Logo link to homepage

Bolivia Volcanoes

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Sairecabur

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Tata Sabaya

  • Volcano photo slideshow

    Licancabur

  • Volcano photo slideshow

    Tata Sabaya

  • Volcano photo slideshow

    Sairecabur

  • Volcano photo slideshow

    Sairecabur

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Jatun Mundo Quri Warani

  • Volcano photo slideshow

    Sairecabur

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Licancabur

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Tata Sabaya

  • Volcano photo slideshow

    Tata Sabaya

  • Volcano photo slideshow

    Parinacota

  • Volcano photo slideshow

    Tata Sabaya

  • Volcano photo slideshow

    Irruputuncu

  • Current

Bolivia has 10 Holocene volcanoes. Note that as a scientific organization we provide these listings for informational purposes only, with no international legal or policy implications. Volcanoes will be included on this list if they are within the boundaries of a country, on a shared boundary or area, in a remote territory, or within a maritime Exclusive Economic Zone. Bolded volcanoes have erupted within the past 20 years. Suggestions and data updates are always welcome ().

Volcano Name Location Last Eruption Primary Volcano Type
Guayaques Northern Chile-Bolivia Unknown - Evidence Credible Lava dome(s)
Irruputuncu Northern Chile-Bolivia 1995 CE Stratovolcano
Jatun Mundo Quri Warani Bolivia Unknown - Evidence Uncertain Lava dome(s)
Laguna Jayu Khota Bolivia Unknown - Evidence Credible Maar(s)
Licancabur Northern Chile-Bolivia Unknown - Evidence Credible Stratovolcano
Olca-Paruma Northern Chile-Bolivia Unknown - Eruption Observed Stratovolcano(es)
Parinacota Northern Chile-Bolivia 290 CE Stratovolcano
Sairecabur Northern Chile-Bolivia Unknown - Evidence Credible Stratovolcano(es)
Tambo Quemado Bolivia Unknown - Evidence Credible Pyroclastic shield
Tata Sabaya Bolivia Unknown - Evidence Credible Stratovolcano

Chronological listing of known Holocene eruptions (confirmed or uncertain) from volcanoes in Bolivia. Bolded eruptions indicate continuing activity.

Volcano Name Start Date Stop Date Certainty VEI Evidence
Irruputuncu 1995 Sep 1 1995 Sep 26 Confirmed 2 Observations: Reported
Irruputuncu [1989 Dec 16 ± 15 days] [Unknown] Uncertain  
Olca-Paruma [1865] [1867] Uncertain  
Parinacota 0290 ± 300 years Unknown Confirmed 0 Isotopic: Cosmic Ray Exposure
Parinacota 0090 ± 50 years Unknown Confirmed   Correlation: Anthropology
Parinacota 1100 BCE ± 500 years Unknown Confirmed   Isotopic: Cosmic Ray Exposure
Parinacota 4320 BCE ± 1200 years Unknown Confirmed   Isotopic: Cosmic Ray Exposure
Parinacota 5840 BCE ± 50 years Unknown Confirmed   Isotopic: 14C (uncalibrated)
Parinacota 7950 BCE Unknown Confirmed   Isotopic: Ar/Ar

There are 28 photos available for volcanoes in Bolivia.

Glacier-clad Volcán Parinacota rises to the NE above Laguna Chungará near the Chile-Bolivia border. The lake was formed when collapse of Parinacota about 8000 years ago produced a 6 cu km debris avalanche that traveled 22 km to the west and blocked drainages. Subsequent eruptions constructed the 6348-m-high symmetrical stratovolcano, which towers above late-Pleistocene andesitic-to-rhyolitic lava domes and flows in the middle ground.

Photo by Lee Siebert, 2004 (Smithsonian Institution).
The flanks of Tata Sabaya have largely formed through the extrusion of lava domes and flows, with some lobate flows displaying pressure ridges and levees seen in this September 2019 Planet Labs satellite image monthly mosaic (N is at the top; this image is approximately 12 km across). The NW end of a hummocky roughly 300 km2 debris avalanche deposit is in the lower right corner of this image. The collapse scarp from the flank collapse that produced the deposit and opened toward the S has been subsequently filled by lava domes.

