua, Noviembre, 2019).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent low-power thermal anomalies compared to the higher-power ones before May 2019 (figure 84). The thermal anomalies were detected during August 2019 through January 2020 after a brief hiatus from early may to mid-June.

Figure (see Caption) Figure 84. Thermal anomalies occurred intermittently at Masaya during 21 February 2019 through January 2020. Courtesy of MIROVA.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); La Jornada (URL: https://www.lajornadanet.com/, article at https://www.lajornadanet.com/index.php/2019/10/16/volcan-masaya-expulsa-cenizas/#.Xl6f8ahKjct).


Reventador (Ecuador) — February 2020 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Reventador is an andesitic stratovolcano located in the Cordillera Real, Ecuador. Historical eruptions date back to the 16th century, consisting of lava flows and explosive events. The current eruptive activity has been ongoing since 2008 with previous activity including daily explosions with ash emissions, and incandescent block avalanches (BGVN 44:08). This report covers volcanism from August 2019 through January 2020 using information primarily from the Instituto Geofísico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and various infrared satellite data.

During August 2019 to January 2020, IG-EPN reported almost daily explosive eruptions and ash plumes. September had the highest average of explosive eruptions while January 2020 had the lowest (table 11). Ash plumes rose between a maximum of 1.2 to 2.5 km above the crater during this reporting period with the highest plume height recorded in December. The largest amount of SO2 gases produced was during the month of October with 502 tons/day. Frequently at night during this reporting period, crater incandescence was observed and was occasionally accompanied by incandescent block avalanches traveling as far as 900 m downslope from the summit of the volcano.

Table 11. Monthly summary of eruptive events recorded at Reventador from August 2019 through January 2020. Data courtesy of IG-EPN (August to January 2020 daily reports).

Month Average Number of Explosions Max plume height above the crater Max SO2
Aug 2019 26 1.6 km --
Sep 2019 32 1.7 km 428 tons/day
Oct 2019 29 1.3 km 502 tons/day
Nov 2019 25 1.2 km 432 tons/day
Dec 2019 25 2.5 km 331 tons/day
Jan 2020 12 1.7 km --

During the month of August 2019, between 11 and 45 explosions were recorded every day, frequently accompanied by gas-and-steam and ash emissions (figure 119); plumes rose more than 1 km above the crater on nine days. On 20 August the ash plume rose to a maximum 1.6 km above the crater. Summit incandescence was seen at night beginning on 10 August, continuing frequently throughout the rest of the reporting period. Incandescent block avalanches were reported intermittently beginning that same night through 26 January 2020, ejecting material between 300 to 900 m below the summit and moving on all sides of the volcano.

Figure (see Caption) Figure 119. An ash plume rising from the summit of Reventador on 1 August 2019. Courtesy of Radio La Voz del Santuario.

Throughout most of September 2019 gas-and-steam and ash emissions were observed almost daily, with plumes rising more than 1 km above the crater on 15 days, according to IG-EPN. On 30 September, the ash plume rose to a high of 1.7 km above the crater. Each day, between 18 and 72 explosions were reported, with the latter occurring on 19 September. At night, crater incandescence was commonly observed, sometimes accompanied by incandescent material rolling down every flank.

Elevated seismicity was reported during 8-15 October 2019 and almost daily gas-and-steam and ash emissions were present, ranging up to 1.3 km above the summit. Every day during this month, between 13 and 54 explosions were documented and crater incandescence was commonly observed at night. During November 2019, gas-and-steam and ash emissions rose greater than 1 km above the crater except for 10 days; no emissions were reported on 29 November. Daily explosions ranged up to 42, occasionally accompanied by crater incandescence and incandescent ejecta.

Washington VAAC notices were issued almost daily during December 2019, reporting ash plumes between 4.6 and 6 km altitude throughout the month and drifting in multiple directions. Each day produced 5-52 explosions, many of which were accompanied by incandescent blocks rolling down all sides of the volcano up to 900 m below the summit. IG-EPN reported on 11 December that a gas-and-steam and ash emission column rose to a maximum height of 2.5 km above the crater, drifting SW as was observed by satellite images and reported by the Washington VAAC.

Volcanism in January 2020 was relatively low compared to the other months of this reporting period. Explosions continued on a nearly daily basis early in the month, ranging from 20 to 51. During 5-7 January incandescent material ejected from the summit vent moved as block avalanches downslope and multiple gas-and-steam and ash plumes were produced (figures 120, 121, and 122). After 9 January the number of explosions decreased to 0-16 per day. Ash plumes rose between 4.6 and 5.8 km altitude, according to the Washington VAAC.

Figure (see Caption) Figure 120. Night footage of activity on 5 (top) and 6 (bottom) January 2020 at the summit of Reventador, producing a dense, dark gray ash plume and ejecting incandescent material down multiple sides of the volcano. This activity is not uncommon during this reporting period. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 121. An explosion at Reventador on 7 January 2020, which produced a dense gray ash plume. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 122. Night footage of the evolution of an eruption on 7 January 2020 at the summit of Reventador, which produced an ash plume and ejected incandescent material down multiple sides of the volcano. Courtesy of Martin Rietze, used with permission.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent and strong thermal anomalies within 5 km of the summit during 21 February 2019 through January 2020 (figure 123). In comparison, the MODVOLC algorithm reported 24 thermal alerts between August 2019 and January 2020 near the summit. Some thermal anomalies can be seen in Sentinel-2 thermal satellite imagery throughout this reporting period, even with the presence of meteorological clouds (figure 124). These thermal anomalies were accompanied by persistent gas-and-steam and ash plumes.

Figure (see Caption) Figure 123. Thermal anomalies at Reventador persisted during 21 February 2019 through January 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 124. Sentinel-2 thermal satellite images of Reventador from August 2019 to January 2020 showing a thermal hotspot in the central summit crater summit. In the image on 7 January 2020, the thermal anomaly is accompanied by an ash plume. Courtesy of Sentinel Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Radio La Voz del Santuario (URL: https://www.facebook.com/Radio-La-Voz-del-Santuario-126394484061111/, posted at: https://www.facebook.com/permalink.php?story_fbid=2630739100293291&id=126394484061111); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos).


Pacaya (Guatemala) — February 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Continuous explosions, small cone, and lava flows during August 2019-January 2020

Pacaya is a highly active basaltic volcano located in Guatemala with volcanism consisting of frequent lava flows and Strombolian explosions originating in the Mackenney crater. The previous report summarizes volcanism that included multiple lava flows, Strombolian activity, avalanches, and gas-and-steam emissions (BGVN 44:08), all of which continue through this reporting period of August 2019 to January 2020. The primary source of information comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions occurred consistently throughout this reporting period. During the month of August 2019, explosions ejected material up to 30 m above the Mackenney crater. These explosions deposited material that contributed to the formation of a small cone on the NW flank of the Mackenney crater. White and occasionally blue gas-and-steam plumes rose up to 600 m above the crater drifting S and W. Multiple incandescent lava flows were observed traveling down the N and NW flanks, measuring up to 400 m long. Small to moderate avalanches were generated at the front of the lava flows, including incandescent blocks that measured up to 1 m in diameter. Occasionally incandescence was observed at night from the Mackenney crater.

In September 2019 seismicity was elevated compared to the previous month, registering a maximum of 8,000 RSAM (Realtime Seismic Amplitude Measurement) units. White and occasionally blue gas-and-steam plumes that rose up to 1 km above the crater drifted generally S as far as 3 km from the crater. Strombolian explosions continued, ejecting material up to 100 m above the crater rim. At night and during the early morning, crater incandescence was observed. Incandescent lava flows traveled as much as 600 m down the N and NW flanks toward the Cerro Chino crater (figure 116). On 21 September two lava flows descended the SW flank. Constant avalanches with incandescent blocks measuring 1 m in diameter occurred from the front of many of these lava flows.

Figure (see Caption) Figure 116. Webcam image of Pacaya on 25 September 2019 showing thermal signatures and the point of emission on the NNW flank at night using Landsat 8 (Nocturnal) imagery (left) and a daytime image showing the location of these lava effusions (right) along with gas-and-steam emissions from the active crater. Courtesy of INSIVUMEH.

Weak explosions continued through October 2019, ejecting material up to 75 m above the crater and building a small cone within the crater. White and occasionally blue gas-and-steam plumes rose 400-800 m above the crater, drifting W and NW and extending up to 4 km from the crater during the week of 26 October-1 November. Lava flows measuring up to 250 m long, originating from the Mackenney crater were descending the N and NW flanks (figure 117). Avalanches carrying large blocks 1 m in diameter commonly occurred at the front of these lava flows.

Figure (see Caption) Figure 117. Photo of lava flows traveling down the flanks of Pacaya taken between 28 September 2019 and 4 October. Courtesy of INSIVUMEH (28 September 2019 to 4 October Weekly Report).

Continuing Strombolian explosions in November 2019 ejected material 15-75 m above the crater, which then contributed to the formation of the new cone. White and occasionally blue gas-and-steam plumes rose 100-600 m above the crater drifting in different directions and extending up to 2 km. Multiple lava flows from the Mackenney crater moving down all sides of the volcano continued, measuring 50-700 m long. Avalanches were generated at the front of the lava flows, often moving blocks as large as 1 m in diameter. The number of lava flows decreased during 2-8 November and the following week of 9-15 November no lava flows were observed, according to INSIVUMEH. During the week of 16-22 November, a small collapse occurred in the Mackenney crater and explosive activity increased during 16, 18, and 20 November, reaching RSAM units of 4,500. At night and early morning in late November crater incandescence was visible. On 24 November two lava flows descended the NW flank toward the Cerro Chino crater, measuring 100 m long.

During December 2019, much of the activity remained the same, with Strombolian explosions originating from two emission points in the Mackenney crater ejecting material 75-100 m above the crater; white and occasionally blue gas-and-steam plumes to 100-300 m above the crater drifted up to 1.5 km downwind to the S and SW. Lava flows descended the S and SW flanks reaching 250-600 m long (figure 118). On 29 December seismicity increased, reaching 5,000 RSAM units.

Figure (see Caption) Figure 118. Lava flows moving to the S and SW at Pacaya on 31 December 2019. Courtesy of INSIVUMEH (28 December 2019 to 3 January 2020 Weekly Report).

Consistent Strombolian activity continued into January 2020 ejecting material 25-100 m above the crater. These explosions deposited material inside the Mackenney crater, contributing to the formation of a small cone. White and occasionally blue fumaroles consisting of mostly water vapor were observed drifting in different directions. At night, summit incandescence and lava flows were visible descending the N, NW, and S flanks with the flow on the NW flank traveling toward the Cerro Chino crater.

During August 2019 through January 2020, multiple lava flows and bright thermal anomalies (yellow-orange) within the crater were seen in Sentinel-2 thermal satellite imagery (figures 119 and 120). In addition, constant strong thermal anomalies were detected by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 21 February 2019 through January 2020 within 5 km of the summit (figure 121). A slight decrease in energy was seen from May to June and August to September. Energy increased again between November and December. According to the MODVOLC algorithm, 37 thermal alerts were recorded during August 2019 through January 2020.

Figure (see Caption) Figure 119. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during August 2019 to November. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 120. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during December 2019 through January 2020. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 121. The MIROVA thermal activity graph (log radiative power) at Pacaya during 21 February 2019 to January 2020 shows strong, frequent thermal anomalies through January with a slight decrease in energy between May 2019 to June 2019 and August 2019 to September 2019. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — February 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Single explosion with steam and minor ash, 2 November 2019

The 19-km-wide submerged Kikai caldera at the N end of Japan’s Ryukyu Islands was the source of one of the world's largest Holocene eruptions about 6,300 years ago, producing large pyroclastic flows and abundant ashfall. During the last century, however, only intermittent minor ash emissions have characterized activity at Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera; several events have included limited ashfall in communities on nearby islands. The most recent event was a single day of explosions on 4 June 2013 that produced ash plumes and minor ashfall on the flank. A minor episode of increased seismicity and fumarolic activity was reported in late March 2018, but no ash emissions were reported. A new single-day event on 2 November 2019 is described here with information provided by the Japan Meteorological Agency (JMA).

JMA reduced the Alert Level to 1 on 27 April 2018 after a brief increase in seismicity during March 2018 (BGVN 45:05); no significant changes in volcanic activity were observed for the rest of the year. Steam plumes rose from the summit crater to heights around 1,000 m; the highest plume rose 1,800 m. Occasional nighttime incandescence was recorded by high-sensitivity surveillance cameras. SO2 measurements made during site visits in March, April, and May indicated amounts ranging from 300-1,500 tons per day, similar to values from 2017 (400-1,000 tons per day). Infrared imaging devices indicated thermal anomalies from fumarolic activity persisted on the N and W flanks during the three site visits. A field survey of the SW flank on 25 May 2018 confirmed that the crater edge had dropped several meters into the crater since a similar survey in April 2007. Scientists on a 19 December 2018 overflight had observed fumarolic activity.

There were no changes in activity through October 2019. Weak incandescence at night continued to be periodically recorded with the surveillance cameras (figure 9). A brief eruption on 2 November 2019 at 1735 local time produced a gray-white plume that rose slightly over 1,000 m above the Iodake crater rim (figure 10). As a result, JMA raised the Alert Level from 1 to 2. During an overflight the following day, a steam plume rose a few hundred meters above the summit, but no further activity was observed. No clear traces of volcanic ash or other ejecta were found around the summit (figure 11). Infrared imaging also showed no particular changes from previous measurements. Discolored seawater continued to be observed around the base of the island in several locations.

Figure (see Caption) Figure 9. Incandescence at night on 25 October 2019 was observed at Satsuma Iwo Jima (Kikai) with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 10. The Iwanogami webcam captured a brief gray-white ash and steam emission rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 2 November 2019 at 1738 local time. The plume rose slightly over 1,000 m before dissipating. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 11. During an overflight of Satsuma Iwo Jima (Kikai) on 3 November 2019 no traces of ash were seen from the previous day’s explosion; only steam plumes rose a few hundred meters above the summit, and discolored water was present in a few places around the shoreline. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).

For the remainder of November 2019, steam plumes rose up to 1,300 m above the summit, and nighttime incandescence was occasionally observed in the webcam. Seismic activity remained low and there were no additional changes noted through January 2020.

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 15, Number 03 (March 1990)

Managing Editor: Lindsay McClelland

Anatahan (United States)

Felt earthquakes and increased thermal activity

Bamus (Papua New Guinea)

Strong earthquake swarm, then somewhat decreased seismicity

Callaqui (Chile)

Steam jetting from fumaroles

Colima (Mexico)

Fumarolic activity and SW flank rockfall avalanches; Seismic net expanded

Deception Island (Antarctica)

More than 1,000 seismic events recorded in one month

Erebus (Antarctica)

Occasional Strombolian explosions from two small lava lakes; stronger SO2emission

Etna (Italy)

Lava fountains and flow then strong block ejection from Southeast Crater

Fuego (Guatemala)

Continuous gas emission; summit morphology appears unchanged since 1980

Galeras (Colombia)

Small phreatic ash emissions with spasmodic tremor and long-period seismicity

Guagua Pichincha (Ecuador)

Phreatic explosions and tremor after 10 days of A-type shocks

Irruputuncu (Chile-Bolivia)

Eruption reported by press but geologist observes only fumarolic activity

Karymsky (Russia)

Slight thermal activity

Kick 'em Jenny (Grenada)

Strong T-phase signals suggest submarine eruption, but no activity detected at the surface

Kilauea (United States)

Eruption stops briefly then resumes after seismic swarm; lava destroys house

Klyuchevskoy (Russia)

Strong summit tephra eruption; basaltic lava from SE flank vent

Langila (Papua New Guinea)

Glow; gas emission; rumbling

Lascar (Chile)

20 February eruption ejected about 10-30% of the lava dome in crystal-rich fragments

Lengai, Ol Doinyo (Tanzania)

Airphotos suggest continued production of small lava flows on crater floor

Llaima (Chile)

Small explosion ejects incandescent column; strong seismicity

Loihi (United States)

Strong earthquake swarm, suggesting magma movement

Long Valley (United States)

Continued earthquake swarm in caldera's S moat

Lonquimay (Chile)

Eruption ends after 13 months; continued fumarolic activity and small-scale collapse

Manam (Papua New Guinea)

Vapor emission; seismicity remains low

Moutohora Island (New Zealand)

CO2-rich gases from thermal area

Olca-Paruma (Chile-Bolivia)

Fumarolic activity and minor seismicity

Pacaya (Guatemala)

Continued weak Strombolian explosions; low SO2 flux

Rabaul (Papua New Guinea)

Seismicity remains relatively low; minor deflation

Raoul Island (New Zealand)

Increased microseismicity but no changes in thermal activity

Redoubt (United States)

Moderate explosions and dome extrusion; rootless phreatic explosion as eruptions interact with glaciers

Ruapehu (New Zealand)

Phreatic explosions stop; increased tremor

Ruiz, Nevado del (Colombia)

Minor ash emission; seismicity remains low

Rumble III (New Zealand)

Submarine summit bathymetry; bubble plumes in water column

Santa Maria (Guatemala)

Viscous lava extrusion continues; rapid erosion of N flank

Sheveluch (Russia)

100-m explosion vent in center of lava dome; minor fumarolic activity

Ulawun (Papua New Guinea)

Thick vapor emission; weak seismicity

Vulcano (Italy)

High-temperature fumaroles; gas chemistry; small seismic swarms

Waesche (Antarctica)

No signs of recent activity

Whakaari/White Island (New Zealand)

Minor ash emission; seismicity and thermal activity decline; deflation

Whakaari/White Island (New Zealand)

Strong submarine hydrothermal activity at the Calypso Vents

Zhupanovsky (Russia)

Four vigorous fumaroles



Anatahan (United States) — March 1990 Citation iconCite this Report

Anatahan

United States

16.35°N, 145.67°E; summit elev. 790 m

All times are local (unless otherwise noted)


Felt earthquakes and increased thermal activity

Shallow earthquakes that began 30 March (table 1) were felt and heard on Anatahan Island, and associated with an apparent increase in thermal activity from the younger E cone's crater lake. Felt seismicity remained frequent through 1 April. Observations limited to early morning and around noon yielded reports of 9 shocks, each lasting 5-7 seconds, 31 March-1 April. No felt events were reported 2-4 April. A helicopter overflight on 1 April revealed that the crater lake had become turbulent and had changed from its usual dirty green color to a bluish gray or whitish blue. Fumarolic activity had increased and a rotten egg smell was noted. A new landslide was visible on the SW wall of the active crater. The 23 residents of the island were evacuated 4 April, and had not returned as of mid-April.

Table 1. Earthquakes near Anatahan recorded by WWSSN stations, 30 March-1 April 1990. All events were shallow, but preliminary data did not allow precise depth determinations. Courtesy of the NEIC.

Date Time Magnitude Distance / Direction
30 Mar 1990 0016 5.2 mb 65 km NE
30 Mar 1990 0036 4.7 mb 70 km NE
30 Mar 1990 1254 5.2 mb 75 km ENE
30 Mar 1990 1743 5.0 mb 75 km ENE
30 Mar 1990 1827 4.6 mb 65 km NNE
30 Mar 1990 2136 4.5 mb 70 km NNE
31 Mar 1990 1635 4.6 mb 85 km NNW

Geologic Background. The elongate, 9-km-long island of Anatahan in the central Mariana Islands consists of a large stratovolcano with a 2.3 x 5 km compound summit caldera. The larger western portion of the caldera is 2.3 x 3 km wide, and its western rim forms the island's high point. Ponded lava flows overlain by pyroclastic deposits fill the floor of the western caldera, whose SW side is cut by a fresh-looking smaller crater. The 2-km-wide eastern portion of the caldera contained a steep-walled inner crater whose floor prior to the 2003 eruption was only 68 m above sea level. A submarine cone, named NE Anatahan, rises to within 460 m of the sea surface on the NE flank, and numerous other submarine vents are found on the NE-to-SE flanks. Sparseness of vegetation on the most recent lava flows had indicated that they were of Holocene age, but the first historical eruption did not occur until May 2003, when a large explosive eruption took place forming a new crater inside the eastern caldera.

Information Contacts: N. Banks and J. Ewert, CVO; NEIC.


Bamus (Papua New Guinea) — March 1990 Citation iconCite this Report

Bamus

Papua New Guinea

5.2°S, 151.23°E; summit elev. 2248 m

All times are local (unless otherwise noted)


Strong earthquake swarm, then somewhat decreased seismicity

"Seismicity. . . continued throughout March, although at a milder level after the 5th. Following intense February seismicity that involved 83 earthquakes of ML >=4.0, eight of ML >=5.0, and one of ML >=6.0, activity was strong again 3-5 March. More than 720 earthquakes (two of ML = 5.0-5.1 and 10 of ML >=4.5) were recorded before seismicity decreased to 20-50 events/day of small-moderate magnitude. The energy released by the February-March seismicity was relatively large, 1.22 x 1021 ergs (figure 1).

Figure (see Caption) Figure 1. Daily number of earthquakes (bars) and cumulative energy release (circles) near Bamus, February-March 1990. Magnitudes (ML) of larger events are given over earthquake count bars. Courtesy of RVO.

"An inspection of the Bamus area was carried out on 6 March. Rockfalls had occurred at many places on the volcano and in the limestone ranges to the S. However, no change was observed in the temperatures of the solfataric areas on the summit tholoid (which remained at <=15°C).

"Temporary seismograph networks were operated in the area 13-16 February and 6-8 March. Earthquake locations defined a broad 15-km-long seismic zone trending NNE that extended from the Nakanai Mountains to the S flank of Bamus (figure 2). Within this zone was a concentration of locations trending ENE near the S foot of Bamus. Earthquake focal depths ranged from 0 to 23 km.

Figure (see Caption) Figure 2. Epicenters of seismic events at Bamus, 13-16 February and 6-8 March 1990. Courtesy of RVO.

"Cross-sections . . . (figure 3) suggest that the main cluster of earthquakes defines an ENE-trending near-vertical fault. This orientation is consistent with the structural pattern evident in the Miocene limestone immediately S of, and underlying, Bamus.

Figure (see Caption) Figure 3. Focal depths of seismic events near Bamus during 13-16 February and 6-8 March 1990 projected along lines A-B (top) and A-C (bottom). Horizontal scale (and thus vertical exaggeration) changes from A-B to A-C. Courtesy of RVO.

"The cause of this seismicity remains uncertain. Its ongoing fluctuating character, and the fact that its swarms include but do not occur in response to larger earthquakes, could be consistent with magmatic injection. On the other hand, ML 5-6 earthquakes are uncommon for magmatic events. Analysis of the magnitude/frequency distribution of the earthquakes shows that the 'b' value is ~1, which is indicative of tectonic earthquake sequences. The seismicity was continuing in early April and was being monitored primarily by the permananent seismograph at Ulawun."

Geologic Background. Symmetrical 2248-m-high Bamus volcano, also referred to locally as the South Son, is located SW of Ulawun volcano, known as the Father. These two volcanoes are the highest in the 1000-km-long Bismarck volcanic arc. The andesitic stratovolcano is draped by rainforest and contains a breached summit crater filled with a lava dome. A satellitic cone is located on the southern flank, and a prominent 1.5-km-wide crater with two small adjacent cones is situated halfway up the SE flank. Young pyroclastic-flow deposits are found on the volcano's flanks, and villagers describe an eruption that took place during the late 19th century.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Callaqui (Chile) — March 1990 Citation iconCite this Report

Callaqui

Chile

37.92°S, 71.45°W; summit elev. 3164 m

All times are local (unless otherwise noted)


Steam jetting from fumaroles

Steam jets from that rose 300-400 m from fumaroles on the SE flank, 200 m below the summit, were observed during dry weather at about noon on 9 and 16 March.

Geologic Background. The late-Pleistocene to Holocene Callaqui stratovolcano has a profile of an overturned canoe, due to its construction along an 11-km-long, SW-NE fissure above a 1.2-0.3 million year old Pleistocene edifice. The ice-capped, basaltic-andesite volcano contains well-preserved cones and lava flows, which have traveled up to 14 km. Small craters 100-500 m in diameter are primarily found along a fissure extending down the SW flank. Intense solfataric activity occurs at the southern portion of the summit; in 1966 and 1978, red glow was observed in fumarolic areas (Moreno 1985, pers. comm.). Periods of intense fumarolic activity have dominated; few historical eruptions are known. An explosive eruption was reported in 1751, there were uncertain accounts of eruptions in 1864 and 1937, and a small phreatic ash emission was noted in 1980.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; H. Moreno, Univ de Chile.


Colima (Mexico) — March 1990 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Fumarolic activity and SW flank rockfall avalanches; Seismic net expanded

A group from CICBAS (Universidad de Colima) and CONMAR (Oregon State Univ) visited the volcano 15-17 February. Since their last visit, in May 1989, rockfall avalanches have occurred preferentially on the SW flank. Fumarolic activity persisted throughout their visit, forming a dense gray cloud. Poor weather conditions limited additional observations.

The geologists emplaced geoceivers for satellite communication, to determine geodetic positions of sites near the volcano for installation of two new telemetering seismographs. On 15 December 1989, the CICBAS seismology group had installed the 4th telemetric station of the Red Sismológica Telemétrica de Colima, 7 km from the volcano (at la Yerbabuena, site EZV6 on figure 6).

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Guillermo Castellanos, Gilberto Ornelas-Arciniega, C. Ariel Ramírez-Vazquez, G.A. Reyes-Dávila, and Hector Tamez, CICBAS, Universidad de Colima.