Satellite image courtesy of Planet Labs Inc., 2019 (https://www.planet.com/).
The western side of the Sairecábur volcanic complex is seen with thick, blocky lava flows in the foreground. This chain of andesitic-dacitic volcanoes along the Chile-Bolivia border contains at least 10 postglacial centers and stretches from Escalante volcano on the north to Sairecábur volcano on the south. The highest peak, Sairecábur, is located on the northern margin of a 4.5-km-wide caldera. An active sulfur mine is located north of the volcano. Escalante has a crater lake at its summit and youthful lava flows on its flanks.

Photo by Raphaél Paris, 2004 (CNRS, Clermont-Ferrand).
The symmetrical Licancabur stratovolcano (left) rises above a basement of rhyodacitic ignimbrites and dacitic lava domes. A small 80-m-wide lake, one of the world's highest, occupies its 400-m-wide summit crater. Archaeological ruins were found on the 5916-m-high crater rim of Volcán Lincancabur. Young lava flows with prominent levees extend up to 6 km down the NW-to-SW flanks of the volcano.

Photo by Oscar González-Ferrán (University of Chile).
The two maars of the Laguna Jayu Khota group in Bolivia are shown in this June 2019 Planet Labs satellite image monthly mosaic (N is at the top; this image is approximately 10 km across). The Laguna Jayu Khota maar is near the center of the image and the Nehke Khota maar is on the southern side of the road near the lower left corner.

Satellite image courtesy of Planet Labs Inc., 2019 (https://www.planet.com/).
Snow capped volcanoes dot this NASA International Space Station image (with north to the upper right) taken along the Chile-Bolivia border. The snow-capped peak at the far left-center is Guallatiri volcano, and to its right are the three peaks of Nevados Quimsachata, which includes Acotango volcano. The two peaks at the upper left are Pomerape and Parinacota, with Laguna Chungara below. Nevado del Sajama in Bolivia lies at the upper right-center. At the lower right is the snow-free volcano of Macizo de Larancagua.

NASA International Space Station image ISS009-E-6848, 2004 (http://eol.jsc.nasa.gov/).
A long E-W-trending volcanic chain extends across the border between Chile and Bolivia in this NASA International Space Station image (with north to the upper right). The chain extends from historically active Isluga volcano (upper left) to eroded Saxani volcano at the lower right. The smaller volcano immediately to the west of Saxani with a sharp shadow is the steep-sided Tata Sabaya volcano. Tata Sabaya was the source of a major debris-avalanche deposit (bottom center) that forms the small dark-colored hills on the white floor of Salar de Coipasa.

NASA International Space Station image ISS009-E-6849, 2004 (http://eol.jsc.nasa.gov/).
The Olca-Paruma volcanic complex, seen here from the west, forms a 15-km-long E-W ridge forming the border between Chile and Bolivia and is comprised of several stratovolcanoes with Holocene lava flows. Volcán Olca lies near the western end of the complex. It is flanked to the east by Volcán Paruma, which is immediately west of the higher pre-Holocene Cerro Paruma volcano, the conical peak in the background. Volcán Paruma has been the source of conspicuous fresh lava flows and has displayed persistent fumarolic activity in recent years.

Photo by José Naranjo, 2001 (Servico Nacional de Geologica y Mineria).
Symmetrical Volcán Parinacota rises north of Lake Chungará in the foreground. The lake was formed when collapse of an ancestral Parinacota edifice about 8000 years ago produced a massive 5-6 cu km debris avalanche that dammed a preexisting river. Subsequent eruptions of andesitic aa lava flows and andesitic pumice and scoria flows constructed the modern conical edifice, obscuring the avalanche source scarp. The summit of Parinacota volcano contains a pristine, 300-m-wide crater.

Photo by John Davidson, University of Michigan (courtesy of Hugo Moreno, University of Chile).
The Nevados de Payachata volcanic group in northern Chile, seen here from the west, consists of the symmetrical, 6348-m-high Parinacota volcano (right) and its older twin volcano, Pleistocene 6222-m-high Pomerape volcano (left). The young cone of Parinacota post-dates collapse of an older edifice about 8000 years ago. The most recent activity at Parinacota produced a series of fresh-looking lava flows from satellitic cones on the south and SW flanks.

Photo by Oscar González-Ferrán (University of Chile).
Cerro Volcán Tambo Quemado is located in the Bolivian Altiplano and is in the center of this June 2019 Planet Labs satellite image monthly mosaic (N is at the top; this image is approximately 24 km across). Three overlapping craters form the complex, with a lava dome inside the youngest.