Deception Island (Antarctica) — March 1990 Citation iconCite this Report

Deception Island

Antarctica

63.001°S, 60.652°W; summit elev. 602 m

All times are local (unless otherwise noted)


More than 1,000 seismic events recorded in one month

"Spanish scientists visited Deception Island in December 1989 and January-February 1990. A geophysical station is located on the island and the Spanish oceanographic vessel Las Palmas operated in the area. Geological, tectonic, and geophysical features on and near the island were investigated. A regional, higher precision GPS geodetic network spans the Deception section of the Bransfield Rift.

"During the 1989-90 field season, an array of six digital seismic stations was installed on Deception Island. More than 1,000 events (0.5-2.1 mb) were digitally recorded. The major shocks were located in de Neptune Bowels (S of the island). The distribution of events shows a good correlation with tectonic features on and near the island (figure 2). A low seismic velocity, high-attenuation body was inferred under the NE sector of the island. A negative magnetic anomaly (-4,900 nT) is located in the same area.

Figure (see Caption) Figure 2. Distribution of seismic events (circles) recorded by the Spanish Antarctic Program seismic array (triangles) on Deception Island, 20 January-20 February 1990.

"Chemical compositions of samples from fumaroles and thermal springs suggest a thermal anomaly related to an underlying magma body. Gas geothermometry shows a formation temperature >250°C, with an outflow temperature of about 100°C. The phreatomagmatic character of the recent episodes is hypothesized as the result of a magma intrusion into shallow and confined water-saturated layers.

"A permanent seismic station monitoring the seismic activity in the area has been established at Spain's Juan Carlos I facility (35 km from Deception)."

Geologic Background. Ring-shaped Deception Island, one of Antarctica's most well known volcanoes, contains a 7-km-wide caldera flooded by the sea. Deception Island is located at the SW end of the Shetland Islands, NE of Graham Land Peninsula, and was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides entrance to a natural harbor that was utilized as an Antarctic whaling station. Numerous vents located along ring fractures circling the low, 14-km-wide island have been active during historical time. Maars line the shores of 190-m-deep Port Foster, the caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions from Deception Island during the past 8700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.

Information Contacts: R. Ortiz, Museo Nacional de Ciencias Naturales, Spain; Rafael Soto, Real Instituto y Observatorio de la Armada, Spain.


Erebus (Antarctica) — March 1990 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Occasional Strombolian explosions from two small lava lakes; stronger SO2emission

Scientists visited the summit of Mt. Erebus several times from mid-November 1989 through mid-January 1990. Activity was at a low level compared to that of the early 1980s. Anorthoclase phonolite lava in the summit inner crater was mainly confined to two small convecting lakes; one circular and about 20 m in diameter, and the other irregular and ~20 m long. This was the largest area of convecting lava seen at Mt. Erebus since late 1984, when eruptions buried an older, larger, lava lake system. Three hornitos were actively degassing around the lava lakes, and small fumaroles were present within the inner crater.

From mid-November to mid-December, infrequent small Strombolian explosions ejected bombs to a few tens of meters from the lava lakes. A small gas bubble burst was observed in one of the hornitos. In mid-December, an increase in the frequency and size of small Strombolian eruptions was recorded by Victoria University's remote video camera mounted on the crater rim 220 m above the lava lakes. Images transmitted to Scott base, 35 km from the volcano, showed bombs being ejected to more than 100 m height.

SO2 emission, monitored by COSPEC, has increased substantially over the previous 5 years, commonly exceeding 100 t/d. This increase was consistent with previous observations suggesting that the surface area of the lava lakes correlates with SO2 emission rates.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: P. Kyle and W. McIntosh, New Mexico Institute of Mining and Technology; R. Dibble, Victoria Univ.


Etna (Italy) — March 1990 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Lava fountains and flow then strong block ejection from Southeast Crater

Summit activity. (S. Calvari, M. Coltelli, O. Consoli, M. Pompilio, and V. Scribano.) February activity was characterized by a single strong eruptive episode at Southeast Crater. Summit-area craters generally remained quiet through the rest of February and March. The 1-2 February eruptive episode was similar to several in January. A gradual increase in Strombolian explosions was followed by lava fountaining, and lava flowed over the crater's E rim for 5 hours beginning at 2200 on 1 February. The flow turned toward the Valle del Bove, advancing to ~ 2,000 m altitude, near the terminus of the mid-January flow. During the morning of 2 February, discontinuous Strombolian activity was followed by ejection of scoria that seldom reached a few tens of meters from the rim. Activity changed at about 1330 to energetic, discontinuous explosions that generated rumbling heard at a considerable distance. Blocks more than a meter across fell within a few hundred meters of the crater; much of the slightly vesicular ash was non-juvenile. Similar activity continued until about midnight. After the eruptive episode, the crater was completely obstructed, without any gas emission, until 27 February, when sporadic ejection of dark tephra began from two vents on the crater floor. February activity at other summit-area craters was limited to vapor emission from floors and walls. Emissions were particularly strong from Northeast Crater, where the active vent's walls were strongly incandescent.

Degassing was continuous at the summit craters in March but was not accompanied by Strombolian activity. Degassing occurred from an elliptical vent on the W floor of La Voragine accompanied by sporadic rumbling. Gas was also emitted from two sites on the SE and NW floor of Bocca Nuova. Weak fumarolic activity, from collapse steps that have formed along concentric fractures in Southeast Crater, was strongest from the center of the crater. Degassing also continued in Northeast Crater. On 29 and 30 March, sporadic tephra ejection and incandescence were observed, apparently from a sudden rise in the magma column.

Seismic activity. (E. Privitera, C. Cardaci, O. Cocina, V. Longo, A. Montaldo, M. Patanè, A. Pellegrino, and S. Spampinato.) Volcanic tremor amplitude began a progressive increase on 1 February at 1239, probably associated with increased Strombolian activity at Southeast Crater. Amplitudes peaked at 1940 that day, and at 0048 the next morning as activity was changing from Strombolian to lava fountaining. Other substantial increases in tremor amplitude occurred at 0600-1100, 1855, and 1935. The first of two sequences of discrete earthquakes on 2 February began at 0352. Eight of the events, centered at ~15 km depth on the volcano's N sector, were larger than M 1, the strongest at M 2.6 between 0424 and 0619. The second series of shocks started at 1321, with the two largest events (M 2.8) at 1322 and 1337. Hypocenters were on the Valle del Bove at <1 km depth. From 3 February until the end of the month, seismic activity was at very low levels, with little variation in tremor amplitude or the number of low-frequency shocks. Nine fracturing events exceeded M 1, with a maximum magnitude of 2.5.

Seismic activity in March was characterized by a significant increase in the number of fracturing events. Swarms on 16 and 18 March totaled 124 shocks (M>=1) and brought the month's recorded earthquakes to 153, ~ 3 times as many as in January and February. The 16 March swarm began at 0530 and continued until 0050 the next day. Of the 107 shocks stronger than M 1, 28 were of M>=2 and three of M>=3. The bulk of the most energetic events originated from the central to W part of the edifice at 10-20 km depth, although one (at 1052) was located just NNW of the central crater at ~5 km depth. The strongest shock of the 18 March sequence, which included 17 events, occurred on the SW flank (a few kilometers S of Monte Nero) at ~10-15 km depth. An M 3.3 earthquake on 22 March at 1159 was ~15 km deep, roughly 6 km SSW of the summit (just S of Monte Vetore). The March seismicity was not accompanied by changes in volcanic tremor amplitude, which remained low throughout the month. The number and amplitude of low-frequency events showed little change after 3 February. A new seismic station (PZF) was installed on the lower NW flank (near Maletto), replacing station RCC, stolen in August 1989. With the new site, IIV's Etna network numbers 8 stations.

Ground deformation. (A. Bonaccorso, O. Campisi, G. Falzone, B. Puglisi, and R. Velardita.) Two tilt stations (SPC and CDV) operated during February, both on the S side of the volcano. Data from station SPC generally remained within resolution limits through February and March. A weak anomaly was recorded on the tangential component 18-20 February, then tangential data returned to the normal range. Radial values from recently installed station CDV remained within resolution limits through February, while tangential data began a (negative) excursion on 18 February that totalled 5 µrad by the end of the month. All instruments from this station were stolen on 1 March. Reoccupation of sites that form a triangle along the fracture zone between 1,800 and 1,500 m altitude on the S-SE flank (between benchmarks Bocche 1792, Serra Pizzuta Calvarina, and Mt. Stempato) did not show significant deformation since the previous measurements on 19 January.

Summit SO2 flux. (T. Caltabiano and R. Romano.) Rates of SO2 emission during Southeast Crater's eruptive episode on 2 February were three times mean values. Measurements 7, 14, and 21 February showed considerable variation. The five March measurements yielded SO2 flux of 2,500-14,000 t/d, increasing at the end of the month.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Santacroce, IIV.


Fuego (Guatemala) — March 1990 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Continuous gas emission; summit morphology appears unchanged since 1980

Overflights of Fuego were made on 15 and 16 February by volcanologists from INSIVUMEH and Michigan Tech. The following is from their report.

"Continuous gas emission was observed, with no evidence of any magma at the surface. The geometry of the summit crater and its surroundings (which influences the paths of pyroclastic flows during eruptive activity) was unchanged since 1980. COSPEC measurements of SO2 emission rates were made from the air, yielding 265 ± 33 t/d on 15 February and 120 ± 30 t/d on 16 February (3 and 8 determinations respectively). These rates are very similar to the 100 t/d measured in February 1980 and much less than the rates measured in February 1978 (660-1,700 t/d) when Fuego was actively erupting (Stoiber et al., 1983; reference under Santiaguito)."

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Otoniel Matías and Rodolfo Morales, Sección de Volcanología, INSIVUMEH; W.I. Rose, Jimmy Diehl, Robert Andres, Michael Conway, and Gordon Keating, Michigan Technological Univ, USA.


Galeras (Colombia) — March 1990 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Small phreatic ash emissions with spasmodic tremor and long-period seismicity

Small phreatic ash emissions continued in March, accompanied by spasmodic tremor and long-period seismicity (table 2). Incandescence was mainly observed in the W part of the crater. The number of low-frequency earthquakes increased 47% relative to February values, with an 86% increase in seismic energy release. However, the number of high-frequency events decreased 38% from February and energy release declined 28% (figures 17 and 18). Most earthquakes were centered in two zones under, W of, and S of the summit (figure 19). SO2 emissions measured on 15 and 22 March by COSPEC were at low-moderate levels, ranging from 630 to 1,380 t/d.

Table 2. Phreatic ash emissions and associated seismicity at Galeras, March 1990. Courtesy of INGEOMINAS.

Date Time Seismic Signal
09 Mar 1990 0233 Spasmodic tremor
11 Mar 1990 1448 Spasmodic tremor
11 Mar 1990 1618 Spasmodic tremor
11 Mar 1990 1652 Long-period
11 Mar 1990 2036 Spasmodic tremor
17 Mar 1990 1817 Long-period
17 Mar 1990 1921 Spasmodic tremor
18 Mar 1990 0631 Spasmodic tremor
27 Mar 1990 0609 Long-period
27 Mar 1990 1552 Spasmodic tremor
28 Mar 1990 1359 Spasmodic tremor
29 Mar 1990 0948 Spasmodic tremor
Figure (see Caption) Figure 17. Number of seismic events at Galeras, February 1989-March 1990. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 18. Daily energy release of high-frequency (dashed line) and low-frequency (solid line) seismicity at Galeras, March 1990. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 19. Epicenters of 67 seismic events at Galeras, March 1990. Courtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP.


Guagua Pichincha (Ecuador) — March 1990 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Phreatic explosions and tremor after 10 days of A-type shocks

After 15 months of quiet, phreatic activity began on 16 April at 0221. The activity was confined to the phreatic crater formed in 1981-82, on the NE side of the 600-m-diameter dome that occupies most of the caldera floor. Activity began with spasmodic harmonic tremor of small to intermediate amplitude, accompanied by strong fumarolic emissions generating a vapor column that rose at least 800 m. Several explosions were heard and recorded by seismographs 1.5 km and (very weakly) 9 km from the crater. Seven new fumaroles were observed within the 1981 crater, but by 17 April had joined to form a single fumarole 4 m in diameter. Non-juvenile material, rocks, and mud were thrown outward to 250 m from the vent, forming a layer 4 cm thick. The explosions enlarged the 1981 crater by ~20 m.

Precursory activity began with a M 2.3 earthquake on 5 April and a M 2.2 shock on 13 April. Only a few small events, both A- and B-type, were detected during subsequent days. The tremor had a typical frequency of 1.7 Hz on 15-17 April. Periods of tremor lasted as much as 3 hours, separated by intervals of low-amplitude tremor or quiescence. Intermittent explosions were also recorded, always associated with tremor. Only a few very small B-type events have been recorded since the onset of phreatic activity. Fumarolic waters remained at their normal temperature of 87°C.

Given the shallow character of the activity, geologists believed that it was partly related to the previous week's increased precipitation. Stepped-up monitoring and re-deployment of the Instituto Geofísico's seismic net (dismantled following the 1988 activity) were begun 16-17 April, and tilt stations and EDM lines were being resurveyed. The Instituto's hazard map and previously planned preparedness exercises for a hypothetical eruption of Guagua Pichincha were helping civil defense authorities to prepare for the possibility of increased activity.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: M. Hall, Instituto Geofísico de la Escuela Politécnica Nacional.


Irruputuncu (Chile-Bolivia) — March 1990 Citation iconCite this Report

Irruputuncu

Chile-Bolivia

20.73°S, 68.55°W; summit elev. 5163 m

All times are local (unless otherwise noted)


Eruption reported by press but geologist observes only fumarolic activity

December press reports in Bolivia of an eruption . . .[located 25 km NNW of Olca Volcano] remain unconfirmed, and attempts by Bolivian geologists to fly over the volcano in January were stymied by poor weather. State oil company (ENAP) geologist Patricio Sepulveda reported only normal fumarolic activity at Irruputuncu on 25 March.

Geologic Background. Irruputuncu is a small stratovolcano that straddles the Chile/Bolivia border. It is the youngest and most southerly of a NE-SW-trending chain of volcanoes. It was constructed within the collapse scarp of a Holocene debris avalanche whose deposit extends to the SW. Subsequent eruptions filled much of this scarp and produced thick, viscous lava flows down the W flank. The summit complex contains two craters, the southernmost of which is fumarolically active. The first unambiguous historical eruption took place in November 1995, when phreatic explosions produced dark ash clouds.

Information Contacts: J. Naranjo, SERNAGEOMIN.


Karymsky (Russia) — March 1990 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Slight thermal activity

The volcano was generally quiet during a 2 February overflight (figure 1). Pre-existing thermal areas were visible in the S and SW parts of the crater, although the vent was snow-covered. Slightly warm zones were also noted on the upper S flank.

Figure (see Caption) Figure 1. Summit crater of Karymsky, looking roughly SW on 2 February 1990. Courtesy of B. Ivanov.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: B. Ivanov, IV.


Kick 'em Jenny (Grenada) — March 1990 Citation iconCite this Report

Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


Strong T-phase signals suggest submarine eruption, but no activity detected at the surface

Seismic stations along the Lesser Antilles arc began to record very strong acoustic (T-phase) signals, probably associated with an eruption of the . . . Kick-'em-Jenny . . . on 26 March at 1112. Overflights of the area during the period of vigorous seismicity did not reveal any water discoloration or other surface changes above the volcano, which had a summit depth of about 160 m in 1982.

Thirteen distinct seismic bursts, lasting up to 19 minutes, were recorded 26-27 March on instruments operated by the Seismic Research Unit, Univ of the West Indies. The IPGP's Mt. Pelée seismic network on Martinique, 250 km NNE of Kick-'em-Jenny, recorded strong T-waves on 26 March at 1117:22, 1502:30, 1723, and 2034 (the latter felt by residents of NW Martinique), and on 27 March at 0035:40 and 0424:25. T-waves reached IPGP's Soufrière de Guadeloupe net, 450 km N of Kick-'em-Jenny, on 26 March at 1118. The initial activity saturated the Grenada seismograph and the largest burst of seismicity, at about 1721 on 26 March, was felt on northern Grenada. After a single 14-minute episode that started at 0103 on 28 March, seismicity stopped on all but the Grenada instrument, which continued to record occasional low-frequency (0.5-2 Hz) signals for periods of about 30 seconds to more than 3 hours. The latest reported low-frequency episode occurred on 5 April between about 0500 and 0800.

Geologic Background. Kick 'em Jenny, a historically active submarine volcano 8 km off the N shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred since 1939, when an eruption cloud rose 275 m above the sea. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

Information Contacts: W. Ambeh, K. Rowley, L. Lynch, and L. Pollard, UWI; A. Redhead, Office of the Prime Minister, Grenada; J.P. Viode and G. Boudon, Observatoire Volcanologique de la Montagne Pelée, Martinique; C. Antenor and M. Feuillard, Observatoire de la Soufrière, Guadeloupe; J.L. Cheminée, N. Girardin, and A. Hirn, IPGP Observatoires Volcanologiques, France.


Kilauea (United States) — March 1990 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Eruption stops briefly then resumes after seismic swarm; lava destroys house

Lava flows . . . remained active during the first half of March. The main (Quarry) and low-volume (Roberts) flows continued to enter the ocean, while a third (Keone) flow advanced slowly to within 600 m of a highway at 30 m elevation (figure 66). Activity was periodically observed at Pu`u `O`o. Crusted lava in Kupaianaha pond averaged 30 m below the rim and only overturned a few times/day, in contrast to vigorous past activity. On the 19th, the eruption stopped and the lava pond roofed over. Small collapse pits were found in the lava pond's crust the next day. Only residual lava from the Quarry and Roberts lava tubes drained into the ocean on the 21st.

Activity resumed on the night of the 21st, with glow reported from the East rift zone. By the next day, active lava was visible in Pu`u `O`o, had risen to 20 m below the rim at Kupaianaha, and had reoccupied the tube system to 550 m elevation. Surface lava breakouts at 550 and 600 m elevation fed two flows. Lava followed the course of the January 1990 flow between the December 1986 and 1977 aa flows, and by the end of the month had reached 200 m elevation. Lava also followed the course of the Keone flow, to within 500 m of the intersection of highways 130 and 137. Kupaianaha pond remained active through 23 March when it again began to roof over ~30 m below the rim, and by the 26th, only small pahoehoe lobes were periodically active around the pond's margins.

Seismic signals . . . marked the eruption's changes. From early to mid-March, sporadic gas pistoning was recorded, manifested as background volcanic tremor decreasing to an essentially quiet state for several minutes, generally ending with a sharp burst of energy followed by continued background tremor. This activity subsided after 17 March, succeeded by a marked increase in tremor and, on the afternoon of 18 March, brief summit deflation.

At Kilauea's summit, swarms of long-period tremor events occurred from late 16 March through midday 18 March and from the evening of 19 March through the early morning of the 21st (figure 67). A swarm of short-period microearthquakes began later that morning and continued until early 22 March. Five hours after the onset of the summit swarm, and several hours before eruptive activity resumed, a sudden increase in earthquakes occurred in the upper East rift zone between the summit and the active craters. The hypocenters were in two areas: near Makaopuhi (roughly midway between the summit caldera rim and Kupaianaha) and Pauahi (~5 km uprift from Makaopuhi). The swarm continued until the morning of 25 March.

Figure (see Caption) Figure 67. Preliminary locations of earthquakes in the Hawaii Island region, including Kilauea and Loihi, 1-26 March 1990. Courtesy of R. Koyanagi.

After lava returned to Kupaianaha on 22 March, variations in seismicity became less obvious. Tremor near Pu`u `O`o increased gradually and was relatively steady from the 24th until the end of the month.

Addendum: Eruptive activity declined on 5 April [see also 15:4], but had resumed by the night of the 6th. Lava entered Kalapana Gardens subdivision on 3 April, and within three weeks had destroyed a dozen houses.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: C. Heliker, P. Okubo, and R. Koyanagi, HVO; AP.


Klyuchevskoy (Russia) — March 1990 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strong summit tephra eruption; basaltic lava from SE flank vent

During an overflight by geologists on 2 February, vigorous ash emission fed a large eruption column that rose to ~5 km height and had a basal diameter of ~400-600 m (figure 3). Individual ash bursts were visible at the base of the column, although ash emission appeared to be continuous. A new vent was noted at 4,500 m elev on the NE slope of the Apakhonchich valley, on the upper SE flank. Vapor jets 200-300 m high were distinctly visible above this vent. A subsidiary vent downslope (at 3,970 m elev) fed basaltic lava flows. An ash plume extended 60-80 km E. The ashfall area on 2 February was ~1,600 km2.

Figure (see Caption) Figure 3. Tephra cloud from Kliuchevskoi's summit crater on 2 February 1990, in photograph looking roughly E. Arrow 1 indicates the new vent at 4,600 m elev on the SE flank, arrow 2 the effusive vent at 3,970 m elev. Courtesy of B. Ivanov.

Images from the NOAA 10 and 11 polar orbiting satellites showed several plumes from Kliuchevskoi. On 22 February at 1548, a thin plume extended ~80 km SE. A plume was next visible on 10 March at 0956. Although obscured by weather clouds a short distance ENE of the volcano, it formed a distinct cold area on the infrared image, indicating that it was at relatively high altitude. On 12 March at 0335, a very thin plume stretched 15-20 km NE from the Kliuchevskoi area, and on 15 March at 0942, a small diffuse plume extended S from the volcano. A thin plume extended 250 km NE on 3 April at 0903. Weather clouds . . . may have obscured additional eruptive activity.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: B. Ivanov, IV; W. Gould, NOAA/NESDIS.


Langila (Papua New Guinea) — March 1990 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Glow; gas emission; rumbling

"Activity consisted of weak to moderate white-grey emissions from Crater 2. Weak, steady, red glow was observed 1-4 and 25-31 March. Rumbling noises were heard on the 28th and 29th. Crater 3 remained quiet throughout the month. Seismicity was at a low level."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Lascar (Chile) — March 1990 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


20 February eruption ejected about 10-30% of the lava dome in crystal-rich fragments

After the 20 February eruption, Lascar returned to its normal fumarolic activity with the generation of mainly white plumes that rise 300-500 m above the rim of the active central crater. Between 20 and 24 March, geologists from the SERNAGEOMIN and several British universities observed the volcano from the ground and from the active crater's rim, reached on the 23rd from the N slope and on the 24th from the S slope. The following is from their report.

"Examination of photographs taken by J.R. Gerneck (Chile Hunt Oil) during the 20 February eruption revealed three discrete plumes. The first, white in color, consisted mainly of steam, and was overtaken by two smaller, grayish, higher velocity clouds. Geologists interpreted this sequence as an initial steam explosion related to the partial destruction of the dome that fills the bottom of the active crater, followed by phreatomagmatic eruptions. The eruption products, primarily fragments of the dome, occurred as shattered, dark, dense blocks of porphyritic pyroxene andesite, ranging to white, semi-vesicular, largely disaggregated blocks of similar composition, with thin, darker, quenched rims. The blocks were composed of plagioclase, clinopyroxene, and orthopyroxene phenocrysts, small amounts of magnetite, and scarce reacted olivine and hornblende crystals in a glassy groundmass. They are enriched in crystals compared to bombs from the 1986 eruption, with larger phenocrysts (up to 2 mm), and a larger proportion of pyroxene. No olivine or hornblende were found in the 1986 bombs, which included occasional xenoliths of partially molten granite. The 20 February blocks were distributed almost symmetrically in a radius of 4 km around the crater, associated with asymmetrical impact craters, elongate parallel to block trajectories. The number of blocks increased dramatically close to the vent where they covered 70-90% of the surface. No fresh ash was observed close to the volcano.

"Preliminary calculations, based on the volume of ejecta and the size of the plume, indicate that between 10 and 30% of the dome was erupted on 20 February. This estimate is supported by 5 March airphotos of the interior of the crater and by observations made from the crater rim, where a large part of the dome can still be observed in the bottom of the crater. The dome has apparently continued deflating since our last observation in November 1989 (14:11). A hole appeared to be present in its center, produced by collapse into the vent. Fumaroles were located around the dome, along ring fractures as observed in April 1989. Gas was still venting at extremely high velocity, creating the same jet-like noise reported in November. The strongest fumaroles were on the dome's NE and SW edges. A strong smell of HCl and SO2 was recorded from the N rim. Deposits of yellow sulfur are visible associated with the fumaroles. Temperatures were measured (by Clive Oppenheimer) using an infrared radiometer (after dark, to eliminate the effects of sunlight). The fumaroles were observed to be glowing red hot and bright spots were seen over the dome. Preliminary data show the largest fumarole to have a temperature of 700-800°C, while the surface of the dome had an average temperature of 100-200°."

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg, SERNAGEOMIN, Santiago; S. Matthews, Univ College London; C. Oppenheimer, Open Univ; S. Sparks and M. Stasiuk, Univ of Bristol.


Ol Doinyo Lengai (Tanzania) — March 1990 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Airphotos suggest continued production of small lava flows on crater floor

Airphotos taken between 16 and 18 October 1989 by Geoff Price and 7 March 1990 by Lester Eshelman suggest that no large-volume lava flows have been extruded since June 1989. Only minor changes appear to have occurred to cones in the crater since . . . 24 June-1 July and 22-25 November 1988.