Satellite image courtesy of Planet Labs Inc., 2019 (https://www.planet.com/).
Snow-capped Licancabur volcano rises to the east beyond a Pliocene rhyolitic pyroclastic-flow deposit in the foreground from the Chaxas lava dome. Block lava flows from Licancabur have traveled as far as 12 km from the summit crater.

Photo courtesy of Oscar González-Ferrán (University of Chile).
The symmetrical, 5916-m-high Volcán Licancabur stratovolcano contains one of the world's highest lakes in its 400-m-wide summit crater. Archaeological ruins are located on the crater rim. Young lava flows with prominent levees extend up to 6 km down the NW-to-SW flanks. Most of the morphologically youthful volcano was constructed during the Holocene. The pre-Holocene Juriques volcano is located immediately to the SE and is capped by a 1.5-km-wide summit crater.

Copyrighted photo by Katia and Maurice Krafft, 1983.
Symmetrical Tata Sabaya stratovolcano towers to the north above the village of Pagador in the Altiplano of Bolivia. Thick dacitic lava flows at the left partially cover a scarp from a major collapse of the edifice that produced a large debris avalanche which swept into the Salar de Coipasa, covering an area of more than 300 sq km south of the volcano. The morphology of the volcano has been subsequently modified by dome emplacement (left and right) and hot avalanches.

Photo by Jon Davidson (University of Durham).
Steam rises from the fumarolically active southern summit crater of Irruputuncu, a small stratovolcano that straddles the Chile/Bolivia border. Irruputuncu, seen here from the WSW, was constructed within the collapse scarp of a Holocene debris avalanche whose deposit extends to the SW. Levees of viscous lava flows down the western flank of an edifice that was constructed within this scarp are seen at the lower left. The first unambiguous historical eruption from Irruputuncu took place in November 1995.

Photo by José Naranjo, 2001 (Servico Nacional de Geologica y Mineria).
Several lava domes and flows or coulees of the Jatun Mundo Quri Warani complex (also known as Nuevo Mundo) in Bolivia are shown in this July 2019 Planet Labs satellite image monthly mosaic (N is at the top; this image is approximately 23 km across).

Satellite image courtesy of Planet Labs Inc., 2019 (https://www.planet.com/).
Volcán Pomerape is the northernmost of twin stratovolcanoes forming the Nevados de Payachata along the Chile-Bolivia border. The 6282-m-high Pomerape lies across a saddle from Parinacota volcano, out of view to the right. The glacially dissected Pomerape was constructed above a base of dacitic-rhyolitic lava domes. The dominantly andesitic stratovolcano is capped by dacitic breccias and is of dominantly Pleistocene age.

Photo by Oscar González-Ferrán (University of Chile).
The irregular 10-km-long N-S-trending chain just left of the center of this Landsat image is Cerros de Guayaques. These rhyodacitic lava domes straddle the Chile-Bolivia border. The 10-km-long chain is located immediately east of the Purico pyroclastic shield, part of which is visible on the left side of the image. A well-defined summit crater was the source of the largest lava flows, which form the lobate flows that extend 3 km to the SW. There are no records of historical activity from Guayaques volcano.

NASA Landsat image, 1999 (courtesy of Hawaii Synergy Project, Univ. of Hawaii Institute of Geophysics & Planetology).
The two snow-capped volcanoes of the Nevados de Payachata volcanic group dominate this NASA International Space Station image (with north to the bottom). A prominent summit crater tops symmetrical Parinacota volcano, constructed to the SW of its eroded Pleistocene twin, Pomerape volcano. Silicic lava flows from Parinacota form lobes extending into Laguna Chungará, which was formed when a major debris avalanche from Parinacota blocked drainages. The hummocky debris-avalanche deposit covers much of the lower right part of the image.

NASA International Space Station image ISS009-E-6837, 2004 (http://eol.jsc.nasa.gov/).
A dark-colored andesitic volcanic bomb, ejected in a plastic state with a ballistic trajectory, drapes older rhyolitic rocks. The bomb was ejected during the Ajata volcanic eruptions. Helium surface-exposure ages ranging between about 1385 and 6500 years ago were obtained from the three lava flows erupted from the Volcanes de Ajata. Note the ice axe for scale (right-center).