During the October 1989 overflight, clouds partially obscured the crater floor, which appeared pale gray, with a slightly darker lava flow (F13), previously seen June-August 1989, near the W wall (figure 14). Cones and vents on the crater floor had changed little since June-August 1989. A vent (T12) seen in September 1989 was no longer visible at the base of the E crater wall. A new vent (T13) had been added to the old complex (T5/T9) which now appeared as several closely spaced cones joined at the base. A possible small hornito (H6) was observed between T5/T9 and T8. The width of the overflow across the former saddle (M2M1) had not changed, but the area of lava S of the saddle may have increased slightly, particularly on the W side of the southern depression.

Figure (see Caption) Figure 14. View of the N crater and southern depression at Ol Doinyo Lengai, looking roughly S between 16 and 18 October, 1989. Traced from a photograph by Geoff Price; courtesy of C. Nyamweru.

On 7 March 1990, bright sunshine and clear visibility revealed small lava flows of varying colors on the crater floor. However, none were dark gray or black, suggesting that they were of different ages and probably more than a few days (but at most a few weeks) old. No new vents were recognized, and the area of lava in the southern depression had not increased. Flow F13 was white, but had been partially covered by younger brown flows from the W side of T5/T9T13 (figure 15). Many flows of different colors were seen on its W and N slopes, including a narrow white tongue of lava (roughly 4-5 m long and 50 cm wide) stretching from the vent down the flank of the cone complex. Similar features were observed forming on T4/T7 in 1988. Several dark grooves extending from the slopes of T5/T9 appear to be narrow channels formed when a lava flow built levees, restricting it to a narrow stream. The formation of similar features was observed . . . in June and November 1988.

Figure (see Caption) Figure 15. View of the N crater and southern depression at Ol Doinyo Lengai, looking roughly S on 7 March 1990. Traced from a photograph by L. Eshelman; courtesy of C. Nyamweru.

Notes on individual vents and cones are as follows: T5/T9/T13: Probable center of activity since October 1989, with emission of small thin flows from very small vents, mostly on its W slopes. The top has merged into a single broad cone with several dark patches indicating cracks or vents near the top. T4/T7: Brown and buff colors dominate. Small black patches at the top of two mounds on the E side indicate vents still open. No sign of new material extruded from these vents. Generally smooth and weathered. Lava production from T4/T7 was last reported in November 1988 (13:12). T8: Brown and buff colors dominate. Top of pinnacle appears slightly less steep. No sign of new material. Lava spattering was seen in November 1988, but only gas emission has been observed since then. T10: Gray; part of ridge that joined this cone to the E crater wall may have collapsed. Bubbling lava was seen near T10 in May 1989 (14:06). T11: Pale gray; center of cone is flat and inactive. Possible collapse at N edge. No recent lava emission was apparent and none has been reported since November 1988.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, Kenyatta Univ.


Llaima (Chile) — March 1990 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Small explosion ejects incandescent column; strong seismicity

A small explosion on 25 February, followed by the ejection of a glowing column from the main crater, was reported by Conguillio National Park administrator Omar Toledo. He added that small sediment-laden streams of water had flowed down the E flank at times when thawing does not normally occur. Field observations by geologists 5-18 March revealed occasional increases in fumarolic activity from the main crater. On 10 March, vigorous 40-60-second puffs of gas were emitted every minute during the early evening. After a summit climb, Conguillio National Park rangers reported that intense fumarolic activity produced grayish gases and a strong sulfur odor. Rockslides occurred every 1-2 hours on the NE flank.

A portable seismograph was operated 19-22 March at the volcano's W foot (in Los Paraguas National Park) by Jaime Campos and Bertrad Delovis, Dept de Geofísica, Univ de Chile. Intense volcanic earthquakes and tremor were recorded. Another portable seismograph will be installed at the NE foot (near Conguillio Lake) by Univ de la Frontera scientists.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: H. Moreno, Univ de Chile; J. Naranjo, SERNAGEOMIN, Santiago.


Loihi (United States) — March 1990 Citation iconCite this Report

Loihi

United States

18.92°N, 155.27°W; summit elev. -975 m

All times are local (unless otherwise noted)


Strong earthquake swarm, suggesting magma movement

A vigorous earthquake swarm occurred off the S flank of Hawaii 11-19 March 1990 (figure 4). More than 300 events were registered, about 15 of M 3-4, and some of M >4. Seismologists associated many of the events, including the larger ones, with processes at Loihi Seamount. No acoustic signals (T-waves) were reported.

Figure (see Caption) Figure 4. Portion of a seismogram recorded during Loihi's 11 March 1990 earthquake swarm, by a station (AHU) 45 km from the epicentral area. Courtesy of R. Koyanagi.

Further Reference. Malahoff, A., 1987, Geology of the summit of Loihi submarine volcano, in Decker, R.W., Wright, T.L., and Stauffer, P.H., eds., Volcanism in Hawaii: USGS Professional Paper 1350, p. 133-144.

Geologic Background. Loihi seamount, the youngest volcano of the Hawaiian chain, lies about 35 km off the SE coast of the island of Hawaii. Loihi (which is the Hawaiian word for "long") has an elongated morphology dominated by two curving rift zones extending north and south of the summit. The summit region contains a caldera about 3 x 4 km wide and is dotted with numerous lava cones, the highest of which is about 975 m below the sea surface. The summit platform includes two well-defined pit craters, sediment-free glassy lava, and low-temperature hydrothermal venting. An arcuate chain of small cones on the western edge of the summit extends north and south of the pit craters and merges into the crests prominent rift zones. Deep and shallow seismicity indicate a magmatic plumbing system distinct from that of Kilauea. During 1996 a new pit crater was formed at the summit, and lava flows were erupted. Continued volcanism is expected to eventually build a new island; time estimates for the summit to reach the sea surface range from roughly 10,000 to 100,000 years.

Information Contacts: P. Okubo and R. Koyanagi, USGS Hawaiian Volcano Observatory.


Long Valley (United States) — March 1990 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Continued earthquake swarm in caldera's S moat

Earthquake swarm activity in the caldera's S moat continued through March. A swarm of >300 events of magnitude greater than or equal to 2.8 occurred 3 March, followed by smaller swarms on 9, 18, 28, and 30 March. The swarm on the 30th included more than 100 events, all of which were smaller than M 2. Only a few isolated events occurred beneath Mammoth Mountain. Two-color geodimeter measurements indicate that extension across the S moat and resurgent dome continued through March at the 5 ppm/year rate that began in late September.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS Menlo Park.


Lonquimay (Chile) — March 1990 Citation iconCite this Report

Lonquimay

Chile

38.379°S, 71.586°W; summit elev. 2832 m

All times are local (unless otherwise noted)


Eruption ends after 13 months; continued fumarolic activity and small-scale collapse

The following is a report from José A. Naranjo and Hugo Moreno R. Most field observations were made in collaboration with R.S.J. Sparks and Mark Stasiuk, Bristol Univ, and Clive Oppenheimer, Open Univ.

"Field evidence suggests that the eruption from Navidad Cone ended between 22 and 25 January 1990, after 13 months of activity. Explosions with pyroclastic ejections stopped between 29 December and 10 January. José Córdoba, a teacher from Malalcahuello, observed and photographed one of the last explosions, on 27 December at 1930-2000. Strong explosions ejected bombs, and white clouds consisting mainly of water vapor rose as much as 600 m above the crater. He also observed two small landslides that originated from the cone's flank (above the vent), followed by white steam clouds that rose along the scar left on the N flank (see below). These collapses may represent the early stages of the slumping observed on 20 January.

"Chlorine gases and minor water vapor fumaroles remained along concentric fractures within the main crater 3-17 March. Compared with previous observations on 21 November and 20 January, the innermost annular fractures exhibited clear evidence of collapse, leaving scarps 1.5-2 m high (figure 16). Fumes from the outermost fractures near the crater rim yielded temperatures of 86°C.

Figure (see Caption) Figure 16. View N across the crater of Navidad scoria cone, Lonquimay volcano, from the highest (S) part of the rim. 21 November 1989 (top): Concentric fractures had formed on the W side of the innermost nested crater; intense water vapor fumaroles aligned with them, and a strong steam jet was emitted from a glowing vent on the inner wall. 20 January 1990 (middle): Vapor emission had ceased and collapse had occurred along the eastern inner wall, the southern fractures, and around the N wall-vent. A funnel-shaped crater about 120 m in diameter had clearly widened by collapse since November. 5 March 1990 (bottom): Only dry gases were emitted along the annular fractures, while no fumes were visible at the main crater vents. Fractures had widened on the S part of the cone, and collapse scars appeared on the E part. Sketched from photographs by J.A. Naranjo.

"By March, the source vent was completely covered by talus from the unstable flank material above it. Discontinuous slumping of this debris left a funnel-shaped scar about 90 m high and 30 m deep, with walls that project upward through the crater's inner concentric fractures. The channel was enlarged by successive collapses that were up to 30 m deep and 25 m wide near the vent.

"The lava surface remained almost completely covered by a 1-3-m-thick mantle of debris transported on it. Former arched transverse debris ridges were disturbed and a gash of fresher lava was formed along the debris mantle's front axis. The top parts of most ridges showed higher temperatures (up to 390°C at 30 cm depth) than the almost cool gullies between them. After 20 January, the debris-covered lava advanced 120 m before it stopped flowing. This smooth surface texture conspicuously contrasted with the spiny, jagged surface presented by the blocky/aa lava immediately downstream.

"The fumaroles aligned with the central vent and the flow to the ENE showed decreased activity when compared to April 1989, although their temperatures remained at 190° and 250-300°C, 600 and 300 m from Navidad Cone respectively.

"On 17 March, a 948°C thermocouple measurement was obtained ~7 m below the lava surface, 1.5-2 km downstream from the source vent. The main lobe in the Lolco River valley had not advanced since 20 November 1989, although it showed a front thickness that had increased slightly, from 45-50 m in November to 55-60 m in March."

Geologic Background. Lonquimay is a small, flat-topped, symmetrical stratovolcano of late-Pleistocene to dominantly Holocene age immediately SE of Tolguaca volcano. A glacier fills its summit crater and flows down the S flank. It is dominantly andesitic, but basalt and dacite are also found. The prominent NE-SW Cordón Fissural Oriental fissure zone cuts across the entire volcano. A series of NE-flank vents and scoria cones were built along an E-W fissure, some of which have been the source of voluminous lava flows, including those during 1887-90 and 1988-90, that extended out to 10 km.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; H. Moreno, Univ de Chile.


Manam (Papua New Guinea) — March 1990 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Vapor emission; seismicity remains low

"Activity remained at a low level in March. The summit was obscured for long periods (4-9 and 11-23 March), but when weather cleared, emissions of white vapour in weak to moderate amounts were observed from both craters. Seismicity remained low, with daily totals of volcanic earthquakes ranging from 900 to 1,200. No significant changes were noted in seismic amplitudes and ground deformation."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Moutohora Island (New Zealand) — March 1990 Citation iconCite this Report

Moutohora Island

New Zealand

37.858°S, 176.98°E; summit elev. 354 m

All times are local (unless otherwise noted)


CO2-rich gases from thermal area

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov.

"...Thermal activity manifests itself largely in areas of hydrothermally altered, steaming ground. The major thermal feature is a vigorously boiling pool near sea level in Sulphur Bay (Ramsay and Hayward, 1971). As indicated by the occurrence of bubble zones (Glasby, 1971), submarine thermal activity extends well SW of the island.

"During both the 1988 and 1990 cruises of the RV Vulkanolog, gas and water samples were collected from the main pool. The waters are essentially acid sulfate (4,000 mg/kg; Cl, 20 mg/kg), steam-heated, initially non-saline groundwater. Compositions of 1988 gases are compared in table 1 with those of 1974 samples from Sulphur Bay spring and the seafloor at 34 m depth (Lyon and others, 1977).

Table 1. Chemical composition of gases collected from vents on and near Whale Island (in mmol/mol of dry gas), March 1974 (Lyon and others, 1977) and during the September 1988 cruise of the RV Vulkanolog.

Vent Seafloor (34 m depth) Island (pool)
Date 10 Sep 1974 10 Sep 1974 10 Sep 1974 10 Mar 1988 10 Mar 1988
C 15 15 99 99 99
CO2 734 680 967 935 937
H2S -- -- -- 12.5 12.2
He -- -- -- 0.0028 0.0010
Ne -- -- -- 0.00004 0.00006
Ar 1.2 0.8 0.07 0.04 0.03
H2 0.1 0.3 3.2 11.2 9.7
O2 14.1 7.5 <0.01 <0.03 <0.03
N2 131 119 11 13 11
CH4 120 193 18 28 30

"All gases reflect a hydrothermal origin, and their major component is CO2. The seafloor gases are contaminated with air, probably after sampling. Their higher CH4 and lower H2 contents suggest longer residence at lower temperatures compared to the island samples. The composition of the latter has remained essentially unchanged over the last 14 years."

References. Glasby, G.P., 1971, Direct observation of columnar scattering associated with geothermal gas bubbling in the Bay of Plenty, New Zealand: New Zealand Journal of Marine and Freshwater Research, v. 5, p. 483-496.

Lyon, G.L., Giggenbach, W.F., Singleton, R.J., and Glasby, G.P., 1977, Isotopic and Chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand: New Zealand Department of Scientific and Industrial Research Bulletin, v. 218, p. 65-67.

Ramsay, W.R.H., and Hayward, B.W., 1971, Geology of Whale Island: Tane, v. 17, p. 9-32.

Geologic Background. Moutohora (Whale) Island forms the summit of a largely submerged Pleistocene dacitic-andesitic complex volcano that lies 11 km offshore from Whakatane in the Bay of Plenty. The island is 15 x 5 km wide and elongated E-W. The 354-m-high central dome complex is flanked by East Dome, which forms the eastern tip of the island and is the oldest of the domes, and Pa Hill lava dome, which forms the NW tip of the island. Acid hot springs, steaming ground, and fumaroles are located primarily between the central cone and East Dome. The central cone and east dome are both older than the roughly 42,000 before present (BP) Rotoehu Tephra, and Pa Hill dome is overlain by the 9000 years BP Rotoma Ash but may be considerably older. It was included in the Catalog of Active Volcanoes of the World (Nairn and Cole, 1975) based on its thermal activity.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Olca-Paruma (Chile-Bolivia) — March 1990 Citation iconCite this Report

Olca-Paruma

Chile-Bolivia

20.939°S, 68.413°W; summit elev. 5705 m

All times are local (unless otherwise noted)


Fumarolic activity and minor seismicity

Fumarolic activity, accompanied by low-intensity seismicity, was described by policemen from Ujina, 15 km SW of Olca, on 13 November 1989. Minor seismicity associated with Olca was noted in mid-March 1990 by state oil company (ENAP) geologist Patricio Sepulveda.

Geologic Background. A 15-km-long E-W ridge forming the border between Chile and Bolivia is comprised of several stratovolcanoes with Holocene lava flows. Andesitic-dacitic lava flows extend as far as 5 km N from the active crater of Volcán Olca and to the north and west from vents farther to the west. Olca is flanked on the west by Cerro Michincha and on the east by Volcán Paruma, which is immediately west of the higher pre-Holocene Cerro Paruma volcano. Volcán Paruma has been the source of conspicuous fresh lava flows, one of which extends 7 km SE, and has displayed persistent fumarolic activity. The only reported historical activity from the complex was a flank eruption of unspecified character between 1865 and 1867, which SERNAGEOMIN notes is based on unconfirmed records.

Information Contacts: J. Naranjo, SERNAGEOMIN.


Pacaya (Guatemala) — March 1990 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Continued weak Strombolian explosions; low SO2 flux

Volcanologists from INSIVUMEH and Michigan Tech visited Pacaya on 13, 14, 17, 18, and 28 February and 1, 2, 3, and 4 March, and flew over the volcano on 16 February. The following is from their report.

"Activity at Pacaya continued at a low level, consisting of brief (10-60 second), weak (ejecta typically thrown 2-100 m), Strombolian explosions with reposes of <1 to several minutes. All activity was from a small cone, 6 m high and 8 m wide at its rim, within MacKenney crater. The explosions were accompanied by gas emission (with jet-like noise) and often by fine ash clouds.

"On 17 February, during activity that was typical of the observation period, 78 COSPEC scans were made from a ground observation site 1.25 km from MacKenney crater (at Cerro Chino). Pacaya was emitting SO2 at an average rate of 30 t/d, with the measured range varying between 3 and 130 t/d. Higher fluxes were directly associated with observed small explosions. The new SO2 observations at Pacaya were much lower than values measured several times from 1972 until 1980 (Stoiber et al., 1983; reference under Santiaguito), which were generally between 250 and 1,500 t/d."

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Otoniel Matias and Rodolfo Morales, Sección de Volcanología, INSIVUMEH; W.I. Rose, Jimmy Diehl, Robert Andres, Michael Conway, and Gordon Keating, Michigan Technological Univ.


Rabaul (Papua New Guinea) — March 1990 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Seismicity remains relatively low; minor deflation

"Activity remained at a low level in March. A total of 265 caldera earthquakes was recorded. Daily earthquake totals ranged from 0 to 24, with the highest daily total recorded in a small Greet Harbour swarm on 18 March that included two felt events (ML 2.8 and 2.6). During the month, seismicity was broadly distributed within the caldera seismic zone. Levelling measurements on 26 March indicated deflation of 2 mm at the S tip of Matupit Island since previous measurements on 20 February."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Raoul Island (New Zealand) — March 1990 Citation iconCite this Report

Raoul Island

New Zealand

29.27°S, 177.92°W; summit elev. 516 m

All times are local (unless otherwise noted)


Increased microseismicity but no changes in thermal activity

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov. The island was visited on 30 January 1990.

"A considerable increase in microseismic activity to ~180 events/day, starting at the beginning of January 1990, was recorded by the Raoul Island seismic station. A similar swarm of minor shocks (Adams and Dibble, 1967) and an increase in hydrothermal activity (Healy et al., 1965) preceded the 1964 eruption. There were, however, no significant changes in the appearance and emission rate of thermal fluids from the main area of geothermal discharge along the W shore of Green Lake since the last visit of RV Vulkanolog in March 1988. Water and steam samples were collected in 1988 and 1990. The compositions of the 1988 samples are compared in table 1 with those reported by Weissberg and Sarbutt (1966) for samples collected shortly after the 1964 eruption. Gas compositions point to an essentially hydrothermal origin with insignificant contributions from high-temperature magmatic gases. Heavy seas prevented landing on Curtis Island, the other island in the Kermadecs showing thermal activity."

Table 1. Chemical composition (in mmol/mol of dry gas) of steam samples collected from the main fumarolic vents on Raoul Island in December 1964 (shortly after the 1964 eruption; Weissberg and Sarbutt, 1966) and during the March 1988 cruise of the RV Vulkanolog.

Dry Gas (mmol/mol) 08 Dec 1964 10 Mar 1988
  Sample 1 Sample 2 Sample 1 Sample 2
C 100 83 96 96
CO2 855 912 984 969
H2S 12.2 -- 0.9 0.9
He -- -- 0.005 --
Ne -- -- 0.00008 --
Ar -- -- 0.07 0.28
H2 -- 0.7 0.3 0.2
O2 19.2 7.3 <0.1 5.0
N2 113 78 14 25
CH4 0.50 1.70 0.11 0.07

References. Adams, R.D., and Dibble, R.R., 1967, Seismological studies of the Raoul Island eruption, 1964: New Zealand Journal of Geology and Geophysics, v. 10, p. 1,348-1,361.

Weissberg, B.G., and Sarbutt, J., 1966, Chemistry of the hydrothermal waters of the volcanic eruption on Raoul Island, November 1964: New Zealand Journal of Science; v. 9, p. 426-432.

Geologic Background. Anvil-shaped Raoul Island is the largest and northernmost of the Kermadec Islands. During the past several thousand years volcanism has been dominated by dacitic explosive eruptions. Two Holocene calderas exist, the older of which cuts the center the island and is about 2.5 x 3.5 km wide. Denham caldera, formed during a major dacitic explosive eruption about 2200 years ago, truncated the W side of the island and is 6.5 x 4 km wide. Its long axis is parallel to the tectonic fabric of the Havre Trough that lies W of the volcanic arc. Historical eruptions during the 19th and 20th centuries have sometimes occurred simultaneously from both calderas, and have consisted of small-to-moderate phreatic eruptions, some of which formed ephemeral islands in Denham caldera. An unnamed submarine cone, one of several located along a fissure on the lower NNE flank, has also erupted during historical time, and satellitic vents are concentrated along two parallel NNE-trending lineaments.

Information Contacts: I. Nairn, P. Otway, B. Scott, and C. Wood, NZGS Rotorua; W. Giggenbach, DSIR Chemistry, Petone.


Redoubt (United States) — March 1990 Citation iconCite this Report

Redoubt

United States

60.485°N, 152.742°W; summit elev. 3108 m

All times are local (unless otherwise noted)


Moderate explosions and dome extrusion; rootless phreatic explosion as eruptions interact with glaciers

Quoted material is from the AVO staff. Information about the 4, 9, and 14 March explosive episodes supplements the initial reports in 15:02.

"Lava dome growth disrupted by moderate explosions and gravitational collapse continued. Since 15 February, explosive episodes have occurred at average intervals of 3-9 days (table 1). Explosive episodes were associated with pyroclastic flows and surges that triggered floods and lahars in the Drift River valley, which drains the volcano's N flank (figure 8). Seismicity remained centered on Redoubt from the surface to a depth of about 10 km, but earthquakes of M >= 2.0 have not occurred since 9 March. The summit seismometer that was damaged during the 15 February event was removed in March and three new seismometers were placed on the volcano's summit and flanks. COSPEC measurements began on 20 March; data are collected as weather permits. SO2 emission rates have ranged from 1,600 to 6,000 t/d."

Figure (see Caption) Figure 8. Sketch map of the Drift River valley and related drainages on the NE flank of Redoubt. The Drift River oil facility is between the mouth of the Drift River and Rust Slough. Courtesy of AVO.

Since early January, deposition in the Drift River's main channel has diverted significant amounts of flood water and debris into Rust Slough, S of the Drift River oil facility. An L-shaped 4-m-high levee upstream from the oil facility was designed to protect it from Drift River floods, but neither levees nor topography protect its S side. Beginning on 4 March, deposition in Rust Slough has diverted floodwater farther southward into Cannery Creek, just upstream of the Drift River facility. None of the subsequent floods associated with March-mid April explosive episodes have affected the oil facility.

Explosive episode, 4 March. "An explosive event that occurred at 2039 was recorded for 8 minutes at the Spurr station (a regional seismometer about 100 km NNE of Redoubt that has been operating since the onset of the eruption). By 2110, an ash plume was reported to an altitude of 12 km; the plume moved N20°E and ashfall occurred 225 km away. Moderate flooding occurred in the Drift River. A new diversion upstream of the Drift River oil facility caused much of the flow to be diverted S of the facility (from Rust Slough into Cannery Creek).

Explosive episode, 9 March. "An explosive event occurred at 0951 and was recorded for 10 minutes at the Spurr station. Tephra fell primarily W of the volcano; Port Alsworth, 95 km SW of the volcano, received a light dusting from the southern margin of the plume. Floodwater reached the Drift River oil facility about 2 3/4 hours after the onset of the event.

Explosive episode, 14 March. "Explosive activity that began at 0947 was recorded for 14 minutes at the Spurr station. Tephra fell E of the volcano; the Drift River oil facility reported heavy ashfall from 1057 to 1247. Oil facility crews were evacuated because of the heavy ashfall. Traces of ash were reported on the Kenai Peninsula and in the Anchorage area." Satellite images (figure 9) showed the plume moving ENE. The temperature at the top of the dense portion of the plume was -40°C at 1030, corresponding to an altitude of about 7 km. Winds were relatively light, and by 1230, the plume extended less than 150 km N and about 100 km E of the volcano.

Figure (see Caption) Figure 9. Image from the NOAA 10 polar orbiting satellite, 14 March at 1054, about an hour after the onset of the eruptive episode. An elongate plume extends ENE of Redoubt. Courtesy of G. Stephens.

"Moderate flooding occurred in the lower Drift River valley. Peak flow velocity was about 6 m/sec. The flood reached the oil facility about 2 1/4 hours after the onset of the explosive episode. The flood carried numerous ice blocks and hot angular dome rocks 16 km from the glacier, where peak discharge was estimated at 1200 m3/sec.

"On 15 March, after a vigorous 2.5-minute seismic event was recorded at all seismic stations, an AVO field crew was warned about a possible explosion. They reported no changes in steam plume activity and did not hear any noises. However, 20 minutes later, they noted an approximate doubling of the Drift River's discharge 4 km downstream from the glacier. The increased discharge was accompanied by large quantities of cobble-sized ice.

"A small dome in the summit area was observed by field crews on 16, 18, 20, and 21 March. The dome appeared to be growing slowly between observations.

Explosive episode, 23 March. "Seismicity indicating the onset of explosive activity began at 0404 and was recorded for 8 minutes at the Spurr station. Seismic activity at the summit stations had increased around 0000 on 22 March and had stayed at elevated levels for most of the day. Seismic activity then decreased several hours before the 23 March explosive episode. A plume was reported to 10.5 km but appeared to be mostly steam. Light ashfall was observed W of the mountain, but ash did not fall on any community. Discharge increased in the Drift River."