Photo by Oscar González-Ferrán (University of Chile).
An aerial photo highlights the volcanic cones and youthful lava flows of the Sairecabur volcanic complex. This chain of volcanoes along the Chile-Bolivia border contains at least 10 postglacial centers and stretches from Escalante volcano on the north to Sairecabur volcano on the south. The highest peak, Sairecabur (lower right), is located on the northern margin of a 4.5-km-wide caldera, whose rim is visible at the bottom center. A pristine lava flow extending to the NW (lower right-center) is the most recent from Sairecabur.

Photo by Instituto Geográfico Militar (courtesy of Oscar González-Ferrán, University of Chile).
This viscous andesitic aa flow was erupted from the Volcanes de Ajata cinder cones along a N-S fracture on the southern flank of Parinacota. Helium-exposure ages of about 5985 and 6500 years ago were obtained from the lowermost and oldest of three lava flows of the Volcanes de Ajata. Snow-capped Acotango, Sajama, and Guallatiri volcanoes form the horizon to the east.

Photo by Oscar González-Ferrán (University of Chile).
Cerros de Guayaques is the irregular 10-km-long N-S chain down the center of this 5 November 2019 Sentinel-2 satellite image, along the Chile-Bolivia border. The group consists of lava domes, and a crater near the center of the complex produced a 5-km-long lava flow to the SW and W.

Satellite image courtesy of Copernicus Sentinel Data, 2019.
Parinacota is the larger of the two main edifices in this November 2019 Planet Labs satellite image monthly mosaic (N is at the top; this image is approximately 23 km across). With Pomerape to the NE, together they form the Nevados de Payachata group along the Chile-Bolivia border. The group of lakes to the SW formed within a debris avalanche deposit about 8,000 years ago that is more than 22 km long with a volume of 6 km3. The current cone formed over the resulting scarp and older edifice, and has a summit crater around 650 m wide. Lava flows are visible on all flanks, with some flows emplaced around the debris avalanche deposit hummocks.

Satellite image courtesy of Planet Labs Inc., 2019 (https://www.planet.com/).
The N-S-trending chain of andesitic-dacitic volcanoes along the Chile-Bolivia border just left of the center of this Landsat image is the Sairecábur-Escalante volcanic massif. Snow-covered areas are blue in this image of the chain, which contains at least 10 postglacial centers. A massive lava flow extends to the west, and a youthful flow traveled SE from Curinquinca volcano at the NE side of the chain. Laguna Verde is the left-hand lake at the bottom, NE of dark-colored Licancabur volcano; Juriques volcano to its right has a pronounced summit crater.

NASA Landsat image, 1999 (courtesy of Hawaii Synergy Project, Univ. of Hawaii Institute of Geophysics & Planetology).
The Nevados de Payachata volcanic group, the scenic highlight of Lauca National Park, is seen here from the SW and consists of the symmetrical, 6348-m-high Parinacota volcano (right) and its older twin volcano, Pleistocene 6222-m-high Pomerape volcano (left). Collapse of Parinacota about 8000 years ago produced a 6 cu km debris avalanche that formed the hummocky terrain in the foreground, with the colorful Llareta plant at the lower right. Hummocks in this medial portion of the avalanche deposit are about 50-100 m high.

Photo by Lee Siebert, 2004 (Smithsonian Institution).
The southern side of conical, glacier-clad Parinacota volcano is seen from south of Laguna Changará, with its twin volcano, Pomerape, visible in the distance behind its right-hand flank. A complex of lighter colored dacitic-rhyolitic lava domes can be seen at the SW flank of Parinacota (middle left). The main cone of Parinacota was constructed during the Holocene primarily by the effusion of andesitic lava flows following collapse of an earlier edifice. The youngest of these flows was dated at between 1300 and 2000 years ago.

Photo by Oscar González-Ferrán (University of Chile).
An active sulfur mine is located north of Cerro Sairecabur volcano. This chain of volcanoes along the Chile-Bolivia border contains at least 10 postglacial centers. The highest peak, Sairecabur, is located at the northern margin of a 4.5-km-wide caldera. Postglacial activity began south of the summit, but most recently produced a pristine lava flow to the NW. Escalante, at the northern end of the chain, has a crater lake at its summit and youthful lava flows on its flanks. Other eruptive centers have also produced Holocene lava flows.

Copyrighted photo by Katia and Maurice Krafft, 1983.

This is a compilation of Bolivia volcano information sources, such as official monitoring or other government agencies.