An image from the NOAA 11 polar orbiting satellite at 0430 (figure 10), 26 minutes after the onset of the explosive episode, showed a plume extending WNW from the volcano. The top of the dense portion of the plume had a temperature of -39°C, yielding an altitude estimate of slightly less than 9 km based on the radiosonde temperature/altitude profile over Anchorage 1.5 hours earlier. The plume continued to move rapidly WNW, and by 1430, 10.5 hours after the explosion, its center was about 850 km from the volcano.

Figure (see Caption) Figure 10. Image from the NOAA 11 polar orbiting satellite, 23 March at 0430, about 30 minutes after the start of the eruptive episode. The nearly circular plume is just WNW of Redoubt. Courtesy of G. Stephens.

"Pyroclastic flow deposits covered the lower Canyon (below 825 m) and the upper piedmont area (above 500 m) of the Drift glacier. The deposits were generally hot, dry, and friable; where they rested on snow, the basal part of thick deposits, and those less than 50 cm thick, were wet and warm to the touch. Pyroclastic deposits were still hot (325°C) when measured on 26 March.

"Views into the crater on 23 March were largely obscured by steam but much of the dome appeared missing from the summit area. Poor weather obscured observations of the summit area from 26 March until 6 April.

Explosive episode, 29 March. "Seismic activity indicated that an explosive event began at 1033 and was recorded for 7 minutes at the Spurr station. An increase in discharge of the Drift River was reported, reaching the oil facility by 1307. Pilots reported a plume, consisting chiefly of steam, to 15 km. Tephra fallout appears to have been similar to that of 4 March; light ashfall was reported to 225 km N-NE of the volcano.

"Poor weather prevented ground observations or views of the glacier. Deposits from a debris flow or hyperconcentrated flow were observed in the upper valley and flooding appeared similar to 23 March. No hot debris or ice blocks were observed in the upper valley.

Explosive episode, 6 April. "Seismicity increased throughout the morning of 6 April. An explosive event began at 1723 and was recorded for 7-8 minutes at the Spurr station. Seismicity declined after the explosive event. An ash plume was reported to 9 km; wind shear caused the lower part of the plume to drift NW and the upper part to drift E. The ash plume reached the W coast of the Kenai Peninsula by 1808, but only light ashfall was reported in Kenai during the evening.

"Pyroclastic flow deposits overlay the glacier down to about the 610 m level. A debris flow of dome-rock material and ice boulders flowed onto the Drift River valley, and peak flow velocity was estimated at 22 m/s. Peak discharge attenuated quickly downvalley.

Dome growth and hydrologic events 7-13 April. "A dome was first observed in the summit area on 7 April. This dome appeared to be larger when observed on 10 and 13 April and was greatly oversteepened on the N face.

"On 7 April, discharge near the E canyon mouth of the Drift River glacier fluctuated by 30-50% several times during a 1/2-hour observation period. A flood of ice blocks up to 1 m across caused a 4-fold discharge increase in one of the large glacier canyons. Repeated increases in discharge were noted over a 15-minute observation period. An iceslide blocked the entire width of the canyon bottom upstream of the increased discharge area. Episodic release through a tunnel at the base of the ice jam may explain the surges observed at the canyon mouth.

"On 10 April a rootless phreatic eruption was noted on the Drift Glacier at the 890 m level, causing a vigorous ash and steam plume to rise 1,000 m. A series of explosions migrated N and S of this area along a glacier bed stream, producing an elongate crater perhaps 300 m long. Numerous small pyroclastic flows emanated from the explosion area and formed a small pyroclastic flow fan that dammed the main water flow from the dome area for about an hour. Failure of the dam caused a flood with an estimated discharge of 10 m3/s.

Explosive event, 15 April. "A moderate explosive event occurred at 1440 and lasted about 8 minutes at the Spurr station. The ash plume reached elevations between 9 and 12 km and the plume moved N-NW. There were no clearly identifiable seismic precursors. Seismic activity before and after the event appeared unchanged." [See also 15:04].

Geologic Background. Redoubt is a glacier-covered stratovolcano with a breached summit crater in Lake Clark National Park about 170 km SW of Anchorage. Next to Mount Spurr, Redoubt has been the most active Holocene volcano in the upper Cook Inlet. The volcano was constructed beginning about 890,000 years ago over Mesozoic granitic rocks of the Alaska-Aleutian Range batholith. Collapse of the summit 13,000-10,500 years ago produced a major debris avalanche that reached Cook Inlet. Holocene activity has included the emplacement of a large debris avalanche and clay-rich lahars that dammed Lake Crescent on the south side and reached Cook Inlet about 3,500 years ago. Eruptions during the past few centuries have affected only the Drift River drainage on the north. Historical eruptions have originated from a vent at the north end of the 1.8-km-wide breached summit crater. The 1989-90 eruption had severe economic impact on the Cook Inlet region and affected air traffic far beyond the volcano.

Information Contacts: AVO Staff; SAB.


Ruapehu (New Zealand) — March 1990 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Phreatic explosions stop; increased tremor

Phreatic eruptions had apparently stopped by 1 February. A possible eruption cloud was reported on 19 March, but a field inspection that day revealed only steam rising from the lake surface. There was no evidence of recent surging associated with small eruptions. Crater Lake was battleship gray with yellow and gray sulfur slicks. No convection was observed over the main vent, and only faint upwelling could be detected over the N vents. The lake temperature had cooled to 34.1°C from 46.5°C on 6 February. A sizeable lake had formed in an area of ice collapse in the valley draining Crater Lake to the S. Since 1 February, the lake had grown from ~60 ± 15 m to 100 ± 30 m. Sudden release of the lake could cause flooding in the Whangaehu River.

Volcanic tremor gradually declined in February, nearing background levels by 8 March. Continuous tremor with fairly uniform amplitude changed to bursts of tremor alternating with periods of quiet, similar to small volcanic earthquakes. On 8 March, tremor increased to high levels and broadened its frequency range, with 1 and 1.5 Hz tremor in addition to the usual 2 Hz signal. Tremor remained strong for 2-3 days before declining to more moderate amplitude. During the period of strongest activity, 6-hour energy release reached 400-1,400 x 104 joules, exceeding levels that accompanied the January 1982 eruptions, but less than in September 1982, when there were no eruptions and declining lake temperature. Tremor increased again on 16 March, almost to the level of 8 March, but by the 22nd had decreased to moderate-strong amplitude. EDM measurements on four lines across the N portion of the crater detected only small (<7mm) changes since the 1 February survey.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: P. Otway, DSIR Wairakei.


Nevado del Ruiz (Colombia) — March 1990 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Minor ash emission; seismicity remains low

The number of earthquakes and seismic energy release remained low in March. Located events were centered W and SW of the crater. The strongest recorded earthquake (M 2.1) occurred 21 March. Only a few short pulses of low-energy tremor were recorded, except for a high-energy episode on 12 March at 2301, associated with a small ash emission. Five COSPEC measurements yielded an average SO2 flux of 1,540 t/d, similar to the previous month. Deformation measurements showed no significant changes.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Rumble III (New Zealand) — March 1990 Citation iconCite this Report

Rumble III

New Zealand

35.745°S, 178.478°E; summit elev. -220 m

All times are local (unless otherwise noted)


Submarine summit bathymetry; bubble plumes in water column

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, were reported by W.F. Giggenbach and I. Menyailov.

"Considerable uncertainty remains about the minimum depth to the summit of Rumble III seamount. Early bathymetric measurements place it at 117 m depth (Kibblewhite and Denham, 1967), while later data and surveys by the RV Vulkanolog in March 1988 suggest a depth of 200 m. A special effort was therefore made to locate its highest point and to determine its depth.

"From echograms, it appears that the uncertainty may largely be due to the production of gas-rich, probably volcanic fluids from the summit area (Kibblewhite, 1966). Close inspection of the echograms shows that reflections above 200 m are probably caused by a plume of expanding bubbles, as they are invariably Separated from the solid reflector (the true summit) by a non-reflecting zone. There, the bubbles are either too small or the prevailing pressures keep the gases in solution.

"In contrast to March 1988, when echograms suggested that some of the bubble swarms reached the surface and gas bubbles were observed from the RV Vulkanolog, in January 1990 the plumes terminated at 150-120 m depth and no bubbles were observed at the surface. The disappearance of bubbles at depths <120 m is likely to be due to re-dissolution of soluble, probably volcanic gases (CO2 and SO2). The decrease in extent of the bubble zones may reflect a decrease in the production rate of thermal fluids and, therefore, of volcanic activity. There were no obvious signs of volcanic activity in either March 1988 or January 1990.

"Several large samples of ferro-magnesian, basaltic pillow lavas were dredged from the slopes of the seamount at depths of 400-1,200 m."

References. Kibblewhite, A.C., 1966, The acoustic detection and location of an underwater volcano: New Zealand Journal of Science, v. 9, p. 178-199.

Kibblewhite, A.C. and Denham, R.N., 1967, The Bathymetry and total magnetic field of the south Kermadec Ridge seamounts: New Zealand Journal of Science, v. 10, p. 52-69.

Geologic Background. The Rumble III seamount, the largest of the Rumbles group of submarine volcanoes along the South Kermadec Ridge, rises 2300 m from the sea floor to within about 200 m of the sea surface. Collapse of the edifice produced a horseshoe-shaped caldera breached to the west and a large debris-avalanche deposit. Fresh-looking andesitic rocks have been dredged from the summit and basaltic lava from its flanks. Rumble III has been the source of several submarine eruptions detected by hydrophone signals.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Santa Maria (Guatemala) — March 1990 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Viscous lava extrusion continues; rapid erosion of N flank

Santiaguito was visited by volcanologists from INSIVUMEH, Michigan Tech, and Arizona State 20-26 February. The following is from their report.

"Eruptive activity was still focused on Caliente vent, capped by a cone-shaped exogenous domal mass of lava that feeds a viscous flow directed toward the SSW. The flow extended about 500 m, dropping about 250 m in elevation below the top of the vent (about 2,500 m above sea level) and terminating on a talus slope at the angle of repose. Rockfalls were frequent, resulting in ash clouds. The frequency of vertical ash eruptions from Caliente vent was only a few/day. The rate of SO2 emission was measured on 22 February at 48 ± 15 t/d, with a range of 21-76 t/d (24 determinations). This emission rate was slightly less than the average of about 100 t/d (range 40-1,600 t/d) determined in July 1976, when there were many more vertical ash eruptions that had higher values, but was identical to the emission rates measured then between eruptions (Stoiber and others, 1983; especially Table 29.4).

"Figure 12 shows the pattern of Santiaguito's activity from June 1988 until 10 January 1990, five weeks before the dates of the most recent field surveys, as revealed from interpretation of telemetered seismic data by INSIVUMEH. The data demonstrate a good correlation between the frequency of avalanche events and vertical explosions. They also demonstrate that the February field observation dates represented a time of very few vertical explosions compared to the past year's record.

Figure (see Caption) Figure 12. Mean daily number of explosions (crosses) and avalanches (squares) during 2-week periods at Santiaguito, as interpreted from telemetered data by INSIVUMEH, June 1988-January 1990. The 19 June 1989 eruption is marked by an arrow.

"Significant changes have occurred on the N side of Santiaguito since July 1989 (figure 13). The El Monje dome, mostly extruded between 1947 and 1952, had developed a talus slope on its N side that was stabilized and had developed a strong moss coating that prevented rockfalls. This slope allowed access to the summit of Santiaguito throughout a long period (1964-88) and also to the 1902 crater of Santa María. Deep barrancas (canyons) have formed on the N side of the El Monje dome, cutting steep barriers into the talus slopes. These have coalesced at the edge of the talus slope, forming a large barranca between Santiaguito and Santa María that feeds an enormous amount of material into the (Isla) area farther W, and caused another deep barranca to form at the end of the Loma trail. The barrancas on the El Monje dome have deepened and migrated headward until they intersect the top of the dome. They could reflect fracturing of the El Monje dome, perhaps the weakest of three dome units that buttress the N side of the Caliente Vent. If viewed in this way the new barrancas could forecast the site of new dome extrusion from a lateral vent. The increased sediment load from this barranca system is likely to affect the Río Concepción and the Río Tambor to the south when the next rainy season arrives in April or May.

Figure (see Caption) Figure 13. Simplified geologic map of Santiaguito Dome, 1922-February 1990. Streams near Santiaguito are approximately located. Unit dates, such as Rc (1922-90), represent periods of discontinuous activity at each vent. Patterned areas represent very recent activity: Rl - area of active laharic and stream deposition, and very high aggradation rates; Rd - area of recently initiated extensive mass wasting indicating inflation of the El Monje vent area and potential reactivation of the vent; Rc (v pattern) - active block lava flows on Caliente's summit, with very common (hourly) collapse of the broad toe resulting in hot rock avalanches; Rc (dotted pattern) - extent of the 1986-88 block lava flow from Caliente.

"Fieldwork was also directed at examination of the areas affected by the 19 July 1989 eruption (figure 14). The outline of a distinct blast zone, marked by tree blowdown, was mapped. A collapse scarp facing the blast zone was observed. This shows conclusively that partial domal collapse accompanied the 19 July 1989 eruption (14:07)."

Figure (see Caption) Figure 14. Map of Santiaguito and vicinity, showing the zones affected by the 1929, 1973, and 1989 pyroclastic flows. The 1989 and April 1973 deposits have similar areas but different sources. Modified from Rose, 1987.

Reference. Stoiber, R.E., Malinconico, L.L. Jr., and Williams, S.N., 1983, Use of the correlation spectrometer at volcanoes, in Tazieff, H. and Sabroux, J.C., eds., Forecasting Volcanic Events; Elsevier, Amsterdam, p. 425-444.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: O. Matías and R. Morales, INSIVUMEH; W.I. Rose, J. Diehl, R. Andres, F.M. Conway, and G. Keating, Michigan Technological Univ; J. Fink and S. Anderson, Arizona State Univ.


Sheveluch (Russia) — March 1990 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


100-m explosion vent in center of lava dome; minor fumarolic activity

During a 2 February overflight, an explosion vent more than 100 m in diameter was observed in the center of the [extrusive] hornblende andesite lava dome (figure 1). Minor fumarolic activity was occurring.

Figure (see Caption) Figure 1. Crater and lava dome at Shiveluch, looking roughly N on 2 February 1990, showing explosion vents. Courtesy of B.V. Ivanov.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: B. Ivanov, IV.


Ulawun (Papua New Guinea) — March 1990 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Thick vapor emission; weak seismicity

"Activity remained at a low level in March. Summit crater emissions consisted of thick white vapour. Seismicity was low throughout the month."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: I. Itikarai, P. de Saint-Ours, and C. McKee, RVO.


Vulcano (Italy) — March 1990 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


High-temperature fumaroles; gas chemistry; small seismic swarms

Fumarolic activity at Vulcano remained at a very high level in 1989. The temperature of a fumarole (F5) on the crater rim (figure 6) has remained stable at 310 ± 5°C; more than 90 samples have been collected since July 1987. In contrast, a fumarole (FF) inside the crater showed very high temperatures, reaching a maximum of 550°C in August-September 1989, 100° hotter than in 1988. February 1990 temperatures were 515° and 312° at FF and F5 respectively.

Figure (see Caption) Figure 6. Map of Vulcano, showing locations of F5 and FF fumaroles.

Major chemical species (H2O, CO2, H2S, and SO2) showed large variations in concentration (figure 7). 3He/4He ratios were very high for all crater fumaroles (~60% mantle-derived He), remaining stable during 1989 at ~ 7.5-8.0 x 10-6. The 13C/12C ratio followed a similar trend to that of CO2, with very wide oscillations from about d13C 0.00 to -2.20+. Geologists noted that the chemical and isotopic trends suggest mixing of different sources.

Figure (see Caption) Figure 7. Variations in concentrations of H2O (top), CO2, (center) and SO2 and H2S (bottom) at Vulcano's fumarole F5, 1987-90. Courtesy of OV.

Seismic activity was monitored by a permanent network installed by IIV, and a digital mobile seismic network operated by OV since 1987. Seismicity was at a low level and characterized by low-energy earthquakes occurring in swarm sequences. On the basis of their wave shapes and spectral characteristics, the earthquakes were divided into "Volcano-tectonic" and "Volcanic" events (figure 8) using the classification of Latter (1981). Volcano-tectonic earthquakes outside the Fossa cone and around the island showed clear P and S phases, high frequency contents, and represented the most energetic events (M < 1.6). Volcanic-type events showed very regular wave trains that were sometimes sharply monochromatic, and were characterized by low dominant frequencies and an absence of clearly identifiable phases. Their energy reached 1011-1012 ergs and their magnitudes were negative. Particle motion analysis revealed the presence of Rayleigh and Rayleigh-like waves with a prograde rotation; the arrivals of these two phases followed one another during such earthquakes. Geologists interpreted these events, centered in the Fossa crater, as being related to fumarolic gas flow at shallow depth.

Figure (see Caption) Figure 8. Seismograms showing events classified as "Volcano-tectonic" (top) and "Volcanic" (bottom) at Vulcano.

Reference. Latter, J.H., 1981, Volcanic earthquakes and their relationship to eruptions at Ruapehu and Ngauruhoe volcanoes: JVGR, v. 9, p. 293-310.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages during the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated to the north over time. La Fossa cone, active throughout the Holocene and the location of most of the historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform forms a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning in 183 BCE and was connected to Vulcano in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. The latest eruption from Vulcano consisted of explosive activity from the Fossa cone from 1898 to 1900.

Information Contacts: D. Tedesco, S. Vulcano, and G. Luongo, OV.


Waesche (Antarctica) — March 1990 Citation iconCite this Report

Waesche

Antarctica

77.17°S, 126.88°W; summit elev. 3292 m

All times are local (unless otherwise noted)


No signs of recent activity

January 1990 fieldwork revealed no fumarolic ice towers or other signs of recent activity. A thick (<=4 m) sequence of tephra was found in blue ice at the foot of the volcano, but its vertical attitude suggested eruptions thousands of years ago.

Geologic Background. Mount Waesche is the southernmost of a N-S-trending chain of volcanoes in central Marie Byrd Land. It is located 20 km SW of Pliocene Mount Sidley, Antarctica's highest volcano, and was constructed on the SE rim of the 10-km-wide Chang Peak caldera. Pre-caldera Chang Peak lavas were erupted about 1.6 million years ago (Ma) and the Waesche shield formed about 1.0 Ma. Waesche may have been active during the Holocene and is a possible source of ash layers in the Byrd Station ice core that were deposited during the past 30,000 years. The youngest lavas are too young to date by Potassium-Argon. Satellitic cinder cones, some aligned along radial fissures, are located on the SW flank.

Information Contacts: P. Kyle and W. McIntosh, New Mexico Institute of Mining and Technology; R. Dibble, Victoria Univ.


Whakaari/White Island (New Zealand) — March 1990 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Minor ash emission; seismicity and thermal activity decline; deflation

Little eruptive activity has occurred since 29 November fieldwork revealed a new vent and fresh tephra on the main crater floor. Seismic activity has been at low levels, fumarole temperatures have decreased, and deflation on the main crater floor (centered in the Donald Duck area) suggests that heatflow has been redirected from Noisy Nellie fumarole westward to 1978 Crater. R. Fleming reported a small eruption of lithic accessory ejecta from Noisy Nellie in late January 1990, and further collapse of Corporate and Congress Craters.

Geologists from the RV Vulkanolog visited White Island 2-3 March. Only blue "flames" associated with fumarolic discharge were seen over fumaroles E of 1978 Crater (Donald Mound, Blue Duck, and Noisy Nellie) during the night of 2 March. The three most vigorous vents along a small cone on R.F. crater's floor glowed pale red (500-550°C) and a small eruptive episode on 3 March added pebble-sized material to the cone. A shallow green pond that occupied the rest of the crater floor was surrounded by yellow to orange precipitates.

On 6 March geologists found only 4 mm of fine green ash that had fallen since 29 November at a site 35 m E of 1978 Crater. No new ash was found on the 1978 Crater rim or to the SE (S of Donald Mound). Donald Duck emitted white gas/steam clouds, and low-pressure gas emerged from Noisy Nellie. Accessory blocks and smaller ejecta, first seen about a month earlier, extended 30 m SE from Noisy Nellie. Emissions from 1978 Crater obscured R.F. and Corporate craters, but small detonations from R.F. Crater were frequently heard.

Only ~10 small B-type events/day and an average of ~3 A-types/day were recorded in December, with small E-types recorded on the 7th and 21st. About 3-6 B-type events/day plus rare A-types were recorded during January and February, with tremor nearly absent.

A March deformation survey showed strong subsidence of the Donald Mound area following a period of brief uplift measured 29 November. Subsidence since then was centered E of 1978 Crater (between Noisy Nellie and Donald Mound), reaching 30 mm near Donald Duck vent, with a trough extending NW along the line of fumaroles. Noisy Nellie, near the apparent center of the 15+ mm uplift prior to 29 November, lies on the edge of this trough. The recent subsidence of 9 mm/month is similar to the rate observed since mid-1987.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Nairn, P. Otway, B. Scott, and C. Wood, NZGS Rotorua; W. Giggenbach, DSIR Chemistry, Petone.


Whakaari/White Island (New Zealand) — March 1990 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Strong submarine hydrothermal activity at the Calypso Vents

The following observations, made by scientists from the USSR and New Zealand during a cruise of the RV Vulkanolog, are reported by W.F. Giggenbach and I. Menyailov.

"Calypso Mound is a white anhydrite cone some 6-8 m high, formed at 167 m depth by discharge of thermal waters at the ocean floor. It was discovered in February 1987 using the diving vessel Soucoup carried on the RV Calypso (Sarano and others, 1989). It lies within one of the 'bubble zones' extending in a line from White Island to Whale Island in the Bay of Plenty (Duncan and Pantin, 1969) [around 37.64°S, 177.10°E].

"The echograms indicated strong hydrothermal activity with a number of vents producing bubble curtains. However, an extended visual search under calm conditions from both the RV Vulkanolog and a rubber dinghy detected no bubbles at the surface. A possible explanation is re-dissolution of the gas in seawater. Similar gases, collected from more shallow submarine springs in the Bay of Plenty, S of Whale Island, and from Whale Island itself (see below), consisted predominantly of CO2, which has a comparatively high solubility in water. Re-dissolution is also supported by the distribution of reflections recorded during a slow pass over the area. Most of the individual bubble swarms, now clearly separated, appeared to terminate at ~20 m depth.

"Close inspection of a video recording shows that the fluid discharged from two vents on Calypso Mound is very likely to contain a considerable free vapor phase, indicated by flame-like tongues of free vapor, rapidly quenched on contact with cold seawater. Water leaving the vapor-seawater interaction zone appeared clear and colorless except for schlieren indicating a density difference from seawater.

"The existence of free vapor at 167 m depth and about 18 bars pressure suggests that the temperature of the fluid discharged from Calypso Mound is close to 207°C. The high proportion of vapor, apparently present in the fluid mixture leaving the vents, would indicate high corresponding enthalpies of the fluid feeding Calypso Mound. The temperature of any initial single phase liquid, before flashing and possibly present at greater depth, may therefore be considerably higher. However, Sarano et al. (1989) consider it unlikely that the waters emitted from Calypso Mound were as hot as 160°C. The 'hydrothermal' nature indicated for the Calypso Mound system may also explain the enrichment in typically 'epithermal' elements such as As, Sb, Hg, and Tl, and the absence of a 'volcanic' trace metal signature (Giggenbach and Glasby, 1977) in clays recovered from near the main cone."

References. Duncan, A.R., and Pantin, H.M., 1969, Evidence for submarine geothermal activity in the Bay of Plenty: New Zealand Journal of Marine and Freshwater Research, v. 3, p. 602-606.

Giggenbach, W.F., and Glasby, G.P., 1977, The influence of thermal activity on the trace metal distribution in marine sediments around White Island, New Zealand: New Zealand Department of Scientific and Industrial Research Bulletin, v. 218, p. 121-126.

Sarano, F., Murphy, R.C., Houghton, B.F., and Hedenquist, J.W., 1989, Preliminary observations of submarine geothermal activity in the vicinity of White Island, Taupo Volcanic Zone, New Zealand: Journal of the Royal Society of New Zealand, v. 19, p. 449-459.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Menyailov and A. Ivanenko, IV, Petropavlovsk; W. Giggenbach, DSIR Chemistry, Petone.


Zhupanovsky (Russia) — March 1990 Citation iconCite this Report

Zhupanovsky

Russia

53.589°N, 159.15°E; summit elev. 2899 m

All times are local (unless otherwise noted)


Four vigorous fumaroles

On 2 February, fumarolic activity was noted in two vents inside the active crater and two vents to the W (figure 1).

Figure (see Caption) Figure 1. Active fumarolic vents at Zhupanovsky, looking roughly E on 2 February 1990. Courtesy of B. Ivanov.

Geologic Background. The Zhupanovsky volcanic massif consists of four overlapping stratovolcanoes along a WNW-trending ridge. The elongated volcanic complex was constructed within a Pliocene-early Pleistocene caldera whose rim is exposed only on the eastern side. Three of the stratovolcanoes were built during the Pleistocene, the fourth is Holocene in age and was the source of all of Zhupanovsky's historical eruptions. An early Holocene stage of frequent moderate and weak eruptions from 7000 to 5000 years before present (BP) was succeeded by a period of infrequent larger eruptions that produced pyroclastic flows. The last major eruption took place about 800-900 years BP. Historical eruptions have consisted of relatively minor explosions from the third cone.

Information Contacts: B. Ivanov, IV.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).